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A post-Markovian quantum master equation is derived, which includes bath memory effects via a phenom-
enologically introduced memory kernelkstd. The derivation uses as a formal tool a probabilistic single-shot
bath-measurement process performed during the coupled system-bath evolution. The resulting analytically
solvable master equation interpolates between the exact Nakajima-Zwanzig equation and the Markovian Lind-
blad equation. A necessary and sufficient condition for complete positivity in terms of properties ofkstd is
presented, in addition to a prescription for the experimental determination ofkstd. The formalism is illustrated
with examples.
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An open quantum system is one that is coupled to an
external environmentf1,2g. Such systems are of fundamental
interest, as the notion of a closed system is almost always an
idealization and approximation. Open quantum systems tend
to decohere, and for this reason have recently received in-
tense consideration in quantum information science, where
decoherence is viewed as a fundamental obstacle to the con-
struction of quantum information processorsf3g. It is pos-
sible to write down an exact dynamical equation for an open
system, but the result—an integro-differential equation
f4g—is mostly of formal interest, as such an exact equation
can almost never be solved analytically or even numerically.
In contrast, when one makes the Markovian approximation,
i.e., when one neglects all bath memory effects, the resulting
Lindblad master equationf2,5g is formally solvable and ame-
nable to numerical treatment. Moreover, the desirable prop-
erty of complete positivityf6g is maintainedssee, however,
f7g for a debate on the importance of this propertyd. A cov-
eted goal of the theory of open quantum systemsf1,2g is a
“post-Markovian” master equation thatsid generalizes the
Markovian Lindblad equation so as to include bath-memory
effects, at the same timesii d remains both analytically and
numerically tractable, andsiii d retains complete positivity. A
variety of post-Markovian master equations have been pro-
posed and analyzed, e.g.,f1,8–16g. However, one of the de-
sirable propertiessid–siii d above is typically lost: e.g., in the
case of time-convolutionless master equationsse.g., f10gd
one may lose complete positivity, while in the case of non-
local stochastic Schrödinger equationsse.g., f13gd one loses
analytical solvability. In this work we propose a post-
Markovian master equation that satisfies all of the desirable
propertiessid–siii d above. The key idea we introduce is an
interpolation between the generalized measurement interpre-
tation of the exact Kraus operator sum mapf6g, and the
continuous measurement interpretation of Markovian-limit
dynamicsf16,18g.

Review of the quantum measurements approach to open
system dynamics. Consider a quantum systemS coupled to a
bathB swith respective Hilbert spacesHS,HBd, evolving uni-
tarily under the total system-bath HamiltonianHSB. The ex-
act system dynamics is given by tracing over the bath de-
grees of freedomf1–3g

rstd = TrBfUstdrSBs0dU†stdg, s1d

where rstd is the system state,rSBs0d=rs0d ^ rBs0d is the
initially uncorrelated system-bath state, andUstd
=T expf−ie0

t HSBst8ddt8g sT denotes time ordering; we set"
=1 and for simplicity work in the interaction picture with
respect to both the system and bathd. Equations1d can be
rewritten in terms of an operator sumsthe Kraus representa-
tion f6gd

rstd = o
k

Ak
†stdrs0dAkstd, s2d

where Trfrstdg=1⇔okAkstdAk
†std= I=the identity.

Let us now recall how to derive theexactEq. s1d from a
measurement picturefFig. 1sadg. Imagine the bath acting as a
probe coupled to the system att=0, with the interaction
given by HSB as above. To study the state of the system a
single projective measurement is performed on thebath at
time t, with a complete set of projection operatorsuilki u,
HB=Spanhuilji. The measurement yields the resultk and col-
lapses the state of the bath to the corresponding eigenstate
ukl. This happens with probabilitypk=TrSfkkurSBstduklg,
and the system density matrix reduces torkstd
=kkurSBstdukl /pk¬Ak

†rs0dAk/pk, whereAk are the Kraus op-
erators. If we repeat this process for an identical ensemble
initially prepared in staterSBs0d the average system density

FIG. 1. Measurement approach to open system dynamics.
P=preparation,M =measurement, time proceeds from left to right.
sad Exact Kraus operator sum representation,sbd Markovian ap-
proximation,scd single-shot measurement.
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matrix becomes rstd=okpkr
kstd=TrBfUstdrSBs0dU†stdg,

which is just Eq.s1d, thus affirming the validity of this bath-
measurement interpretation of open system dynamics. The
corresponding mapF is completely positivesCPd f17g.

In contrast, in the Markovian limit the most general CP
system dynamics is given in the interaction picture by the
Lindblad equationf5g

]r

]t
= Lr ª

1

2o
a

aasfFa,rFa
†g + fFar,Fa

†gd. s3d

The Lindblad operatorsFa’s are bounded operators acting on
HS, and theaaù0 are constants that describe decoherence
rates. Now let us recall how also the Lindblad equation can
be given a measurement interpretation. Expanding Eq.s3d to
first order in the short time intervalt yields rst+td=fI
−st /2doaFa

†FagrstdfI −st /2doaFa
†Fag+toaFarstdFa

†. To the
same order we also have the normalization conditionfI
−st /2doaFa

†FagfI −st /2doaFa
†Fag+toaFa

†Fa= I. Thus the
Lindblad equation has been recast as a Kraus operator sum
s2d, but only to first order int, the coarse-graining time scale
for which the Markovian approximation is validf19g.
Clearly, then, we again have a measurement interpretation,
wherein, as before, the bath functions as a probe coupled to
the system while being subjected to acontinuousseries of
measurements at each infinitesimal time intervalt fFig.
1sbdg. This is the well-known quantum jump processf18g,
wherein the measurement operators areI −st /2dobFb

†Fb sthe
“conditional” evolutiond andÎtFa sthe “jump”d.

We have thus seen how a measurement picture leads to
the two limits of exact dynamicssvia an evolution of the
coupled system bath followed by a single generalized mea-
surement at timetd, and Markovian dynamicssvia a series of
measurements interrupting the joint evolution after each time
interval td. With this in mind it is now easy to see that by
relaxing the many-measurements process one is led to a less
restricted approximation than the Markovian one. Here we
use this observation to derive a post-Markovian master equa-
tion based on a probabilistic single-shot measurement pro-
cess.

Derivation of a post-Markovian master equation. The first
stage of exerting an approximation on the exact Eq.s1d
should be to include one extra measurement in the time in-
terval f0,tg. Thus we consider the following process: a probe
sbathd is coupled to the system att=0; they evolve jointly for
a time t8 s0ø t8, td such that att8 the system state is
Lst8drs0d, where Lst8d is a one-parameter map, at which
moment the extra generalized measurement is performed on
the bath.L does not depend ont since the bath resets upon
measurement. The system and bath continue their coupled
evolution betweent8 and t, upon which the final measure-
ment is applied. This is illustrated in Fig. 1scd. Since this
intermediate measurement determines the system stateucl at
t8, after time t− t8 the system state will berstd=Lst
− t8drst8d. It is important to stress thatrst8d cannotbe written
asLst8drs0d, since the measurement selectsrst8d at random.

The time t8 characterizes bath memory effects and must
be determined as a function of time scales characterizing the
evolution. We do this by introducing a bath memory function

skerneld kst− t8 ,td that assigns weights to different measure-
ments. To derive a master equation we discretize the time
interval f0,tg into N equal segments of lengthe, and express
t=Ne, t8=me. We then have the weighted average

rst = Ned = om=1

N
k„sN − mde,Ne…LfsN − mdegrsmed

= om=1

N
ksme,NedLsmedrfsN − mdeg.

From here on we assume thatL is trace preserving, whence
k must be normalized so thatom=1

N ksme ,Ned=1 skst8 ,td=0
for t8¹ f0,tgd, though an exception to this will arise below.
We then havesfor Nù1d

rsNed − rfsN − 1deg = o
m=1

N−1

k„me,sN − 1de…Lsmed

3hrfsN − mdeg − rfsN − m− 1degj

+ o
m=1

N−1

hksme,Ned − k„me,sN − 1de…j

3LsmedrfsN − mdeg

+ ksNe,NedLsNedrs0d. s4d

In order to arrive at a differential equation the term propor-
tional to LsNedrs0d must be made to vanish. We therefore
impose the additional constraint lime→0ksNe ,Ned /e=0. Tak-
ing the limitse→0, m,N→` such thatme= t8 andNe= t, we
convert the remaining terms in Eq.s4d into differential form
by expressing hrfsN−mdeg−rfsN−1−mdegj /e→]rst
− t8d /]st− t8d and hksme ,Ned−k(me ,sN−1de)j /e
→]kst8 ,td /]t. Equations4d then yields

]r

]t
=E

0

t

dt8Fkst8,tdLst8d
]rst − t8d
]st − t8d

+
]kst8,td

]t
Lst8drst − t8dG .

We would like to arrive at a proper integro-differential equa-
tion involving, on the right-hand side, onlyr and not its
derivative. We thus assume, only in the derivative ofr on the
right-hand side, thatrst− t8d=Lst− t8drs0d. Such an assump-
tion is equivalent to the standard procedure of the first-order
time-dependent perturbation theory, and can, analogously, be
iterated self-consistently to obtain higher-order approxima-
tions. Expressingrs0d=L−1st− t8drst− t8d we then obtain the
post-Markovian dynamical equation

]r

]t
=E

0

t

dt8Fkst8,tdLst8dL̇st − t8dL−1st − t8d

+
]kst8,td

]t
Lst8dGrst − t8d. s5d

This formal master equation is the first main result of this
work. Note that in this integral form the constraint
lime→0ksNe ,Ned /e=0 imposed above can be lifted, as it can-
not change the value of the integral.
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To make further progress we now assume a Markovian
form for the superoperator:Lstd=expsLtd. Here L can be
interpreted as the Lindblad generatorfEq. s3dg. Using this in
Eq. s5d yields

]r

]t
=E

0

t

dt8Fkst8,tdL +
]kst8,td

]t
GexpsLt8drst − t8d. s6d

This master equation is rather interesting and appears ame-
nable to analytical treatment, an undertaking that will be the
subject of a future study. To make further progress, let us
note that Eq.s6d automatically preserves Trr, even without
requiring the normalization ofk via e0

t kst8 ,tddt8=1. Since
the latter was needed above to ensure trace preservation, it
can now be dropped. This allows us to consider memory
kernels satisfyingkst8 ,td=kst8d. We thus arrive at our second
main result

]r

]t
= LE

0

t

dt8kst8dexpsLt8drst − t8d = LkstdexpsLtd p rstd,

s7d

wherep denotes convolution andk no longer obeys any con-
straints.

Henceforth we confine our attention for simplicity and
explicitness to the post-Markovian master equations7d,
though some of the results below are generalizable to Eq.
s5d. While k is still unspecified, we show below that it can be
determined by an appropriate quantum state tomography ex-
periment. As we further show below, Eq.s7d satisfies all the
conditions we stated in the introduction for a “desirable”
post-Markovian master equation. Finally, note that Eq.s7d
reduces to a purely Markovian master equation,]r /]t
=Lrstd, when kst8d=dst8d, as expected for a memoryless
channel.

Dynamical map. We now analytically derive the dynami-
cal mapFstd: rs0d°rstd governing our master equation. We
solve the integro-differential equations7d by taking the
Laplace transform

sr̃ssd − rs0d = Fk̃ssd p
L

s− LGr̃ssd, s8d

whereX̃ssdªLapfXstdg is the Laplace transform of the func-
tion Xstd. Now consider the solution of the eigenvalue equa-
tion Lr=lr. It results in a set ofscomplexd eigenvalueshlij
and corresponding right and left eigenvectorshRij ,hLij that
fulfill the orthonormality condition TrfLiRjg=di j . These
eigenvectors are known as the damping basisf20g of the
superoperatorL. Expressing the density matrix in this basis
as rstd=oiTrfLirstdgRi =oimistdRi and taking the Laplace
transform, allows us to use Eq.s8d to solve for the expansion

functionsmistd: sm̃issd−mis0d=lik̃ss−lidm̃issd⇒

mistd = Lap−1F 1

s− lik̃ss− lid
Gmis0d = :jistdmis0d. s9d

The functionsjistd can now be computed using the residue
theorem formula applied to the Bromwich integral formula

for the inverse Laplace transform: iffssd=LapfFstdg then
Fstd=opk

Resfestfssd ,pkg, where pk are the poles ofestfssd
and Resfg,pgª f1/sn−1d!ghfdn−1/ sdsn−1dgfss−pdngssdgjs=p is
the residue ofg, with n the order of the polep. In our case

fssd=fs−lik̃ss−lidg−1 and so the polespk are determined by

the solutions of the equations=lik̃ss−lid for s. This equa-
tion can be solved once the Lindblad generatorL syielding
the lid and the memory kernelkstd are specified. Thenjistd
=op

k
sidResfestfssd ,pk

sidg. Summarizing, the dynamical map cor-
responding to Eq.s7d is

Fstd:X ° o
i

jistdTrfLiXgRi . s10d

Using the orthonormality of the damping basis it follows that
Fstd−1: Y°oijistd−1TrfLiYgRi. ThusF is invertible with the
exception of the points wherejistd=0. For contractivese.g.,
Markoviand maps this will happen att=`, though in general
additional points cannot be excluded.

Condition for complete positivity of F. Using
Choi’s theorem f21g the criterion for complete
positivity of our map is equivalent to positivity
of the matrix P whose si , jdth element is
Ffuilk j ug. Namely, Pù0⇔ hokjkstdTrfLkuilk j ugRkj1øi,jøn

=hokjkstdk j uLkuilRkj1øi,jønù0, which, in turn, is equivalent
to

o
k

jkstdLk
T

^ Rk ù 0. s11d

The inequalitys11d is a necessary and sufficient condition for
our map to be CP. Because the functionsjkstd are given in
terms of the memory kernelkstd through Eq.s9d, this in-
equality results in a condition onkstd, which can be checked
in order to verify that a given such kernel results in a CP
map. Further note that Eq.s7d preserves the trace ofrstd fi.e.,
d Tr rstd /dt=0g, as is evident from TrL=0 and a Taylor
expansion of expsLtd.

Kraus representation ofF. Since the matrixP is positive
it can be expressed asP=okuaklkaku where theuakl’s are the
eigenvectors ofP. One can divide the vectoruakl into n seg-
ments of lengthn, wheren=dimfHSg, and define a matrix
Mk with the ith column being theith segment ofuakl, so that
the ith segment isMkuil. Then the dynamical map is recon-
structed asEsrd=oaMarMa

†, which is the desired Kraus rep-
resentation.

Connection to other master equations. We first note that
our master equations7d is an instance of the exact Nakajima-
Zwanzig sNZd equation rstd=e0

t dt8Ost ,t8drst8d f4g, where
the NZ kernelOst ,t8d is, in our case, of the special time
translationally invariant formOst− t8d. Secondly, in the par-
ticular case thatiLi!1/t Eq. s7d reduces to

]r

]t
= LE

0

t

dt8kst8drst − t8d. s12d

This master equation was proposed intuitively in Ref.f14g,
where it was studied in the case of a damped harmonic os-
cillator and it was shown to lead, under certain assumptions,
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to unphysical behavior. This issue was clarified in the recent
work f15g, where it was shown that a single qubit subject to
telegraph noise can be described by Eq.s12d, and where
conditions for complete positivity ofs12d were established;
our inequalitys11d includes this as a special case. Thirdly, we
can rewrite Eq.s7d in time-convolutionless form using the
backward propagator methodf8g: using Eq.s10d we can ex-
press the formal solution of Eq.s7d as rstd=Fstdrs0d. We
have already discussed above the invertibility ofFstd; as-
suming F−1 exists Eq.s7d can then be rewritten in time-
convolutionless form as

]r

]t
= FLE

0

t

kst8dexpsLt8dFst − t8ddt8F−1stdGrstd, s13d

with the operator in square brackets serving as the generator
of the evolution.

Experimental determination of the kernel function.
Suppose one measuresrstd via quantum state tomography
sQSTd f3g. It follows from Eq. s10d applied to rstd that
jistd=TrfLirstdg /TrfLirs0dg. The coefficientsjistd are thus
directly experimentally accessible, provided one first speci-
fies a Markovian model from which the left eigenvectorsLi
and eigenvaluesli can be computed. Inverting Eq.s9d then
yields the kernel askstd=Lap−1(hs−1/Lapfjistdgj)e−lit /li.
This inversion process forkstd is not unique in the sense that
it will depend on the choice of Markovian model. It can be
optimized via well-established maximum likelihood meth-
ods, e.g.,f22g, thus yielding theoptimal Markovian model.

Example. As a concrete example meant to illustrate the
predictions of our master equation, we consider the problem
of a single qubit dephasing. The Lindblad superoperator is
Lr=−sa/2d[sz,fsz,rg], a.0. Using the parametrization
rstd=fI +aW std ·sW g /2 fwith aW PR3 and sW =ssx,sy,szdg, the

damping basis is found to consist of the following eigenval-
ues and eigenoperators:hliji=0

3 =h0,−a,−a,0j, and hRiji=0
3

=hLiji=0
3 =hI ,sx,sy,szj /Î2. The Markovian solution is

simple exponential coherence decay:azstd=1 and a jstd
=a js0dexps−atd, j =x,y. It follows immediately from Eq.s9d
that j0std=jzstd=Lap−1f1/sg=1 and thatjxstd=jystd¬ fstd.
We further find ha jstd=j jstdj j=x,y,z. Applying the criterion
s11d readily yields the CP condition asufstduø1. Let us con-

sider two kernel functions:k1std=A exps−gtd⇒ k̃1ssd=A/ ss
+gd and k2std=Ae−sg−adtfcossmtd−sg /mdsinsmtdg⇒ k̃2ssd
=Ass−ad / fss−a+gd2+m2g. Then, following the prescription
of Eq. s9d yields f1std=expf−tsa+gd /2gfcossvtd+sinsvtdsa
+gd /2vg where v=Î4Aa−sg+ad2/2, and f2std=1
−fAa/ sg2+V2dgf1−e−gtscosVt+sg /VdsinVtdg where V

=Îm2+Aa snote that the CP conditionuf1,2stduø1 imposes
restrictions on the allowed values of the various parameters
appearing hered. In both cases we thus find damped oscilla-
tions. The difference is that in the case ofk1 we have
f1s`d=0, as in the Markovian case, while in the case ofk2

we havef2s`d=1−Aa/ sg2+V2d, which cannot be mimicked
by the Markovian solution. Damped oscillations with a non-
zero asymptotic coherence, as in the case ofk2, are a feature
of the exact solution of a single qubit dephasing in the pres-
ence of a boson bath, e.g., when a peaked spectral density
gsvd~ expf−csv−v0d2g is chosenf19g. We thus see explic-
itly through the example considered here, how our master
equations7d is capable of interpolating between exact and
Markovian open system dynamics.
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