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A post-Markovian quantum master equation is derived, which includes bath memory effects via a phenom-
enologically introduced memory kernk(t). The derivation uses as a formal tool a probabilistic single-shot
bath-measurement process performed during the coupled system-bath evolution. The resulting analytically
solvable master equation interpolates between the exact Nakajima-Zwanzig equation and the Markovian Lind-
blad equation. A necessary and sufficient condition for complete positivity in terms of properti¢s &f
presented, in addition to a prescription for the experimental determinatik()ofrhe formalism is illustrated
with examples.
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An open quantum system is one that is coupled to an p(t) = Trg[U(t) psg O)UT(1)], (1)
external environmeritl,2]. Such systems are of fundamental ) )
interest, as the notion of a closed system is almost always atihere p(t) is the system statepsg(0)=p(0) ® pg(0) is the
idealization and approximation. Open quantum systems tenifitially ~ uncorrelated system-bath state, andJ(t)
to decohere, and for this reason have recently received in=7exg—i[{Hsg(t’)dt'] (7 denotes time ordering; we sét
tense consideration in quantum information science, where1 and for simplicity work in the interaction picture with
decoherence is viewed as a fundamental obstacle to the cofespect to both the system and batBquation(1) can be

struction of quantum information processd@. It is pos-  rewritten in terms of an operator sufthe Kraus representa-
sible to write down an exact dynamical equation for an openjon [6])

system, but the result—an integro-differential equation

[4]—is mostly of formal interest, as such an exact equation p(t) = > Al(H)p(0)A(1), 2)

can almost never be solved analytically or even numerically. K

In contrast, when one makes the Markovian approximation,

i.e., when one neglects all bath memory effects, the resultingthere TEp(t)]=1 = S A(DAl(t)=1=the identity.

Lindblad master equatidr2,5] is formally solvable and ame- Let us now recall how to derive thexactEg. (1) from a
nable to numerical treatment. Moreover, the desirable propmeasurement pictufé€ig. 1(a)]. Imagine the bath acting as a
erty of complete positivityf 6] is maintained(see, however, probe coupled to the system &t0, with the interaction
[7] for a debate on the importance of this propgry cov-  given by Hgg as above. To study the state of the system a
eted goal of the theory of open quantum systéing| is a  single projective measurement is performed on trath at
“post-Markovian” master equation that) generalizes the time t, with a complete set of projection operatdi¥il,
Markovian Lindblad equation so as to include bath-memory;;, = gpaf|iy},. The measurement yields the resutind col-
effects, at the same tim@i) remains both analytically and |, 505 the state of the bath to the corresponding eigenstate

numerically tractable, andii) retains complete positivity. A - - e
variety of post-Markovian master equations have been pro|-k>' This happens  with probabilityp=Trd (Klpsg(t)| k)]

posed and analyzed, e.§1,8-16. However, one of the de- and the system density matrix reduces to(t)
sirable propertiesi)iii) above is typically lost: e.g., in the =(Klpse)[K)/P=:Alp(0)A/p\, whereAy are the Kraus op-
case of time-convolutionless master equatigaesy., [10]) erators. If we repeat this process for an identical ensemble
one may lose complete positivity, while in the case of non-nitially prepared in statgpsg0) the average system density
local stochastic Schrodinger equatiqiesg.,[13]) one loses

analytical solvability. In this work we propose a post- O O
Markovian master equation that satisfies all of the desirable
properties(i)—(iii) above. The key idea we introduce is an

interpolation between the generalized measurement interpre- (= () )—()— e 4@_@_@_.

a) o '

tation of the exact Kraus operator sum mg, and the ®) o . v e e
continuous measurement interpretation of Markovian-limit ’
dynamics[16,18. ©; O ()—

Review of the quantum measurements approach to open 7 ‘
system dynamic€onsider a quantum systeBtoupled to a
bathB (with respective Hilbert spacé$s,Hg), evolving uni- FIG. 1. Measurement approach to open system dynamics.
tarily under the total system-bath Hamiltonibdyg The ex-  P=preparationM =measurement, time proceeds from left to right.
act system dynamics is given by tracing over the bath deta) Exact Kraus operator sum representatiéi, Markovian ap-
grees of freedonfil-3] proximation,(c) single-shot measurement.
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matrix  becomes p(t) ==, p(t) =Trg[U(t) psg O)UT ()], (kerne) k(t-t’,t) that assigns weights to different measure-

which is just Eq.(1), thus affirming the validity of this bath- ments. To derive a master equation we discretize the time

measurement interpretation of open system dynamics. Thieterval[0,t] into N equal segments of lengt) and express

corresponding magb is completely positivéCP) [17]. t=Ne, t'=me. We then have the weighted average
In contrast, in the Markovian limit the most general CP

system dynamics is given in the interaction picture by the ;= Ne¢) :EN k((N = m)e,Ne)A[(N — m)€]p(me)

Lindblad equatior5] m=1

N
op 1 =2, k(me,Ne)A(me)p[(N - m)e].
S Lr= o2 adFapFil+[FapFlD. (3 )
é From here on we assume thatis trace preserving, whence

The Lindblad operatorg,'s are bounded operators acting on k must be normalized so théIN=1k(me,Ne):l (kt",t)=0
Hs, and thea,=0 are constants that describe decoherencéor t’ «[0,t]), though an exception to this will arise below.
rates. Now let us recall how also the Lindblad equation carwe then havefor N=1)

be given a measurement interpretation. Expanding(8do

first order in the short time intervat yields p(t+7)=[lI N-1

=(712)2 FIF Jp(0)[1 = (712)2 FIF ]+ 7= Fp()F!. To the p(Ne) = p[(N=1)e] = X, k(me, (N = 1)€) A(me)

same order we also have the normalization condifibn m=1

~(712)2 FIF - (7122 FIF ]+ = FIF,=I. Thus the x{p[(N-m)e] - p[(N-m~— 1)e]}
Lindblad equation has been recast as a Kraus operator sum N-1

(2), but only to first order inr, the coarse-graining time scale

for which the Markovian approximation is valid19]. + 2, {k(me,Ne) ~k(me,(N - o)}

Clearly, then, we again have a measurement interpretation, =

wherein, as before, the bath functions as a probe coupled to X A(me)p[(N-m)e]

the system while being subjected tocantinuousseries of +k(Ne,Ne)A(Ne)p(0). (4)
measurements at each infinitesimal time intervalFig.

1(b)]. This is the well-known quantum jump procels8], | order to arrive at a differential equation the term propor-
wherein the measurement operators larér/ 2)S sFF 5 (the  tional to A(Ne)p(0) must be made to vanish. We therefore
“conditional” evolution) and 7, (the “jump”). impose the additional constraint Ijmgk(Ne,Ne)/e=0. Tak-

We have thus seen how a measurement picture leads [Rq the limitse— 0, m,N— c such thame=t’ andNe=t, we

the two limits of exact dynamicévia an evolution of the  convert the remaining terms in E6f) into differential form

coupled system bath followed by a single generalized meayy  expressing  {p[(N-m)e]-p[(N-1-m)e]}/ e— dp(t

surement at time), and Markovian dynamicvia a series of = _i)/ 5t—t') and {k(me,Ne)—k(me, (N-1) &)}/ €

measurements interrupting the joint evolution after each time Jk(t' 1)/ ot. Equation(4) then yields

interval 7). With this in mind it is now easy to see that by

relaxing the many-measurements process one is led to a les f plt—t) okt b)
+

restricted approximation than the Markovian one. Here we P - (t—t) P
(? — 1/

use this observation to derive a post-Markovian master equa
tion based on a probabilistic single-shot measurement pro-
cess. We would like to arrive at a proper integro-differential equa-
Derivation of a post-Markovian master equatidrhe first ~ tion involving, on the right-hand side, only and not its
stage of exerting an approximation on the exact F. derivative. We thus assume, only in the derivative ain the
should be to include one extra measurement in the time infight-hand side, thas(t—t")=A(t-t")p(0). Such an assump-
terval[0,t]. Thus we consider the following process: a probetion is equivalent to the standard procedure of the first-order
(bath is coupled to the system &t0; they evolve jointly for ~ time-dependent perturbation theory, and can, analogously, be
a time t’ (0<t’<t) such that att’ the system state is iterated self-consistently to obtain higher-order approxima-
A(t")p(0), where A(t') is a one-parameter map, at which tions. Expressing(0)=A"'(t-t")p(t—t') we then obtain the
moment the extra generalized measurement is performed d¥Pst-Markovian dynamical equation
the bath.A does not depend ansince the bath resets upon
measurement. The system and bath continue their coupled
evolution betweert’ andt, upon which the final measure-
ment is applied. This is illustrated in Fig(d. Since this
intermediate measurement determines the system|gbase N &k(t’,t)A , . 5
t’, after time t—t’ the system state will bep(t)=Af(t ot (') |p(t=t). (5)
-1t")p(t'). It is important to stress tha{t’) cannotbe written
asA(t')p(0), since the measurement selegts) at random.  This formal master equation is the first main result of this
The timet’ characterizes bath memory effects and muswork. Note that in this integral form the constraint
be determined as a function of time scales characterizing thiém. ok(Ne,Ne)/e=0 imposed above can be lifted, as it can-
evolution. We do this by introducing a bath memory functionnot change the value of the integral.

dt’{k(t’,t)A(t’) A )pt-t")|.

0

t
9P _ f dt’ [k(t’,t)A(t’)A(t —-t)A T t-t)
a Jo
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To make further progress we now assume a Markoviardor the inverse Laplace transform: fis)=LapgF(t)] then
form for the superoperatorA(t)=exp(Lt). Here £ can be F(t):EkaeieS‘f(s),pk], where p, are the poles of®f(s)
interpreted as the Lindblad generaf&q. (3)]. Using this in  and Repy, p]:=[1/(n— ! {[d" Y/ (ds"H][(s- P)"9(s) I}y is
Eq. (5) yields the residue ofy, with n the order of the polg. In our case

o ([ Kt 1) ’ ’ f(s)=[s—A\ik(s=\;)] "t and so the polep, are determined by
e fo dt’| k{t', L+ Ta explLt)p(t=t"). (6)  the solutions of the equatios=\K(s-\,) for s. This equa-
tion can be solved once the Lindblad generafofyielding
This master equation is rather interesting and appears amgie \;) and the memory kerné{(t) are specified. Theg(t)
nable to analytical treatment, an undertaking that will be the:zp<i>Re$estf(s),pE>]_ Summarizing, the dynamical map cor-
subject of a future study. To make further progress, let “?esp;(onding to Eq(7) is
note that Eq(6) automatically preserves pr even without
requiring the normalization ok via [tk(t’,t)dt'=1. Since D(t):X— >, EOTILXIR. (10)
the latter was needed above to ensure trace preservation, it i
can now be dropped. This allows us to consider memor
kernels satisfyindk(t’,t)=k(t"). We thus arrive at our second
main result

3(Jsing the orthonormality of the damping basis it follows that
d)™L Y= 407 TILYIR,. Thus®d is invertible with the
exception of the points wherg(t)=0. For contractivee.g.,
dp o ) ) Markovian maps this will happen at=c, though in general
Y :5f dt'k(t")exp(Lt)p(t —t') = Lk(t)exp(Lt) * p(t), additional points cannot be excluded.
0 Condition for complete positivity of®. Using
(7)  Choi's theorem [21] the criterion for complete

where:* denotes convolution arkino longer obeys any con- positivity  of our- map 1 equ_alent to  positivity
Straints of the matrix P whose (i,j)th element s

Henceforth we confine our attention for simplicity and @fli)jl]. Namely, P=0 < {S&(OTLJiXI[IRd1=ij<n

explicitness to the post-Markovian master equatioh, = 1=ké(D{|LdDRd1<ij<n=0, which, in turn, is equivalent

though some of the results below are generalizable to EdO

(5). While k is still unspecified, we show below that it can be T

determined by an appropriate quantum state tomography ex- % &MLy ® Re=0. (11)

periment. As we further show below, E(Y) satisfies all the

conditions we stated in the introduction for a “desirable” The inequality(11) is a necessary and sufficient condition for

post-Markovian master equation. Finally, note that Ef).  our map to be CP. Because the functidip@) are given in

reduces to a purely Markovian master equatiap/dt  terms of the memory kernéi(t) through Eg.(9), this in-

=Lp(t), when k(t")=4(t"), as expected for a memoryless equality results in a condition dk(t), which can be checked

channel. in order to verify that a given such kernel results in a CP
Dynamical mapWe now analytically derive the dynami- map. Further note that E¢7) preserves the trace pft) [i.e.,

cal map®(t): p(0)> p(t) governing our master equation. We d Tr p(t)/dt=0], as is evident from T£=0 and a Taylor

solve the integro-differential equatiofv) by taking the expansion of ex{Lt).

Laplace transform Kraus representation ob. Since the matriXP is positive
it can be expressed d@&=3,/a)(a where thelay)’s are the

$p(s) - p(0) = {T((g) * ]’5(5), (8)  eigenvectors oP. One can divide the vectda,) into n seg-
s-L ments of lengthn, wheren=dim[Hg], and define a matrix

M, with theith column being théth segment ofay), so that
theith segment igM,Ji). Then the dynamical map is recon-
“structed ag(p)=2,M apML, which is the desired Kraus rep-

whereﬂ>‘((s) :=Lap X(t)] is the Laplace transform of the func-
tion X(t). Now consider the solution of the eigenvalue equa

tion Lp=Np. It results in a set ofcomplex eigenvalueg\i} | osentation.
and corresponding right and left eigenvect{Ry,{Li} that Connection to other master equatioe first note that
fulfill the orthonormality condition TLR]=8;. These  oyr master equatiof?) is an instance of the exact Nakajima-
eigenvectors are known as the damping b4 of the  zwanzig (NZ) equation p(t)=fdt’O(t,t")p(t’) [4], where
superoperatot.. Expressing the density matrix in this basis (e NZ kernelO(t,t') is, in our case, of the special time
as p(t)=ZTrLip(]R=2ix(VR; and taking the Laplace angjationally invariant fornO(t-t'). Secondly, in the par-
transform, allows us to use E() to solve for the expansion i jar case thal || <1/t Eq. (7) reduces to
functions ui(t): Sii(s) — wi(0) =Nik(s—\Jgi(s) 0 ; .
1 —”:,cf dt'k(t)p(t—t). (12)
m)=Lapt ————— [w(0) = &M (). (9) tJo

S—)\ik(s—hi) . . . . .

This master equation was proposed intuitively in R&#],

The functionsé(t) can now be computed using the residuewhere it was studied in the case of a damped harmonic os-

theorem formula applied to the Bromwich integral formulacillator and it was shown to lead, under certain assumptions,
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to unphysical behavior. This issue was clarified in the recentlamping basis is found to consist of the following eigenval-
work [15], where it was shown that a single qubit subject toues and eigenoperatorg\;}2,={0,-a,-a,0}, and {R}%,

telegraph noise can be described by EtR), and where
conditions for complete positivity of12) were established;

our inequality(11) includes this as a special case. Thirdly, we

can rewrite Eq.(7) in time-convolutionless form using the
backward propagator meth¢f]: using Eqg.(10) we can ex-
press the formal solution of Eq7) as p(t)=d(t)p(0). We
have already discussed above the invertibilitydeft); as-
suming @ exists Eq.(7) can then be rewritten in time-
convolutionless form as
(9p ‘ ’ ’ ’ rdH-1
' L‘,f k(t")exp(Lt")D(t —t")dt'Dd™(t) | p(t), (13)
0

={LR= ,0y,0y,04/\2. The Markovian solution is
simple exponential coherence decay,(t)=1 and «;(t)
=aj(0)exp(—at), j=x,y. It follows immediately from Eq(9)
that &(t)=&,(t)=Lap[1/s]=1 and that{&,(t)=£,(t) =:f(t).
We further find {a;(t)=¢;()}j=xy Applying the criterion
(11) readily yields the CP condition aft)|<1. Let us con-
sider two kernel functionsk;(t)=A exp(—yt) ~kl(s)=A/(s
+y)  and  ky(t)=Ae " cod ut) - (y/ wsin(ut)]0 ky(s)
=A(s-a)/[(s—a+7y)?>+u?]. Then, following the prescription
of Eq. (9) yields f,(t)=exd —t(a+vy)/2][coq wt) +sin(wt)(a
+9)[2w] where w=\4Aa-(y+a)?/2, and fy(t)=1

with the operator in square brackets serving as the generatofAa/ (¥*+Q?)][1-e " (cosOt+(y/Q)sinQt)] where O

of the evolution.

=\Ju?+Aa (note that the CP conditioff; ,(t)| <1 imposes

Experimental determination of the kernel function restrictions on the allowed values of the various parameters
Suppose one measurgt) via quantum state tomography appearing heje In both cases we thus find damped oscilla-

(QST) [3]. It follows from Eg. (10) applied to p(t) that
&) =TrL;p(t)]/Tr[L;p(0)]. The coefficientsé(t) are thus

tions. The difference is that in the case kf we have
f1(2)=0, as in the Markovian case, while in the casekgf

directly experimentally accessible, provided one first speciwe havef,()=1-Aa/(¥?+?), which cannot be mimicked

fies a Markovian model from which the left eigenvectbys
and eigenvalues; can be computed. Inverting EQ) then
yields the kernel ask(t)=Lap‘({s-1/Lad&(t)]})e N\,

by the Markovian solution. Damped oscillations with a non-
zero asymptotic coherence, as in the cask,pére a feature
of the exact solution of a single qubit dephasing in the pres-

This inversion process fd(t) is not unique in the sense that ence of a boson bath, e.g., when a peaked spectral density
it will depend on the choice of Markovian model. It can be g(w) * exg—c(w—wg)?] is choser{19]. We thus see explic-
optimized via well-established maximum likelihood meth-itly through the example considered here, how our master

ods, e.g.[22], thus yielding theoptimal Markovian model.

equation(7) is capable of interpolating between exact and

Example As a concrete example meant to illustrate theMarkovian open system dynamics.
predictions of our master equation, we consider the problem Financial support from the Sloan Foundation and the

of a single qubit dephasing. The Lindblad superoperator
Lp=—(al2)[o,,[0,p]], a>0. Using the parametrization
pt)=[1+a(t)-¢]/2 [with @ R® and a=(0y,0y,0,)], the
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