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We demonstrate quantum algorithms to implement pseudorandom operators that closely reproduce statistical
properties of random matrices from the three universal classes: unitary, symmetric, and symplectic. Modified
versions of the algorithms are introduced for the less experimentally challenging quantum cellular automata.
For implementing pseudorandom symplectic operators we provide gate sequences for the unitary part of the
time-reversal operator.

DOI: 10.1103/PhysRevA.71.014303 PACS numberssd: 03.67.Lx, 02.10.Yn

The possibility of manipulating, transferring, and storing
information in a way that preserves quantum coherence has
led to a reexamination and extension of the postulates of
information processingf1g. This field of study, known as
quantum information processing, can claim as triumphs the
discovery of quantum algorithms that factor large numbers
f2g, search databases quicklyf3g, and simulate quantum sys-
tems efficiently f4g. In addition, powerful communication
and cryptographic protocols have been suggested based on
the laws of quantum mechanicsf1g.

Generation of random numbers is a basic component of
classical information theory. Their quantum counterparts,
random quantum states and operators, likewise play a vital
role in quantum information theory. Quantum communica-
tion protocols utilizing randomness include saturation of the
classical communication capacity of a noisy quantum chan-
nel by random statesf5g and superdense coding of quantum
states via random operatorsf6g. Quantum computing proto-
cols facilitated by random unitaries include quantum process
tomography via a random operator fidelity decay experiment
to identify types and strengths of noise generatorsf7g. In
addition, the amount of multipartite entanglement in random
states approaches the maximum at a rate exponential with the
number of qubits in the systemf8g.

Random quantum states, generated by applying a random
operator to computational basis state, can also be used for
unbiased sampling. When testing an algorithm, such as quan-
tum teleportation, or a communications scheme it is desirable
to insure success for all possible quantum states. This can be
done via quantum process tomography, however this is ex-
tremely inefficientf9g. Rather, one could test the likelihood
of success with states drawn in an unbiased manner from the
space of all quantum states, similar to sampling statistics in
other contexts.

To capitalize on the above uses of random states and op-
erators, it is necessary to efficiently implement random ma-
trices on a quantum computer. This would appear to be a
daunting task considering that the number of independent
variables in a given random operator grows exponentially

with matrix dimension. Nevertheless, pseudorandom opera-
tors suggest that it may be possible to efficiently reproduce
statistical properties of randomness on a quantum computer
f7g. In this paper we extend the algorithm of Ref.f7g to
produce pseudorandom operators from the universal random
matrix classes with time-reversal symmetry.

Pseudorandom operators from the universal classes with
time-reversal symmetry may help a quantum computer simu-
late systems with time-reversal symmetries. These systems
are especially important in the areas of quantum chaosf10g
and decoherencef11g, where the physical system or environ-
ment to be studied tend to be modeled with time-reversal
symmetry. We note that models of decoherence, specifically
with random classical fields, have already been implemented
on a nuclear magnetic resonance quantum information pro-
cessorf12g.

In addition, we extend our recent workf13g and show that
random operators from all three universal classes can be
implemented on the less experimentally challenging quan-
tum cellular automatasQCAd architecture. This further dem-
onstrates the usefulness of a QCA in the study of complex
quantum evolution. For both architectures we show how to
implement the unitary part of the time-reversal operator on a
quantum computer which, for the QCA case, requires iden-
tifying a suitable, nonstandard form of the time-reversal op-
erator.

Random matrices were first introduced by Wigner to de-
scribe the energy level spacings of large nucleif14g. Since
then, random matrices have functioned as a universal model
for a host of complex systems ranging from quantum dots to
field theoryf15g. The circular ensembles of unitary matrices
were introduced by Dysonf16g as alternatives to the Gauss-
ian ensembles of Hermitian matricesf14,17g. The three cir-
cular ensembles are the circular unitary ensemblesCUEd of
arbitrary unitary matrices, appropriate for modeling systems
without time reversal symmetry, the circular orthogonal en-
semblesCOEd of symmetric unitary matrices, appropriate for
systems having time-reversal invariance and integral spin or
rotational symmetry, and the circular symplectic ensemble
sCSEd of self-dual unitary quaternion matrices, appropriate
for systems with time-reversal invariance, half-integer spin,
and no rotational symmetries. Each universality class has
properties unique unto itself. For example, the degree of
level repulsionsthe rate of change of nearest neighbor ei-
genangle spacings as the spacing goes to zerod is Pssd,s for
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the COE,Pssd,s2 for the CUE, andPssd,s4 for the CSE,
wheres is the nearest neighbor eigenangle spacing. Addition-
ally, the distribution of eigenvector component amplitudes
follow the xn

2 distribution f18g

Pnsyd =
n/2sn/2d

Gsn/2dkyl
S y

kyl
Dn/2−1

expS ny

2kylD , s1d

wherey is the eigenvector component amplitude, andkyl is
the mean value ofy. The number of degrees of freedom,n, is
1 for the orthogonal ensemble, 2 for the unitary ensemble,
and 4 for the symplectic ensemble.

The algorithm introduced inf7g to produce pseudorandom
operators of arbitrary unitaries, the CUE, consists ofm itera-
tions of then-qubit gate: apply a random SUs2d rotation to
each qubit, then evolve the system via all nearest neighbor
couplingsf7g. A random SUs2d rotation on qubitj of itera-
tion i is defined asf18g

Rsui
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jd = S eifi
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where the anglesfi
j, and ci

j are drawn uniformly from the
intervals

0 ø fi
j ø 2p, 0 ø ci

j ø 2p, s3d

andui
j =sin−1sji

j1/2
d whereji

j is drawn uniformly from 0 to 1.
The nearest neighbor coupling operator at every iteration is

UNNC= expSisp/4do
j=1

n−1

sz
j

^ sz
j+1D , s4d

wheresz
j is thez-direction Pauli spin operator. The random

rotations are different for each qubit and each iteration, but
the coupling constant is alwaysp /4 to maximize entangle-
ment. After them iterations, a final set of random rotations is
applied. This algorithm has been shown, for up to ten qubits,
to implement operators with statistical properties extremely
close to those expected of the CUEf7g with relatively few
iterationsf19g sFig. 1d.

Random operators from the other two universal classes
can be constructed from CUE operators. The goal of this
paper is to demonstrate that these constructions allow for
simple modifications of the pseudorandom algorithm de-
scribed above to generate pseudorandom operators from
these classes. To draw a matrixUCOE from the space of all
the COE’s simply drawUCUE from the CUE’s and multiply it
by its transposef17,18g,

UCOE= UCUE
T UCUE. s5d

Pseudorandom generation of such an operator is readily
done. First, implement the CUE matrixUCUE as above, re-
taining in memorysquantum or classicald the values of the
3nsm+1d+1 independent variables necessary to implement
the operator, three for each rotation ofn qubits for m+1
rotations, and one for the coupling strength. Next, implement
the transpose of the operator by applying the transpose of
each specific operation in reverse order of the originalUCUE
generation. To implement the transpose of the rotations apply

the transpose of each individual qubit rotations. The trans-
pose of the coupling operation is the same couplingUNNC

T

=UNNC. In Fig. 2 we demonstrate that for eight qubits and 60
iterations the pseudorandom COE matrices generated in this
way satisfy statistics of randomness by comparing the distri-
butionsPssd andPsyd to that expected for the COE.

We now turn to the symplectic ensemble, representing
systems with half-integer spin that are invariant under time
reversal. Following Mehtaf17g we define the antiunitary
time-reversal operatorT=ZC, where C takes the complex
conjugate andZ is unitary. The symplectic ensemble is char-
acterized by an antisymmetricZ, i.e., ZZ* =−1 where the
asterisk means the non-Hermitian conjugate. We choose the
representation such thatZ is written I1 ^ I2 ^ ¯ ^ In−1 ^ zn
whereI j is the two-dimensional identity matrix and

FIG. 1. Distributions of nearest neighbor eigenangle spacingss
sleftd, and eigenvector component amplitudesy srightd, for 100 re-
alizations of eight-qubit, 60-iteration pseudorandom CUE operators
compared to those expected for random unitaries of the COE
sdashd, CUE ssolidd, and CSEsdash-dotd. The nearest neighbor ei-
genangle spacing distribution compares extremely well with the ex-
pected distributionPCUEssd=s32s2/p2dexps−4s2/pd and the opera-
tors’ eigenvector component amplitude distribution almost exactly
follows PCUEsyd=exps−yd, which is appropriate whenkyl=1 and in
the limit N→`.

FIG. 2. Distributions of nearest neighbor eigenangle spacingss
sleftd, and eigenvector component amplitudesy srightd, for 100 re-
alizations of eight-qubit, 60-iteration pseudorandom COE operators.
The nearest neighbor eigenangle distribution compares very well
with the distributionPCOEssd=sps/2dexps−ps2/4d and the eigen-
vector component amplitude distribution almost exactly follows
PCOEsyd=s1/Î2pydexps−y/2d.
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zj = S0 − 1

1 0
D . s6d

In this way, a symplectic unitary is defined by

UCSE
R ; − ZUCSE

T Z = UCSE. s7d

andUCSEZ is antisymmetric unitary.
As with the COE operators, drawing an operator from the

CSE can be done via CUE operators: drawUCUE and multi-
ply by its time reversalf17,20g

UCSE= UCUE
R UCUE, s8d

whereUCUE
R =−ZUCUE

T Z. Using this construction pseudoran-
dom CSE operators can be generated as follows: run the
pseudorandom operator algorithm to implementUCUE, apply
Z via two rotations of the least significant qubitz
=expf−isp /2dszgexpf−isp /2dsxg, where thesi are the Pauli
matrices,UCUE

T is implemented as explained in the COE
case, applyZ. The negative sign is a global phase.

Figure 3 shows the eigenangle and eigenvector element
distributions for CSE pseudorandom operators. We note that
matrices of the CSE exhibit Kramers’ degeneracy so we di-
gress to explain how the above distributions are determined.
Kramers’ degeneracy allows the following basis choice for
CSE matricesf10g:

u1l,Tu1l,u2l,Tu2l, . . . ,uN/2l,TuN/2l, s9d

whereT is the time-reversal operator. The nearest neighbor
eigenangle distribution uses only one of each degenerate ei-
genangle. The eigenvectors corresponding to the degenerate
eigenangles can be written as

ue1l = c1u1l + c̃1Tu1l + c2u2l + c̃2Tu2l ¯ ,

Tue1l = − c̃1
* u1l + c1

*Tu1l − c̃2
* u2l + c2

*Tu2l ¯ . s10d

Any given diagonalization code will not necessarily output
the above form for the two eigenvectors of a degenerate ei-
genvalue, but superpositions of the two. Thus, as an invariant

quantity to characterize the eigenvectors we usey= uc1u2
+ uc̃1u2 f10g. Using the above procedures, the distribution of
nearest neighbor eigenangle and eigenvector components for
the generated pseudorandom CSE operators are those shown
in Fig. 3.

Classical cellular automata have been used to simulate
many complex classical systems from crystal growth to fluid
flow f21g. Thus, one may expect that quantum cellular au-
tomata can be used to model complex quantum systems. Ref-
erencef13g demonstrates the implementation of CUE pseu-
dorandom operators. Here we extend that work to the other
two random matrix classes.

A QCA system is devised ofk species of qubits in which
all qubits of a species are addressed simultaneously and
equivalently. Experimental flexibility is a primary motivation
to explore implementations via QCA. Removing the need for
localized external Hamiltonians can greatly ease hardware
specifications for actual implementations of quantum infor-
mation processing. A number of works have been devoted to
exploring the universality of QCA architecturesf22–24g but,
despite the greater experimental ease of QCA, relatively little
work has been done to exploit the uniqueness of the QCA
architecturef13,25g.

Previous work has shown that the pseudorandom algo-
rithm applied to a one-species QCA chain, such that all qu-
bits undergo the same rotations, yields operators with eigen-
value and eigenvector distributions appropriate for CUE-type
operators with mirror symmetriesf13g. The use of a two-
species QCA with alternating qubit species or the change of
one nearest neighbor coupling constantssay from p /4 to
p /5d is sufficient to break this symmetry.

For a QCA COE pseudorandom operator, one applies the
pseudorandom operator algorithm, with all qubits of a spe-

FIG. 3. Distributions of nearest neighbor eigenangless sleftd and
eigenvector component amplitudesy srightd, for 100 realizations of
eight-qubit, 60-iteration pseudorandom CSE operators. The nearest
neighbor eigenangle distribution compares very well with the dis-
tribution PCSEssd=s64/9pd3s4exps−64s2/9pd and the eigenvector
component amplitude distribution almost exactly followsPCSEsyd
=4y exps−2yd.

FIG. 4. Distributions of eigenvector component amplitudesy for
quantum cellular automatasQCAd based operators:sad 100 realiza-
tions of eight-qubit one-species COE,sbd 200 realizations of seven-
qubit one-species CSE,scd 100 realizations of eight-qubit two-
species COE, andsdd 200 realizations of seven-qubit two-species
CSE. All distributions are form=40 iterations. The distributions of
the two-species QCA operators are indistinguishable from those of
random COE and CSE matrices. However, the one-species QCA
operator distributions deviate from the random distributions due to
mirror symmetry. We note that this symmetry would be broken in
any actual experimental implementation due to unequal nearest
neighbor couplings.
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cies undergoing the same rotation, followed by its transpose,
just as in the circuit architecture. The eigenvector component
amplitude distribution for eight-qubit, one- and two-species
COE operators is shown in Fig. 4.

To generate CSE pseudorandom operators requires the
implementation ofZ which above was done by individually
addressing the least significant qubit. This operation is illegal
on a QCA system. Thus, we must find an appropriate non-
standard representation ofZ which allows all qubits of a
species to be addressed equivalently.

To find a representation ofZ amenable to a QCA imple-
mentation, we recall that for a symplectic matrixUCSE the
matrix A=UCSEZ is antisymmetric unitary. For every anti-
symmetric unitary matrix there exists a unitary matrixW
such thatA=WZWT f17g. We define our modified operator as
Z8=VZVT. Since Z8Z8* =−1, by definition of a symplectic
matrix, sV*dTV=VsV*dT= ±1. Thus,V must be a symmetric
or antisymmetric unitary. We can then define the antisym-
metric unitaryA8=UCSEZ8=W8Z8W8T and, following Mehta
f17g, we choose the unitaryUCUE=sZ8W8dT and generate
symplectic matrices viaUCSE=−Z8UCUE

T Z8U. An example of
a symmetric unitary operator,V, that allows the generation of
CSE operators in the above fashion is the swap gate. This
should not be surprising as the ordering of qubits is com-
pletely arbitrary. An operatorZ8 that is appropriate for our
purposes is the rotationz applied to an odd number of qubits.
Using this form ofZ8, pseudorandom symplectic operators
swith mirror symmetry if all coupling constants are equald

can be implemented on a one-species QCA if there are an
odd number of qubits. Similarly, two-species QCA imple-
mentations of pseudorandom symplectic operators can be
achieved if one of the species consists of an odd number of
qubits. The eigenvector component amplitude distribution of
seven-qubit one- and two-species QCA operators is shown in
Fig. 4.

In conclusion, we have demonstrated quantum algorithms
for pseudorandom operators from the COE and CSE univer-
sal classes. As with the original CUE pseudorandom opera-
tors f7g, we provide evidence that suggests that these opera-
tors may be able to satisfy statistical properties of these
ensembles with an efficient number of gates. Efficient per-
formance of such operators could be useful in simulating
various complex quantum systems. Similar operators can
also be implemented using the less experimentally demand-
ing QCA. This is a further demonstration that a QCA system
can be a useful tool in the study of randomness.
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