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Pseudorandom operators of the circular ensembles
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We demonstrate quantum algorithms to implement pseudorandom operators that closely reproduce statistical
properties of random matrices from the three universal classes: unitary, symmetric, and symplectic. Modified
versions of the algorithms are introduced for the less experimentally challenging quantum cellular automata.
For implementing pseudorandom symplectic operators we provide gate sequences for the unitary part of the
time-reversal operator.
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The possibility of manipulating, transferring, and storing with matrix dimension. Nevertheless, pseudorandom opera-
information in a way that preserves quantum coherence hasrs suggest that it may be possible to efficiently reproduce
led to a reexamination and extension of the postulates ddtatistical properties of randomness on a quantum computer
information processindg1]. This field of study, known as [7]. In this paper we extend the algorithm of R&7] to
guantum information processing, can claim as triumphs the@roduce pseudorandom operators from the universal random
discovery of quantum algorithms that factor large numbergnatrix classes with time-reversal symmetry.

[2], search databases quick], and simulate quantum sys- Pseudorandom operators from the universal classes with
tems efficiently[4]. In addition, powerful communication time-reversal symmetry may help a quantum computer simu-

and cryptographic protocols have been suggested based &€ systems with time-reversal symmetries. These systems
the laws of quantum mechanifs]. are especially important in the areas of quantum ch&6k

Generation of random numbers is a basic component oind decoherendd 1], where the physical system or environ-
ment to be studied tend to be modeled with time-reversal

classical information theory. Their quantum counterparts, o
random quantum states and operators, likewise play a vitalymmetry. We note that models of decoherence, specifically

role in quantum information theory. Quantum communica—With random classical fields, have already been implemented

. o . . on a nuclear magnetic resonance quantum information pro-
tion protocols utilizing randomness include saturation of the 9 q P

classical communication capacity of a noisy quantum Changessor[lZ].
pacity ya In addition, we extend our recent woirk3] and show that
nel by random state$] and superdense coding of quantum

; q ) random operators from all three universal classes can be
states via random operatdi]. Quantum computing proto- jnnlemented on the less experimentally challenging quan-

cols facilitated by random unitaries include quantum procesg,m cellular automatéQCA) architecture. This further dem-
tomography via a random operator fidelity decay experimenpnstrates the usefulness of a QCA in the study of complex
to identify types and strengths of noise generafdfs In guantum evolution. For both architectures we show how to
addition, the amount of multipartite entanglement in randommplement the unitary part of the time-reversal operator on a
states approaches the maximum at a rate exponential with t'&ﬁlantum computer which, for the QCA case, requires iden-
number of qubits in the systef8]. tifying a suitable, nonstandard form of the time-reversal op-
Random quantum states, generated by applying a randogtator.
operator to computational basis state, can also be used for Random matrices were first introduced by Wigner to de-
unbiased sampling. When testing an algorithm, such as quaggripe the energy level spacings of large nuglet]. Since
tum teleportation, or a communications scheme it is desirablﬁjen, random matrices have functioned as a universal model
to insure success for all pOSSible quantum states. This can b@r a host of Comp|ex Systems ranging from quantum dots to
done via quantum process tomography, however this is eXield theory[15]. The circular ensembles of unitary matrices
tremely inefficient[9]. Rather, one could test the likelihood \yere introduced by Dysoft6] as alternatives to the Gauss-
of success with states drawn in an unbiased manner from thgn ensembles of Hermitian matrick4,17). The three cir-
Space Of a” quantum StateS, Similar to Sampling StatistiCS i%ular ensemb|es are the Circu'ar unitary ensermldE) of
other contexts. arbitrary unitary matrices, appropriate for modeling systems
To capitalize on the above uses of random states and ORyithout time reversal symmetry, the circular orthogonal en-
erators, it is necessary to efficiently implement random masemple(COE) of symmetric unitary matrices, appropriate for
trices on a quantum computer. This would appear to be 8ystems having time-reversal invariance and integral spin or
daunting task considering that the number of independenbtational symmetry, and the circular symplectic ensemble
variables in a given random operator grows exponentiallyCcsp of self-dual unitary quaternion matrices, appropriate
for systems with time-reversal invariance, half-integer spin,
and no rotational symmetries. Each universality class has
* Author to whom correspondence should be addressed. Electronjaroperties unigue unto itself. For example, the degree of
address: weinstei@dave.nrl.navy.mil level repulsion(the rate of change of nearest neighbor ei-
"Electronic address: hellberg@dave.nrl.navy.mil genangle spacings as the spacing goes to) zeR(s) ~ s for
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the COE,P(s) ~ s? for the CUE, andP(s) ~s* for the CSE,
wheres is the nearest neighbor eigenangle spacing. Addition-
ally, the distribution of eigenvector component amplitudes
follow the x2 distribution[18]
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wherey is the eigenvector component amplitude, dgpgdis 02

the mean value of. The number of degrees of freedom,s
1 for the orthogonal ensemble, 2 for the unitary ensemble,
and 4 for the symplectic ensemble.

The algorithm introduced ifi7] to produce pseudorandom
operators of arbitrary unitaries, the CUE, consistsnadfera- FIG. 1. Distributions of nearest neighbor eigenangle spacings
tions of then-qubit gate: apply a random $) rotation to  (left), and eigenvector component amplituge&ight), for 100 re-
each qubit, then evolve the system via all nearest neighb(ﬂﬁzations of eight-qubit, 60-iteration pseudorandom CUE operators
couplings[7]. A random SU2) rotation on qubitj of itera- compared to those expected for random unitaries of the COE

2
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tion i is defined a$18] (dash, CUE (solid), and CSE(dash-dot The nearest neighbor ei-
. ‘ genangle spacing distribution compares extremely well with the ex-
o ddl cosg &% sing pected distributiorPcg(s) = (325%/ m2)exp(—4s%/ 1) and the opera-
R(6, &) = ( T j ' ) (2)  tors’ eigenvector component amplitude distribution almost exactly
-e'%ising e cosh

follows Pcye(y) =exp(-y), which is appropriate whety)=1 and in

i i . the limit N— oo,
where the angleg!, and 4 are drawn uniformly from the

intervals
. . the transpose of each individual qubit rotations. The trans-
O0<¢l<2m O<yl<2m, (3)  pose of the coupling operation is the same coupliflg,c
o1 412 i . =Unne In Fig. 2 we demonstrate that for eight qubits and 60
and 6] =sin (¢ .) whereg, |s_drawn uniformly from_o to _1' _iterations the pseudorandom COE matrices generated in this
The nearest neighbor coupling operator at every iteration '?Nay satisfy statistics of randomness by comparing the distri-

-1 . butionsP(s) and P(y) to that expected for the COE.
Unne=exp| i(7/4)Y, od ® ol ], (4) We now turn to the symplectic ensemble, representing
j=1 systems with half-integer spin that are invariant under time

reversal. Following Mehtd17] we define the antiunitary

{ime—reversal operatol =ZC, where C takes the complex

the coupling constant is always/4 to maximize entangle- conugate and is unitary. The_symplectlc* ensemble is char-
bling s g acterized by an antisymmetrig, i.e., ZZ =-1 where the

ment. After them iterations, a final set of random rotations is terisk means the non-Hermitan coniugate. We ch th
applied. This algorithm has been shown, for up to ten qubitsaSe sk means the non-rie an conjugate. vve choose the

to implement operators with statistical properties extremely‘epresentatlon such that is written 1, ® 1,8 -+ ®lp1® 7,
close to those expected of the CUE] with relatively few wherel; is the two-dimensional identity matrix and
iterations[19] (Fig. 1).

Random operators from the other two universal classes 1.2
can be constructed from CUE operators. The goal of this
paper is to demonstrate that these constructions allow for
simple modifications of the pseudorandom algorithm de- 0.8
scribed above to generate pseudorandom operators from -
these classes. To draw a mattiloe from the space of all a 06
the COE’s simply drawJ e from the CUE’s and multiply it
by its transpos¢l17,18,

Ucoe=UlueUcue: (5

Pseudorandom generation of such an operator is readily o 1 2 3 = 2 o

done. First, implement the CUE matridc,e as above, re- 10

taining in memory(quantum or classicathe values of the FIG. 2. Distributions of nearest neighbor eigenangle spacings
3n(m+1)+1 independent variables necessary to implemenfieft), and eigenvector component amplitudegight), for 100 re-

the operator, three for each rotation wfqubits form+1  ajizations of eight-qubit, 60-iteration pseudorandom COE operators.
rotations, and one for the coupling strength. Next, implementhe nearest neighbor eigenangle distribution compares very well
the transpose of the operator by applying the transpose afith the distributionPcog(s)=(ms/2)exp(-ms?/4) and the eigen-
each specific operation in reverse order of the origh@le ~ vector component amplitude distribution almost exactly follows
generation. To implement the transpose of the rotations applpcoe(y) =(1/vV2my)exp(-y/2).

WhereajZ is the z-direction Pauli spin operator. The random
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FIG. 3. Distributions of nearest neighbor eigenanglésft) and
eigenvector component amplitudgsgright), for 100 realizations of FIG. 4. Distributions of eigenvector component amplitugésr

eight-qubit, 60-iteration pseudorandom CSE operators. The nearea[lantum cellular automat@CA) based operatorga) 100 realiza-

neighbor eigenangle distribution compares very well with the dis-tionS of eight . : R
o2 _ 3 - . ght-qubit one-species COB) 200 realizations of seven-
tribution Pesels)= (64/9m) s’exp(~64s°/9m) and the eigenvector qubit one-species CSHg) 100 realizations of eight-qubit two-

component amplitude distribution almost exactly folloRgsdy) species COE, an¢d) 200 realizations of seven-qubit two-species

=4y exp(-2y). CSE. All distributions are fom=40 iterations. The distributions of

the two-species QCA operators are indistinguishable from those of
0 -1 random COE and CSE matrices. However, the one-species QCA

Z= 1 0/ operator distributions deviate from the random distributions due to

mirror symmetry. We note that this symmetry would be broken in
In this way, a symplectic unitary is defined by any actual experimental implementation due to unequal nearest

R T neighbor couplings.
Ucse= ~ZUcsZ = Ucse (7)

quantity to characterize the eigenvectors we ysdc,|?

ot [¢4)? [10]. Using the above procedures, the distribution of
nearest neighbor eigenangle and eigenvector components for
the generated pseudorandom CSE operators are those shown
in Fig. 3.

Ucse= UEUEUCUE, (8) Classical cellular automata have been used to simulate

R — o (T . . . many complex classical systems from crystal growth to fluid
whereUg,e=—-ZUg,eZ. Using this construction pseudoran- flow [21]. Thus, one may expect that quantum cellular au-

dom dCSE (;)perators tcan Ibe _gtghene{[rated Ias éOHOWS: r:m tht%mata can be used to model complex quantum systems. Ref-
Eseu_ ortan omtoi)_era or ?gt?]“ I;n otlmp e'f?. @UtE’ apg.!}t’ erence[13] demonstrates the implementation of CUE pseu-
via two_rotations o e least signiicant Qube 5 50q0m operators. Here we extend that work to the other
=exd-i(m/2)o,lexd—i(m/2)a,], where theo; are the Pauli "o 00 i classes
matrices,Ugye is implemented as explained in the COE 5 QCA system is devised df species of qubits in which
case, applyZ. The negative sign is a global phase. all qubits of a species are addressed simultaneously and
_ Figure 3 shows the eigenangle and eigenvector elementy, ,iyajently. Experimental flexibility is a primary motivation
d|str|.but|ons for CSE pse.u<Ijorandom operators. We note th_% explore implementations via QCA. Removing the need for
matrices of the CSE exhibit Kramers’ degeneracy so we dijocalized external Hamiltonians can greatly ease hardware
gress to ,explaln how the above d|str|buF|ons are determ'ne%pecifications for actual implementations of quantum infor-
Kramers' degeneracy allows the following basis choice formation processing. A number of works have been devoted to
CSE matrice$10]: exploring the universality of QCA architecturf22—24 but,
|1),T|1),12),T]2), ... IN/2), TIN/2), 9) despite the greater experimental ease of QCA, relatively little
) ) ) work has been done to exploit the uniqueness of the QCA
whereT is the time-reversal operator. The nearest ”e'ghbohrchitecture[lS,Zﬂ.
eigenangle distribution uses only one of each degenerate ei- previous work has shown that the pseudorandom algo-
genangle. The eigenvectors corresponding to the degeneraighm applied to a one-species QCA chain, such that all qu-

andUcgeZ is antisymmetric unitary.

As with the COE operators, drawing an operator from th
CSE can be done via CUE operators: drdy(,e and multi-
ply by its time reversal17,20

eigenangles can be written as bits undergo the same rotations, yields operators with eigen-

lep) = ¢y 1) + T, T|1) + cl2) +T,T[2) -+, value and eigenvector distributions appropriate for CUE-type
operators with mirror symmetrigll3]. The use of a two-

Tley =-EJ D +CTIY -2 + ST[2) -+ . (10)  Species QCA with alternating qubit species or the change of

one nearest neighbor coupling constésay from 7/4 to
Any given diagonalization code will not necessarily output#/5) is sufficient to break this symmetry.

the above form for the two eigenvectors of a degenerate ei- For a QCA COE pseudorandom operator, one applies the
genvalue, but superpositions of the two. Thus, as an invariamqgseudorandom operator algorithm, with all qubits of a spe-
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cies undergoing the same rotation, followed by its transposesan be implemented on a one-species QCA if there are an
just as in the circuit architecture. The eigenvector componerddd number of qubits. Similarly, two-species QCA imple-
amplitude distribution for eight-qubit, one- and two-speciesmentations of pseudorandom symplectic operators can be
COE operators is shown in Fig. 4. achieved if one of the species consists of an odd number of
To generate CSE pseudorandom operators requires thepirs The eigenvector component amplitude distribution of

implementation oZ which above was done by individually - ) ) : : -
addressing the least significant qubit. This operation is illeg ?E;/ez qubit one- and two-species QCA operators is shown in

on a QCA system. Thus, we must find an appropriate non- . .
standard representation @ which allows all qubits of a In conclusion, we have demonstrated quantum algorithms
species to be addressed equivalently. for pseudorandom operators from the COE and CSE univer-

To find a representation & amenable to a QCA imple- sal classes. As with the original CUE pseudorandom opera-
mentation, we recall that for a symplectic matti¢sz the  tors[7], we provide evidence that suggests that these opera-
matrix A=UcgZ is antisymmetric unitary. For every anti- tors may be able to satisfy statistical properties of these
symmetric unitary matrix there exists a unitary mati  ensembles with an efficient number of gates. Efficient per-
such thatA=WZW [17]. We define our modified operator as formance of such operators could be useful in simulating
Z'=VZV'. SinceZ'Z""=-1, by definition of a symplectic various complex quantum systems. Similar operators can
matrix, (V)"V=V(V')T=£1. Thus,V must be a symmetric also be implemented using the less experimentally demand-
or antisymmetric unitary. We can then define the antisyming QCA. This is a further demonstration that a QCA system
metric unitaryA’ =UcsZ’' =W'Z'W'T and, following Mehta  can be a useful tool in the study of randomness.

[17], we choose the unitary)c,e=(Z’'W')T and generate

symplectic matrices VidJcse=-Z'U¢eZ’U. An example of The authors would like to thank F. Haake for clarification
a symmetric unitary operatov, that allows the generation of of the CSE eigenvector component statistics and Al. L. Efros
CSE operators in the above fashion is the swap gate. Thior insightful comments. The authors acknowledge support
should not be surprising as the ordering of qubits is comfrom the DARPA QuIST (MIPR 02 N699-00 program.
pletely arbitrary. An operatoZ’ that is appropriate for our Y.S.W. acknowledges the support of the National Research
purposes is the rotatianapplied to an odd number of qubits. Council through the Naval Research Laboratory. Computa-
Using this form ofZ’, pseudorandom symplectic operatorstions were performed at the ASC DoD Major Shared Re-
(with mirror symmetry if all coupling constants are equal source Center.
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