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We propose a scheme of employing quantum interference and coherence in an optical medium with coupled
electromagnetic fields to create a photonic band gap. A variable photonic band gap is achieved by the cross-
phase-modulation of two counterpropagating coupling fields on a weak probe pulse. The proposed photonic
band gap has potential applications for the dynamic control of group velocity dispersion compensation in
fiber-optic communications.

DOI: 10.1103/PhysRevA.71.013821 PACS numberssd: 42.65.Re, 42.70.Qs, 42.50.Gy

Quantum coherence and interference in an optical me-
dium interacting with radiation fields have led to interesting
coherent effects such as electromagnetically induced trans-
parencysEITd f1g, slow and frozen lightf2,3g, squeezed-light
generation f4g, optical phase conjugationf5g, photonic
switchingf6g, quantum coherence swappingf7g, and electro-
magnetically induced gratingsf8,9g. Quantum interference
between quantum transition pathways can lead to a substan-
tial modulation of the absorption and dispersion properties of
an optical medium. Recently, Lukin and co-workers demon-
strated photon localization using a standing wave grating
based on EITf3,10g, and Xiao and co-workers demonstrated
photonic gratings by applying EIT to the grating diffraction
theoryf8,9g. These results make use of the optical properties
of the induced transparency of a probe at resonance fre-
quency.

Here, we propose a scheme that employs quantum inter-
ference and coherence in an optical medium and external
electromagnetic fields to create a photonic band gap. The
periodic refractive-index modulation of the medium resulting
from the quantum coherence and interference leads to the
creation of a photonic band gap, which is dynamically con-
trollable. In particular, this photonic band gap can be applied
to broadband optical filters with high resolution, high-speed
optical switches, and dispersion compensators in fiber-optic
communications, which are bandwidth limited in conven-
tional optical device technologies, for the purpose of achiev-
ing dynamic control.

A pair of counterpropagating strong coupling fields at fre-
quencyvc with an identical Rabi frequency ofVc can create
a standing wave grating in an optical medium by inducing
refractive-index change of the mediumssee Fig. 1d. The am-
plitude of the standing wave grating is proportional to
Vc cosskczd, wherekc is a propagation vector of the fields,
and the standing wave period is 2p /kc. Under the action of
the standing wave grating, a weak probe pulse at frequency
vp with propagation vectorkp propagating through the me-
dium has been demonstrated to be completely blockedf3,10g
and efficiently deflectedf8,9g. In Fig. 1, the frequency of the
probe fieldvp is near resonant to the transitionu2l - u1l with a
detuningD2:D2.VC,g2, whereg2 is the optical decay rate.
The reason for the detuning of the probe in Fig. 1 is to avoid
any absorption and to maximize transmission. The coherent

interactions of the standing wave fields and the probe pulse
with the corresponding optical transitions in Fig. 1 can create
a photonic band gap under certain conditions. Here, it must
be noted that the creation of the photonic band gap has noth-
ing to do with EIT, because the probe frequency is greatly
detuned from the resonance frequency, and the condition of
two-photon resonance is never satisfied. In the proposed pho-
tonic band gap, the counterpropagating coupling fields form
a standing wave grating causing coherent polarization modu-
lation of the medium at a frequency close to that of the probe
field. We emphasize that our scheme is not the same as con-
ventional fiber Bragg gratings, where the grating parameters
are fixed for the probe frequency selectionf11g. Instead, in
the present scheme of a photonic band gap employing inter-
actions of the coupling and probe fields with an optical me-
dium, the grating parameters can be dynamically controllable
by simply adjusting the frequency detuning and the Rabi
frequncy of the coupling fields.

Here we introduce the cross-phase-modulationsXPMd ef-
fects of the two coupling fields acting on a weak probe pulse.
In a conventional ladder-type three-level XPM schemef12g,
only one coupling field is needed. Coherence interaction be-
tween the coupling and the probe create refractive-index
changes as usual. The phase shift experienced by the probe
depends on the third-order nonlinear susceptibilityxs3d,
which is maximized at resonance frequency. To avoid ab-
sorption, however, the probe field must be detuned from the
line center, so thatxs3d is generally very small. Thus, this
nonlinear refractive-index modulation by traditional method
has a very small effect on the group velocity dispersion com-
pensation.

FIG. 1. Schematic of a photonic band gap induced by quantum
interference.

PHYSICAL REVIEW A 71, 013821s2005d

1050-2947/2005/71s1d/013821s5d/$23.00 ©2005 The American Physical Society013821-1



To overcome such a lowxs3d, EIT techniques have been
applied for giant Kerr nonlnearity by tuning the probe to
resonance frequencyf12g. Even though the giant Kerr non-
linearity induced by EIT is several orders of magnitude
larger in xs3d and causes the probe pulse to experience ap
phase shiftf4g, satisfying EIT conditions in solid or semicon-
ductor bulk media is not so easy due to intrinsically large
inhomogeneous broadening. In this paper, we suggest a
techique of photonic-band-gap creation based on off-
resonance counterpropagating fields as shown in Fig. 1. The
quantum coherence between a standing wave made by the
counterpropagating coupling fields and the probe field leads
to refractive-index change. According to the coupled wave
equations, Fig. 1 reaches a photonic band gap which prohib-
its the probe pulse propagation. At the edge of the band gap,
however, the probe pulse experiences a sharp dispersion
changeswhich will be discussed later in Fig. 2d, and there-
fore we can control the group velocity dispersion of the
probe. Here we should mention that we use the linear prop-
erties of the matter-field interactions for demonstration of the
dynamic photonic band gap.

In Fig. 1, the counterpropagating coupling fields induce
periodic refractive-index change in the medium. Under this
condition of modified refractive index a probe fieldEp can be
decomposed into two slowly varying amplitudes,«+szd for
the forward direction and«−szd for the backward direction
due to reflections on the grating:Epsz,td= 1

2fs«+eikpz

+«−e−ikpzde−ivpt+s«+e−ikpz+«−eikpzdeivptg. In an interaction
picture, the interaction Hamilton is expressed as follows in
the Hilbert space spanned by the bare statesu1l, u2l, and u3l
with the rotational wave approximation:

H18 = − "fgs«+eikpz + «−e−ikpzde−iD2tu2lk1u

+ 2Vc cosskczde−iD1tu3lk2u + H.c.g, s1d

where 2"g is a dipole moment matrix element for the atomic
transitionu2l− u1l; D1=vc−v32 andD2=vp−v21 are the fre-
quency detunnings of the coupling and the probe fields, re-
spectively. The response of the macroscopic medium to the
field is governed by the density-matrix equationf13g:

]r

]t
= −

i

"
fH18,rg + Lr, s2d

wherer stands for the density-matrix operator, andLr rep-
resents all the effects caused by the interactions of atoms
with fluctuations. Due to the rotating wave approximation we
can obtain newly defined density-matrix elementsf8g

s21 = e−iD2tr21, s31 = e−isD1+D2dtr31, s32 = e−iD1tr32,

s j j = r j j s j = 1,2,3d.

By inserting the above relations and Eq.s1d into Eq. s2d, the
following equations of motion for the matrix elements are
obtained:

ṡ21 = − sg2 − iD2ds21 + igs«+eikpz + «−e−ikpzdss11 − s33d

+ 2iVc cosskczds31, s3ad

ṡ31 = − fg1 − isD1 + D2dgs31 + 2iVc cosskczds21

− igs«+eikpz + «−e−ikpzds23, s3bd

whereg1 andg2 are the dephasing rates from levelu3l to u1l
and levelu2l to u1l, respectively. Here we can make our first
approximation by neglecting the last term of Eq.s3bd, be-
cause the probe field is sufficiently weak compared with the
coupling fields, and the population in levelsu2l and u3l is
negligible. Insertings11−s33>1 into Eqs.s3ad ands3bd, we
can reach the following matrix formf13g:

Ṙ= − MR+ A, s4d

where

R= Fs21

s31
G ,

M = Fg2 − iD2 − 2iVc cosskczd
− 2iVc cosskczd g1 − isD1 + D2d G ,

A = Figs«+eikpz + «−e−ikpz

0
G .

If the pulse duration of the probe field is much longer than

ug2− iDu−1, then the conditionṘ=0 is satisfied. Thus, we have
R=M−1A, and

FIG. 2. Illustration of the dispersion relation of a band gap in
Er3+. The resonant frequencies of the coupling and the probe fields
are 5904 and 6595 cm−1, respectively. The two-photon detuning is
D1+D2=0.1 MHz; the Rabi frequency of the coupling field is
uVcu=50.0 MHz;m21

2 N/"«0=531012 s−1.
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s21 =
igs«+eikpz + «−e−ikpzd

sg2 − iD2d +
4uVcu2 cos2skczd
fg1 − isD1 + D2dg

. s5d

It is known thats21 is proportional to the polarization of the
medium at the frequency of the probe field. If we choose
uD2u@g2, uD1+D2u@g1 and uD1+D2u. uVcu, then the condi-
tion

U 4uVcu2

sg2 − iD2dfg1 − isD1 + D2dg
U ! 1

is satisfied. Thus, Eq.s5d is simplified as

s21 = igsg2 − iD2d−1

3F1 −
4uVcu2

sg2 − iD2dfg1 − isD1 + D2dg
cos2skczdG

3s«+eikpz + «−e−ikpzd. s6d

Equation s6d shows the induced coherence caused by the
interactions of the fields with the medium, which oscillates at
the frequency of the weak probe field with a modulation
cos2skczd. According to the definition of polarization,

Psz,td =
1

2
«0Epfxsz,vpde−ivpt + c.c.g, s7d

wherexsvpd=x8+ ix9. The real and imaginary parts ofx lead
to the dispersive and absorptive characteristics of the me-
dium. By performing a quantum average of the dipole mo-
ment over an ensemble of homogeneously broadened atoms,
we have

Psz,td = 2"gNs21e
−ivpt + c.c. s8d

From Eqs.s6d–s8d, we can find the real and imaginary parts
of the complex susceptibility:

x8 = −
m21

2 N

"«0D2
F1 +

4uVcu2

sD1 + D2dD2
cos2skczdG = x08 + Dx8,

s9ad

x9 = −
m21

2 N

"«0D2
F g2

D2
+ S2g2

D2
+

g1

sD1 + D2dD 4uVcu2

sD1 + D2dD2

3cos2skczdG . s9bd

From the relationship between refractive index and suscepti-
bility f13g, we obtain a modulating refractive index of the
proposed scheme:

n = n0 + Dn coss2kczd, s10d

where

n0 = S1 +
m21

2 N

"«0uD2u
D1/2

and Dn =
1

2

sn0
2 − 1d
n0

uVcu2

uD2uuD1 + D2u
.

At the same time, the imaginary part of the refractive index
is n9<x9 /2s1+x8d!n0. Thus, the system can be realized for
an index modulation with relatively small absorption. In Eq.

s10d, we show that the refractive index of the medium is
modulated with a period 2p /kc. Here it should be noted that
there are forbidden bands in such a periodic medium. The
band gapDvgap is given byf14g

Dvgap= v0
2

p

Dn

n
, s11d

where v0 is the center frequency of the forbidden band.
From Eq.s11d, the conditionDn,n0 must be satisfied. For
Fig. 1, according to the definition ofDn in Eq. s10d, the
following condition is required:uVcu, uD1+D2u,uD2u.

Inserting Eq.s10d into the wave equation for a homoge-
neous medium leads tof14g

S ]2

]z2 −
n2

c2

]2

]t2
DEP = 0. s12d

Using slowly varying envelopes, we derive equations of
motion for the forward and backward modes, respectively,

i
]«+

]z
+ i

n0

c

]«+

]t
+ ke−2iDkz«− = 0, s13ad

− i
]«−

]z
+ i

n0

c

]«−

]t
+ ke2iDkz«+ = 0, s13bd

wherek=sDn/2dkp0 andkp0 is the center wave number of the
probe pulse in vacuum. To remove the exponential factors in
Eq. s13d, we introduce functionsF± by the relations«±
=F±eiDkf7z+sc/n0dtg, and thus

i
]F+

]z
+ i

n0

c

]F+

]t
+ kF− = 0, s14ad

− i
]F−

]z
+ i

n0

c

]F−

]t
+ kF+ = 0. s14bd

F± can be written in wave numberq space asf14g

F± =E
−`

`

F̃±sqdeisÃsqdt7qzddq. s15d

Inserting Eq.s15d into Eqs.s14d, the dispersion relation of
the scheme is obtained:

q2 = d2 − k2, s16d

whered=sn0/cdÃ. Typically Ã and q are characterized by
the center frequencyv0 and corresponding wave numberk0.
In our scheme, given thatv0=vc and k0=kc, Ã=svp−vcd
=D and q=kp−kc=Dk when the frequency and the wave
number of the coupling field are fixed. The stop band corre-
sponds to the detuned frequencies −k,d,k, where the re-
flectivity is high. Equations16d demonstrates the band gap of
the proposed photonic-band-gap scheme in Fig. 1. According
to Eq. s16d, the group velocity of the probe pulse isvg

=dD /dq=sc/n0ds1/ddÎd2−k2, and the group velocity disper-
sion isdvg/dD=k2/d3Î1−k2/d2.
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Using Eq.s16d, we now investigate dispersive properties
of the probe field. In our scheme, the Rabi frequencyVc and
the frequency detuningD1sD2d of the couplingsprobed field
determine the band gap:

Dn =
1

2

sn0
2 − 1d
n0

uVcu2

uD2uuD1 + D2u
.

With the defintion D=vp−vc, we can deriveD2=D+D1
+sv32−v21d, whereD2 can be large, even thoughvp,vc.
Thus, the dynamic control of the band gapDvgap fEq. s11dg
is possible by adjusting the optical parameters in theDn.

To numerically prove the proposed photonic band gap, we
choose fluorozirconate glass doped with Er3+ ions f15g as an
optical medium. The three energy levels4I15/2,

4I13/2, and
4I9/2 of Er3+ ions are chosen for the statesu1l, u2l, andu3l in
Fig. 1. By solving Eq.s16d directly with proper optical pa-
rameters, we can plot a dispersion relation. Figure 2 shows
photonic-band-gap creation. We find that the optical disper-
sive properties of the medium are modulated by the two
coupling fields near the edge of the band gapsd=kd. Far
away from the band edges, the group velocity and its disper-
sion are the same as they were without the two coupling
fields. At the band edges the group velocity of the probe
reaches exactly zero. This demonstrates that a probe pulse is
trapped in the medium, where its frequency is determined by
d=k. It is already known that the group velocity dispersion
near the edges of the band is several orders of magnitude
larger than that of the bare fibersf11g. The sign of the group
dispersion of the lower branch of the curves in Fig. 2 is
negative, and can thus be used to compensate anomalous
dispersion effects in optical fiber transmissionf11g. There-
fore, the dispersion compensation becomes a direct applica-
tion of the proposed photonic-band-gap scheme.

For a numerical simulation of the dispersion compensa-
tion ssee Fig. 3d, we assume that the probe pulse has a Gauss-

ian envelope with a durationtFWHM=40 ps. The probe pulse
propagates through a 150-km-long optical fiber at a central
wavelength of 1.55mm. Because of the second dispersion of
the fiber,b2

f =−20 ps2/km, the probe pulse should be broad-
ened to 208 ps as it travels through the fiberf16g. The broad-
ened probe pulse has the form EfsLf ,td
=e−`

` Us0,vdexpfsi /2db2
f v2Lf − ivtgdv, whereUs0,vd is the

Fourier transform of the initial pulse atz=0. We allow the
broadened probe pulse to now enter the Er photonic-band-
gap medium for proof of the present technique of pulse com-
pensation. The output pulse should have the following form:

EfsLf + Lg,td =E
−`

`

Us0,vdexpS i

2
b2

f v2Lf +
i

2
b2

gv2Lg

+
i

6
b3

gv3Lg − ivtDdv.

Here LgsLfd, b2
g sb2

f d, b3
g are the gratingsfiberd length, the

second order of the gratingsfiberd dispersion, and the third
order of the grating dispersion, respectively. In order to com-
press the pulse using the dispersion compensation, the con-
dition Lgb2

g+Lfb2
f =0 must be satisfiedf16g. At the same

time, the third- and higher-order dispersion parameters
should be as small as possible to avoid recompression distor-
tion. For the numerical calculations, we introduce a merit
parameterM3=0.4 to prevent the recompressed pulse from
being distorted, whereM3 is the ratio of the third-order dis-
persion to the second-order dispersion.

For a specific example of the present idea, we can choose
the following reasonable parameters: the coupling laser di-
ode power is at 10 mW; the dipole matrix elementm21 is
estimated in the order of 10−29 cm f15,17,18g; then the Rabi
frequency of the 10-mW coupling laser reaches a few giga-
hertz if the fiber core diameter is a few micrometers. Because
the probe frequencyvp must be 6451 cm−1 sfrom the wave-
length of 1.55mmd to satisfy the communication wave-
length, the detuning of the probe must beD2
=540 cm−1 sD2=vp−v21d. In order to get the appropriate
grating parameterk to compress the pulse broadening down
to the initial one, the two-photon detuningD1+D2, which is
near resonant tov31 in Fig. 1, must be determined by Eq.
s10d.

Figure 3 shows each field evolution in time for the initial
probe pulse, for the broadened pulse after propagation
through a dispersive medium, and for the recompressed pulse
due to the dispersion compensation. We depict Fig. 3 using
the permitted parameters discussed above. We note that the
peak intensity of the recompressed pulse in Fig. 3 is near
85% of its initial value. The estimated energy loss of the
recompressed pulse is 0.13% of the initial pulse. The small
tail of the recompressed pulse near 800 ps in Fig. 3 results
from the nonzero third dipersion term. Therefore, Fig. 3
demonstrates that pulse broadening through a dispersive me-
dium can be remarkably compensated by the two coupling
fields in the present dynamic photonic-band-gap scheme.

In conclusion, we have proposed and numerically demon-
strated a dynamically controllable photonic band gap using
quantum interference and coherence. We have also shown

FIG. 3. Numerical demonstration of dispersion compensation.
The initial pulse has a Gaussian form with a duration of 40 pssfull
width at half maximumd. For the broadened pulse, the propagation
length of the fiber is 150 km; for the recompressed pulse, the pa-
rameters are uVcu=80.0 MHz, D1+D2=1.6 KHz, m21

2 N/"«0=5
31012 s−1, and M3=0.4, and the length of the medium isL
=1.88 cm to satisfy the relationLgb2

g+Lfb2
f =0.
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one example of the proposed band-gap theory for a pulse
compression with group velocity dispersion compensation.
The proposed technique using counterpropagating electro-
magnetic fields has potential for dispersion compensators
f19g and frequency filters in dense-wavelength-division-
multiplexing fiber-optic communicationsf20g. Compared
with conventional spassived fiber Bragg gratings whose

freqeuncy selection is fixed, the present technique has the
advantage of dynamic control of the band gap with linear
contol of the control laser parameters.

This research was supported by Korea Research Founda-
tion Grant No. KRF-2003-070-C00024.
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