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Quantum noise in multipixel image processing
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We consider the general problem of the quantum noise in a multipixel measurement of an optical image. We
first give a precise criterion in order to characterize intrinsic single-mode and multimode light. Then, using a
transverse mode decomposition, for each type of possible linear combination of the pixels’ outputs we give the
exact expression of the detection mode, i.e., the mode carrying the noise. We give also the only way to reduce
the noise in one or several simultaneous measurements.
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INTRODUCTION likely to reduce quantum fluctuations on a given measure-

Multipixel photodetectors such as diode arrays or chargeMent[6]. The aim of the last part of the present paper is to
coupled devicelCCD) sensors are now frequently used to identify the best nonclassical light enabling us to reduce the
record images. These sensors provide signals in which thguantum noise in the measurement of the quariityer-
useful information is mixed with random noise. A contribu- formed in the image. It has been already shdwh that
tion to this noise originates from the quantum nature of light:nonclassical light in a single transverse mode, though very
the arrival of individual photons is a random process. Con<€ffective in reducing the noise for a measurement performed
trarily to technical noise, due to imperfections in the sourceon the total beam, is of little use for a measurement per-
the optical system, or the detector, this quantum noise cannéermed on an image. One therefore needs multi-transverse-
be reduced by eliminating the defects in the measuremermode nonclassical light for our purpose. This is the reason
process. The purpose of this paper is to determine the precigéy we devote the first section of this paper to a precise
origin of this noise and to analyze whether and how it can be@nalysis of such a concept, before considering in the second
reduced. With the analysis of the spatial distribution of thissection the problem of information extraction: we identify
noise, we will single out the precise transverse modes whosée exact noise source in the measuremenpfand show
fluctuations are at the origin of this quantum noise, and dehow to choose the best configuration which allows us to
termine the parameters that have to be changed in order tveasure a variation d¥l with a sensitivity beyond the stan-

reduce this noise. dard quantum limit.
As images are complex objects which carry a great deal of
information, there are actually many ways to extract infor- [. “INTRINSIC” MULTIMODE LIGHT

mation from them, depending on the image user nged3|. ) i o

We will focus our attention on the extraction from the image . W& consider the propagation of light in the vacuum along
of one or several continuous parameters, the variation of'€ Z direction, and call the transverse coordinateVe as-
which modifies the light distribution in the image plane andSUMe that the light frequency is, with a linewidth 6w much

not its total intensity. In such a case, the quantitagriori smaller thanwg, and that it has a well defined polarization.

information on the image is very important, as one assume9ne knows that it is possible to find several bases of trans-

that the variation of the image under observation is due only€'S€ modes{u;(",2)}, such that each mode verifies the
to the variation of a searched parameérA second use to  Propagation equation of the field in vacuum projected onto
which our calculations can apply is the determination of pre{he polarization axis,

defined patterns in the image, such as given shapes, surfaces, w2

borders, textures, and so on. It is a very difficult probleen A(ue*?) + —gui =0; (1)

se and the incidence of quantum noise on it, to the best of ¢

our knowledge, has not been precisely studied so far. In cont js an orthonormal basis,

trast, we do not consider the search for the smallest possible

details, where resolution is at stake. In this problem, there is 2Pz = 6. @)
very little to nonea priori information and the problem of Ui (2,142, K
quantum limits to resolution has been already considered in o )
other publicationg4,5]. and it satisfies a completeness relation,
In most cases, the light used to carry the image comes * o
from “classical sources,” such as lamps or the usual lasers, in 2.: Ui zNu(z ) =8 =) 3

which the photons are randomly distributed in the image

plane. This gives rise to a spatial shot noise which will yieldFor instance, the usual Laguerre-Gauss TEbasis satisfies

a “standard quantum limit” in the measurement of a verythese conditions. Considering a light beam, the electric field
small variation ofM. It is now well known that “nonclassical is written as the sum of the positive and negative frequencies
light,” such as squeezed light or sub-Poissonian light, iscomponents:
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E(F,zt) = EM(F,2)e (@ + ¢ c. (4) Fock state basi®y, ... ,n;, ...), wheren; stands for the num-

. . oo . ber of photons in the mode
It is possible to expand the electric field positive frequency

envelope in the transverse modes basis as = > Cn,,...n ng, o) (9)

E("')(F,z) = 2 Siui(F,z). (5)

Ny,

and the mean value of the electric field is given by

<¢|A|w>:2( > clc)\ﬁum

A. Single-mode or multimode light: Classical approach Ny =1,

For a TEM,, basis field expansion, when more than one (10
& is nonzero, it seems at first sight natural to say that thig|o\ing the definition for the classical beams, we can give
field is multimode. However, if the; coefficients are fixed a definition of a single-mode beam.

(i.e., we consider aoherent superposition of modasd not Definition 1 A state is single mode if a mode basis
a statistical ong one can always define a new transverse{v0 vy, ...} exists in which it can be written

mode
1 lW=l¢)®]|0,...,0,..)

vo= /2 |5_|2Ei &l (6) where|¢) is the state of the field in the first transverse mode.
= The question is now whether, in contrast with the classical
states, quantum states exist that cannot be writteil)ago
and construct a bas{s;} in which vy is the first element. In  answer this question, we will demonstrate the following
this basis, the field is proportional &g, which means it is proposition.
single mode. We can conclude that for a coherent superposi- Proposition 1 A quantum state of the field is single mode
tion of modes, there is no intrinsic definition of a multimode if and only if the actions on it of all the annihilation opera-
beam(i.e., a definition independent of the choice of the ba-tors of a given basis give collinear vectors.
sis). We will restrict our analysis to spatial variables, but it  One can note that if this property stands for a given basis,
can be applied to any physical dimension. For instance, iiit then stands for the action of any annihilation operator.
the time domain, a mode locked laser is single mode, as itis Let us assume first that our fielg) is single mode with
a coherent superposition of many temporal modes. If theespect to the basis;,a}; then
temporal modes are incoherent with each other then the sys- A R _
tem is unambiguously multimode. More precisely, if the field ol =|ve and &ly)=0 0O i+0. (11
is a stochastic superposition of modes, thenode cannot be
defined and the multimode character has a clear meaning.
will exclude this case in the following. b= ca (12)
I

V\(féonsider now any linear combination of the operators

B. Single-mode light: Quantum approach

. - whereZ;|ci2=1 which ensures thdb,b']=1. The action of
In order to give the quantum description of the transverse, . operator on the field is given by

plane of a light beam, it is very common to quantize the field
starting from a transverse mode basis such as the one we just R Al —

defined in the previous section. In order to obtain standard bly) = 2 Ci&| ) = Col o) 13
formulas, we consider that all measurements are performed

in an exposure timd and associate to each vector of the This demonstrates the first implication of our proposition: all
mode basis a set of creation and annihilation operé@band  the actions of annihilation operators on the field are propor-
&; such that the field; of the previous section is replaced by tional.

the operatoiwy/2€,cTH. With these notations we obtain ~ To prove the other implication, consider now a figjt}

the standard commutation relatid[rﬁs,é;r]:éij, and the posi- on which the action of any annihilation operaggiis propor-

tive field envelope operator can be written[8% tional to [¢p). This is in particular true for the basfs;, &}:
~ fiwg ~, &) = ai| o) (14)
E(R2)= | =A(,2) (@) A =aldo
2eCT If we assume thal;|«;|?=1 (which is always possible by
with changing the normalization di/,)), we can define a new
R basis{v;(r',2),b;} such that
A(+)(Fi Z) = 2 a(z)ul(ﬁ Z)’ (8) N .. .
! b0=2aia1-, UOZEaiUi, (15)
I 1

so thatA®TA™ is a photon number per unit surface. _
In order to give a proper definition of the single-mode and complete the basis by defining a unitary mdtcjq such
case, let us write the most general state of the field in théhat

013820-2



QUANTUM NOISE IN MULTIPIXEL IMAGE PROCESSING PHYSICAL REVIEW A71, 013820(2005

bi = E C”éj with Coj = Q; and 2 Cijckj = Oik-
j j

ing the same technique, one can show that a quantum field is
an n-mode beam if and only if the action on it of all the

(16) annihilation operators belongs to the sameimensioned

subspace.
It is then straightforward to show that Whereas the previous paragraph gives a good definition of
R the degree of a multimode beam, it is not very convenient as
bil ) = il ), (17 one has no information on the basis in which the beam is

exactly described byn modes. We can, however, define a
particular basis, useful for calculations.
Proposition 2 For a bean|y) of degreen, it is always
ossible to find a basify;,3;} such that the mean value of

which concludes the demonstration.
In addition to the proposition, Eq15) gives the expres-
sion of the mode in which “lies” the mean field, knowing the

action of a particular basis. We can also note that to sho he electric field is nonzero only in the first mode; and, it is a

tha’g a f|eld Is single moQQ, s sufficient to show that "’.‘" 'S inimum basis for the fieldy). We will call that basis an
projections on the annihilation operators of one particular

) . eigenbasis.
basis are proportional.

To illustrate the pronosition. if one considers the SUPErDo- In order to demonstrate this proposition, let us consider a
. prop ’ PETPOinimum basis{u;,4&} for the field |). This basis is sup-
sition of coherent states

posed to be ordered such that thdirst modes are the rel-

W =lap® - @|a) @ (18)  evant ones. We can then define a new bfsis;} such that
it is straightforward to show that the actions of all the anni- n-1
hilation operators on this state are proportional to the state oo = 1 S a)u
itself; we have a single-mode beam. The basis in which it is 0 n-1 i-0 v
single mode is the same as the one for the classical case, E &)?
i=0

settingug as in Eq.(6).
Using this proposition, we can also look for the different

states that satisfy our definition of a single-mode quantum n-1
beam. As a state that cannot be written as follows in any Viocicn= D ciuj,
mode basis: ’ j=0
w=l¢pe - elpe-- (19
Viji=n= Ui, (21

is obviously not a single-mode beam, we will consider now
such a factorized state of the field, on which the action of theyhere the coefficientgc;} are chosen in order to get an
annihilation operators gives orthonormal basis. Definitions similar to the one of E2fl)
N oA apply for the annihilation operators. The first vector of this
&l =l¢v @ ® (&) @ ’ (20 basis is the same as the orF:e defined for a classical beam in
Consequently, there are only two possibilities to have alEg. (6). In that basis, the mean field is single mode in a
these states proportional: either only one of the actions islassical sense. However, the energy lying in all the other
different from zero, which means we are already in the basisnodes is not necessarily zero; only the electric field mean
in which the state is single mode; or all the states are cohenalue is zero for these modes, and as the modeg an
ent states. were not changed, this new basis is still a minimum one for
We have described here all the possible single-modghe field|y). This demonstrates the proposition. The demon-
states, and they agree with the intuitive description onestration illustrates the construction of a basis as defined in
might have. For instance, if one considers the superpositioRroposition 2 from a minimum basis, even though thanks to
of several transverse modes, if at least one of them is #he{c;} coefficients an infinite number of bases are possible.

noncoherent state, one gets a quantum multimode state. The existence of this basis is also a confirmation of the
) . intuitive idea of the difference between single-mode and
C. Multimode light: Quantum approach multimode quantum light. Indeed, for a single-mode beam,

A beam of light is said to be multimode, from a quantumthe spatial variation of the noise is the same as the one of the
point of view, when it is not single mode according to Defi- mean field. For a multimode beam, the previous description
nition 1. We can characterize such a beam by its degree shows that some of the modes orthogonal to the mean field
(this degree equals 1 for a single-mode bgam are sources of noise but do not contribute to the mean field.

Definition 2 For a beam|#), the minimum number of This implies that the variation of the noise is independent of
modes necessary to describgdt the minimum number of the one of the mean field. This property can be used to ex-
nonvacuum modes in its modal decompositjaieached by perimentally characterize the multimode character of light.
choosing the appropriate basis, is called the degreé a  For instance, one can show the quantum multimode character
multimode beam. Any corresponding basis is called a miniof the light using a variable spatial filter. This idea has been
mum basis for the fieldi)). implemented to study the semiconductor lasers output by

The degree of a multimode beam can also be related toutting the field with a razor bladgd], and, more recently,
the generalization of Proposition 1 to armode beam. Us- we have shown that spatial quantum behavior of a spatially
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multimode optical parametric oscillator can be demonstrated (L) — . o
using an iris whose aperture size is continuously valri€y. Mioip) = 2 oil(Dy) such that; = 1 (24)
We have defined the theoretical basis required to develop
a study on optical image measurements. The following secar again in terms of number of photons per second:
tion on information extraction will indeed strongly rely on
the propositions and definitions of the first part. N({o}) = > oN(Dy), (25)
I

Il. DIFFERENCE MEASUREMENTS . .
where o;=%1 corresponds to the electronic gain of de-

A. Description tectori.
Considering a light beam in stal#), the measurement is

A widely used technique in optics, and more generally ina difference measurement for that beam if its mean value is
physics, to improve the signal to noise ratio in a measure-

ment is to perform aifference measuremerit consists in zero, i.e., if
producing two identical signals from the light source used in -
the experiment. When one monitors the difference between (N{ai})) =0. (26)
these two signals, one gets of course a zero mean signal, but
one also cancels all the common mode noises, for example,
the one arising from the classical intensity fluctuations of the

source. The remaining noise arises from the noise sources If one considers one difference measurement performed
affecting the two channels differently. with a coherent state, which has spatially uncorrelated quan-
One simple way to produce two identical beams is to useum fluctuations, the noise arising from the measurement will
a 50% beam splitter. In this case, the vacuum noise comingot depend on the choice {} if o;=+1, and will be equal
from the unused side of the splitter is such a not-commontg the square root of the total number of photons. This is
mode noise and remains in the difference measuremenfjhat is called the standard quantum noise. In the general
whatever the actual excess noise of the beam impinging ogase, in order to compute the noise, an analysis equivalent to
the beam Splitter, the remaining noise Corresponds to the Shme one performed in the case of a small disp|acement mea-
noise of this beam. surement, as done in Réf], is necessary. We recall it here
This simple technique of noise cancellation is used, forang extend it to the general case of transverse modes of any
example, to measure very small absorptift§ by inserting  shape, in order to show the following proposition.
the absorbing medium in one of the arms of the difference Proposition 3 The noise on a difference measurement
setup, or very small frequency shifts, by inserting a Fabryperformed on a bearmy) originates from a single mode,
Pérot cavity in one of the arms. It is also extensively used irbrthogonal to the mean field: the “flipped mode.” In order to
multlplxel measurements, with either Spllt detectors or quadreduce the noise in that measurement, it is necessary and
rant detectors, to measure submicrometer displacements, fgyfficient to inject a squeezed state in this flipped mode.

example of nanoscale fluorophores in biological samples |n order to perform the general noise calculation, let us
[12] and in atomic force microscopl3], and ultrasmall define the two “detectors™
absorptions by the mirage effect4].
The problem of the determination of the origin of quan- D.= U Dy,
tum noise on a split detector and of its reduction has been i,o=+1
already investigated theoretically7] and experimentally
[15-17. We will here extend these considerations to more D.= U D 27)
general configurations. =
More formally, we consider the measurement by a detec-
tor consisting of a set of pixels, each one occupying a transahich gives
verse ared;. The pixels cover the whole transverse plane,
with no overlap between them. Each photodetector deliversa N_=N(D,) - N(D_)

power given by
=2 éJéjU u; (Fuy(Fd?r —f u;(F)uj(F)dzr].
ij D, D-

B. One difference measurement

(D) = f 26,CEN(NE(R)d2r. (22)
o, (28)
This can also be written as the photon number measure@onsidering small quantum fluctuations for whidh;=§;
during the exposure time of the detector: -(&), the fluctuations of\_ are
N(D) = f AT(PA)d2r . (23) SN_=N_-(N_)= > [sa'C +53C"], (29)
D i
In this section, the measuremevitis defined by with C" defined as
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c=3 <é,->[ f U, (N - f ui*(F)Uj(F)dzr} (8N2) = No(X47), (39
j D, D_

whereXI:61+BI is the quadrature of the flipped mode, and

* * No represents the shot noise. Consequently, having a
— 2, _ 2 0 . . ! I
_L U (NANr fD U (NANAT squeezed state in that mode is necessary and sufficient to
* B reduce the noise related to the measurement.

and whereA,() is the mean value of the electric field This calculation shows that, for a difference measurement,
the noise in the measurement is exactly the one of the flipped
mode. Changing the noise properties of the flipped mode is
then the only way to change the noise in the measurement.
SWe have a necessary and sufficient condition to improve the
measurement compared to the standard quantum limit.

<¢|A(F)|¢>. The C' coefficients are the partial overlap inte-
grals between the modes and the mean field.

We can now compute the noise related to this measur
ment:

~ i At A D i This demonstration imposes the noise properties of only
2\ — i12 T oot~ i
(ON2) = 2 |CL[*+ [.E (& 6ay)C_C one quadrature of the flipped mode, but there is no condition
g on the other quadrature, and all the other modes can be in
+ (58] sa;)CLCl + c.c.]. (30)  any state. Then, there is not only one practical solution.

Using the completeness relation, the first term of the last C. Multiple difference measurement

equation can be shown to be equal to the total number of We have demonstrated which mode one needs to squeeze
incident photons per seconbly. This shows that the noise in order to perform one difference measurement on a beam.

related to this measurement arisaspriori from all the  We can now expand this analysis in the case of several dif-

modes. ference measurements. Let us consiudifference measure-

We will now demonstrate that the noise comes in factments of the type of Eq(26). We will assume that these
from a single mode when we Wri(eﬂQE) in the appropriate measurements are independent, which means that none of
basis. We indicate by, the mode of the mean field as de- them is alinear combination of the others. One can show that
fined in the previous part: the corresponding flipped modes are then also linearly inde-

pendent. We have shown that in order to improve simulta-

1 neously the sensitivity of all these measurements it is neces-

Uo(ﬂzﬁAw(F)- (31) sary, and sufficient, to squeeze all these flipped modes.

Vo Practically these modes are in general not orthogonal, but
If v, is the first mode of a basis, the mean value of theone can find an orthogonal basis of the subspace generated
electric field in all the other modes will be zero, as shown inby these modes. Injecting squeezed vacuum states in each of
the previous section. We define now the magewhich we  these modes will result in squeezed states in each of the

will refer to as the flipped mode af,, such that flipped modes.
Regarding the degree of the beam necessary to improve
vo(f)  if r € Dy, simultaneously all the measurements, it is clear that in order
v1(F) = {_ vo(F) if reD_. (32) to perfectly squeeze all the flipped modes, a beam of degree

n+1 is necessaryand sufficient We can summarize all the
As we have assumed that the mean value of the measuremeginsiderations of Sec. Il into a proposition.
is zero,v, is orthogonal taw,, which means that we can find Proposition 4 In order to reduce the noise simultaneously
a basis{v; ,Bi} wherev, andv; are the two first modes. In N n.lr.ndependent difference measurements it is necessary and
that basis, the overlap integrals become suﬁ|C|_ent to use a beam of degree at leastl that can _be
described in a transverse mode bdsisu;} such thatu, is
R . ) . ) proportional to the electric field profile of the beafu;}y <,
C_=VNo f v; (Nvg(N)d r—f v; (Nve(Ndr is the basis of the space vector generated by the flipped
D+ D- modes of the measurements; and all these modes are per-

— . . fectly squeezed.
= \Wo | o} a1t = N 33
D

. LINEAR MEASUREMENT
These integrals are different from zero only for the flipped

mode. The noise of E30) becomes Difference measurements are obviously not the only ones
performed in image processid—3|. The extraction of the
<5T§I3>:N0<(513J{+ 561)2> (34) pertinent information arises generally from the numerical

computation of a functionF(I(D4),l(D,),...,I(D,)) from
which shows that the noise arises only from the quadraturéhe intensitied(D;) (i=1, ... ,n) measured on each pixel. To
of the flipped mode ob, in phase with the mean field mode. simplify the following discussion, we will restrict ourselves
For this reason, we call this mode the eigenmode of théo the case when this function imear with respect to the
measurement. Another standard notation is intensitiesl (D;), as is a case often encountered in real situa-
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tions, for example, when one wants to determine the spatial=2) in order to obtain an orthonormal basis, we obtain a
Fourier components of the image, or when the variations obasis such that the mean field is distributed in the two first
the parameter to measure are small enough so that the funerodes, the detection modews, and the mean value of the
tion F can be linearized. electric field in all the other modes is zero. We can then
In the formalism of Eqgs(24) and (25), using a linear perform a calculation similar to the one of the previous sec-

function corresponds to letting the gain of the detectors tion, which gives
take any real value and not only £1:

~ -~ i = s‘/_ . * 2 — r"_ .

M({O'J}) = E (TJI(D]), C(r_ \NoffD WI(F) Wl(f))d r= \‘NOf(sl,l' (42)

J

Once again the detection mode is the only one that is rel-
evant for the calculation of the noise related to the measure-
ment. Taking into account that the normalization giving rise

to the shot noise has changed,
We emphasize that, contrary to the previous section, the

mean value of the measurement is not necessarily zero. In > ICLPRP=CY2 = Nof?, (43
that case, we will show the following proposition. i

Proposm?n 5 Consider a field statg)) described in an the noise formula becomes
eigenbasigb;,v;}, and consider a linear measurement per- A
formed with an array of detectof3;, each detector having a <5Ni> = f2N0<(56{ +66,)?), (44
gain o;. The noise on the measureme,=2;;N(D;),
arises only from the generalized flipped modealefined by

N, =2 aiN(D)). (36)
J

where the{C;} are the annihilation operators associated with
the transverse mode bagis;}.
The 2 factor is a global effect of the gain, and modifies

. 1
OrreDi0 w((r= ?Uivo(F) (37)  both the measured signal and shot noise level. In any case, if
the flipped mode is perfectly squeezed, we can still perform
wheref is a normalization factor. a perfect measurement. However, the experimental configu-

Here, there is not much sense in defining the positive andgation is much more complicated as, in general, the mean
negative gain domains. We can anyway extend the notion ofalue of the electric field in modev, is different from 0,
overlap integral between a basis vector and the mean fieldwhich means that, as is shown in the Appendix, generating

the good mode is difficult. An appropriate approach would
i — , * 2 be to describe the field back into an eigenbasis, and check
C"_g 7 D, U (DALNAT, (38) how to set the noise of the different modes in that basis. We
will see in the Appendix how this can be done in a simple

which leads to a formula equivalent to E§O) case. The important result of this part is that whatever the
con i 2 At st A measurement we perform the noise arises only from one

(0N,) = E ICol* + [2 (68 68)C,C;, mode. Changing the noise of this mode allows us to improve

' " the sensitivity of the measurement. As in the previous sec-

+ <5§1.T5aj>ci0c1;: + c.c.] _ (39)  tion, itis also possible in that general case to perform several
simultaneous measurements, and to identify the subspace of

modes responsible for the noise.
It is interesting to note that, in the particular case of a
measurement where the gains are adapted to have

Recalling thatAw(F)z\fWOvo(F), we can also extend the
notion of the flipped mode, and definedatection modéy

R 1 (I\7I({a-})>=0, the modev, coincides withw,. Indeed,v is
O e D0 wy(r)= ?UiUO(F)' (40 pere (J)rthogonal tov:
wheref ensures the normalization of;: j W*l(F)vo(F)dzr -3 gflj v;(F)vo(F)dzr o <2 ajN(Dj)>
D i Dj j
2_ 2 * 2
f —Ej‘, o‘IZJDj vo(Nug(Nd4r. (41 -0 (45)

orthogonal to the mean field modsg. In order to calculate Noise without perturbing the mean field mode.
the noise in the measurement, it is necessary to construct a

basis that co_nta_lins Fhe d_etection _mm;ileAs the mean valge_ CONCLUSION
of the electric field in this mode is different from zero, it is
not possible to obtain an eigenbasis with but we can still We have shown in this article how to properly define the

choosew, such that the mean field modg is a linear com-  degree of multimode character of a light beam. We have used
bination ofw, andw,. Choosing all the other modes (with ~ the basis decomposition associated with that definition in
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order to single out, in a linear transverse measurement, th 028
transverse mode carrying the noise. We have shown that it i
possible to go beyond the standard quantum noise limit by  018;
injecting in that mode squeezed light, and that this can beZ
done simultaneously for several independent measurement.S
It order to implement the theory developed here to com-§ Qe .
plex experimental configurations we have shown that it wass
preferable that the various detection modes be orthogonal t& -012.
the mean fieldi.e., they do not contribute to the mean elec-

008

tric field), and it is necessary to mix them without introduc- 02 4

ing losses. For instance, one can use the proposal we hay .,

detailed in[17] and used to mix two nonclassical beams in . -

orthogonal transverse modes, and a mean coherent field, i Transverse position (a.u.)

order to improve the sensitivity of the transverse position

measurement of a laser beam. FIG. 1. Electric field profile of the constituent modes used to

In this paper, we have analyzed in great detail the origirform the nonclassical multimode beam.
of quantum noise in a multipixel measurement. What re-
mains to be considered now is the signal, and not only the i
noise in the measurement. This will be the natural continua- \/:UO(F) if r e D,,
tion of our work, and we will describe in a future publication _ +

X . . ; . ; Wy(F) = : (A1)

what is the influence of the gain configuration on the signal iy )
to noise ratio and how to optimize a given measurement in \/:vo(F) ifreD..
an optical image. h
The first mode of an eigenbasis for the field js The second
one,v4, is defined as the mode orthogonalugin the sub-
space generated lw, andw;,. Its expression is found to be
Laboratoire Kastler Brossel, of the Ecole Normalev, such that
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wo()  if r e Dy,

_Wo(lr)) |f r e D_. (AZ)

As wy is orthogonal towy, which is the flipped mode af,

one can show that, is orthogonal ta;, which is the flipped

mode ofw, (see Fig. L In order to calculate the noise in the
In this article, we have exhibited the mode structure of theneasurement using that basis, the flipped mode is expressed

light in a multipixel measurement, using a basis that contain&s a linear combination of the two first modes of the eigen-

the detection mode. However, when the mean value of thbasis:

measurement is different from zero, we have shown that this

detection mode has a mean electric field value different from Wy = avg + Buy, (A3)

zero. In that configuration, it is very difficult experimentally o —

to address the detection mode without modifying the meat’herea=i.—i_and g=2yi.i_, which leads to

field distribution. We have shown that the only basis perti- R R R R

nent for such a task is an eigenmode basis. We will show ((561+ 8% = a2<(5b$+ 6b0)2)+ﬁz<(5b1r+ 8,)%)

here what is the structure of that basis for a two-zone mea- PR fr

surement of nonzero mean value. + 2a3((8by + dbg) (b + dby)).  (A4)

Using the notations of the previous sections, we consider ) i ) )
two detectorsD, and D_ whose gains are, respectively, +1 Expressed in an eigenbasis that does not contain the detec-
and -1. We recall here the mode structure defined in thd0n mode, we see that the noise arises from the individual

noise of the two first modes and from their correlation func-
tion. In that basis, in order to reduce the noise we have sev-
eral solutions: either the two first modes are perfectly
squeezed, or they are perfectly correlated, or any solution in
between. Anyway, we can assume that if we want to make a
lot of different measurements, it is very difficult to produce
correlation between the mean field and the different vacuum

APPENDIX: TWO-ZONE MEASUREMENT

main text of this articlevg is the transverse mode carrying
the mean field of the beam ang is the detection mode as
defined in Eq.(40) [which, in this case, is equivalent to the
flipped mode of Eq(32)]. wy is the mode orthogonal t@; in
the subspace generated tayandw;. Let us call the partial
integrals ofvy on each zoné, andi_,

o . ) . . ) modes; hence the easiest solution is to have the mean field
1+ = 5 vo(Nuo(Nd*r and i_= 5 vo(No(NdT. squeezed, and the corresponding vacuum squeezed. The
* - same argument as before applies, and we show that we still
A simple calculation gives need an extra mode for each piece of extra information.
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