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We consider the general problem of the quantum noise in a multipixel measurement of an optical image. We
first give a precise criterion in order to characterize intrinsic single-mode and multimode light. Then, using a
transverse mode decomposition, for each type of possible linear combination of the pixels’ outputs we give the
exact expression of the detection mode, i.e., the mode carrying the noise. We give also the only way to reduce
the noise in one or several simultaneous measurements.
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INTRODUCTION

Multipixel photodetectors such as diode arrays or charge-
coupled devicesCCDd sensors are now frequently used to
record images. These sensors provide signals in which the
useful information is mixed with random noise. A contribu-
tion to this noise originates from the quantum nature of light:
the arrival of individual photons is a random process. Con-
trarily to technical noise, due to imperfections in the source,
the optical system, or the detector, this quantum noise cannot
be reduced by eliminating the defects in the measurement
process. The purpose of this paper is to determine the precise
origin of this noise and to analyze whether and how it can be
reduced. With the analysis of the spatial distribution of this
noise, we will single out the precise transverse modes whose
fluctuations are at the origin of this quantum noise, and de-
termine the parameters that have to be changed in order to
reduce this noise.

As images are complex objects which carry a great deal of
information, there are actually many ways to extract infor-
mation from them, depending on the image user needsf1–3g.
We will focus our attention on the extraction from the image
of one or several continuous parameters, the variation of
which modifies the light distribution in the image plane and
not its total intensity. In such a case, the quantity ofa priori
information on the image is very important, as one assumes
that the variation of the image under observation is due only
to the variation of a searched parameterM. A second use to
which our calculations can apply is the determination of pre-
defined patterns in the image, such as given shapes, surfaces,
borders, textures, and so on. It is a very difficult problemper
se, and the incidence of quantum noise on it, to the best of
our knowledge, has not been precisely studied so far. In con-
trast, we do not consider the search for the smallest possible
details, where resolution is at stake. In this problem, there is
very little to nonea priori information and the problem of
quantum limits to resolution has been already considered in
other publicationsf4,5g.

In most cases, the light used to carry the image comes
from “classical sources,” such as lamps or the usual lasers, in
which the photons are randomly distributed in the image
plane. This gives rise to a spatial shot noise which will yield
a “standard quantum limit” in the measurement of a very
small variation ofM. It is now well known that “nonclassical
light,” such as squeezed light or sub-Poissonian light, is

likely to reduce quantum fluctuations on a given measure-
ment f6g. The aim of the last part of the present paper is to
identify the best nonclassical light enabling us to reduce the
quantum noise in the measurement of the quantityM per-
formed in the image. It has been already shownf7g that
nonclassical light in a single transverse mode, though very
effective in reducing the noise for a measurement performed
on the total beam, is of little use for a measurement per-
formed on an image. One therefore needs multi-transverse-
mode nonclassical light for our purpose. This is the reason
why we devote the first section of this paper to a precise
analysis of such a concept, before considering in the second
section the problem of information extraction: we identify
the exact noise source in the measurement ofM, and show
how to choose the best configuration which allows us to
measure a variation ofM with a sensitivity beyond the stan-
dard quantum limit.

I. “INTRINSIC” MULTIMODE LIGHT

We consider the propagation of light in the vacuum along
the z direction, and call the transverse coordinaterW. We as-
sume that the light frequency isv0 with a linewidthdv much
smaller thanv0, and that it has a well defined polarization.
One knows that it is possible to find several bases of trans-
verse modeshuisrW ,zdj, such that each mode verifies the
propagation equation of the field in vacuum projected onto
the polarization axis,

Dsuie
ikzd +

v0
2

c2 ui = 0; s1d

it is an orthonormal basis,

E ui
*sz,rWdujsz,rWdd2r = di j ; s2d

and it satisfies a completeness relation,

o
i

ui
*sz,rWduisz,rW8d = dsrW − rW8d. s3d

For instance, the usual Laguerre-Gauss TEMpq basis satisfies
these conditions. Considering a light beam, the electric field
is written as the sum of the positive and negative frequencies
components:
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EsrW,z,td = Es+dsrW,zde−isv0t−kzd + c.c. s4d

It is possible to expand the electric field positive frequency
envelope in the transverse modes basis as

Es+dsrW,zd = o
i

EiuisrW,zd. s5d

A. Single-mode or multimode light: Classical approach

For a TEMpq basis field expansion, when more than one
Ei is nonzero, it seems at first sight natural to say that this
field is multimode. However, if theEi coefficients are fixed
si.e., we consider acoherent superposition of modesand not
a statistical oned, one can always define a new transverse
mode

v0 =
1

Îo
i

uEiu2
o

i

Eiui s6d

and construct a basishvij in which v0 is the first element. In
this basis, the field is proportional tov0 which means it is
single mode. We can conclude that for a coherent superposi-
tion of modes, there is no intrinsic definition of a multimode
beamsi.e., a definition independent of the choice of the ba-
sisd. We will restrict our analysis to spatial variables, but it
can be applied to any physical dimension. For instance, in
the time domain, a mode locked laser is single mode, as it is
a coherent superposition of many temporal modes. If the
temporal modes are incoherent with each other then the sys-
tem is unambiguously multimode. More precisely, if the field
is a stochastic superposition of modes, thev0 mode cannot be
defined and the multimode character has a clear meaning. We
will exclude this case in the following.

B. Single-mode light: Quantum approach

In order to give the quantum description of the transverse
plane of a light beam, it is very common to quantize the field
starting from a transverse mode basis such as the one we just
defined in the previous section. In order to obtain standard
formulas, we consider that all measurements are performed
in an exposure timeT and associate to each vector of the
mode basis a set of creation and annihilation operatorsâi

† and
âi such that the fieldEi of the previous section is replaced by
the operatoriÎ"v0/2e0cTâi. With these notations we obtain
the standard commutation relationsfâi ,âj

†g=di j , and the posi-
tive field envelope operator can be written asf8g

Ê+srW,zd =Î "v0

2e0cT
Â+srW,zd s7d

with

Âs+dsrW,zd = o
i

âiszduisrW,zd, s8d

so thatÂs+d†Âs+d is a photon number per unit surface.
In order to give a proper definition of the single-mode

case, let us write the most general state of the field in the

Fock state basisun1, . . . ,ni , . . .l, whereni stands for the num-
ber of photons in the modei:

ucl = o
n1,. . .,ni,. . .

Cn1,. . .,ni,. . .un1, . . . ,ni, . . . l s9d

and the mean value of the electric field is given by

kcuÂucl = o
i
S o

n1,. . .,ni.1,. . .
Cn1,. . .,ni−1,. . .

* Cn1,. . .,ni,. . .DÎniuisrWd.

s10d

Following the definition for the classical beams, we can give
a definition of a single-mode beam.

Definition 1. A state is single mode if a mode basis
hv0,v1, . . .j exists in which it can be written

ucl = ufl ^ u0, . . . ,0, . . .l

whereufl is the state of the field in the first transverse mode.
The question is now whether, in contrast with the classical

states, quantum states exist that cannot be written ass1d. To
answer this question, we will demonstrate the following
proposition.

Proposition 1. A quantum state of the field is single mode
if and only if the actions on it of all the annihilation opera-
tors of a given basis give collinear vectors.

One can note that if this property stands for a given basis,
it then stands for the action of any annihilation operator.

Let us assume first that our fielducl is single mode with
respect to the basishui ,âij; then

â0ucl = uc0l and âiucl = 0 ∀ i Þ 0. s11d

Consider now any linear combination of the operators

b̂ = o
i

ciâi s12d

whereoiuciu2=1 which ensures thatfb̂,b̂†g=1. The action of
this operator on the field is given by

b̂ucl = o
i

ciâiucl = c0uc0l. s13d

This demonstrates the first implication of our proposition: all
the actions of annihilation operators on the field are propor-
tional.

To prove the other implication, consider now a fielducl
on which the action of any annihilation operatorâi is propor-
tional to uc0l. This is in particular true for the basishui ,âij:

âiucl = aiuc0l. s14d

If we assume thatoiuaiu2=1 swhich is always possible by
changing the normalization ofuc0ld, we can define a new

basishvisrW ,zd ,b̂ij such that

b̂0 = o
i

ai
* âi, v0 = o

i

ai
*ui , s15d

and complete the basis by defining a unitary matrixfcijg such
that
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b̂i = o
j

cij âj with c0j = a j
* and o

j

cijckj
* = dik.

s16d

It is then straightforward to show that

b̂iucl = d0iuc0l, s17d

which concludes the demonstration.
In addition to the proposition, Eq.s15d gives the expres-

sion of the mode in which “lies” the mean field, knowing the
action of a particular basis. We can also note that to show
that a field is single mode, it is sufficient to show that all its
projections on the annihilation operators of one particular
basis are proportional.

To illustrate the proposition, if one considers the superpo-
sition of coherent states

ucl = ua1l ^ ¯ ^ uail ^ ¯ s18d

it is straightforward to show that the actions of all the anni-
hilation operators on this state are proportional to the state
itself; we have a single-mode beam. The basis in which it is
single mode is the same as the one for the classical case,
settingv0 as in Eq.s6d.

Using this proposition, we can also look for the different
states that satisfy our definition of a single-mode quantum
beam. As a state that cannot be written as follows in any
mode basis:

ucl = uf1l ^ ¯ ^ ufil ^ ¯ s19d

is obviously not a single-mode beam, we will consider now
such a factorized state of the field, on which the action of the
annihilation operators gives

âiucl = uf1l ^ ¯ ^ sâiufild ^ ¯ . s20d

Consequently, there are only two possibilities to have all
these states proportional: either only one of the actions is
different from zero, which means we are already in the basis
in which the state is single mode; or all the states are coher-
ent states.

We have described here all the possible single-mode
states, and they agree with the intuitive description one
might have. For instance, if one considers the superposition
of several transverse modes, if at least one of them is a
noncoherent state, one gets a quantum multimode state.

C. Multimode light: Quantum approach

A beam of light is said to be multimode, from a quantum
point of view, when it is not single mode according to Defi-
nition 1. We can characterize such a beam by its degreen
sthis degree equals 1 for a single-mode beamd.

Definition 2. For a beamucl, the minimum number of
modes necessary to describe itsor the minimum number of
nonvacuum modes in its modal decompositiond, reached by
choosing the appropriate basis, is called the degreen of a
multimode beam. Any corresponding basis is called a mini-
mum basis for the fielducl.

The degree of a multimode beam can also be related to
the generalization of Proposition 1 to ann-mode beam. Us-

ing the same technique, one can show that a quantum field is
an n-mode beam if and only if the action on it of all the
annihilation operators belongs to the samen-dimensioned
subspace.

Whereas the previous paragraph gives a good definition of
the degree of a multimode beam, it is not very convenient as
one has no information on the basis in which the beam is
exactly described byn modes. We can, however, define a
particular basis, useful for calculations.

Proposition 2. For a beamucl of degreen, it is always
possible to find a basishui ,âij such that the mean value of
the electric field is nonzero only in the first mode; and, it is a
minimum basis for the fielducl. We will call that basis an
eigenbasis.

In order to demonstrate this proposition, let us consider a
minimum basishui ,âij for the field ucl. This basis is sup-
posed to be ordered such that then first modes are the rel-

evant ones. We can then define a new basishvi ,b̂ij such that

v0 =
1

Îo
i=0

n−1

kâil2

o
i=0

n−1

kâilui ,

vi,0,i,n = o
j=0

n−1

cijuj ,

vi,iùn = ui , s21d

where the coefficientshcijj are chosen in order to get an
orthonormal basis. Definitions similar to the one of Eq.s21d
apply for the annihilation operators. The first vector of this
basis is the same as the one defined for a classical beam in
Eq. s6d. In that basis, the mean field is single mode in a
classical sense. However, the energy lying in all the other
modes is not necessarily zero; only the electric field mean
value is zero for these modes, and as the modes fori ùn
were not changed, this new basis is still a minimum one for
the field ucl. This demonstrates the proposition. The demon-
stration illustrates the construction of a basis as defined in
Proposition 2 from a minimum basis, even though thanks to
the hcijj coefficients an infinite number of bases are possible.

The existence of this basis is also a confirmation of the
intuitive idea of the difference between single-mode and
multimode quantum light. Indeed, for a single-mode beam,
the spatial variation of the noise is the same as the one of the
mean field. For a multimode beam, the previous description
shows that some of the modes orthogonal to the mean field
are sources of noise but do not contribute to the mean field.
This implies that the variation of the noise is independent of
the one of the mean field. This property can be used to ex-
perimentally characterize the multimode character of light.
For instance, one can show the quantum multimode character
of the light using a variable spatial filter. This idea has been
implemented to study the semiconductor lasers output by
cutting the field with a razor bladef9g, and, more recently,
we have shown that spatial quantum behavior of a spatially
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multimode optical parametric oscillator can be demonstrated
using an iris whose aperture size is continuously variedf10g.

We have defined the theoretical basis required to develop
a study on optical image measurements. The following sec-
tion on information extraction will indeed strongly rely on
the propositions and definitions of the first part.

II. DIFFERENCE MEASUREMENTS

A. Description

A widely used technique in optics, and more generally in
physics, to improve the signal to noise ratio in a measure-
ment is to perform adifference measurement. It consists in
producing two identical signals from the light source used in
the experiment. When one monitors the difference between
these two signals, one gets of course a zero mean signal, but
one also cancels all the common mode noises, for example,
the one arising from the classical intensity fluctuations of the
source. The remaining noise arises from the noise sources
affecting the two channels differently.

One simple way to produce two identical beams is to use
a 50% beam splitter. In this case, the vacuum noise coming
from the unused side of the splitter is such a not-common-
mode noise and remains in the difference measurement:
whatever the actual excess noise of the beam impinging on
the beam splitter, the remaining noise corresponds to the shot
noise of this beam.

This simple technique of noise cancellation is used, for
example, to measure very small absorptionsf11g by inserting
the absorbing medium in one of the arms of the difference
setup, or very small frequency shifts, by inserting a Fabry-
Pérot cavity in one of the arms. It is also extensively used in
multipixel measurements, with either split detectors or quad-
rant detectors, to measure submicrometer displacements, for
example of nanoscale fluorophores in biological samples
f12g and in atomic force microscopyf13g, and ultrasmall
absorptions by the mirage effectf14g.

The problem of the determination of the origin of quan-
tum noise on a split detector and of its reduction has been
already investigated theoreticallyf7g and experimentally
f15–17g. We will here extend these considerations to more
general configurations.

More formally, we consider the measurement by a detec-
tor consisting of a set of pixels, each one occupying a trans-
verse areaDi. The pixels cover the whole transverse plane,
with no overlap between them. Each photodetector delivers a
power given by

ÎsDid =E
Di

2e0cÊ†srWdÊsrWdd2r . s22d

This can also be written as the photon number measured
during the exposure timeT of the detector:

N̂sDid =E
Di

Â†srWdÂsrWdd2r . s23d

In this section, the measurementM is defined by

M̂shsijd = o
i

si ÎsDid such thatsi = ± 1 s24d

or again in terms of number of photons per second:

N̂shsijd = o
i

siN̂sDid, s25d

where si = ±1 corresponds to the electronic gain of de-
tector i.

Considering a light beam in stateucl, the measurement is
a difference measurement for that beam if its mean value is
zero, i.e., if

kN̂shsijdl = 0. s26d

B. One difference measurement

If one considers one difference measurement performed
with a coherent state, which has spatially uncorrelated quan-
tum fluctuations, the noise arising from the measurement will
not depend on the choice ofhsij if si = ±1, and will be equal
to the square root of the total number of photons. This is
what is called the standard quantum noise. In the general
case, in order to compute the noise, an analysis equivalent to
the one performed in the case of a small displacement mea-
surement, as done in Ref.f7g, is necessary. We recall it here
and extend it to the general case of transverse modes of any
shape, in order to show the following proposition.

Proposition 3. The noise on a difference measurement
performed on a beamucl originates from a single mode,
orthogonal to the mean field: the “flipped mode.” In order to
reduce the noise in that measurement, it is necessary and
sufficient to inject a squeezed state in this flipped mode.

In order to perform the general noise calculation, let us
define the two “detectors”:

D+ = ø
i,si=+1

Di ,

D− = ø
i,si=−1

Di , s27d

which gives

N̂− = N̂sD+d − N̂sD−d

= o
i,j

âi
†âjFE

D+

ui
*srWdujsrWdd2r −E

D−

ui
*srWdujsrWdd2rG .

s28d

Considering small quantum fluctuations for whichdâi = âi

−kâil, the fluctuations ofN̂− are

dN̂− = N̂− − kN̂−l = o
i

fdâi
†C−

i + dâiC−
i*g, s29d

with C−
i defined as
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C−
i = o

j

kâjlFE
D+

ui
*srWdujsrWdd2r −E

D−

ui
*srWdujsrWdd2rG

=E
D+

ui
*srWdAcsrWdd2r −E

D−

ui
*srWdAcsrWdd2r

and whereAcsrWd is the mean value of the electric field

kcuÂsrWducl. The C−
i coefficients are the partial overlap inte-

grals between the modesui and the mean field.
We can now compute the noise related to this measure-

ment:

kdN̂−
2l = o

i

uC−
i u2 + Fo

i,j
kdâi

†dâj
†lC−

i C−
j

+ kdâi
†dâjlC−

i C−
j* + c.c.G . s30d

Using the completeness relation, the first term of the last
equation can be shown to be equal to the total number of
incident photons per second,N0. This shows that the noise
related to this measurement arisesa priori from all the
modes.

We will now demonstrate that the noise comes in fact

from a single mode when we writekdN̂−
2l in the appropriate

basis. We indicate byv0 the mode of the mean field as de-
fined in the previous part:

v0srWd =
1

ÎN0

AcsrWd. s31d

If v0 is the first mode of a basis, the mean value of the
electric field in all the other modes will be zero, as shown in
the previous section. We define now the modev1, which we
will refer to as the flipped mode ofv0, such that

v1srWd = Hv0srWd if r P D+,

− v0srWd if r P D−.
J s32d

As we have assumed that the mean value of the measurement
is zero,v1 is orthogonal tov0, which means that we can find

a basishvi ,b̂ij wherev0 and v1 are the two first modes. In
that basis, the overlap integrals become

C−
i = ÎN0FE

D+

vi
*srWdv0srWdd2r −E

D−

vi
*srWdv0srWdd2rG

= ÎN0E
D

vi
*srWdv1srWdd2r = ÎN0di,1. s33d

These integrals are different from zero only for the flipped
mode. The noise of Eq.s30d becomes

kdN̂−
2l = N0ksdb̂1

† + db̂1d2l, s34d

which shows that the noise arises only from the quadrature
of the flipped mode ofv0 in phase with the mean field mode.
For this reason, we call this mode the eigenmode of the
measurement. Another standard notation is

kdN̂−
2l = N0kdX1

+2l, s35d

whereX1
+= b̂1+ b̂1

† is the quadrature of the flipped mode, and
N0 represents the shot noise. Consequently, having a
squeezed state in that mode is necessary and sufficient to
reduce the noise related to the measurement.

This calculation shows that, for a difference measurement,
the noise in the measurement is exactly the one of the flipped
mode. Changing the noise properties of the flipped mode is
then the only way to change the noise in the measurement.
We have a necessary and sufficient condition to improve the
measurement compared to the standard quantum limit.

This demonstration imposes the noise properties of only
one quadrature of the flipped mode, but there is no condition
on the other quadrature, and all the other modes can be in
any state. Then, there is not only one practical solution.

C. Multiple difference measurement

We have demonstrated which mode one needs to squeeze
in order to perform one difference measurement on a beam.
We can now expand this analysis in the case of several dif-
ference measurements. Let us considern difference measure-
ments of the type of Eq.s26d. We will assume that these
measurements are independent, which means that none of
them is a linear combination of the others. One can show that
the corresponding flipped modes are then also linearly inde-
pendent. We have shown that in order to improve simulta-
neously the sensitivity of all these measurements it is neces-
sary, and sufficient, to squeeze all these flipped modes.
Practically these modes are in general not orthogonal, but
one can find an orthogonal basis of the subspace generated
by these modes. Injecting squeezed vacuum states in each of
these modes will result in squeezed states in each of the
flipped modes.

Regarding the degree of the beam necessary to improve
simultaneously all the measurements, it is clear that in order
to perfectly squeeze all the flipped modes, a beam of degree
n+1 is necessarysand sufficientd. We can summarize all the
considerations of Sec. II into a proposition.

Proposition 4. In order to reduce the noise simultaneously
in n independent difference measurements it is necessary and
sufficient to use a beam of degree at leastn+1 that can be
described in a transverse mode basishâi ,uij such thatu0 is
proportional to the electric field profile of the beam;huij0,iøn

is the basis of the space vector generated by the flipped
modes of the measurements; and all these modes are per-
fectly squeezed.

III. LINEAR MEASUREMENT

Difference measurements are obviously not the only ones
performed in image processingf1–3g. The extraction of the
pertinent information arises generally from the numerical
computation of a functionF(IsD1d ,IsD2d , . . . ,IsDnd) from
the intensitiesIsDid si =1, . . . ,nd measured on each pixel. To
simplify the following discussion, we will restrict ourselves
to the case when this function islinear with respect to the
intensitiesIsDid, as is a case often encountered in real situa-
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tions, for example, when one wants to determine the spatial
Fourier components of the image, or when the variations of
the parameter to measure are small enough so that the func-
tion F can be linearized.

In the formalism of Eqs.s24d and s25d, using a linear
function corresponds to letting the gainsi of the detectors
take any real value and not only ±1:

M̂shs jjd = o
j

s j ÎsDjd,

N̂s = o
j

s jN̂sDjd. s36d

We emphasize that, contrary to the previous section, the
mean value of the measurement is not necessarily zero. In
that case, we will show the following proposition.

Proposition 5. Consider a field stateucl described in an

eigenbasishb̂i ,vij, and consider a linear measurement per-
formed with an array of detectorsDi, each detector having a

gain si. The noise on the measurement,N̂s=o js jN̂sDjd,
arises only from the generalized flipped modew defined by

∀ rW,rW P Di ⇒ w1srWd =
1

f
siv0srWd s37d

where f is a normalization factor.
Here, there is not much sense in defining the positive and

negative gain domains. We can anyway extend the notion of
overlap integral between a basis vector and the mean field:

Cs
i = o

j

s jE
Dj

ui
*srWdAcsrWdd2r , s38d

which leads to a formula equivalent to Eq.s30d

kdN̂s
2l = o

i

uCs
i u2 + Fo

i,j
kdâi

†dâj
†lCs

i Cs
j

+ kdâi
†dâjlCs

i Cs
j* + c.c.G . s39d

Recalling thatAcsrWd=ÎN0v0srWd, we can also extend the
notion of the flipped mode, and define adetection modeby

∀ rW,rW P Di ⇒ w1srWd =
1

f
siv0srWd, s40d

where f ensures the normalization ofw1:

f2 = o
j

s j
2E

Dj

v0
*srWdv0srWdd2r . s41d

However, as the mean value of the measurement can be dif-
ferent from zero, the detection modew1 is not in general
orthogonal to the mean field modev0. In order to calculate
the noise in the measurement, it is necessary to construct a
basis that contains the detection modew1. As the mean value
of the electric field in this mode is different from zero, it is
not possible to obtain an eigenbasis withw1, but we can still
choosew0 such that the mean field modev0 is a linear com-
bination ofw0 andw1. Choosing all the other modeswi swith

i ù2d in order to obtain an orthonormal basis, we obtain a
basis such that the mean field is distributed in the two first
modes, the detection mode isw1, and the mean value of the
electric field in all the other modes is zero. We can then
perform a calculation similar to the one of the previous sec-
tion, which gives

Cs
i = ÎN0fE

D

wisrWd * w1srWdd2r = ÎN0fdi,1. s42d

Once again the detection mode is the only one that is rel-
evant for the calculation of the noise related to the measure-
ment. Taking into account that the normalization giving rise
to the shot noise has changed,

o
i

uCs
i u2 = uCs

1u2 = N0f2, s43d

the noise formula becomes

kdN̂s
2l = f2N0ksdĉ1

† + dĉ1d2l, s44d

where thehĉij are the annihilation operators associated with
the transverse mode basishwij.

The f2 factor is a global effect of the gain, and modifies
both the measured signal and shot noise level. In any case, if
the flipped mode is perfectly squeezed, we can still perform
a perfect measurement. However, the experimental configu-
ration is much more complicated as, in general, the mean
value of the electric field in modew1 is different from 0,
which means that, as is shown in the Appendix, generating
the good mode is difficult. An appropriate approach would
be to describe the field back into an eigenbasis, and check
how to set the noise of the different modes in that basis. We
will see in the Appendix how this can be done in a simple
case. The important result of this part is that whatever the
measurement we perform the noise arises only from one
mode. Changing the noise of this mode allows us to improve
the sensitivity of the measurement. As in the previous sec-
tion, it is also possible in that general case to perform several
simultaneous measurements, and to identify the subspace of
modes responsible for the noise.

It is interesting to note that, in the particular case of a
measurement where the gains are adapted to have

kM̂shs jjdl=0, the modev0 coincides withw0. Indeed,v0 is
here orthogonal tow1:

E
D

w1
*srWdv0srWdd2r = o

j

s j

f
E

Dj

v0
*srWdv0srWdd2r ~ Ko

j

s jN̂sDjdL
= 0; s45d

hence the basis is an eigenbasis of the field. Again, that case
is relevant experimentally as it means that one can act on the
noise without perturbing the mean field mode.

CONCLUSION

We have shown in this article how to properly define the
degree of multimode character of a light beam. We have used
the basis decomposition associated with that definition in
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order to single out, in a linear transverse measurement, the
transverse mode carrying the noise. We have shown that it is
possible to go beyond the standard quantum noise limit by
injecting in that mode squeezed light, and that this can be
done simultaneously for several independent measurements.

It order to implement the theory developed here to com-
plex experimental configurations we have shown that it was
preferable that the various detection modes be orthogonal to
the mean fieldsi.e., they do not contribute to the mean elec-
tric fieldd, and it is necessary to mix them without introduc-
ing losses. For instance, one can use the proposal we have
detailed inf17g and used to mix two nonclassical beams in
orthogonal transverse modes, and a mean coherent field, in
order to improve the sensitivity of the transverse position
measurement of a laser beam.

In this paper, we have analyzed in great detail the origin
of quantum noise in a multipixel measurement. What re-
mains to be considered now is the signal, and not only the
noise in the measurement. This will be the natural continua-
tion of our work, and we will describe in a future publication
what is the influence of the gain configuration on the signal
to noise ratio and how to optimize a given measurement in
an optical image.
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APPENDIX: TWO-ZONE MEASUREMENT

In this article, we have exhibited the mode structure of the
light in a multipixel measurement, using a basis that contains
the detection mode. However, when the mean value of the
measurement is different from zero, we have shown that this
detection mode has a mean electric field value different from
zero. In that configuration, it is very difficult experimentally
to address the detection mode without modifying the mean
field distribution. We have shown that the only basis perti-
nent for such a task is an eigenmode basis. We will show
here what is the structure of that basis for a two-zone mea-
surement of nonzero mean value.

Using the notations of the previous sections, we consider
two detectorsD+ and D− whose gains are, respectively, +1
and −1. We recall here the mode structure defined in the
main text of this article.v0 is the transverse mode carrying
the mean field of the beam andw1 is the detection mode as
defined in Eq.s40d fwhich, in this case, is equivalent to the
flipped mode of Eq.s32dg. w0 is the mode orthogonal tow1 in
the subspace generated byv0 andw1. Let us call the partial
integrals ofv0 on each zonei+ and i−,

i+ =E
D+

v0
*srWdv0srWdd2r and i− =E

D−

v0
*srWdv0srWdd2r .

A simple calculation gives

w0srWd =5Î
i−
i+

v0srWd if r P D+,

Î i+
i−

v0srWd if r P D−.6 sA1d

The first mode of an eigenbasis for the field isv0. The second
one,v1, is defined as the mode orthogonal tov0 in the sub-
space generated byw0 andw1. Its expression is found to be
v1 such that

v1srWd = Hw0srWd if r P D+,

− w0srWd if r P D−.
J sA2d

As w0 is orthogonal tow1, which is the flipped mode ofv0,
one can show thatv0 is orthogonal tov1, which is the flipped
mode ofw0 ssee Fig. 1d. In order to calculate the noise in the
measurement using that basis, the flipped mode is expressed
as a linear combination of the two first modes of the eigen-
basis:

w1 = av0 + bv1, sA3d

wherea= i+− i− andb=2Îi+i−, which leads to

ksdĉ1
† + dĉ1d2l = a2ksdb̂0

† + db̂0d2l + b2ksdb̂1
† + db̂1d2l

+ 2abksdb̂0
† + db̂0dsdb̂1

† + db̂1dl. sA4d

Expressed in an eigenbasis that does not contain the detec-
tion mode, we see that the noise arises from the individual
noise of the two first modes and from their correlation func-
tion. In that basis, in order to reduce the noise we have sev-
eral solutions: either the two first modes are perfectly
squeezed, or they are perfectly correlated, or any solution in
between. Anyway, we can assume that if we want to make a
lot of different measurements, it is very difficult to produce
correlation between the mean field and the different vacuum
modes; hence the easiest solution is to have the mean field
squeezed, and the corresponding vacuum squeezed. The
same argument as before applies, and we show that we still
need an extra mode for each piece of extra information.

FIG. 1. Electric field profile of the constituent modes used to
form the nonclassical multimode beam.
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