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A simple analytical solution for the propagation of a weak Gaussian pulse in a dense absorptive medium
with electromagnetically induced transparency is found. This solution is applied to the analysis of three
regimes:s1d ands2d the pulse spectrum is narrower than the transparency windowfwhich is narrows1d or wide
s2d with respect to the width of the absorption lineg ands3d the pulse spectrum is broader than the transparency
window. It is shown that the pulse maintains its area in all three regimes and maintains its Gaussian shape but
narrows in spectrum in regime 1. In regime 2, the pulse begins to distort after a certain distance. In regime 3,
the pulse is split into two parts. One part is an adiabatic part with a spectrum defined by the effective width of
the transparency window for a thick medium and the other is an oscillating nonadiabatic part of short duration.
The adiabatic part propagates slowly and the nonadiabatic part propagates with a velocity close to the speed of
light. Thus in regime 3, the medium acts as a time-frequency filter, separating the narrow and wide spectrum
components of the pulse in time at the output of the absorber.
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I. INTRODUCTION

Electromagnetically induced transparencysEITd f1–4g,
slow group velocity or stopping of lightf5–10g, and large
refractive index without absorptionf11–14g are the subjects
of intense research in quantum optics, both theoretical and
experimental. EIT has been successfully demonstrated under
different experimental conditions: in continuous wave and
pulsed regimesf3g, with atomic and molecular gasesf15,16g,
with solids doped by rare-earth ionsf17g, and with semicon-
ductor quantum wellsf18,19g for different wavelengths rang-
ing from optics to microwaves. Recentlyf20,21g, a variation
of EIT, called level mixing induced transparency, has been
found using gamma radiation.

In a very basic scheme of EIT, the transparency for the
probe field is created by the drive field if both fields are in
resonance with different, but adjacent, transitions of a three-
level atom. The probe field is in resonance with the transition
from the ground statesgd to the excited statesed and the
drive field couples the excited statesed with an unpopulated
metastable statesmd; see Fig. 1. A key point for EIT is the
slow decay rateg of the coherenceg-m induced by the probe
and drive fields via a two-quantum process. Ifg!G and
gG!Vd

2, where G is the decay rate of the coherenceg-e,

induced by the probe, andVd is the coupling parameter of
the drive, then a narrow hole appears in the absorption line
for the probe. The absorption of the probe at the hole center
is reduced by a factor ofgG /Vd

2 with respect to the unper-
turbed line. The width of this hole for a single atom is esti-
mated asVd

2/G if Vd,G. For an optically thick absorber, the
hole narrows asVd

2/GÎT, whereT is the effective thickness
of the samplessee, for example,f22gd.

In this paper we develop an analytical theory describing
the propagation of a weak Gaussian pulse in a thick resonant
absorber with EIT window. Our aim is to consider the case
when the approximation of adiabatic following of the dark
statef2,3,23g is not applicable or violated to some extent,
which is the case for a short pulse whose spectrum is much
broader than the transparency window. We propose a time-
frequency filter that is complementary to cwsor frequency
domaind field filtering by EIT. Such a filter does not change
the shape of the input pulse and the pulse area; however, it
makes the pulse longer. The pulse area is an important pa-
rameter for the description of the resonant pulse interaction
with atomsfsee the definition of the pulse area in Eq.s27d
belowg. For example, the atomic polarization induced by a
short resonant pulse in a two-level medium with long irre-
versible relaxation time is proportional to the sine function of
the pulse area; see, for example, Ref.f24g. The polarization
induced in an ensemble of two-level atoms with an inhomo-
geneously broadened line keeps the memory about the phase,
duration, and shape of the pulse, which can be retrieved in
the photon echo pulse if a second reading pulse is applied
f24g. Since the pulse area specifies the value of the induced
polarization, this pulse parameter defines the effectiveness of
the imprinting of the information into the atomic coherence
induced by the pulse. EIT filtering of the pulse conserves its
area, i.e., the ability of the pulse to induce a certain amount
of atomic coherence. Therefore, the EIT window can be used
as a perfect filter to create a source field for an optical

FIG. 1. Three-level atom excited by the probeVp and driveVd

fields. The amplitude of the probe is time dependent and the ampli-
tude of the drive is not.g, e, andm are ground, excited, and meta-
stable states.sad e andm states have different energies.sbd e andm
are degenerate states and the drive is a dc field.
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memory based on the photon echo phenomenon. This filter
makes the pulse spectrum narrow but preserves the pulse
area.

The paper is organized as follows. In Sec. II we present
the general formalism employed in the description of the
propagation of a small-amplitude, probe pulse in a medium
containing three-level atoms driven by a cw coupling field.
In Secs. III and IV we consider the adiabatic solution of the
Maxwell-Bloch equations for the probe pulse propagation
with a spectral width smaller than the width of the EIT win-
dow. In Sec. V, this solution is applied as part of the general
solution to describe the pulse with spectral width larger than
the width of the EIT window. In this section the nonadiabatic
corrections are also found. In Sec. VI the interference phe-
nomenon is considered if the probe frequency is detuned
from the line center. The analytical expressions for the pulse
distortion and nonadiabatic corrections are derived in Appen-
dixes A and B.

II. PROPAGATION OF A SMALL-AMPLITUDE PULSE
AT THE EIT CONDITION

We consider the interaction of two fields, the probeEp
=Ep0sz,tdexps−ivpt+ ikpzd and the driveEd=Ed0 exps−ivdt
+ ikdzd, with a three-level atom shown in Figs. 1sad and 1sbd.
Schemesad assumes the laser pump as a drive field, while in
schemesbd the drive is a dc field that couples two closely
spacedsor essentially degenerated levelse andm and hence
vd=0 andkd=0. In both schemes, the atom is initially in the
ground stateg. The coherence between the ground stateg
and the excited statee decays with a fast decay rateG. The
coherence between the ground stateg and the metastable
statem decays with a much smaller decay rateg sg!Gd. In
both schemes, the coupling parameterVd for the drive is
constant. In casesad, this corresponds to the cw pump of the
initially empty statese andm.

We assume that the amplitude of the probe pulseEp is
small, that is, its coupling parameterVp satisfies the condi-
tionsVp!G, Vd andVp

2!GGe, whereGe is the decay rate of
the excited statee. In this case, one can take a linear re-
sponse approximation where only two equations from the
complete set of the matter equations have to be considered,
i.e.,

ṡeg= sid − Gdseg+ iVpN + iVdsmg, s1d

ṡmg= sid − gdsmg+ iVdseg. s2d

Here segsz,td=regsz,tdexpsivpt− ikpzd, smgsz,td
=rmgsz,tdexpfisvp−vddt− iskp−kddzg are the slowly varying
amplitudes of the nondiagonal components of the three-level
atom density matrixri j . The frequency of the probe can be
detuned from resonance ond=vp−veg. The drive frequency
vd is assumed to be always in resonance with the transition
e-m: vd=vem. Here veg=ve−vg and vem=ve−vm are the
resonant frequencies of the transitionse-g ande-m between
the statese, m, andg with the energies"ve, "vm, and"vg,
respectively. The coupling parameters for the probe and
drive are defined as real valuesVp=degEp0sz,td /" and Vd

=demEd0/", wheredeg anddemare the dipole matrix elements
for the transitionse-g and e-m, respectively. The valueN
=rgg−ree is assumed to be equal to unity throughout the
excitation process since we neglect any saturation effect
sweak probe conditiond.

The wave equation for the slowly varying amplitude of
the probeEp0sz,td is

S ]

]z
+

1

c

]

]t
DEp0sz,td = i

a"

deg
segsz,td, s3d

where the right-hand side is the response function of the
atoms located in a plane with coordinatez, and a
=2pNcudegu2vp/"c is the resonant absorption coefficient of
the sample with concentrationNc of the three-level atoms.
This coefficient is defined such that 2a /G is the Beer’s con-
stant for a monochromatic field resonant with thee-g transi-
tion. The probe pulse is considered as a plane wave with the
wave vectorkp parallel to thez axis.

By means of the Fourier transform

Fsnd =E
−`

+`

fstdeintdt, s4d

Eqs. s1d and s2d are reduced to a set of algebraic equations
that can be solved easily. The solution forsegsz,nd is

segsz,nd = iasnddegEp0sz,nd/". s5d

HereEp0sz,nd is the Fourier transform ofEp0sz,td and

asnd =
g − isn + dd

fG − isn + ddgfg − isn + ddg + Vd
2 . s6d

The wave equations3d for the Fourier transformEp0sz,nd can
be rewritten as

S ]

]z
−

i

c
n + AsndDEp0sz,nd = 0, s7d

whereAsnd=aasnd. This equation is integrated as

Ep0sz,nd = Ep0s0,ndexpfsinz/cd − Asndzg. s8d

If one takes the inverse Fourier transform, the resulting ex-
pression for the probe pulse envelope is

Ep0sz,td =
1

2p
E

−`

+`

Ep0s0,ndexpF− inSt −
z

c
D − AsndzGdn.

s9d

This is the general solution for the propagation of the small
probe pulse,Epsz,td in a sample with arbitrary thickness con-
taining three-level atoms driven by the coupling fieldEdsz,td.
The drive field is supposed to have a constant amplitude that
is homogeneous in space. Both fields, probe and drive, are
considered as unidirectional plane waves.

III. ADIABATIC SOLUTION FOR THE GAUSSIAN PULSE

In the time domain, the solution of the matter equations
s1d and s2d for segsz,td, satisfying the linear response ap-
proximation, is
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segsz,td = i
deg

2p"
E

−`

+`

asndEp0sz,nde−intdt. s10d

In this sectionsand also in Secs. IV and Vd, we consider the
case when the probe field is in exact resonance with the
transitione-g, i.e., d=0. Then one can expand the function
asnd in a power series nearn=0,

asnd = o
k=0

`

s− indkak, s11d

where the first four coefficientsak are a0=g / sVd
2+gGd, a1

=sVd
2−g2d / sVd

2+gGd2, a2=fg3−Vd
2sG+2gdg / sVd

2+gGd3, and
a3=fsG+gd2Vd

2−sVd
2−g2d2g / sVd

2+gGd4. The functionasnd in
Eq. s6d can be also expressed as

asnd = i
n + ig

sn − n+dsn − n−d
, s12d

where

n± = −
i

2
fG + g ± ÎsG − gd2 − 4Vd

2g s13d

are two poles that help to define the convergence radius of
the expansions11d. This radius is defined by the absolute
value of the smallest poleun±u. If G.g and 2Vd, sG−gd, the
radius of the convergence isRc= un−u, i.e.,

Rc =
1

2
fG + g − ÎsG − gd2 − 4Vd

2g. s14d

If 2Vd! sG−gd, we have an approximate expression for this
radius,

Rc < g +
Vd

2

G − g
, s15d

which is close to the width of the transparency windowVd
2/G

estimated in Ref.f22g for g!Vd
2/G.

If Ep0sz, ±`d=0 and

lim
t→±`

]kEp0sz,td
]tk

= 0, s16d

then substituting the expansionasnd, Eq. s11d, into the inte-
gral s10d and applying a well-known differentiation property
of the Fourier transform we find

segsz,td = i
deg

"
o
k=0

`

ak
]k

]tk
Ep0sz,td. s17d

This expression converges ifDin,Rc, whereDin is the spec-
tral half-width of the input probe pulse, specifying the value
of time derivatives ofEp0sz,td for z=0. It is assumed that the
pulse spectrum is not broadened with distance. Therefore,Din
sets the upper limit for the spectral width ofEp0sz,td at dis-
tancez.

It can be shown that the atom subject to the probe and
drive fields evolves via higher-order dark states introduced in
Ref. f25g. In this picture the appearance of the infinite sum of
the field time derivatives of ascending order in the atomic

response function is a result of such evolution; see, for ex-
ample, Ref.f26g. Our solution Eq.s17d contains the informa-
tion about this evolution and also takes into account all re-
laxation processes in a natural way. If the atom adiabatically
follows such dark states, its evolution starts and terminates in
the ground stateugl f26g. Then, one can expect that the probe
pulse would propagate solitonlike because no excitation is
left in the medium. To clarify this argument, we give a brief
sketch of the high-order dark state formalism and the quali-
tative definition of the adiabatic following of these states.

The notion of a dark statesd0d was first introduced by
Arimondo in f2g. It is a particular superposition of statesg
and m: ud0l=cosb0ugl−sinb0uml, where the state mixing
angle b0 satisfies the condition tanb0=Vp/Vd. The dark
state is an eigenstate of the three-level system interacting
with the cw probe and cw drive field. Therefore, if the three-
level atom is in the dark state it stays there and will not be
excited to stateuel. In our case the drive field amplitude does
not change in time while the amplitude of the probe does, so
that one has to consider the dark stateud0l= ud0stdl with a
time-dependent state mixing angleb0std. SinceVps±`d=0,
the ground stateugl coincides with the dark stateud0l by
definition before the probe pulse arrives. If the atom adia-
batically follows the dark state, then the probe pulse does not
populate the excited stateuel, but induces the coherence
g-m, populating the metastable stateuml with probability am-
plitude sinb0=Vp/V0, whereV0=ÎVd

2+Vp
2<Vd.

This is a simplified picture, ignoring the fact that the in-
teraction Hamiltonian is time dependent. Any time-
dependent Hamiltonian cannot be diagonalized similarly to a
time-independent Hamiltonianssee, for example, Ref.f26gd.
If one takes this time dependence into account, then the dark
state becomes coupled with the so-called bright stateub0l
=sinb0ugl+cosb0uml, which is orthogonal toud0l and uel.
The coupling strength isiḃ0std. In the basisud0l, ub0l, uel we
have again a three-level system, whereud0l and ub0l are

coupled byiḃ0std= iV̇pVd/V0
2< iV̇p/Vd, andub0l and uel are

coupled byV0<Vd; see Fig. 2sbd. Now, one can introduce a
new combination of dark, bright, and common intermediate
states in the two-quantum process, i.e.,d1, b1, andc1. State
c1 coincides with stateb0. Stated1 and stateb1 are superpo-
sitions of statesd0 and e, or explicitly ud1l=cosb1ud0l
+ i sinb1uel, ub1l= i sinb1ud0l+cosb1uel, where the state

mixing angle isb1=tan−1sḃ0/V0d. ud1l can be called the
first-order dark state, ifud0l is the zeroth-order dark state.
One can continue in the same way introducing the second-
order dark state, etc., since every new dark state is coupled
with its partner, the new bright state, due to the time varia-
tion of the field amplitude; see Figs. 2sad–2sdd.

If relaxation processes are ignoredswhich is the case of
the short probe pulsed, the transparency window is defined
by the value ofVd. In case of a weak probesVp!Vdd and
constant drive, one can show that the mixing angles satisfy
the conditionbk<Vp

skd /Vd
k+1 whereVp

skd is the kth time de-
rivative of Vp. If Din is smaller than the width of the trans-
parency window,Vd, we havebk+1/bk,1 and with the in-
crease ofk the mixing anglebk decreases and the coupling

ḃkstd becomes smaller and smaller with respect toVd. In this
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case some higher-order dark statesfor example,udjld can be
approximately considered as the uncoupled state. Then the
atom is assumed to follow such a state adiabatically. Its evo-
lution starts and terminates in the ground stateugl because
b js±`d=0 andudjs±`dl= ugl for any j . In this case, one can
expect that no excitation is left in the medium. For a discus-
sion of the nonadiabatic corrections see, for example, Ref.
f26g.

Such a higher-order dark state, which the atom follows
adiabatically, can be presented as a superposition of the
ground, metastable, and excited states,

udnl = Cgugl + Cmuml + Ceuel, s18d

with the coefficients

Ce < io
n=0

s− 1dnb2n+1, s19d

Cm < o
n=0

s− 1dn+1b2n, s20d

Cg < 1 −
1

2FSon=0
s− 1dnb2n+1D2

+ So
n=0

s− 1dn+1b2nD2G ,

s21d

where the sum is specified by the condition 2n+1ø j ; see,
for example, Ref.f26g. For infinite j s j →`d, the sums in
Eqs. s19d–s21d are finite if Din is smaller than the transpar-
ency window. From Eqs.s19d ands21d, one can calculate the
density matrix elementseg=CeCg

* , which gives the atomic
response to the probe. Simple algebra shows that such a cal-
culated response coincides with the result given in Eq.s17d if
we takeG=g=0 in the expressions forak swhich is the case
of the short pulsed and keep inCeCg

* only the linear terms

proportional to the time derivatives ofVp slinear response
approximationd.

This is only a qualitative argument explaining the adia-
batic following of the higher-order dark states. Below we use
Eq. s17d, which takes into account the relaxation processes,
and we show that the first four terms of expansions17d are
sufficient to describe the pulse propagation ifDin,Rc.

For the input pulse atz=0 we take a pulse with a Gauss-
ian envelopeEp0s0,td=Ep0exps−r2t2d. This pulse shape is
typical for pulsed lasing obtained by phase locking of many
modes f27g. The Fourier transform of this pulse is
Ep0s0,nd=sEp0

Îp / rdexpf−sn /2rd2g and hence the half-width
of its spectrum isDin=2r. If we take into account only three
terms of the expansion of the atomic response function
asnd<a0− ia1n−a2n2, the integrals9d for the Gaussian pulse
can be easily calculated,

EpAsz,td = Ep0SDout

Din
DexpF− TEIT −

1

4
Dout

2 st − tdAd2G ,

s22d

where the subscriptA designates that this is the adiabatic part
of the solution,TEIT=aa0z, Dout=Din /Î1−Din

2 aa2z fa2 must
be negative, which corresponds to the conditionVd

2sG+2gd
.g3g, andtdA=aa1z. Time t in Eq. s22d and below is actually
the local timet−z/c. The parametersTEIT, Dout, andtdA arez
dependent. They have a significance for the description of
the pulse propagation. Therefore, we give their explicit ex-
pressions and meanings below.

The parameter

TEIT = T
gG

Vd
2 + gG

, s23d

is the EIT reduced effective length of the absorber for the
central, resonant component of the probe pulse spectrum.
Without EIT sthe drive is off,Vd=0d, the effective length is
T=az/G, where 2a /G is the Beer’s constant.TEIT comes
from the first term of theasnd expansion,a0, which defines
the absorption exactly at the center of the EIT hole,veg. This
absorption is strongly reduced by a factorgG /Vd

2 with re-
spect to the value for the unperturbed line ifVd

2@gG. Thea0
term is not really adiabatic. It describes the process of popu-
lation leakage from the dark stateud0l due to theg decoher-
ence.

The parameter

tdA = TG
Vd

2 − g2

sVd
2 + gGd2 s24d

describes the pulse delaytdA due to the steep dispersion at
the center of the EIT window, which results in the slow
group velocity of the pulseVg=c/ s1+aa1cd. This parameter
comes from the second term of theasnd expansion,a1, ap-
proximating the real part of the atomic susceptibilityx8snd
by the linear function,n. If the EIT hole is deepsVd

2@gG
or g→0d, we havetdA<TG /Vd

2. The a1 term of the expan-
sion maintains the population of the dark state of the first
orderd1. Therefore, it is an adiabatic term and does not con-
tribute to the dissipation of the pulseEp.

FIG. 2. Interaction of two fields, probe and drive, with the three-
level atom in various representations.sad Schrödinger representa-
tion. sbd Zero-order dark state representation.V0=ÎVp

2+Vd
2 and

b0=tan−1sVp/Vdd. scd First-order dark state representation.V1

=ÎV0
2+ḃ0

2 andb1=tan−1sḃ0/V0d. sdd Second-order dark state rep-

resentation.V2=ÎV1
2+ḃ1

2 and b2=tan−1sḃ1/V1d. In the nth-order
dark state representation, the state mixing angle isbn

=tan−1sḃn−1/Vn−1d. The position of the levels in the diagramssbd–
sdd is schematic, not related to their energy.
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The parameter

Dout =
Din

Î1 + sDin/Def fd2
, s25d

describes the spectral half-width of the output pulse, where

Def f =Î sVd
2 + gGd3

TGfVd
2sG + 2gd − g3g

s26d

is the effective half-width of the EIT window for a thick
samplesT.1d. If Vd

2@gG, the effective half-width isDef f

<Dh/ÎT, whereDh=Vd
2/G is the half-width of the EIT win-

dow for one atom. For a thick sample the effective half-
width narrows as,1/ÎT. According to Eq.s25d, the half-
width of the output pulse,Dout, also narrows and tends toDef f
for largeT if Din@Def f. The parametersDout andDef f come
from the third term,a2, of the expansionasnd, which ap-
proximates the imaginary part of the atomic susceptibility
x9snd by a parabolic function,n2.

The a2 term produces pulse broadening in time or its
spectrum narrowing with distance. This process is adiabatic
with respect to the central frequency Fourier component of
the probe pulse, which is the pulse area. Therefore, the pro-
cess of the pulse spectrum narrowing or pulse broadening in
time with distance preserves the pulse area, which is explic-
itly the time integral of the pulse amplitude, i.e.,

uAszd =
2deg

"
E

−`

+`

EpAsz,tddt = us0de−TEIT, s27d

whereus0d=2ÎpdegEp0/ r" is the pulse area at the inputsz
=0d. Usually the pulse area is defined as a dimensionless
parameter. The pulse area reduces with distance only due to
the residual absorption at the bottom of the EIT window. One
can obtain this result for any pulse whose central frequency
coincides with the center of the EIT hole. This is because the
pulse area by definition is the zero-frequency Fourier com-
ponent of the spectrum of the pulse envelope. If we take into
account the carrier frequency of the pulse,vp, then we find
that this Fourier component is just the spectral component of
the pulse coinciding with the center of the EIT window.

The energy of the output pulse or its time integrated in-
tensity IpAsz,td= uEpAsz,tdu2 is reduced due to the pulse
broadening by the EIT window as

UAszd =E
−`

+`

IpAsz,tddt = Us0d
Dout

Din
e−2TEIT, s28d

whereUs0d=Îp /2uEp0u2/ r is the input pulse energy. The en-
ergy of the pulse corresponds to the central frequency Fou-
rier component of the pulse intensity, which can be expressed
as

E
−`

+`

IpAsz,tddt =E
−`

+`

EpAsz,ndEpA
* sz,nddn. s29d

Since the integral at the right-hand side contains all the fre-
quency components of the pulse amplitude, this value is not
preserved.

For g→0 we can introduce the adiabaticity parameter«
=Din /Dh, which is the ratio of the input pulse spectrum width
and the width of the EIT hole for one atom. Then all terms of
the adiabatic expansion Eq.s11d, except the first onesa0

<0d, arenkak,«k/G. If «!1, expansionss11d ands17d con-
verge quickly. According to Eq.s28d, the pulse envelope
broadening reduces the energy of the pulse by a factor
Dout/Din<1/Î1+T«2. To have the adiabatic propagation of
the pulse,« must be smaller than unity. If the sample is thick
sT@1d and the process is adiabatics«,1d, but T«2@1, the
output energy of the pulse is reduced by a factor of
Dh/Din

ÎT, which is Def f/Din. This is because only the 2Def f
part of the spectral content of the input pulse, 2Din, comes
out of the sample. Below, we refer to the caseT«2@1, «
,1 as the case of adiabatic pulse propagation in a thick
resonant absorber. In this case the half-width of the output
pulse spectrum,Dout, tends to the constant valueDef f. This
value isÎT times smaller than the half-width of the EIT hole
in the absorption line of one atom.

The adiabatic solutions22d is a good approximation of the
integral in Eq.s9d if sad Vd

2@gG, G@g and sbd Vd
2/G@Din

sor «!1d. Condition sad specifies the presence of a deep,
narrow EIT hole in the absorption line. Conditionsbd de-
mands that the spectral width of the pulse be much smaller
than the width of the EIT holeDh snot Def fd. Figure 3sad
shows a comparison of the analytical approximation
EpAsz,td, Eq. s22d, with the numerical integration for
Ep0sz,td, Eq. s9d, whereAsnd is not approximated. The input
pulse Ep0s0,td is shown by the bold line. The adiabaticity
parameter is«=0.4 andT=30. In this caseDin /Dh=0.4 and
Din /Def f=2.2.

Figure 3sad shows a small deviation of the analytical ap-
proximation Eq.s22d from the integrals9d. The fit can be
improved if one takes into account the fourth term of the
expansions11d. Then asnd<a0− ia1n−a2n2+ ia3n3 and the
output pulse is presented as a convolution of Eq.s22d and the
Airy function Aisxd, i.e.,

EpA1sz,td

= Ep0
DoutDdist

Din
E

−`

+`

Ai sDdisttde−s1/4dDout
2 st − tdA − td2−TEITdt,

s30d

where Ddist=s3aa3zd−1/3 is the pulse distortion parameter.
Here a3 is assumed to be positive and henceDdist.0. This
expression originates from the integral representation of the
Airy function f28g

DdistAi s±Ddisttd =
1

2p
E

−`

+`

expF− iSnt ±
n3

3Ddist
3 DGdn,

s31d

and the convolution theorem
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1

2p
E

−`

+`

f1sndf2snde−intdn =E
−`

+`

F1st − tdF2stddt, s32d

where fksnd is the Fourier transform ofFkstd, k=1,2. If a3

,0, then Ddist=s3aua3uzd−1/3 and DdistAi sDdisttd is replaced
by DdistAi s−Ddisttd in Eq. s30d. Figure 3sbd shows the com-
parison of the approximate solutions30d with the numerical
integrations9d. The fit is excellent. The parameterDdist de-
scribes an3 correction to the real part of the atomic suscep-
tibility x8snd, approximated in the first step by the linear
function ,n. Below we show that this parameter defines a
border for the pulse breakup. Because of its importance, we
give the explicit expression for this parameter:

Ddist =Î3 sVd
2 + gGd4

3TGfVd
2sG + gd2 − sVd

2 − g2d2g
, s33d

which is approximated byDdist<Dh/Î33T if Vd
2@gG and G

@Vd@g.
The fourth term of the adiabatic expansion does not

change the pulse area since

DdistE
−`

+`

Ai sDdisttddt = 1. s34d

This is not surprising because the above mentioned argument
about the zero-frequency Fourier component of the pulse en-
velope is valid for the pulse area irrespective of the particular
form of the asnd function except the first termsa0d of its
expansion nearn=0.

The presence of the fourth term of the adiabatic expansion
does not change appreciably the shape of the pulse ifDout
!Ddist. This can be proven if with the help of the substitution
x=Ddistt Eq. s30d is presented as follows:

EpA1sz,td = Ep0
Dout

Din
E

−`

+`

Ai sxdexpH− S Dout

2Ddist
D2

fDdistst − tdAd

− xg2 − TEITJdx. s35d

Then one finds that the maximum of the Gaussian pulse at
t= tdA does not change its valuesDout/DindEp0exps−TEITd, due
to the convolution with the Airy function ifDout/2Ddist!1.
This is because the integral of the Airy function is unityfsee
Eq. s34dg and expf−sDout/2Ddistd2x2g,1 over the domain of
the variablex where Aisxd gives the main contribution to the
integral.

A numerical analysis of the integrals35d for an arbitrary
value ofDout/Ddist shows that the distortion of the Gaussian
pulse due to the fourth term of the adiabatic expansion is
small if DoutøDdist. The pulse acquires an oscillatory shape
if Dout=2Ddist. The conditionDoutøDdist is well satisfied for
all values of the effective thicknessT if G.Vd.g andDin
øDh ssee Fig. 4d. This is becauseDout→Def f and Def f, the
effective width of the EIT window, narrows with the thick-
ness increase as 1/T1/2. The distortionsthe breakupd border

FIG. 3. sad Comparison of the adiabatic solutionEpAsz,td for the
output probe pulse Eq.s22d, shown by dots, with the numerical
calculation ofEp0sz,td, Eq. s9d, shown by the thin solid line. The
solid bold line shows the probe pulse dependence without absorber.
All plots are normalized by the maximum amplitude of the input
pulseEp0. The time scale is in units of the input pulse parameterr.
The delay time of the output pulse istdA=6/r. The zero time is
chosen fort−z/c=0. The effective thickness of the sample isT
=az/G=30. Other parameters areDin /Dh=0.4, g /G=10−3, Vd/G
=0.5, andr /G=0.05. In this case the spectral width of the input
probe pulse is 2.5 times smaller than the width of the EIT hole.sbd
Comparison of the numerical calculation ofEp0sz,td, Eq. s9d sthin
solid lined with the analytical approximationEpA1sz,td, given by Eq.
s30d and shown by dots. The parameters are the same as for the plot
sad.

FIG. 4. The Dout/Ddist parameter dependence on the optical
thicknessT. The solid line corresponds to the case if the spectral
width of the input pulse coincides with the width of the transpar-
ency windowDh. The dotted line corresponds to the case if the
spectral width of the input pulse is eight times larger than the width
of the transparency window. The horizontal line corresponds to the
border value of the parameterDout/Ddist below which the pulse
distortion can be neglected and the adiabatic approximation Eq.
s22d is applicablessee the textd. The parameters of the absorber and
the drive areVd=G /2 andg /G=10−3.
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Ddist narrows as 1/T1/3, i.e., Def f narrows faster thanDdist.
Therefore, in this case we have no breakup of the pulse with
the increase of the thicknessT.

If Din@Def f, G@Vd@g, andT@1, we haveDout/Ddist<
Def f/Ddist=Î33/T1/6. Therefore, even for a broadband input
pulsesDin@Dhd one obtainsDout/Ddistø1 if Tù9 ssee Fig.
4d and hence the adiabatic part of the pulse is not distorted.

In Appendix A we give an analytical approximation of the
integral s9d if asnd<a0− ia1n−a2n2+ ia3n3, i.e., of the inte-
gral, which is a convolution of the Airy function with the
Gaussian pulse, Eq.s30d.

Summarizing, we conclude that a Gaussian pulse propa-
gating through the EIT window in a thick resonant absorber
is well described by the adiabatic solution Eq.s22d, which
takes into account only the first three terms of the expansion
of the spectral functionasnd nearn=0. The fourth term of
this expansion produces a small distortion of the pulse,
which can be neglected ifVd,G. These results are obtained
if the spectral width of the pulse is smaller than the width of
the EIT windowDh.

IV. A SHORT GAUSSIAN PULSE PROPAGATION
WITHIN A POWER-BROADENED EIT WINDOW

In this section we consider the case of short pulse propa-
gation if the adiabatic following condition of the dark states
is satisfied. Short pulse means that its duration is much
shorter than the decay time of the coherenceg-e, i.e., Din
@G. In this case the EIT window in the absorption spectrum
can be created by a strong drive. One would expect that if the
Autler-Townes splitting 2Vd of the absorption line for the
probe, which is created by the drive fieldf29g, is larger than
the spectral width of the input pulseDin, i.e., 2Vd@Din, the
absorption of the probe field is strongly reduced. These con-
ditions on the input pulse widthDin, decoherence rateG, and
EIT window 2Vd give 2Vd@Din@G. This case was consid-
ered in our papersf23g. Here, we show that the condition of
the adiabatic following of the dark states is violated starting
from a certain value of the effective thickness. This violation
results in a strong distortion of the pulse shape.

To simplify the analysis, we putG→ +0 andg→ +0 in
the definition of the coefficientsak of theasnd expansion in a
power series Eq.s11d. Then, a0<0, a1<Vd

−2, a2<0, and
a3<−Vd

−4. According to Eqs.s30d ands31d, the output pulse
is described by

EpA1sz,td = Ep0E
−`

+`

DdistAi s− Ddisttd

3expF−
1

4
Din

2 st − tdA − td2Gdt, s36d

wheretdA<az/Vd
2 andDdist<Î3 Vd

4/ s3azd. Here, the approxi-
mationa0<0 anda2<0, i.e., the absence of the absorption
and of the pulse broadeningsDin /Dout<1d, is taken into ac-
count. As in the previous section, with the help of the sub-
stitution x=−Ddistt we reduce Eq.s36d to

EpA1sz,td = Ep0E
−`

+`

Ai sxdexpH− S Din

2Ddist
D2

3fDdistst − tdAd + xg2Jdx. s37d

The pulse distortion is small ifDin /Ddistø1, or, explicitly, if
DinøÎ3 Vd

4/ s3azd. Since the width of the output pulse does
not change appreciably and the distortion border narrows as
Ddist,1/z1/3, the conditionDin /Ddistø1 starts to be violated
from a certain distancez. Figure 5 shows a comparison of the
probe pulse distortion for the caseDin /Ddist=0.9 fplot sadg
and for the caseDin /Ddist=2 fplot sbdg. For both plotsDin
=Vd/3. For the numerical calculation ofEp0sz,td, Eq.s9d, we
takeg=0 andG=Vd/300. G is taken nonzero, but small, to
avoid zero in the denominator ofAsnd.

Thus, for the short pulsesVd.Din@Gd the probe pulse is
not distorted appreciably if certain constraints on the effec-
tive thicknessT=az/G and pulse widthDin are imposed.
However, the pulse shape distortion gradually increases with
distance and the conditionDin.Ddist=Î3 Vd

4/ s3azd sets a bor-
der beyond which it cannot be neglected. As was shown in
Sec. III, to preserve the Gaussian shape of the output pulse,
the width of the output pulseDout must be smaller than or
limited by the valueDdist. For the case of a narrow transpar-
ency window, considered in Sec. III, the valueDout decreases
with distancez as ,1/Îz, and the distortion border shrinks
as ,1/Î3z, i.e., the pulse spectrum narrows faster with dis-
tance than the border of distortion narrows. Therefore, we
haveDout/Ddist,1/Î6z→0 for largez. That is why the pulse
satisfying the conditionDinøDh is not distorted for any dis-

FIG. 5. Comparison of the numerical calculation ofEp0sz,td, Eq.
s9d sthin solid lined with the analytical approximationEpA1sz,td,
given by Eq.s36d and shown by dots, for the short pulse propaga-
tion at the EIT condition. The solid bold line shows the input probe
pulse dependence atz=0. The atom, probe pulse, and drive field
parameters areDin=Vd/3, Vd=300G, andg=0. For the analytical
approximation Eq.s36d, we takeG=g=0. Plot sad corresponds to
the caseDin /Ddist=0.9 and plot sbd corresponds to the case
Din /Ddist=2.
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tance in case of a narrow EIT window. In case of the propa-
gation of a short pulse within a power-broadened EIT win-
dow, the contribution of the pulse spectrum narrowing is
almost negligible sinceG and hencea2 are small. However,
the contribution of the terma3 responsible for the pulse dis-
tortion is appreciable. Therefore, the pulse widthDin does not
change with distancesDin<Doutd but the pulse distortion bor-
der narrows asDdist=Î3 Vd

4/ s3azd. At the certain distance we
haveDin.Ddist, and the pulse starts to experience a strong
distortion. This point makes a qualitative difference between
the caseVd,G and the caseVd@G. In the case ofVd,G,
to have adiabatic pulse propagation, the spectral width of the
input pulse must be smaller than the width of the EIT win-
dow sDhd, whatever the effective thickness of the sample. In
the case ofVd@G, there is a distancez where the condition
of small distortion of the pulse shape,DinøDdist, is violated
and then, starting from this distance, the pulse experiences a
strong distortion of its shape.

V. BROADBAND PULSE PROPAGATION THROUGH A
NARROW EIT WINDOW

In this section, we consider the Gaussian pulse propaga-
tion in a strongly absorptive medium if the pulse spectrum is
much broader than the width of the narrow EIT window
Dh=Vd

2/G and Vd,G. We set the only constraint on the
pulse that its carrier frequency is exactly tuned to the center
of the EIT hole.

If the spectral width of the input pulse is broader than the
width of the EIT holesDin.Vd

2/Gd, the adiabatic expansion
Eqs.s11d ands17d is not valid for all spectral components of
the pulse. However, the part of the pulse spectrum that coin-
cides with the EIT window can be transmitted through the
absorber without appreciable absorption. This part may have
a time dependence similar to the adiabatic solution presented
in Sec. III. If this is the case, that partswhich is adiabaticd
spectrally narrows and delays in time.

The frequency content of the pulse that is outside the EIT
hole is strongly reduced due to absorption in an optically
thick medium. One can expect that this reduced part of the
pulse will have a group velocity close to the speed of light in
vacuumc. Such a filtering of the pulse through the EIT win-
dow can break up the broadband pulse into two components.
One component must satisfy the adiabatic following condi-
tion. This adiabatic component is expected to be delayed and
broadened in time. The other, nonadiabatic component origi-
nates from the part of the atomic response that does not
follow the dark state. The nonadiabatic component is
strongly reduced in amplitude, it could have almost no delay,
and its duration is short. Therefore, the adiabatic and nona-
diabatic components of the pulse must be well separated in
time and space.

First we calculate the area of the pulse at the output of the
absorber. This area is

uszd =
2deg

"
E

−`

+`

Ep0sz,tddt. s38d

Substitution of Eq.s9d into the integral s38d gives uszd
=uAszd=us0dexps−TEITd. This means that the output pulse

area for a broadband Gaussian pulse coincides with the area
of the input pulse reduced by a factor exps−TEITd. Its reduc-
tion is defined by the absorption at the bottom of the EIT
window sn=0d and the reduction is small ifTEIT!1 fsee Eq.
s23d for the TEIT definitiong.

The only way for the pulse to maintain its area almost
unchanged is to broaden in time with reduction of its ampli-
tude or to narrow in frequency content into a domain close to
n=0. To estimate the temporal width of the output pulse, we
hypothesize that its shape coincides with the adiabatic part of
the solutionEpAsz,td, Eq. s22d. The spectral half-width of
EpAsz,td is Dout<Vd

2/ sGÎTd if TsDin /Dhd2@1. This width is
Def f=Dh/ÎT and does not depend on the spectral width of the
input pulseEp0s0,td.

The analysis of the nonadiabatic componentEpNsz,td and
the approximate calculation of its shape is given in Appendix
B. We assume that for a thick samplesT@1d this part has
nonzero amplitude mostly due to the far wings of the pulse
spectrum, which are less absorbed due to the reduced absorp-
tion at the wings of the absorption line. The central part is
strongly absorbed except the narrow part coinciding with the
EIT hole. This narrow part is taken into account by the adia-
batic part of the solution and hence, it can be ignored in the
approximate calculation ofEpNsz,td.

Figure 6 shows the result of the numerical calculation of
the integrals9d ssolid lined, if the spectral width of the pulse
is two times larger than the width of the unperturbed absorp-
tion line sDin=2Gd and eight times larger than the width of
the EIT holesDin=8Dhd. The other parameters are the same
as in Figs. 3sad and 3sbd ssee figure captiond. We approximate
the output pulse, Eq.s9d, by the sum of the adiabatic and
nonadiabatic parts, i.e.,

Eansz,td = EpAsz,td + EpNsz,td, s39d

shown by dots in Fig. 6. The nonadiabatic partssee Appendix
Bd is

EpNsz,td = Ep0M cosfvwidest + tphdgexpF− Twide

−
Dwide

2 st − tdNd2

4
G , s40d

where

Twide=
G

Din
S2ÎT −

G

Din
D s41d

is the overall effective thickness of the sample for the broad,
out of resonance, components of the pulse spectrum. The
spectral half-width of the nonadiabatic part isDwide
=MDin /2, where

M =
1

Î1 − G/ÎTDin

. s42d

This approximation of the nonadiabatic part is valid ifÎT
.G /Din. Therefore,M .1 for finite T, and M→1 if T
→ +`. Correspondingly,Dwide.Din /2 if T is finite, and
Dwide→Din /2 if T→ +`. The Gaussian shape of the nona-
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diabatic component of the pulse is modulated with a fre-
quency

vwide= ÎDinGÎT − G2 s43d

and this modulation has a phase shift determined by
tph=ÎT/Din. The Gaussian envelope is centered attdN

=fÎT−s2G /Dindg /Din.
The plots in Figs. 6sad and 6sbd confirm what we ex-

pected. The pulse is broken in two parts, i.e., adiabatic and
nonadiabatic. The adiabatic part delays and broadens in time.
Its delay timetdA<T/Dh depends on the sample parameters
and does not depend on the pulse spectrum. The delay time
tdA of the adiabatic part of the pulse becomes much longer
than the characteristic time 1/r of the input pulseEp0s0,td,
i.e., rtdA<TDin /2Dh@1, since for the broadband pulse we
haveDin@Dh andT@1. For our numerical example, shown
in Fig. 6, tdA is 120 times longer than 1/r. The temporal
width of the adiabatic part is defined by the valuetwidth

=2/Dout=r−1Î1+sDin /Def fd2. For our numerical example,
this temporal width is increased 43.8 times with respect to
1/r. The spectral half-width of the adiabatic part of the pulse,

Dout<Def f=Dh/ÎT, is reduced,40 times with respect to the
half-width of the input pulseDin and becomes 5.5 times nar-
rower than the width of the transparency windowDh.

Figure 6sad shows a slight deviation of the adiabatic part
EpAsz,td from the result of the numerical calculation of the
integrals9d. This deviation can be reduced ifEpAsz,td in Eq.
s39d is replaced byEpA1sz,td, Eq. s30d. Such a modified ana-
lytical approximation, i.e.,

Ean1sz,td = EpA1sz,td + EpNsz,td, s44d

fits the numerical result perfectly; see Fig. 6scd. This means
that the adiabatic part of the pulse satisfies the adiabatic fol-
lowing condition for any width of the input pulse. It is also
remarkable that the first four terms of the expansion of the
spectral function Eq.s11d, asnd<a0− ia1n−a2n2+ ia3n3, fully
describe the propagation properties of the adiabatic part of
the pulse.

The nonadiabatic part has a very short delaytdN compared
with the delay time of the adiabatic parttdN! tdA, since
tdA/ tdN<Din /Def f@1. The delay timetdN is defined by the
center of the Gaussian envelope of the cosine modulated
pulse amplitudefsee Eq.s40dg. For a thick absorber,T@1,
the temporal half-width of this Gaussian is only two times
larger than the time half-width of the input pulse, since
Dwide<Din /2=r. The area of the nonadiabatic partuNszd
=2sdeg/"d e−`

+` EpNsz,tddt must be close to zero. This conjec-
ture is supported by two arguments. First, if Eq.s44d is valid,
then uszd=uAszd+uNszd. Second, as shown abovefsee Eq.
s38d and discussion immediately after itg, we have the iden-
tity uszd;uAszd. The approximate expression forEpN, Eq.
s40d, gives a slightly overestimated value of the area of the
nonadiabatic partuNszd,us0dexps−6ÎTG /Dind. We assume
that this value is nonzero because the nonadiabatic part sits
on the far wing of the adiabatic solution and in this sense
overlaps with it. The overlapping gives an exponentially
small contribution to the areauNszd.

The time integrated intensity of the pulse is defined as

Uszd =E
−`

+`

Ip0sz,tddt, s45d

where Ip0sz,td= uEp0sz,tdu2. For a Gaussian pulse, it can be
reduced to

Uszd =
Ip0

2r2E
−`

+`

expH−
n2

2r2 − 2zRefAsndgJdn, s46d

whereIp0= uEp0u2. We can again apply the approximation

Uanszd = UAszd + UNaszd, s47d

whereUAszd and UNaszd are the adiabatic and nonadiabatic
parts, respectively. The former is described by Eq.s28d and
the latter is

UNaszd = Us0dM exps− 2Twided, s48d

if ÎT.G /Din ssee Appendix B for the derivation of this ex-
pressiond. For largeT the effective thickness for the nonadia-
batic part isTwide,ÎT and M <1; see Eqs.s41d and s42d.
Figure 7 shows the comparison of the numerical integration

FIG. 6. sad Comparison of the numerically calculated integral in
Eq. s9d, Ep0sz,td ssolid lined with the analytical approximation
Eansz,td, Eq.s39d sdotsd. r =G and the other parameters are the same
as for Fig. 3.sbd Magnified part of the plotsad showing the evolu-
tion of the nonadiabatic part of the pulse in detail. All amplitudes
are presented in units ofEp0. scd Comparison of the numerically
calculated integral in Eq.s9d, Ep0sz,td, ssolid lined with the analyti-
cal approximationEan1sz,td, Eq. s44d sdotsd. The parameters are the
same as forsad. The “blowup” of the nonadiabatic part is not shown
since it is the same as insbd.
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of Eq. s46d, Uszd, with the analytical approximationUanszd,
Eq. s47d. In a large range of the values for the effective
thickness both functions are almost coincident. Ifg→0, the
adiabatic part ofUszd decreases as,1/ÎT.

Summarizing, we conclude that the EIT window in an
optically thick resonant absorber allows transmission of a
broadband pulse, which maintains its area. The pulse is time
broadened and delayed. In spite of the large spectral width of
the pulse with respect to the width of the EIT window, the
propagation reveals adiabatic features typical for a pulse hav-
ing a narrow spectrum considered in the previous section.
Thus, the EIT window cuts out an “adiabatic” pulse from any
input pulse and can be used as a perfect filter producing a
well-defined output, almost independent of the parameters of
the input pulse. The spectral half-width of the output pulse
coincides with the effective half-width of the EIT window in
an optically thick resonant absorber,Def f=Vd

2/GÎT. The out-
put pulse amplitude is reduced by a factorDef f/Din with re-
spect to the amplitude of the input pulse. The adiabatic and
nonadiabatic parts of the pulse are well separated in time if
Def ftdA/2.1. This condition is well satisfied for an optically
thick samplesT@1d because it is reduced toÎT/2.1 or T
.4. The same condition is provided by the analysis of the
minimum distortion of the adiabatic part due to the presence
of the fourth term of the adiabatic expansion Eq.s17d. The
plot in Fig. 4, shown by dots, demonstrates that the param-
eter Dout/Ddist satisfies the condition of negligible distortion
of the Gaussian shape of the pulse,Dout/Ddist,1, if T.7.
The latter inequality also indicates the fact that the adiabatic
and nonadiabatic parts are separated or overlap very little
since it satisfies the condition mentioned abovesT.4d. This
means that, if the conditionDout/Ddist,1 is satisfied, the
adiabatic part of the pulse is well separated from the nona-
diabatic part, i.e., they do not overlap.

VI. PROBE PULSE TUNING

In this section, we consider the propagation of a Gaussian
probe pulse if its carrier frequency is tuned from resonance
sd=vp−vegÞ0d. It is known that aL-type excitation is very
sensitive to the condition of the dark resonance:vp−vd
=vmg, wherevp and vd are the probe and drive field fre-

quencies andvmg is the resonant frequency of the idle tran-
sition between the ground and metastable statesf2,3g. If the
drive is in resonance with the transitionm-e svd=vemd and
the probe is detuned from resonancesdÞ0d, the two-photon
resonance condition is violated. Below we show that a slight
detuning of the probe from resonance does not change essen-
tially its propagation properties, but produces a phase shift.

The condition of the adiabatic propagation demands that
the half-width of the input pulse,Din, must not exceed the
half-width of the EIT hole for one atom,Dh=Vd/G. As was
shown in Sec. II, the output probe field envelope is described
by Eq. s9d. If dÞ0, we can make the substitutionx=d+n in
the integrals9d and use the expansion ofAsnd nearx=0 sn
=−dd for the adiabatic pulsesDinøDhd. Retaining only three
terms of the expansion, we getAdsxd<asa0− ia1x−a2x

2d for
Asnd, where the subscriptd is introduced to distinguish this
case from the one whered=0. Then the adiabatic solution for
the output probe is

EpAdsz,td =
Ep0

2rÎp
E

−`

+`

expf− Bsx,z,tdgdx, s49d

where

Bsx,z,td =
sx − dd2

Din
2 + isx − ddt + Adsxdz, s50d

t stands fort−z/c, and the subscriptd is again used to dis-
tinguish the nonresonant case. The integral in Eq.s49d can be
easily calculated if one combines the terms in Eq.s50d as
follows:

Bsx,z,td = ixst − tdAd +
fx − sDout

2 /Din
2 ddg2

Dout
2 − idt +

d2

Deff
2 + Din

2

+ TEIT, s51d

wheretdA, TEIT, Dout, andDef f are defined in Sec. III for the
resonant probe pulsefsee Eq.s22d and the discussion imme-
diately after itg. Then the second substitutiony=x
−dsDout/Dind2 makes the integrals49d similar to the one that
was calculated in Sec. III. Combining the results we obtain

EpAdsz,td = EpAsz,tdexpHidt − i
Dout

2

Din
2 dst − tdAd −

d2

Def f
2 + Din

2 J ,

s52d

whereEpAsz,td is defined in Eq.s22d. The intensity of the
output probe field,IpAdsz,td= uEpAdsz,tdu2, is almost identical
to the valueIpAsz,td corresponding to zero detuning,d=0.
The only difference is the exponential factor, i.e.,

IpAdsz,td = IpAsz,tdexpS−
2d2

Def f
2 + Din

2 D . s53d

For a thick sample sT@1d and an adiabatic pulse
sDin=Dhd, we have Din@Def f, and hence IpAdsz,td
< IpAsz,tdexps−2d2/Din

2 d. The factor exps−2d2/Din
2 d describes

the ratio of the intensity of the spectral component of the
input pulse with frequencyv=vp−d, coinciding with the
center of the EIT hole,veg, to the intensity of the spectral

FIG. 7. Comparison of the numerically calculated time inte-
grated intensityUszd, Eq. s46d, with the analytical approximation
Uanszd, Eq. s47d. Both plots are normalized toUs0d. The parameters
are g /G=10−3, Vd/G=0.5, andDin=2G. T=az/G is the effective
thickness of the absorber.
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component with central or carrier frequency of the pulsev
=vp. This result is obvious since the spectral half-width of
the incoming radiation is much broader than the narrow ef-
fective half-width of the EIT hole for a thick sample,Def f

=Dh/ÎT. Therefore, only those spectral components of the
pulse that coincide with the effective EIT hole go through the
sample without appreciable absorption, while those that are
out of the effective EIT window are strongly absorbed. Thus,
the narrow EIT hole can be used as a frequency filter for
frequency stabilization and spectrum narrowing of the pulsed
field whose spectrum contains components coinciding with
the effective EIT hole. The phase shiftidt in the exponent of
Eq. s52d confirms this argument because the carrier fre-
quency of the probe,vp, becomesvp−d=veg at the output
due to this phase shift.

The frequency filtering can be done for a pulse with spec-
tral width comparable with or even broader than the width of
the broad absorption line 2G. Then those components of the
pulse that are out of the EIT window are absorbed if they
coincide with the absorption part of the line. The components
that are out of the absorption line or in the EIT region are
transmitted. These last two components are separated in time
because of the large difference in their group velocities. The
narrow spectrum part from the EIT hole is delayed and the
out of resonance broadband part has almost no delay and it is
short.

For simplicity we consider the case ifDin.G, but d!G.
Then the nonadiabatic part of the output pulse,EpNdsz,td, can
be approximated as

EpNdsz,td = EpNsz,tdexpsidtd, s54d

whereEpNsz,td is defined in Eq.s40d. The analytical approxi-
mation of the integrals9d in case ofdÞ0 is

Epdsz,td = EpAdsz,td + EpNdsz,td. s55d

Two parts of this analytical solution are well separated in
time if ÎT/2@1 ssee Sec. Vd.

Below we show that besides filtering the EIT hole allows
us to realize a precise tuning of the carrier frequency of the
pulse. One might expect that only a source of coherent ra-
diation with very narrow spectrum can be used to define the
position and the width of an EIT hole for a thick sample.
This is obvious since even the adiabatic pulse withDin=Dh
@Def f cannot be used directly for high-resolution spectro-
scopic studies. According to Eq.s53d, the scanning of the
carrier frequency of the pulse across the EIT hole does not
change appreciably the output intensity ifd,Def f!Din.
However, because of the frequency-dependent phase shift of
the pulsefsee Eq.s52dg one can actually define the precise
position of the EIT hole even with broadband pulsed radia-
tion whose widthDin is much broader than the width of the
EIT hole for one atom,Dh. Below we show that this position
can be defined with an accuracy that exceeds far the effective
width Def f if a phase sensitive detection scheme is applied.

In a phase sensitive detection scheme, two fields are
mixed and the intensity of the result is measured, i.e.,

Sstd = uERsz,td + Epdsz,tdu2, s56d

where we assume that the output probe pulse is mixed with
the cw reference fieldERsz,td=ER exps−ivRt+ ikRzd whose
frequencyvR is detuned from the frequency of the probevp
on the value ofDR, which is kept constant whatever isvp.
BecauseuERu@ uEpds0,0du and henceuERu@ uEpdsz,tdu, the de-
tected signal is well approximated by

Sstd = uERu2 + fEREpd
* sz,tde−iDRt+iskR−kpdz + c.c.g, s57d

where the vectorsER andEpd are substituted by their ampli-
tudesER andEpd. The interference term oscillates with fre-
quencyDR. Amplifying the oscillating part of the signalshet-
erodyne techniqued, one can measure the time dependence of
the probe field amplitude and its phase; see, for example,
Ref. f30g. If the phase of the reference field is properly cho-
sen, one can measure only the in-phase component of the
output pulse, RefEpdsz,tdg. This component is zero at the
output pulse centert= tdA if dtdA=p /2 fsee Eq.s52dg. This
zero is a first beat note, which takes place ifd=d1, where
d1=pDef f/2ÎT. ForT@1, we haved1!Def f. In conventional
spectroscopy the half-width of the transparency window for
an optically thick sample,Def f, defines the precision of the
probe frequency tuning to the center of the EIT hole if the
spectral half-width of the probe,Din, is much smaller than
Def f or if cw monochromatic radiation with spectral width
much smaller thanDef f is applied. Observation of the pulse
envelope modulation containing only one periodstuning to
d1d can provide an accuracy of the frequency tuning that is
2ÎT/p times higher than convention spectroscopy gives. The
tuning we propose could be done for a broadband pulse. This
method of frequency tuning can open new perspectives for
high-resolution spectroscopy with a laser source of poor
quality.

Figures 8sad and 8sbd show beat notes of the realsad and

FIG. 8. Beat notes of the realsad and imaginarysbd components
of the probe pulse output fordtdA=p /2. The thin solid line shows
the numerical calculation of the integrals9d and the dots show the
analytical approximations55d. The parameters areg /G=10−3,
Vd/G=0.5, r =G, andT=30.
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imaginarysbd sin-phase and out-of-phased components of the
output probe pulse fordtdA=p /2. The solid line shows the
result of the numerical calculation of the integrals9d and the
analytical approximation, given by Eq.s55d, is presented by
dots.

If the probe frequency detuningd is much larger than the
width of the EIT window in a thick resonant absorber,Def f,
the output pulse contains many beat notes. Figure 9 shows
the realsad and imaginarysbd components of the output field
amplitude if the bandwidth of the input field is largesr =Gd
and the detuningd=10p / tdA is comparable with the half-
width of the EIT hole for an individual atomsDhd and six
times larger than the half-width of the EIT hole for an opti-
cally thick sample,Def f. Thus, changing the probe frequency
detuningd to reduce the number of beat notes as much as
possible, one can make a fine tuning of the central frequency
of the broadband field, or in other words, one can perform
high-resolution spectroscopy with a probe radiation of poor
quality. If the frequency of the probe is tuned such that no
beat notes are present, one can get an even higher precision
of the frequency tuning thand1=pVd

2/2GT.
The phase sensitive detection of the probe frequency tun-

ing gives the same precision for frequency resolution as the
line narrowing and interference effects for the cw probe and
drive fields considered in Ref.f22g. There it was found that
heterodyne measurements of the absorption of a cw mono-
chromatic probe reveal beat notes with a characteristic width
Dhet=pVd

2/GT. These beat notes appear in the heterodyne
measurements due to the contribution of the dispersive com-
ponent of the atomic responsex8 to the usual absorptive
componentx9. The dispersive component contributes due to
interference induced by a new fieldEnew arising from reso-
nantly enhanced coherent Raman scattering. In Ref.f22g the
drive couples the excited state to the ground and metastable
states. Therefore, first, the probe and drive fields excite the
coherenceg-m via the two-quantum transitiong-e-m. Then

the drive via theg-e transition and the coherencerem, excited
in the first step, produce the new fieldEnew with a frequency
vnew=2vd−vp. The amplitude of this field and its coupling
strengthVnew are proportional toVd

2/vmg. They have nearly
the same order as the amplitude of the probe andVp. This is
because in the experimentf22g Vp/Vd,10−2 and Vd/vmg
,0.2310−2 and henceVp/Vnew=sVp/Vdd / sVd/vmgd,5.
Moreover, in the heterodyne detection schemef22g, the
probe, drive, and new fields are mixed, producing an inter-
ference term oscillating with the microwave frequencyvmg
=6.83 GHz.

In our scheme we consider the case whenvmg belongs to
the optical band, which makes the amplitude of the field
Enew,Vd

2/vmg extremely small. Therefore, the resonantly
enhanced coherent Raman scattering can be disregarded.
Having this difference between the two schemes, we, how-
ever, assume that some elements of the physics behind them
are similar since they result in the same enhancement of the
spectral resolution of the EIT window. What makes a differ-
ence is the possibility to perform high-resolution spectros-
copy with a coherent source of poor spectral quality, which is
phase locked with a cw reference field of the same quality.
The coherence necessary to resolve the small frequency
change of the order of kilohertz is introduced by the rf modu-
lation.

VII. CONCLUSION

In this paper, we have considered the propagation of a
small-amplitude pulse in an optically dense resonant medium
if a narrow transparency window has been created at the
center of the absorption line by a coupling fieldVd. Two
distinctive cases are analyzed.

The first case is realized if the spectral width of the pulse
is smaller than the width of the transparency window of the
individual atom,Dh=Vd

2/G. It is shown that in this case the
pulse delays because of reduced group velocity. The delay
time is tdA=T/Dh, whereT=az/G is the effective thickness
of the samplesz is a propagation distanced, G is the decay
rate of the atomic polarization induced by the resonant pulse,
and a is the resonant absorption coefficient of the sample.
The pulse spectrum narrows inversely proportional to the
square root of the propagation distancez, and tends to the
value Def f=Dh/ÎT. The process of narrowing of the pulse
spectrum maintains the pulse area. If the pulse has a Gauss-
ian shape, then its shape is also maintained.

The second, opposite, case is realized if the Gaussian
pulse spectrum is much wider than the transparency window.
It is shown that the pulse is broken in two parts. One is
adiabatic and the other is not. The adiabatic part behaves
similarly to the narrow bandwidth pulse. It is appreciably
delayed, it has a Gaussian shape and its temporal width in-
creases with distance. The spectral width of this part is de-
termined by the width of the transparency window of the
thick resonant absorber,Def f. The pulse area of the adiabatic
part coincides with the pulse area of the input pulse. The
nonadiabatic part has a group velocity close to the phase
velocity of light c and has almost no delay. It has an oscil-
latory time dependence with a Gaussian envelope. The adia-

FIG. 9. Beat notes of the realsad and imaginarysbd components
of the probe pulse output fordtdA=10p. The thin solid line shows
the numerical calculation of the integrals9d and the dots show the
analytical approximations55d. The other parameters are the same as
for Fig. 8.
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batic and nonadiabatic pulses are well separated in time and
space iftdADef f<ÎT@1.

We considered the case ifDin*Dh@Def f and the carrier
frequency of the pulse is detuned from the center of the EIT
hole. The pulse changes slightly if the frequency of the de-
tuning is smaller than the spectral width of the pulse,Din,
hence, such a pulse cannot be used for high resolution spec-
troscopy. If a phase sensitive detection scheme is applied,
one can find beat notes in the in-phase or out-phase compo-
nents of the pulse. Minimizing the number of these beat
notes, one can make a fine tuning of the pulse frequency. It
enables the experimentalist to increase the resolution of the
central frequency of the EIT window well below its half-
width Def f. The frequency resolution increasesÎT times.

Summarizing, we conclude that in this paper we develop
an accurate analytical theory of propagation of a pulse with
arbitrary spectral width in a dense absorptive medium with a
narrow EIT window. We show that the EIT window selects
that part of the pulse spectrum that coincides with the EIT
window and transforms it into a slowly propagating pulse.
Therefore, in contrast to cw broadband excitation, the broad-
band pulse is broken up into two parts, separated in time at
the output of the EIT medium, i.e., a broadband fast part and
a slow part having a narrow spectrum. Therefore, such a
medium works as a time-frequency filter.
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APPENDIX A

In this section, we derive the analytical approximation of
the adiabatic part of the integral Eq.s9d, EpA1sz,td, if Asnd
<asa0− ia1n−a2n2+ ia3n3d. Such an approximation of the
spectral functionAsnd describes well the transmission of the
adiabatic part of the pulse whatever the spectral width of the
input pulse Es0,nd=sEp0

Îp / rdexpf−sn /2rd2g. Substituting
the pulse spectrum and the approximate transmission func-
tion Asnd into Eq. s9d, we obtain the integral

EpA1sz,td =
Ep0e

−A0z

2rÎp
E

−`

+`

e−Gsz,nddn, sA1d

where

Gsz,nd = int +
n2

Dout
2 + i

n3

3Ddist
3 , sA2d

andt= t− tdA. This integral can be calculated by the saddle-
point methodssee, for example, Ref.f31gd. The saddle points

n1,2= i
Ddist

3

Dout
2 S1 ±Î1 +

Dout
4

Ddist
3 tD sA3d

are defined from the conditionGn8sz,nd=0. According to the
method, the main contribution to the integral is given by the
vicinity of the saddle points.

If Doutt.−sDdist/Doutd3, we have to take the negative
branch of the square root in Eq.sA3d as the saddle point for
the integralsA1d since the positive branch gives an exponen-
tially increasing contribution to the integral. In this case, the
integral sA1d is approximated by

EpA2sz,td =
DoutEp0

Din
ÎQ

expF− TEIT −
Ddist

6

3Dout
6 s2Q3 − 3Q2 + 1dG ,

sA4d

whereQ=Î1+sDout
4 t /Ddist

3 d.
If Doutt,−sDdist/Doutd3, we have to take both roots of the

equationGn8sz,nd=0 into account since the result must be a
real value. The calculation of the contribution of the inte-
grand near these two saddle points gives the following ap-
proximation for the integralsA1d:

EpA2sz,td = 2
DoutEp0

Din
ÎQ

sinS2Ddist
6

3Dout
6 Q3 +

p

4
D

3e−TEIT−sDdist
6 /Dout

6 dsQ2+1/3d, sA5d

whereQ=Î−1−sDout
4 t /Ddist

3 d.
These two functions Eqs.sA4d and sA5d describe quite

well the small distortion of the output Gaussian pulse, Eq.
s30d, except at the vicinity of the pointt= tdA−Ddist

3 /Dout
4

where Doutt=−sDdist/Doutd3. At this point and near it, the
steepest descent method of the integral calculation is not
applicable since the quadratic term of the expansion of the
function Gsz,nd near the saddle point becomes smaller than
the next term of the expansion.

Actually it is possible to calculate the integralsA1d if
Doutt=−sDdist/Doutd3 just to show that there is not any singu-
larity of the functionEpA1sz,td at this point of the time axis.
Taking into account the cubic term of the expansion near the
saddle point ift=−Ddist

3 /Dout
4 , we obtain an exact result for

the integral

EpA2sz,tsd =
Ep02ÎpDdist

32/3GS2

3
DDin

expS− TEIT −
Ddist

6

3Dout
6 D , sA6d

where ts= tdA−Ddist
3 /Dout

4 and Gs2/3d<1.354 is the Gamma
function. Figure 10 shows a comparison of a numerical cal-
culation of the integralsA1d with the analytical approxima-
tion given in Eqs.sA4d and sA5d.

If Ddist is negative, we can define it as a positive value:
Ddist=s3aua3uzd−1/3, which is the case considered in Sec. IV
but we have to change sign oft in Eqs.sA1d–sA6d and in the
definition of Q. Then the time dependence ofEpA2sz,td is
reversed with respect to the case ofa3.0.

APPENDIX B

In this section, we calculate the nonadiabatic components
of the integrals in Eqs.s9d ands46d, which are the functions
EpNsz,td andUNaszd defined in Eqs.s39d and s47d.

For a thick samplesT@1d, part of the broadband spec-
trum of the pulse, which coincides with the central part of
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the absorption line, is strongly absorbed. The boundaries of
this part are defined bysveg−G ,veg+Gd. The wings of the
pulse spectrum are less absorbed and their contribution to the
integrals9d can be appreciable even for a thick sample. If an
EIT hole is present, it changes only the central part of the
absorption linesveg−G ,veg+Gd while the wings are almost
not affected. Therefore, only a narrow EIT hole of widthDh
introduces a difference in the integrals9d with respect to the
caseVd=0. This difference can be taken into account by
calculation of the pulse spectrum in the domain 2Dh, which
is the adiabatic solutionEpAsz,td ssee Sec. IIId. Therefore, for
a thick samplesT@1d the nonadiabatic partEpNsz,td can be
calculated simply by ignoring the presence of the EIT hole,
i.e., by takingVd=0.

First, we consider the time integrated intensityUszd and
replaceAsnd in the integrals46d by

Asnd =
a

G − isn + dd
, sB1d

where Vd
2/ fg− isn+ddg is disregarded in the denominator.

Then the nonadiabatic part of this integral is expressed as

UNszd =
Ip0

2r2E
−`

+`

expf− 2fsndgdn, sB2d

where

fsnd =
n2

4r2 +
TG2

n2 + G2 . sB3d

In this case the saddle pointsns= ±GÎh−1 are defined from
the conditionf8snd=0, whereh=2rÎT/G. These points are
located on the real axis ifh.1. For a thick resonant ab-
sorbersT.1d and broadband input pulsesr ,Gd, the saddle
points are on the wings of the absorption linesclose to or
beyond the line half-width ifhù2d. The contribution from
these points is expressed via the integral

UNaszd =
Ip0

r
E

−`

+`

expf− 2x2s1 − h−1d − 2j2s2h − 1dgdx,

sB4d

wherej=G /2r andx=n / r. The value of the integral is

UNaszd = Us0d
expf− G2s2h − 1d/2r2g

Î1 − h−1
, sB5d

which corresponds to Eq.s48d. For the analysis of the result,
we introduce in Eq.s48d the parameterM =Îh / sh−1d. Fig-
ure 11 shows the comparison of the numerically calculated
integral sB2d with the analytical approximations48d. The
plots are indistinguishable over a wide range of values of the
effective lengthT.

A similar procedure is applied for the calculation of the
nonadiabatic part of the integrals9d, which is reduced fol-
lowing the above arguments to

EpNsz,td =
Ep0

rÎp
E

0

+`

expf− fsndgcoswsnddn, sB6d

where

wsnd = nt +
TGn

n2 + G2 , sB7d

and t stands fort−z/c. To calculate this integral by the
saddle-point method, one has to find the saddle points from
the conditionf8snd+ iw8snd=0. However, we use the previ-
ous condition,f8snd=0, to find these points. Such an ap-
proach simplifies the calculation and gives a nice approxi-
mate expression for the integral although with less accuracy.
This is becausefsnd has extrema atns, which are real, and
wsnd is almost linearly dependent onn in the vicinity of the
saddle pointsns. The contribution to the integralsB6d near
the saddle points is expressed as

FIG. 10. Comparison of the result of a numerical calculation of
the integral in Eq.sA1d sdotted lined with its analytical approxima-
tion given by Eqs.sA4d and sA5d ssolid lined. The parameters are
Vd/G=0.5, r /G=0.05,g /G=10−3, andT=30. The small bump on
the left wing of the curve is artificial and it results from the saddle-
point approximation. The true value of the function for the argu-
ment t= ts, where the position of the bump is, is defined by Eq.
sA6d.

FIG. 11. Comparison of the numerically calculated integral
sB2d, solid line, with the analytical approximations48d, shown by
dots. Both plots are normalized toUs0d. The parameters of the
pulse and the sample are the same as for Fig. 6.T=az/G is the
optical thickness of the absorber.
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EpNsz,td =
Ep0

rÎp
E

−`

+`

e−Bsxd cosFsx,tddx, sB8d

where we retain only thex2 term in the expansion offsnd
near the saddle pointns sn=ns+xd and only the linear terms
x in the expansion ofwsnd. The functionsBsxd andFsx,td are
Bsxd=Twide+x2s1−h−1d / r2, Fsx,td=st− tdNdx+vwidest+ tphd,
where vwide=GÎh−1, Twide=s2h−1dsG /2rd2, tdN=s1

−2h−1dÎT/2r, andtph=ÎT/2r. The calculation of the integral
sB8d gives

EpNsz,td =
Ep0 cosfvwidest + tphdg

Î1 − h−1
expF− Twide−

r2st − tdNd2

4s1 − h−1d G ,

sB9d

which is Eq.s40d, but defined withh, rather than withM.
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