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Pulse transformation and time-frequency filtering with electromagnetically induced transparency
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A simple analytical solution for the propagation of a weak Gaussian pulse in a dense absorptive medium
with electromagnetically induced transparency is found. This solution is applied to the analysis of three
regimesi(1) and(2) the pulse spectrum is narrower than the transparency wifidiweh is narrow(1) or wide
(2) with respect to the width of the absorption lirend(3) the pulse spectrum is broader than the transparency
window. It is shown that the pulse maintains its area in all three regimes and maintains its Gaussian shape but
narrows in spectrum in regime 1. In regime 2, the pulse begins to distort after a certain distance. In regime 3,
the pulse is split into two parts. One part is an adiabatic part with a spectrum defined by the effective width of
the transparency window for a thick medium and the other is an oscillating nonadiabatic part of short duration.
The adiabatic part propagates slowly and the nonadiabatic part propagates with a velocity close to the speed of
light. Thus in regime 3, the medium acts as a time-frequency filter, separating the narrow and wide spectrum
components of the pulse in time at the output of the absorber.
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I. INTRODUCTION induced by the probe, an@ is the coupling parameter of

Electromagnetically induced transparentgIT) [1-4], the drive, then a narrow hple appears in the absorption line
slow group velocity or stopping of lights—10], and large for the probe. The absorpt|0n20f t_he probe at the hole center
refractive index without absorptiofil—14 are the subjects IS reduced by a factor ofI'/Qg with respect to the unper-
of intense research in quantum optics, both theoretical antro€d line, The width of this hole for a single atom is esti-
experimental. EIT has been successfully demonstrated undgtated asly/I'if {1q<I'. For an optically thick absorber, the
different experimental conditions: in continuous wave andn0l€ narrows alg/I'vT, whereT is the effective thickness
pulsed regimeg3], with atomic and molecular gasgks,16, ~ ©f the samplesee, for example22]). »
with solids doped by rare-earth iofis7], and with semicon- In this paper we develop an analytical theory describing
ductor quantum well§18,19 for different wavelengths rang- the propagation of a weak Gaussian pulse in a thick resonant
ing from optics to microwaves. Recenfl0,21], a variation absorber with EIT window. Our aim is to consider the case
of EIT, called level mixing induced transparency, has beefvhen the approximation of adiabatic following of the dark
found using gamma radiation. state[2,3,23 is not applicable or violated to some extent,

In a very basic scheme of EIT, the transparency for thavhich is the case for a short puls_e whose spectrum is rT_]uch
probe field is created by the drive field if both fields are inProader than the transparency window. We propose a time-
resonance with different, but adjacent, transitions of a threefrequency filter that is complementary to der frequency
level atom. The probe field is in resonance with the transitioffiomain field filtering by EIT. Such a filter does not change
from the ground statég) to the excited statée) and the the shape of the input pulse and the puls_e area; however, it
drive field couples the excited state) with an unpopulated Makes the pulse longer. The pulse area is an important pa-
metastable statém); see Fig. 1. A key point for EIT is the rameter for the description of the resonant pulse interaction

slow decay ratey of the coherencg-minduced by the probe with atoms|see the definition O.f the pqlse_ area in E27)
and drive fields via a two-quantum process.#I” and below]. For example, the atomic polarization induced by a

Y'<Q2 whereT is the decay rate of the coherengee, shor_t resonant_puls_e in a two-le\_/el medium \.N'th Iong Irre-
versible relaxation time is proportional to the sine function of

the pulse area; see, for example, R@#]. The polarization

(€)) ) . . - .
e e &_m induced in an ensemble of two-level atoms with an inhomo-
Q, geneously broadened line keeps the memory about the phase,
Q m duration, and shape of the pulse, which can be retrieved in
P QP
& g

the photon echo pulse if a second reading pulse is applied
[24]. Since the pulse area specifies the value of the induced
polarization, this pulse parameter defines the effectiveness of
FIG. 1. Three-level atom excited by the profig and drive()y the imprinting of the information into the atomic coherence
fields. The amplitude of the probe is time dependent and the amplinduced by the pulse. EIT filtering of the pulse conserves its
tude of the drive is notg, e, andm are ground, excited, and meta- area, i.e., the ab|||ty of the pulse to induce a certain amount
stable stateqa) e andm states have different energiéb) eandm  of atomic coherence. Therefore, the EIT window can be used
are degenerate states and the drive is a dc field. as a perfect filter to create a source field for an optical
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memory based on the photon echo phenomenon. This filterd.,Eqo/#1, whered.g andd,y, are the dipole matrix elements
makes the pulse spectrum narrow but preserves the pulder the transitionse-g and e-m, respectively. The valu&l
area. =pgg—Pee IS assumed to be equal to unity throughout the
The paper is organized as follows. In Sec. Il we presengxcitation process since we neglect any saturation effect
the general formalism employed in the description of the(weak probe condition
propagation of a small-amplitude, probe pulse in a medium The wave equation for the slowly varying amplitude of
containing three-level atoms driven by a cw coupling field.the probeE,(z,t) is
In Secs. Il and IV we consider the adiabatic solution of the
Maxwell-Bloch equations for the probe pulse propagation (ﬁ;rlﬂ)E oz t):ia_ﬁa (z,1) (3)
with a spectral width smaller than the width of the EIT win- gz cat) 7T ey 0T
dow. In Sec. V, this solution is applied as part of the general . L .
solution to describe the pulse with spectral width larger than\;vtgfrzi tlhoece[;gzt_?r?ng s'?znf mﬁhreiggpdsiﬁagncm of the
the width of the EIT window. In this section the nonadiabatic 5 : P ! ooa
) : =2mNg|ded?w,/iC is the resonant absorption coefficient of
corrections are also found. In Sec. VI the interference phe; L )
. . . . the sample with concentratioN, of the three-level atoms.
nomenon is considered if the probe frequency is detuned, : N X . ,

: . . his coefficient is defined such that 2" is the Beer’s con-
from the line center. The analytical expressions for the pulsestant for a monochromatic field resonant with ta transi-
distortion and nonadiabatic corrections are derived in Appen: . . 9 .

: tion. The probe pulse is considered as a plane wave with the
dixes A and B. .
wave vectork, parallel to thez axis.

By means of the Fourier transform

II. PROPAGATION OF A SMALL-AMPLITUDE PULSE +00 _
AT THE EIT CONDITION F(v) = f f(t)e"dt, (4)

We consider the interaction of two fields, the prabg
=Epo(z,)exp-iwpt+ik,2) and the driveEy=Eq exp(—iwgt
+ikgz), with a three-level atom shown in Figsial and 1b).
Schemda) assumes 'ghe Iaser.pump as a drive field, while in Ted2,v) = ia(1)deEpo(z, )/ (5)
scheme(b) the drive is a dc field that couples two closely
spacedor essentially degeneratievelse andm and hence HereEy(z,v) is the Fourier transform oE(z,t) and
wyg=0 andky=0. In both schemes, the atom is initially in the .
ground stateg. The coherence between the ground state a(v) = . 7_'(1# 9) 5.
and the excited state decays with a fast decay rafe The [M=i(v+9lly-i(v+ 9]+ Q4
coherence between the ground stgtend the metastable
statem decays with a much smaller decay rat¢y<I"). In
both schemes, the coupling parametgy for the drive is
constant. In caséa), this corresponds to the cw pump of the J i
initially empty statess andm. (a_z vt A(V))Epo(z’ v)=0, (7)

We assume that the amplitude of the probe pugas
small, that is, its cougling paramet€y, satisfies the condi- whereA(v)=aa(v). This equation is integrated as
tionsQ,<T", Q4 andQ<I'T,, wherel', is the decay rate of B .
the excited state. In this case, one can take a linear re- Epo(2.v) = Epo(0,v)exd (ivzc) - Av)z]. (8
sponse approximation where only two equations from thaf one takes the inverse Fourier transform, the resulting ex-
complete set of the matter equations have to be consideregression for the probe pulse envelope is
ie.,

Egs.(1) and(2) are reduced to a set of algebraic equations
that can be solved easily. The solution far(z,v) is

(6)

The wave equatiof8) for the Fourier transforri(z, ») can
be rewritten as

1 +oo ) z
Teg= ({6~ T) g+ QN +iQgorg, (1) Epo(zt)= 2 J Epo(O,v)eXp{— lv(t - E) - A(v)Z]dv.
Omg= (16— Y)omg+ 1Q40eg. (2) 9)
Here TedZ,1) = pedZ expliwpt —ik,2), TmdZ,t) This is the general solution for the propagation of the small

= gz Vexii (0~ wg)t—i(k,~ky)z] are the slowly varying prpl_ae pulseEy(z,1) ina sample with arbitrary.thiclfness con-
amplitudes of the nondiagonal components of the three-levdfining three-level atoms driven by the coupling filgdz, ).
atom density matriyp;;. The frequency of the probe can be The drive field is s_upposed to havg a constant amplltu_de that
detuned from resonance @¥ w,- we, The drive frequency 1S ho'mogeneous in space. Both fields, probe and drive, are
wq is assumed to be always in resonance with the transitiofonsidered as unidirectional plane waves.

&M wy=wery HEIE weg=we—0y aNd wem=we=wp are the )\ \pATIC SOLUTION FOR THE GAUSSIAN PULSE
resonant frequencies of the transitiasg ande-m between
the states, m, andg with the energied w, fiwy,, andfiawy, In the time domain, the solution of the matter equations

respectively. The coupling parameters for the probe andl) and (2) for oq4(z,t), satisfying the linear response ap-
drive are defined as real valuék,=d.Eo(z,t)/A andQy  proximation, is
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+oo

d
O'eg(Z,t) =ji—=4

ot ) a(V)EpO(Z,V)e_Itht.

(10)

In this section(and also in Secs. IV and)Ywe consider the
case when the probe field is in exact resonance with thP
transitione-g, i.e., =0. Then one can expand the function

a(v) in a power series near=0,

a(v) =2 (-iv)a, (12)
k=0

where the first four coefficienta, are aO:y/(Q§+ vI), a;

=(QG- Y (QG+ )2, a=[¥*~ Q3T +29)]/(QG+T)3 and

ag=[(T"+7)%Q5- (Q3-12)2]/ (Q3++T")* The functiona(v) in

Eq. (6) can be also expressed as

. vtiy
A 2
where
vy=-= i—[F +yx (I = )%= 407 (13)

2
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response function is a result of such evolution; see, for ex-
ample, Ref[26]. Our solution Eq(17) contains the informa-
tion about this evolution and also takes into account all re-
laxation processes in a natural way. If the atom adiabatically
llows such dark states, its evolution starts and terminates in
the ground statgg) [26]. Then, one can expect that the probe
pulse would propagate solitonlike because no excitation is
left in the medium. To clarify this argument, we give a brief
sketch of the high-order dark state formalism and the quali-
tative definition of the adiabatic following of these states.
The notion of a dark statéd,) was first introduced by
Arimondo in[2]. It is a particular superposition of statgs
and m: |dg)=cosB,|g)—sinBym), where the state mixing
angle B, satisfies the condition tgBy=,/{y. The dark
state is an eigenstate of the three-level system interacting
with the cw probe and cw drive field. Therefore, if the three-
level atom is in the dark state it stays there and will not be
excited to statée). In our case the drive field amplitude does
not change in time while the amplitude of the probe does, so
that one has to consider the dark statg=|dy(t)) with a
time-dependent state mixing angB(t). Since ) (+>)=0,
the ground statég) coincides with the dark statfgl,) by
definition before the probe pulse arrives. If the atom adia-

are two poles that help to define the convergence radius diatically follows the dark state, then the probe pulse does not
the expansion(11). This radius is defined by the absolute populate the excited stat@), but induces the coherence

value of the smallest pole,|. If ' >yand 2)3<(I'-7y), the
radius of the convergence R.=|v_|, i.e.,

1 —_—
Re= JIT +y= (T = )7~ 405]. (14

If 2Q4<(I'-7y), we have an approximate expression for this

radius,
04
, 15
s (15)
which is close to the width of the transparency wind@ﬁ/l“
estimated in Ref[22] for y<Q3/T.
If Epo(z, £)=0 and
FEqo(z,t
lim _pO|(<_) =0,

t—to0

Re=vy+

(16)

then substituting the expansiafr), Eq. (11), into the inte-

gral (10) and applying a well-known differentiation property

of the Fourier transform we find
K

ogn 0
OedZt) = l;egg 3 Epo(2.0). (17)

This expression convergesAf, <R., whereA,, is the spec-
tral half-width of the input probe pulse, specifying the value
of time derivatives 0E(z,t) for z=0. It is assumed that the
pulse spectrum is not broadened with distance. Therefgye,

sets the upper limit for the spectral width Bfy(z,t) at dis-
tancez.

g-m, populating the metastable state with probability am-
plitude sinBy=0,/ Qo, WhereQy=yQ5+02~ Q.

This is a simplified picture, ignoring the fact that the in-
teraction Hamiltonian is time dependent. Any time-
dependent Hamiltonian cannot be diagonalized similarly to a
time-independent Hamiltoniatsee, for example, Ref26]).

If one takes this time dependence into account, then the dark
state becomes coupled with the so-called bright sfiage
=sin By|g) +cosBy/m), which is orthogonal tdd,) and |e).
The coupling strength ig8y(t). In the basiddy), |by), |€) we
have again a three-level system, whédg) and |by) are
coupled byi By(t) =i, Qq/ Q§~iQ,/ g, and|by) and|e) are
coupled byQy=Qy; see Fig. 2b). Now, one can introduce a
new combination of dark, bright, and common intermediate
states in the two-quantum process, id,,b;, andc;. State

¢, coincides with statd,. Stated; and stateb; are superpo-
sitions of statesd, and e, or explicitly |d;)=cosp;|do)

+i sinByle), |by)=i sinB,|dy)+cospB,|e), where the state

mixing angle is 8;=tan(3,/Qy). |d;) can be called the
first-order dark state, ifdy) is the zeroth-order dark state.
One can continue in the same way introducing the second-
order dark state, etc., since every new dark state is coupled
with its partner, the new bright state, due to the time varia-
tion of the field amplitude; see Figs(é2-2(d).

If relaxation processes are ignoréghich is the case of
the short probe pulgethe transparency window is defined
by the value of)4. In case of a weak probg,< () and
constant drive, one can show that the mixing angles satisfy
the condition,BkzQ(k)/Q'(‘,+1 where Q¥ is the kth time de-

It can be shown that the atom subject to the probe andivative of Q. If A, is smaller than the width of the trans-
drive fields evolves via higher-order dark states introduced iParency window{ly, we haveg.,/ <1 and with the in-
Ref.[25]. In this picture the appearance of the infinite sum ofcrease ok the mixing angleg decreases and the coupling
the field time derivatives of ascending order in the atomicB,(t) becomes smaller and smaller with respec®tp In this
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(@ (b proportional to the time derivatives @, (linear response
approximation.

This is only a qualitative argument explaining the adia-
batic following of the higher-order dark states. Below we use
Eqg. (17), which takes into account the relaxation processes,
and we show that the first four terms of expansiti) are

© (d) sufficient to describe the pulse propagatioljf<R..
bo by For the input pulse at=0 we take a pulse with a Gauss-
u \92 ian envelopeEy(0,t) =Eygexp(-r??). This pulse shape is
P by _[bz typical for pulsed lasing obtained by phase locking of many
y J modes [27]. The Fourier transform of this pulse is
d d Epo(0,»)=(Epo\/r)exgd ~(v/2r)?] and hence the half-width

of its spectrum is\;,=2r. If we take into account only three
FIG. 2. Interaction of two fields, probe and drive, with the three-terms of the expansion of the atomic response function

level atom in various representatior(s) Schrodinger representa- a(v) ~ap—ia,;v—a,1?, the integral9) for the Gaussian pulse
tion. (b) Zero-order dark state representatidty=\Q5+Q5 and g pe easily calculated,

Bo=tarm*(Qp/Qg). (c) First-order dark state representatiof

—024 22 —tarl( A 1
= \Qo+€o and ﬁl—t?n_ gBO/QO). (d) Sec_ond-order dark state rep- EpA(z,t) — EpO<A_0ut> exp[— Terr— ZAtz)ut(t _ tdA)z ,
resentationQ,= Qi+ 85 and B,=tarm(8,/Q,). In the nth-order in

dark state representation, the state mixing angle As (22
=tam¥(B,-1/Qn-1). The position of the levels in the diagrartty—

(d) is schematic, not related to their energy. where the subscriph designates that this is the adiabatic part

of the solution,Tg;r=aagz, Agy=Ain/V1-AZ aa,z [a, must

. : _ be negative, which corresponds to the condiﬁbﬁ(l‘+27)
case some higher-order dark stélar example,(d;)) can be > »4], andtya= aa;z. Timet in Eq.(22) and below is actually

approximately considered as the uncoupled state. Then t [0A T
atom is assumed to follow such a state adiabatically. Its ev:)}-ﬁe local timet ~z/c. The parameter$gr, Aoy, andtgs arez

lution starts and terminates in the ground stafebecause dependent. They have a significance for the description of

Bi(£)=0 and|dj(ioo)>=|g> for any|. In this case, one can the pulse propagation. Therefore, we give their explicit ex-

expect that no excitation is left in the medium. For a discusPressions and meanings below.
The parameter

sion of the nonadiabatic corrections see, for example, Ref.
[26]. M
Such a higher-order dark state, which the atom follows TEITsz' (23
adiabatically, can be presented as a superposition of the a7
ground, metastable, and excited states, is the EIT reduced effective length of the absorber for the
central, resonant component of the probe pulse spectrum.
|dw) = Cglg) + Cr/m) + Cele), (18 without EIT (the drive is off,Q4=0), the effective length is
T=az/T', where /T is the Beer’'s constanfTg; comes
from the first term of thea(v) expansiona,, which defines
o 4N the absorption exactly at the center of the EIT halg, This
Ce= 'go( D Bonva, (19 absorption is strongly reduced by a factgr/Q3 v%h re-
spect to the value for the unperturbed lin€¥> yI'. Thea,
term is not really adiabatic. It describes the process of popu-

with the coefficients

Cn= 2 (=)™ By, (200 J|ation leakage from the dark stalh) due to they decoher-
n=0 ence.
The parameter
1 2 " 2
ngl_§[<z (- 1)n,82n+1> +<2 (=" 1,82n) :|v ta=Tl chi_yz (24)
n=0 n=0 dA— (Q§+ yr)z
(21)

describes the pulse deldy, due to the steep dispersion at
where the sum is specified by the condition+2l<j; see, the center of the EIT window, which results in the slow
for example, Ref[26]. For infinite j (j—), the sums in  group velocity of the puls&,=c/(1+aa,c). This parameter
Egs. (19—<21) are finite if A, is smaller than the transpar- comes from the second term of thév) expansiona,, ap-
ency window. From Eqg19) and(21), one can calculate the proximating the real part of the atomic susceptibili(v)
density matrix elementr,;=C,C,, which gives the atomic by the linear function~w». If the EIT hole is deegQ3> yI
response to the probe. Simple algebra shows that such a cal y— 0), we havetdAle“/Qg. The a; term of the expan-
culated response coincides with the result given in(E@.if ~ sion maintains the population of the dark state of the first
we takel’=y=0 in the expressions*f(nk (which is the case orderd,. Therefore, it is an adiabatic term and does not con-
of the short pulseand keep inC.Cy only the linear terms tribute to the dissipation of the pulsg,.

013819-4



PULSE TRANSFORMATION AND TIME-FREQUENCY.. PHYSICAL REVIEW A 71, 013819(2005

The parameter For y— 0 we can introduce the adiabaticity parameter
=A;,/ Ay, which is the ratio of the input pulse spectrum width
out= # (25)  and the width of the EIT hole for one atom. Then all terms of
V1 +(Aj/Aggp)? the adiabatic expansion Eql1), except the first ondag

. . ~0), arer’a,~ eX/T. If e<1, expansion$ll) and(17) con-
describes the spectral half-width of the output pulse, whereverge quickly. According to Eq(28), the pulse envelope

(Q%+1)3 broadening reduces the energy of the pulse by a factor
off = \/ > d (26)  Agu/Ain=1/V1+Te? To have the adiabatic propagation of
TIQ(T +29) = ] the pulseg must be smaller than unity. If the sample is thick

is the effective half-width of the EIT window for a thick (T>1) and the process is adiabatie<1), but Te>1, the
sample(T>1). If 2>, the effective half-width isA.; ~ Output energy of the pulse is reduced by a factor of
~ Ap/\T, whereA,=Q32/T is the half-width of the EIT win-  An/Ain\T, which is Agy/ Ajp. This is because only theAg
dow for one atom. For a thick sample the effective half-Part of the spectral content of the input puls@;,2 comes
width narrows as~1/\T. According to Eq.(25), the half- Out of the sample. Below, we refer to the cabe’>1, e

width of the output pulse),,, also narrows and tends &, <1 as the case of adiabatic pulse propagation in a thick
for large T if Aj,> A The parameterd,,; and A come resonant absorber. In this case the half-width of the output

from the third term,a,, of the expansiora(v), which ap- ~ Pulsé Spectruma,,, tends to the constant valuk. This
proximates the imaginary part of the atomic susceptibilityvalue isVT times smaller than the half-width of the EIT hole

X'(v) by a parabolic functior~ 1. i

in the absorption line of one atom.
The a, term produces pulse broadening in time or its

The adiabatic solutiof22) is a good approximation of the
spectrum narrowing with distance. This process is adiabatil’t€gra! in E.(9) if (&) Qg> 11, I'>y and(b) Qg/T"> A,
with respect to the central frequency Fourier component o

or ¢<1). Condition (a) specifies the presence of a deep,
the probe pulse, which is the pulse area. Therefore, the pr

darrow EIT hole in the absorption line. Conditidh) de-
cess of the pulse spectrum narrowing or pulse broadening ifi2nds that the spectral width of the pulse be much smaller
time with distance preserves the pulse area, which is expli

dhan the width of the EIT hole\, (not Aey). Figure 3a)
itly the time integral of the pulse amplitude, i.e., shows "a_comparison of the analytical approximation

Epaz,t), Eq. (22), with the numerical integration for
Epo(z,1), EQ.(9), whereA(v) is not approximated. The input
pulse E(0,t) is shown by the bold line. The adiabaticity
_ parameter i&=0.4 andT=30. In this case\;,/A,=0.4 and
where 6(0)=2\7d.fEpo/ 17 is the pulse area at the inpt  Ajy/Agp=2.2.
=0). Usually the pulse area is defined as a dimensionless Figure 3a shows a small deviation of the analytical ap-
parameter. The pulse area reduces with distance only due gsoximation Eq.(22) from the integral(9). The fit can be
the residual absorption at the bottom of the EIT window. Onédmproved if one takes into account the fourth term of the
can obtain this result for any pulse whose central frequencgxpansion(11). Then a(v) =ag—ia;v—a,»”+iagr® and the
coincides with the center of the EIT hole. This is because th@utput pulse is presented as a convolution of 28) and the
pulse area by definition is the zero-frequency Fourier comAiry function Ai(x), i.e.,
ponent of the spectrum of the pulse envelope. If we take into
account the carrier frequency of the pulsg, then we find
that this Fourier component is just the spectral component of Epa (1)
the pulse coinciding with the center of the EIT window. A +o0

-E outAdistf
po A
n

Oa(2) = %9 f ’ Epa(z.t)dt=6(0)e e, (27)

The energy of the output pulse or its time integrated in- Ai (AdistT)e—(lf“)Aﬁm(t—tdA— T)Z_TEITdT'
tensity |pa(z,t)=|Epa(z,t)]* is reduced due to the pulse

broadening by the EIT window as (30)

—c0

+o0 A
U@ = | Ioazt)dt=U(0) e ?Ter, 28
A2 J_w palZ.Y) ( )Am © (28) where A4 q=(3aazz) 1 is the pulse distortion parameter.

JE— ) ) Here az is assumed to be positive and henkg,,>0. This
whereU(0) =/ 2|E[*/r is the input pulse energy. The en- expression originates from the integral representation of the
ergy of the pulse corresponds to the central frequency Fouairy function [28]
rier component of the pulse intensity, which can be expressed

as
+o0 +o0 A i(...A )_ijﬂcex _i< N 1/3 ) q
f_ oAz bt = f EpaZ VEpz)dr. (29 aisl (£Rais®) =57 | TN N b
(31)

Since the integral at the right-hand side contains all the fre-
quency components of the pulse amplitude, this value is not
preserved. and the convolution theorem
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1 n ! ' (a) Aollt/Adist 2 1 I !
03 . 3 A = 8Ay
0,t 3
%’t) 1 toen T
Epa(z)t) 041 i (\TJ‘““"“‘
02 .
Ain = Ah
5 0o 5 10 15 0 ! ! !
] 5 10 15 20
Tt
T
' ' 0) .
03k J FIG. 4. The Ay/Agist parameter dependence on the optical
thicknessT. The solid line corresponds to the case if the spectral
Ep(z9 02 T width of the input pulse coincides with the width of the transpar-
Bz ; | i ency windowA. The dotted line corresponds to the case if the
""" spectral width of the input pulse is eight times larger than the width
or of the transparency window. The horizontal line corresponds to the
o1 L L L border value of the parameteX,,/Agst below which the pulse

i o 5 10 15 distortion can be neglected and the adiabatic approximation Eq.

r (22) is applicable(see the text The parameters of the absorber and

i - 103

FIG. 3. (a) Comparison of the adiabatic soluti@R(z,t) for the the drive are}4=I'/2 andy/I'=10""
output probe pulse E¢22), shown by dots, with the numerical
calculation opro(z,t), Eq. (9), shown by the thin solid line. The e
solid bold line shows the probe pulse dependence without absorber. Adistf Ai(Agigr)dT=1. (34)
All plots are normalized by the maximum amplitude of the input -
pulseEp. The time scale is in units of the input pulse parameter o o )
The delay time of the output pulse is,=6/r. The zero time is  This is not surprising because the above mentioned argument
chosen fort-z/c=0. The effective thickness of the sampleTis ~about the zero-frequency Fourier component of the pulse en-
=az/T=30. Other parameters arg,/A,=0.4, y/T=1073, Qg4/T velope is valid for the pulse area irrespective of the particular
=0.5, andr/I'=0.05. In this case the spectral width of the input form of the a(v) function except the first ternfay) of its
probe pulse is 2.5 times smaller than the width of the EIT hde. expansion near=0.
Comparison of the numerical calculation Bfo(z,t), Eq. (9) (thin The presence of the fourth term of the adiabatic expansion
solid line) with the analytical approximatioB,x(z,t), given by Eq.  does not change appreciably the shape of the pulag,jf
(30) and shown by dots. The parameters are the same as for the plet A ;.. This can be proven if with the help of the substitution
(@). x=Aqistm EQ. (30) is presented as follows:

1 +0o0 ) +o0 A 400 A 2
Z_I fl( V)fz(V)e_IthV = J Fl(t - T)Fz(T)d’T, (32) EpAl(Z't) = EF,OA_C_’Ut Al (X)eX - < AOL.II ) [Adist(t - tdA)
T — inJ - 2 dist

where f,(v) is the Fourier transform of(t), k=1,2. If a; —X]Z—TEIT}dx_ (35)
<0, then A= (3alagl2)™® and AgigAi (Agigr) is replaced

by AgisAi (Agistr) in EQ. (30). Figure 3b) shows the com-

parison of the approximate soluti¢80) with the numerical  Then one finds that the maximum of the Gaussian pulse at
integration(9). The fit is excellent. The parametdy;, de- t=taa does not change its valué ./ Ain) EyoeXp(=Ter7), due
scribes a® correction to the real part of the atomic suscep-to the convolution with the Airy function g/ 2A4<1.
tibility x'(v), approximated in the first step by the linear This is because the integral of the Airy function is urfisge
function ~». Below we show that this parameter defines aEd- (34)] and exp—(Aqu/ 2Agis)x°] ~ 1 over the domain of
border for the pulse breakup. Because of its importance, wée variablex where Aix) gives the main contribution to the

give the explicit expression for this parameter: integral.
A numerical analysis of the integréB5) for an arbitrary
3 Q2+ T)° value of A,/ Agist Shows that the distortion of the Gaussian
dist= 5 d 5 5 o (33) pulse due to the fourth term of the adiabatic expansion is
BTILQIT + )%= (Q5- ¥)?] small if Ay =<Ags The pulse acquires an oscillatory shape

- if Agui=2A4is The conditionA, ;< Aqis is Well satisfied for
which is approximated by~ A,/ 33T if Q§> yI' and I’ all values of the effective thicknessif I'> Q04> v and A,

>0y> . <A, (see Fig. 4 This is becausé\,,;— Ag; and Aggy, the
The fourth term of the adiabatic expansion does notffective width of the EIT window, narrows with the thick-
change the pulse area since ness increase as T¥2. The distortion(the breakup border
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Agist Narrows as 1TY3, i.e., Ao narrows faster tham ;. 1 I
Therefore, in this case we have no breakup of the pulse with Eo0,)
the increase of the thickneds = o5 i
If Ap>Agir, '>Q4>y, andT>1, we haveA ,/ Agisr= Epe(@t)
Agsil Agis= §3/T6. Therefore, even for a broadband input @ o
pulse(Aj,>A;) one obtainsA g,/ Agige=<1 if T=9 (see Fig. . ,
055 0 5 10

4) and hence the adiabatic part of the pulse is not distorted.

In Appendix A we give an analytical approximation of the 2t
integral (9) if a(v)~=~ag—ia;v—a,?+iagl?, i.e., of the inte-
gral, which is a convolution of the Airy function with the
Gaussian pulse, E¢30).

Summarizing, we conclude that a Gaussian pulse propa-
gating through the EIT window in a thick resonant absorber
is well described by the adiabatic solution E&2), which
takes into account only the first three terms of the expansion
of the spectral functiora(v) nearv=0. The fourth term of
this expansion produces a small distortion of the pulse,
which can be neglected f2,<T. These results are obtained _ FIG. 5. Comparison of the numerical calculatiorEgh(z, 1), Eq.

if the spectral width of the pulse is smaller than the width of(® (thin solid ling with the analytical approximatioi,(z,1),
the EIT windowA,, given by Eq.(36) and shown by dots, for the short pulse propaga-

tion at the EIT condition. The solid bold line shows the input probe
pulse dependence at0. The atom, probe pulse, and drive field
IV. A SHORT GAUSSIAN PULSE PROPAGATION parame.ters. ard,=Q4/3, Qq=300", and y=0. For the analytical
WITHIN A POWER-BROADENED EIT WINDOW approximation Eq(36), we takeI'=y=0. Plot(a) corresponds to
the caseA,/A4i=0.9 and plot (b) corresponds to the case
In this section we consider the case of short pulse propaéin/Adist:z'
gation if the adiabatic following condition of the dark states
is satisfied. Short pulse means that its duration is much L Ay \?
shorter than the decay time of the coheregee i.e., A;, Epna(z,t) = EpOJ AT (x)exp) = oA,
>T. In this case the EIT window in the absorption spectrum - dist

can be created by a strong drive. One would expect that if the )

Autler-Townes splitting 24 of the absorption line for the X[Agisit — tga) +x]* rdx. (37)
probe, which is created by the drive fidl@9], is larger than

the spectral width of the input pulsk,, i.e., 224> A;,, the ) o ) L
absorption of the probe field is strongly reduced. These con! "€ psl“sfﬂmo_n is small i,/ Agisr= 1, or, explicitly, if
ditions on the input pulse width;,, decoherence ratg, and  Ain= {4/ (322). Since the width of the output pulse does
EIT window 204 give 204> A,,>T. This case was consid- not change appreciably and the distortion border narrows as
ered in our paperf23]. Here, we show that the condition of Adist™ 1/2'3, the conditionA;,/Agis<1 starts to be violated
the adiabatic following of the dark states is violated startingfrom a certain distance Figure 5 shows a comparison of the
from a certain value of the effective thickness. This violationProbe pulse distortion for the cas,/Ag=0.9 [plot (a)]
results in a strong distortion of the pulse shape. and for the cas&\,/Ag=2 [plot (b)]. For both plotsA;,

To simplify the analysis, we puf — +0 andy— +0 in  ={q4/3. For the numerical calculation &(z,t), Eq.(9), we
the definition of the coefficients, of thea(v) expansion ina  take y=0 andI'=€14/300.I" is taken nonzero, but small, to
power series Eq(11). Then,ay=~0, a,~Q3?% a,~0, and avoid zero in the denominator &f(v). _
az~-Q3* According to Eqs(30) and(31), the output pulse Thus, for the short puls&)y>A;,>T') the probe pulse is

is described by not distorted appreciably if certain constraints on the effec-
tive thicknessT=az/I" and pulse widthA;, are imposed.

+o0 However, the pulse shape distortion gradually increases with
Epar(z,t) = Epo f AgisAl (— Agist7) distance and the conditialy, > A ji;= %/Qﬁ/ (3az) sets a bor-

der beyond which it cannot be neglected. As was shown in

1 Sec. lll, to preserve the Gaussian shape of the output pulse,

xexp{— A2 (t—tga- 7)2:|d7', (36)  the width of the output puls@,, must be smaller than or
4 limited by the valued . For the case of a narrow transpar-
ency window, considered in Sec. Ill, the vali\g,; decreases

wheretga=~ az/ Q2 andA g~ YQ2/ (3az). Here, the approxi-  with distancez as ~1/vz, and the distortion border shrinks
mationay~0 anda,~0, i.e., the absence of the absorptionas ~1/3z, i.e., the pulse spectrum narrows faster with dis-
and of the pulse broadenin@,,/A,,=1), is taken into ac- tance than the border of distortion narrows. Therefore, we
count. As in the previous section, with the help of the sub-haveA,,/Aqg~ 1/$2— 0 for largez. That is why the pulse
stitution x=—A ;7 we reduce Eq(36) to satisfying the conditiod\;,<A,, is not distorted for any dis-
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tance in case of a narrow EIT window. In case of the propaarea for a broadband Gaussian pulse coincides with the area
gation of a short pulse within a power-broadened EIT win-of the input pulse reduced by a factor éxjpg,). Its reduc-
dow, the contribution of the pulse spectrum narrowing istion is defined by the absorption at the bottom of the EIT
almost negligible sinc&' and hencea, are small. However, window (v=0) and the reduction is small ifg1<< 1 [see Eq.
the contribution of the termag responsible for the pulse dis- (23) for the Tg,; definition].
tortion is appreciable. Therefore, the pulse widthdoes not The only way for the pulse to maintain its area almost
change with distance, = A, but the pulse distortion bor- unchanged is to broaden in time with reduction of its ampli-
der narrows aﬁdiSF%Qg‘/(fsaz). At the certain distance we tude or to narrow in frequency content into a domain close to
have Aj, > Agis, and the pulse starts to experience a strongr=0. To estimate the temporal width of the output pulse, we
distortion. This point makes a qualitative difference betweerhypothesize that its shape coincides with the adiabatic part of
the case)y<I' and the casé€)y>T". In the case of)y<T, the solutionEpa(z,1), Eq. (22). The spectral half-width of
to have adiabatic pulse propagation, the spectral width of th&,a(z,1) is A= Q3/(DNT) if T(Aj/Ap)?> 1. This width is
input pulse must be smaller than the width of the EIT win-A =A,/\T and does not depend on the spectral width of the
dow (Ap), whatever the effective thickness of the sample. Ininput pulseEp(0,t).
the case of)y>T, there is a distance where the condition The analysis of the nonadiabatic componEgg(z,t) and
of small distortion of the pulse shap&,, <A, is violated  the approximate calculation of its shape is given in Appendix
and then, starting from this distance, the pulse experiencesg We assume that for a thick samg[€> 1) this part has
strong distortion of its shape. nonzero amplitude mostly due to the far wings of the pulse
V. BROADBAND PULSE PROPAGATION THROUGH A spectrum, wh_|ch are less absorbgd dye to the reduced abs_orp—
NARROW EIT WINDOW tion at the wings of the absorption line. Thg cgqtral part is
strongly absorbed except the narrow part coinciding with the
In this section, we consider the Gaussian pulse propagdlT hole. This narrow part is taken into account by the adia-
tion in a strongly absorptive medium if the pulse spectrum igoatic part of the solution and hence, it can be ignored in the
much broader than the width of the narrow EIT window approximate calculation dEpn(z,t).
Ap=03/T and Q4<T. We set the only constraint on the  Figure 6 shows the result of the numerical calculation of
pulse that its carrier frequency is exactly tuned to the centethe integral(9) (solid line), if the spectral width of the pulse
of the EIT hole. is two times larger than the width of the unperturbed absorp-
If the spectral width of the input pulse is broader than thetion line (A;,=2I") and eight times larger than the width of
width of the EIT hoIe(Ain>Q§/F), the adiabatic expansion the EIT hole(A;,=8A},). The other parameters are the same
Egs.(11) and(17) is not valid for all spectral components of as in Figs. 8a) and 3b) (see figure captionWe approximate
the pulse. However, the part of the pulse spectrum that coirthe output pulse, Eq9), by the sum of the adiabatic and
cides with the EIT window can be transmitted through thenonadiabatic parts, i.e.,
absorber without appreciable absorption. This part may have
a time dependence similar to the adiabatic solution presented Ean(z,) = Epaz,) + Epn(z,Y), (39
in Sec. IlI. If this is the case, that paftvhich is adiabatit  shown by dots in Fig. 6. The nonadiabatic paete Appendix
spectrally narrows and delays in time. B) is
The frequency content of the pulse that is outside the EIT

hole is strongly reduced due to absorption in an optically _

thick medium. One can expect that this reduced part of the Epn(z1) = EpoM COS{‘"Wide(HtPh)]eXp{_TW‘de

pulse will have a group velocity close to the speed of light in 5 ’

vacuumec. Such a filtering of the pulse through the EIT win- _ Aligelt ~ tan) } (40)
dow can break up the broadband pulse into two components. 4 '

One component must satisfy the adiabatic following condi-
tion. This adiabatic component is expected to be delayed and
broadened in time. The other, nonadiabatic component origi- = T

nates from the part of the atomic response that does not Twide= I(Z\’T—Af) (41)
follow the dark state. The nonadiabatic component is " "

strongly reduced in amplitude, it could have almost no delayis the overall effective thickness of the sample for the broad,
and its duration is short. Therefore, the adiabatic and nonasut of resonance, components of the pulse spectrum. The
diabatic components of the pulse must be well separated ispectral half-width of the nonadiabatic part & ge

here

time and space. =MA;,/2, where
First we calculate the area of the pulse at the output of the
absorber. This area is M = ;_ (42
od.. [+ V1I-T/NTA;,
_ “Heg —
0(2) = P J_w Epo(z t)dt. (38 This approximation of the nonadiabatic part is validyif

>T'/A;,. Therefore,M>1 for finite T, and M—1 if T
Substitution of Eq.(9) into the integral (38) gives 6(z) — +o0, Correspondingly,Aige=>Ain/2 if T is finite, and
=05(2)=6(0)exp(-Tgr). This means that the output pulse Ayige— Ain/2 if T— +o. The Gaussian shape of the nona-
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0025 Agu=Aet=An/\T, is reduced~40 times with respect to the
0.02 half-width of the input pulsé\;, and becomes 5.5 times nar-
0.015 rower than the width of the transparency winddyy
Epd) Figure &a) shows a slight deviation of the adiabatic part
‘?:e(.z:‘)ooos Epa(z,t) from the result of the numerical calculation of the
’ integral (9). This deviation can be reducedEf,x(z,t) in Eq.
o L (39) is replaced byE(z,1), EQ. (30). Such a modified ana-
00550 50 100 150 200 250 lytical approximation, i.e.,
i1
0.005 : —% Eam(z,0) = Epma(zt) + Epn(zD), (44)
fits the numerical result perfectly; see Figch This means
Ewzt) ° ‘ that the adiabatic part of the pulse satisfies the adiabatic fol-
Eu(z.) lowing condition for any width of the input pulse. It is also
""" 00051 : 7 remarkable that the first four terms of the expansion of the
. . spectral function Eq11), a(v) = ag—ia,v—a,1?+iagr?, fully
0Ls 0 5 10 describe the propagation properties of the adiabatic part of
" the pulse.
003 —T—T—T— T The nonadiabatic part has a very short delgycompared
ooz with the delay time of the adiabatic patjy<<tys Since
2 ’ taal tan= Ain/ Agis> 1. The delay timetyy is defir}ed by the
Em(z’t)om- center of the Gaussian envelope of _the cosine modulated
pulse amplituddsee Eq.(40)]. For a thick absorbefl>1,
0 the temporal half-width of this Gaussian is only two times
o —— larger than the time half-width of the input pulse, since
TS50 0 50 100 150 200 250

Ayige=Ain/2=r. The area of the nonadiabatic paf{(z)

=2(deg/h) 1 Epn(z,t)dt must be close to zero. This conjec-
FIG. 6. (a) Comparison of the numerically calculated integral in ture is supported by two arguments. First, if E44) is valid,

Eq. (9), Ep(z,t) (solid line with the analytical approximation then 6(z)=64(2)+6\(2). Second, as shown aboysee Eq.

Ean(z,1), EQ.(39) (dots. r=T" and the other parameters are the same(38) and discussion immediately aftef,itve have the iden-

as for Fig. 3.(b) Magnified part of the plota) showing the evolu-  tity 6(z) = 0,(z). The approximate expression f&in, Eq.

tion of the nonadiabatic part of the pulse in detail. All amplitudeS(40), gives a slightly overestimated value of the area of the

are presen.ted in u.nits . (©) Comparisqn of Fhe numerica]ly nonadiabatic parfy(z) ~ B(O)exp(—GﬁT/Ain). We assume

calculated integral in Ed9), Eqo(z,1), (solid line) with the analyti- 4 this value is nonzero because the nonadiabatic part sits

cal approximatioray(z,1), Eq. (44) (dots. The parameters are the -, yhe far wing of the adiabatic solution and in this sense

same as fo@. The “blov.vu'o" of the nonadiabatic partis not shown overlaps with it. The overlapping gives an exponentially

since it is the same as ib). small contribution to the areé\(z).

The time integrated intensity of the pulse is defined as

It

diabatic component of the pulse is modulated with a fre- .
quency U@ = f ooz, (45)
Wyide = \'Ainr\ﬁ-_ Ir? (43 -
) ) ) ) where | y0(z,t)=|Epo(z,t)|?. For a Gaussian pulse, it can be

and this modulation has a phase shift determined bysq,ced to

tyn=\T/A;y. The Gaussian envelope is centered tg§
=[(NT-(2U'/ Aj) 1/ Ajp,.

The plots in Figs. @) and Gb) confirm what we ex-
pected. The pulse is broken in two parts, i.e., adiabatic and
nonadiabatic. The adiabatic part delays and broadens in tim#&herel,=|Eq|*>. We can again apply the approximation
Its delay timetys=T/Ay depends on the sample parameters _
and does not depend on the pulse spectrum. The delay time Uan(2) = Ua(2) + Una(2), (47)
tya Of the adiabatic part of the pulse becomes much longewhere U,(z) and Uy,(2) are the adiabatic and nonadiabatic
than the characteristic time 4 bf the input pulseE,,(0,t),  parts, respectively. The former is described by &8 and
i.e., rtga=TA;,/2A,> 1, since for the broadband pulse we the latter is
haveA;,> A, andT> 1. For our numerical example, shown _
in Fig.m6, tdz is 120 times longer than 1/ The I[t)emporal Una(2) = U(O)M expl= 2Tuige) (48)
width of the adiabatic part is defined by the valtigy, if \T>T/A, (see Appendix B for the derivation of this ex-
=2/Agu=t "1 1+(Ain/ Aeg)?. For our numerical example, pression. For largeT the effective thickness for the nonadia-
this temporal width is increased 43.8 times with respect tdatic part isT,ge~\T and M=1; see Eqs(41) and (42).

1/r. The spectral half-width of the adiabatic part of the pulse Figure 7 shows the comparison of the numerical integration

+o0 2
U(2) = lzi%f exp{— 2V_r2 ~27 Re[A(v)]}dv, (46)
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0.08 T quencies andy, is the resonant frequency of the idle tran-
sition between the ground and metastable std@ed. If the
0.061 7 drive is in resonance with the transition-e (wy=wey) and
U the probe is detuned from resonar{ée# 0), the two-photon
T 004 7 resonance condition is violated. Below we show that a slight
Ual(T) detuning of the probe from resonance does not change essen-
ceeer 0021 7 tially its propagation properties, but produces a phase shift.
The condition of the adiabatic propagation demands that
0010 20 30 a0 350 the half-width of the input pulsed;,, must not exceed the
T half-width of the EIT hole for one atom\,=Q4/T". As was

shown in Sec. Il, the output probe field envelope is described
FIG. 7. Comparison of the numerically calculated time inte- by Eq.(9). If §# 0, we can make the substitutior 5+ v in
grated intensityU(2), Eq. (46), with the analytical approximation the integral(9) and use the expansion &{v) nearx=0 (v
Uan(2), Eq.(47). Both plots are normalized 1d(0). The parameters =) for the adiabatic pulsé\,,<A;). Retaining only three
are yIT'=1078, Q4/T=0.5, andA;,=2I". T=az/T is the effective terms of the expansion, we gag(x) ~ a(ao—ialx—azxz) for
thickness of the absorber. A(v), where the subscripf is introduced to distinguish this

. ) o case from the one whe@= 0. Then the adiabatic solution for
of Eq. (46), U(2), with the analytical approximatiolla,(2),  the output probe is

Eq. (47). In a large range of the values for the effective i

thickness both functions are almost coincidenty#:0, the _ _Ewo _

adiabatic part ofJ(z) decreases as1/\T. Bpasl2 D) = or\m expl-B(x,z 0]dx (49)
Summarizing, we conclude that the EIT window in an

optically thick resonant absorber allows transmission of avhere

—00

broadband pulse, which maintains its area. The pulse is time (X = 8)?
broadened and delayed. In spite of the large spectral width of B(x,zt) = 7 Tix=9t+Asx)z, (50)
the pulse with respect to the width of the EIT window, the Aiq

propagation reveals adiabatic features typical for a pulse hay-stands fort—z/c, and the subscrip$ is again used to dis-

ing a narrow spectrum considered in the previous sectionjngyish the nonresonant case. The integral in(&8). can be
Thus, the EIT window cuts out an “adiabatic” .pulse from anyeasily calculated if one combines the terms in Esp) as
input pulse and can be used as a perfect filter producing g)iows:

well-defined output, almost independent of the parameters of
the input pulse. The spectral half-width of the output pulse
coincides with the effective half-width of the EIT window in
an optically thick resonant absorbereffzﬂgl I'\T. The out-

put pulse amplitude is reduced by a factay/ A, with re- + Term, (51)
spect to the amplitude of the input pulse. The adiabatic angheret, Te 7, Ay, andAq are defined in Sec. 11l for the
nonadiabatic parts of the pulse are well separated in time ifasonant probe puldsee Eq(22) and the discussion imme-
Aetitga/ 2> 1. This condition is well satisfied T_or an optically giately after . Then the second substitutiory=x
thick sample(T>1) because it is reduced t0T/2>1 or T _ 5A_ /A,)? makes the integral9) similar to the one that

>4. The same condition is provided by the analysis of theyas calculated in Sec. Ill. Combining the results we obtain
minimum distortion of the adiabatic part due to the presence A2 #

of the fourth term of the adiabatic expansion E47). The _ . Agyt

plot in Fig. 4, shown by dots, demonstrates that the param-EPAfS(Z't) B EPA(Z’t)eXp{'&_' A2 At=tgn) = Asz+ A2 }

eter A,/ Agist Satisfies the condition of negligible distortion " ¢ "

of the Gaussian shape of the pulag,/Aqy<1, if T>7. (52)
The latter inequality also indicates the fact that the adiabatigyhere Epa(z.t) is defined in Eq(22). The intensity of the
and nonadiabatic parts are separated or overlap very littigutput probe fie|djpAé(Z't):|EpA§(z,t)|2’ is almost identical
means that, if the conditiod,/Aqyr<<1 is satisfied, the The only difference is the exponential factor, i.e.,
adiabatic part of the pulse is well separated from the nona-
diabatic part, i.e., they do not overlap.

x— (A2, JA2) ST
B(x,z,l:):i)((t_'[dA).|_M_iat_‘_ﬁ
out Aeff+Ain

2_) (53)
AZyt+ AL
For a thick sample(T>1) and an adiabatic pulse
In this section, we consider the propagation of a Gaussiafd,=4;,), we have Aj;>Aq;, and  hence lpasz,1)
probe pulse if its carrier frequency is tuned from resonance=IpA(z,t)exq—ZézlA%). The factor exp—ZézlAﬁ) describes
(0=w,— weg# 0). It is known that aA-type excitation is very the ratio of the intensity of the spectral component of the
sensitive to the condition of the dark resonaneg:-wy input pulse with frequencyw=w,— 46, coinciding with the
=wng Where w, and oy are the probe and drive field fre- center of the EIT holewg, to the intensity of the spectral

lpas(z,t) = IpA(z,t)exp<—
VI. PROBE PULSE TUNING
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component with central or carrier frequency of the pulse T T
=wp. This result is obvious since the spectral half-width of

the incoming radiation is much broader than the narrow ef- Re[Ep(z,t)] 0.005

fective_half-width of the EIT hole for a thick samplé,.¢s Re[Epy(z,1)]

=A,/\T. Therefore, only those spectral components of the ~ ****° 0

pulse that coincide with the effective EIT hole go through the

sample without appreciable absorption, while those that are 0005 5

out of the effective EIT window are strongly absorbed. Thus,

the narrow EIT hole can be used as a frequency filter for 0025

frequency stabilization and spectrum narrowing of the pulsed
field whose spectrum contains components coinciding with
the effective EIT hole. The phase shift in the exponent of
Eq. (52) confirms this argument because the carrier fre-
quency of the probew,, becomesw,—=w.q4 at the output
due to this phase shift. L
The frequency filtering can be done for a pulse with spec- 0 S0 100 150 200 250
tral width comparable with or even broader than the width of it
the broad absorption linel2 Then those components of the
pulse that are out of the EIT window are absorbed if they of

coincide with the absorption part of the line. The component§he numerical calculation of the integr@) and the dots show the

that are out of the absorption line or in the EIT region areanalytical approximation(s5). The parameters are/T'=1073,
transmitted. These last two components are separated in tlrrgg IT=0.5 r=T", andT=30.

because of the large difference in their group velocities. The
narrow spectrum part from the EIT hole is delayed and the )
out of resonance broadband part has almost no delay and it is S(t) = [Er(z.D) + Epﬁ(z't)| ' (56)
short.

For simplicity we consider the casef,>T", but 6<T".
Then the nonadiabatic part of the output puBg(z,t), can
be approximated as

0.02

Im[Epo(z,t)] 0.015

Im[Epy(z.0)] 001
..... 0008

FIG. 8. Beat notes of the reé) and imaginary(b) components
the probe pulse output faftya=/2. The thin solid line shows

where we assume that the output probe pulse is mixed with
the cw reference fieldEg(z,t)=Eg exp(—iwgt+ikgz) whose
frequencywr is detuned from the frequency of the probg

on the value ofAg, which is kept constant whatever ds,.
BecauseEg|>|E,50,0)| and hencgEg|> |E 5z,1)], the de-
Epns(zt) = Epn(z t)explidt), (54)  tected signal is well approximated by

whereE(z,t) is defined in Eq(40). The analytical approxi- S(t) = |[ER? + [ErEps(z ) e M/ 92+ ¢ c],  (57)

mation of the integra(9) in case of6+0 is where the vectorEg andE,; are substituted by their ampli-

tudesEg and Es. The interference term oscillates with fre-
Eps(zt) = Epas(z,t) + Epns(z 1) (55  quencyAg. Amplifying the oscillating part of the signahet-
erodyne technigyeone can measure the time dependence of
Two parts of this analytical solution are well separated inthe probe field amplitude and its phase; see, for example,
time if \T/2>1 (see Sec. ¥ Ref.[30]. If the phase of the reference field is properly cho-
Below we show that besides filtering the EIT hole allowssen, one can measure only the in-phase component of the
us to realize a precise tuning of the carrier frequency of the@utput pulse, Rés(z,1)]. This component is zero at the
pulse. One might expect that only a source of coherent raeutput pulse centet=ty, if Stya=7/2 [see Eq.(52)]. This
diation with very narrow spectrum can be used to define theero is a first beat note, which takes places# d;, where
position and the width of an EIT hole for a thick sample. ;= TrAeff/Z\T ForT> 1, we haves; <A In conventional
This is obvious since even the adiabatic pulse wth=A,  spectroscopy the half-width of the transparency window for
> Aq¢s cannot be used directly for high-resolution spectro-an optically thick sampledg, defines the precision of the
scopic studies. According to E@53), the scanning of the probe frequency tuning to the center of the EIT hole if the
carrier frequency of the pulse across the EIT hole does naspectral half-width of the probey;,, is much smaller than
change appreciably the output intensity #~ A.s<A;,.  Aeg Or if cw monochromatic radiation with spectral width
However, because of the frequency-dependent phase shift ofuch smaller tham\; is applied. Observation of the pulse
the pulse[see Eq.(52)] one can actually define the precise envelope modulation containing only one perigdning to
position of the EIT hole even with broadband pulsed radia-6;) can provide an accuracy of the frequency tuning that is
tion whose widthA,;, is much broader than the width of the 2\T/wtimes higher than convention spectroscopy gives. The
EIT hole for one atomj,. Below we show that this position tuning we propose could be done for a broadband pulse. This
can be defined with an accuracy that exceeds far the effectiv@ethod of frequency tuning can open new perspectives for
width A if a phase sensitive detection scheme is applied. high-resolution spectroscopy with a laser source of poor
In a phase sensitive detection scheme, two fields arquality.
mixed and the intensity of the result is measured, i.e., Figures 8a) and 8b) show beat notes of the re@) and
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o . @- the drive via theg-e transition and the coherenpg,, excited
in the first step, produce the new fielg,,, with a frequency
Re[En(z )] wnew= 204~ w,. The amplitude of this field and its coupling
RelE,z0)] ° strength(Q,,,, are proportional tcﬂﬁl wmg They have nearly
""" the same order as the amplitude of the probe@pdThis is
because in the experimef2] Q,/Qq~1072 and Qg/ wmg
~0.2x102 and henceQ,/ Qpey=(Qp/ Qg)/ (Qg4/ wpg) ~5.
Moreover, in the heterodyne detection schef2g], the
— probe, drive, and new fields are mixed, producing an inter-
002 O ference term oscillating with the microwave frequenay,
=6.83 GHz.
Im(Enz0] - In our scheme we consider the case whgp belongs to
Im(Epy(z,0)] the optical band, which makes the amplitude of the field
Enew~Q§/wmg extremely small. Therefore, the resonantly
002 ’ . enhanced coherent Raman scattering can be disregarded.
0 50 10 150 200 250 Having this difference between the two schemes, we, how-
1t ever, assume that some elements of the physics behind them
are similar since they result in the same enhancement of the
_ . - spectral resolution of the EIT window. What makes a differ-
?g;hneu&rggsarzziu?:égzt;ﬁﬁ’;‘iig'r&he t:llnhsoléd Ilnehshov;s ence is the possibility to perform high-resolution spectros-

. o gré) and the dots show the copy with a coherent source of poor spectral quality, which is
analytical approximatio55). The other parameters are the same as . : .
for Fig. 8. phase locked with a cw reference field of the same quality.

The coherence necessary to resolve the small frequency
imaginary(b) (in-phase and out-of-phaseomponents of the change of the order of kilohertz is introduced by the rf modu-
output probe pulse fostga=7/2. The solid line shows the lation.
result of the numerical calculation of the integ(@) and the
analytical approximation, given by E¢5), is presented by
dots.

If the probe frequency detuningis much larger than the In this paper, we have considered the propagation of a
width of the EIT window in a thick resonant absorbags,  small-amplitude pulse in an optically dense resonant medium
the output pulse contains many beat notes. Figure 9 showit a narrow transparency window has been created at the
the real(a) and imaginary(b) components of the output field center of the absorption line by a coupling fieft. Two
amplitude if the bandwidth of the input field is large=I")  distinctive cases are analyzed.
and the detuningd=10m/ty, is comparable with the half- The first case is realized if the spectral width of the pulse
width of the EIT hole for an individual atorfA,) and six is smaller than the width of the transparency window of the
times larger than the half-width of the EIT hole for an opti- individual atom,Ahzﬂﬁll“. It is shown that in this case the
cally thick sampleA¢¢;. Thus, changing the probe frequency pulse delays because of reduced group velocity. The delay
detuning § to reduce the number of beat notes as much aime istga=T/Ay,, whereT=az/T" is the effective thickness
possible, one can make a fine tuning of the central frequencgf the sample(z is a propagation distangel” is the decay
of the broadband field, or in other words, one can perfornrate of the atomic polarization induced by the resonant pulse,
high-resolution spectroscopy with a probe radiation of poorand « is the resonant absorption coefficient of the sample.
quality. If the frequency of the probe is tuned such that noThe pulse spectrum narrows inversely proportional to the
beat notes are present, one can get an even higher precisisguare root of the propagation distareand tends to the
of the frequency tuning thas,=7Q3/2I'T. value A=A,/ \T. The process of narrowing of the pulse

The phase sensitive detection of the probe frequency turspectrum maintains the pulse area. If the pulse has a Gauss-
ing gives the same precision for frequency resolution as th&n shape, then its shape is also maintained.
line narrowing and interference effects for the cw probe and The second, opposite, case is realized if the Gaussian
drive fields considered in Ref22]. There it was found that pulse spectrum is much wider than the transparency window.
heterodyne measurements of the absorption of a cw mondt is shown that the pulse is broken in two parts. One is
chromatic probe reveal beat notes with a characteristic widtladiabatic and the other is not. The adiabatic part behaves
Ane=mQA/TT. These beat notes appear in the heterodynsimilarly to the narrow bandwidth pulse. It is appreciably
measurements due to the contribution of the dispersive condelayed, it has a Gaussian shape and its temporal width in-
ponent of the atomic respongg to the usual absorptive creases with distance. The spectral width of this part is de-
componenty”. The dispersive component contributes due totermined by the width of the transparency window of the
interference induced by a new fiel),.,, arising from reso- thick resonant absorbek.¢;. The pulse area of the adiabatic
nantly enhanced coherent Raman scattering. In [R8l.the  part coincides with the pulse area of the input pulse. The
drive couples the excited state to the ground and metastabt@nadiabatic part has a group velocity close to the phase
states. Therefore, first, the probe and drive fields excite thgelocity of light c and has almost no delay. It has an oscil-
coherenceg-m via the two-quantum transitiog-e-m. Then latory time dependence with a Gaussian envelope. The adia-

002 -
1

I 1 1
50 100 150 200 250
it

(=]

FIG. 9. Beat notes of the re&) and imaginaryb) components

VIlI. CONCLUSION
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batic and nonadiegoatic pulses are well separated in time and If Ay,7>—(Agis/ Aou)®, We have to take the negative
space iftgplesi=\T>1. branch of the square root in EGA3) as the saddle point for

We considered the case &,= A,> Ag; and the carrier  the integral(Al) since the positive branch gives an exponen-
frequency of the pulse is detuned from the center of the ElTially increasing contribution to the integral. In this case, the
hole. The pulse changes slightly if the frequency of the deintegral (Al) is approximated by

tuning is smaller than the spectral width of the pulag, 6

hence, such a pulse cannot be used for high resolution spec¢ (zt) = AoutE_EO expl = Tew — %(2@ ~30Q%+1)
troscopy. If a phase sensitive detection scheme is applied, pAZAS A VQ BT SAEUt ’
one can find beat notes in the in-phase or out-phase compo- (Ad)

nents of the pulse. Minimizing the number of these beat

notes, one can make a fine tuning of the pulse frequency. WhereQ:\/1+(AgutT/A§ist)'

enables the experimentalist to increase the resolution of the |f A < —(Agis/ Aou)®, We have to take both roots of the

central frequency of the EIT window well below its half- equationG!(z,»)=0 into account since the result must be a
width Agfr. The frequency resolution increases times. real value. The calculation of the contribution of the inte-

Summarizing, we conclude that in this paper we develogyrand near these two saddle points gives the following ap-
an accurate analytical theory of propagation of a pulse witthroximation for the integralAl):

arbitrary spectral width in a dense absorptive medium with a .
narrow EIT window. We show that the EIT windo_w selects E o(z0) = ZAOUtEﬂO sin ZAdistQ3+ m
that part of the pulse spectrum that coincides with the EIT PAZLE A \g’Q 3Agut 4
window and transforms it into a slowly propagating pulse. " 6 6
Therefore, in contrast to cw broadband excitation, the broad- X @ TEm (AdisfA0ud (Q°+1/9) (A5)
band pulse is broken up into two parts, separated in time at a3

hereQ=\-1-(A% 7/A).

the output of the EIT medium, i.e., a broadband fast part ant/ t ] )
a slow part having a narrow spectrum. Therefore, such a 1hese two functions EqsA4) and (A5) describe quite

medium works as a time-frequency filter. well the small distortion of the output Gaussian pulse, Eq.
(30), except at the vicinity of the point=tja—A%./As
ACKNOWLEDGMENTS where Aqum=—(Agis Aou)®. At this point and near it, the
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from CRDF CGP(Grant No. RP1-2560-KA-08and ISTC  the next term of the expansion. _ _
(Grant No. 2121 Actually it is possible to calculate the integréAl) if

Agum=—(Agis! Aoud)® just to show that there is not any singu-
APPENDIX A larity of the functionEga(z,1) at this point of the time axis.
Taking into account the cubic term of the expansion near the

saddle point ifr=-A3/A%,, we obtain an exact result for

In this section, we derive the analytical approximation of
the adiabatic part of the integral E(R), E,m(z,1), if A(v)

~ a(ag—ia;v—a,1°+iagr®). Such an approximation of the the integral
spectral functiorA(v) describes well the transmission of the E 02\#77A dist AS,
adiabatic part of the pulse whatever the spectral width of the Epno(zts) = _pT exp(— Ter— F) (A6)
input pulse E(0,v)=(Ey\m/r)exd—(v/2r)%]. Substituting 32’31“<—)Am out
the pulse spectrum and the approximate transmission func- 3
tion A(v) into Eq. (9), we obtain the integral where ts=tya— A3 /A%, and T(2/3)~1.354 is the Gamma
E e A2 [+° function. Figure 10 shows a comparison of a numerical cal-
Epm(zt) = 2= | e®@"dy, (A1)  culation of the integralAl) with the analytical approxima-
2N J tion given in Eqs(A4) and (A5).

If Agist IS Negative, we can define it as a positive value:
Agist=(3alag|z) 3, which is the case considered in Sec. IV
(A2) but we have to change sign efn Egs.(A1)—(A6) and in the
SAgist, definition of Q. Then the time dependence Bfay(z,1) is

L reversed with respect to the caseagf>0.
and r=t—ty,. This integral can be calculated by the saddle-

point methodsee, for example, Reff31]). The saddle points

where
V3

G(z,v) =ivr+ — +i
out

3 APPENDIX B

A 5
vy 2= 2'5t<1 /14 TOMT) (A3) In this section, we calculate the nonadiabatic components
out dist of the integrals in Eq<9) and(46), which are the functions
are defined from the conditioB/(z, »)=0. According to the  Epn(z,t) andUy,(2) defined in Eqs(39) and (47).

method, the main contribution to the integral is given by the For a thick samplgT> 1), part of the broadband spec-
vicinity of the saddle points. trum of the pulse, which coincides with the central part of
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FIG. 10. Comparison of the result of a numerical calculation of
the integral in Eq(A1) (dotted ling with its analytical approxima-
tion given by Eqs(A4) and (AS) (solid line). The parameters are £ 17 Comparison of the numerically calculated integral

— — — 3 —
Q4/I'=0.5,1/I'=0.05, y/I'=10"%, andT=30. The small bump on g5 " gyjiq line, with the analytical approximatio@8), shown by
the left wing of the curve is artificial and it results from the Saddle'dots. Both plots are normalized 1(0). The parameters of the

point approximation. The true value of the function for the argu'pulse and the sample are the same as for Figi=6az/T is the
ment t=t;, where the position of the bump is, is defined by Eq. optical thickness of the absorber.
(A6). '

the absorption line, is strongly absorbed. The boundaries of y,.(2) = Iﬂjf exgd— 231 -7 - 2827 —- 1)]dx,
this part are defined bfwey—1", weg*+T). The wings of the rJ_

pulse spectrum are less absorbed and their contribution to the (B4)
integral (9) can be appreciable even for a thick sample. If an

EIT hole is present, it changes only the central part of th
absorption lin&(wey—I", weq+I") While the wings are almost
not affected. Therefore, only a narrow EIT hole of width exd - T%(27 -
introduces a difference in the integr@) with respect to the Una(2) = U(0) 7
case(;=0. This difference can be taken into account by Wt/
calculation of the pulse spectrum in the domaik,2which

is the adiabatic solutioBp(z,t) (see Sec. I)l. Therefore, for  which corresponds to E¢48). For the analysis of the resuilt,

a thick samplgT> 1) the nonadiabatic paf,\(z,t) can be we introduce in Eq(48) the parameteM =\ »/(n—-1). Fig-
calculated simply by ignoring the presence of the EIT holeure 11 shows the comparison of the numerically calculated

%herele’/Zr andx=v/r. The value of the integral is

1)/2r?]

: (B5)

i.e., by takingQ4=0. integral (B2) with the analytical approximatiori48). The
First, we consider the time integrated intendityz) and  plots are indistinguishable over a wide range of values of the
replaceA(v) in the integral(46) by effective lengthT.
A similar procedure is applied for the calculation of the
a nonadiabatic part of the integré), which is reduced fol-
A =0, Bl i
(v) T =i(r+ o (B1)  lowing the above arguments to
where Q3/[y-i(v+6)] is disregarded in the denominator. _E@fﬂ
. ; " . Enzt) =—= - f dv, B6
Then the nonadiabatic part of this integral is expressed as N2 Y rvamdo exil- f(v)Jecose(r)dv (B6)
I +o
Un@ = 55 f exd - 2f(1)]dv, (B2) Where
Ty
where e(v) =1+, (B7)
2 TFZ

(B3) and t stands fort—z/c. To calculate this integral by the
saddle-point method, one has to find the saddle points from
o the conditionf’(v)+i¢’(v)=0. However, we use the previ-
In this case the saddle poinig=+I"y5—1 are defined from ous condition,f’(»)=0, to find these points. Such an ap-
the conditionf’(v)=0, where=2ryT/I". These points are proach simplifies the calculation and gives a nice approxi-
located on the real axis if7>1. For a thick resonant ab- mate expression for the integral although with less accuracy.
sorber(T>1) and broadband input pul¢e~T'), the saddle This is becausé(v) has extrema ats, which are real, and
points are on the wings of the absorption lif@ose to or  ¢(v) is almost linearly dependent anin the vicinity of the
beyond the line half-width ifp=2). The contribution from saddle points. The contribution to the integrdB6) near
these points is expressed via the integral the saddle points is expressed as

14
MW=zt e
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E e -27Y VT/2r, andty,= \T/2r. The calculation of the integral
EpN(z,t):r—\% e B cosF(x,t)dx, (B8)  (B8) gives
where we retain only the® term in the expansion of(v) g () = Epo C04 wyigelt + ton)] exp[—T o r2(t = tgn)?
near the saddle point, (v=v¢+X) and only the linear terms " 1-7471 M a1 -4y |
x in the expansion of(v). The functiondB(x) andF(x,t) are (B9)

B(X) :Twide+ X2(1 - 77_1)”2: F(X,t) = (t_th)X+ wwide(t+tph)a
where  ouige=IV7-1, Tuiee=27-1)('/2r)%2, ty=(1  which is Eq.(40), but defined withz, rather than withM.
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