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Casimir force acting on magnetodielectric bodies embedded in media
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Within the framework of macroscopic quantum electrodynamics, general expressions for the Casimir force
acting on linearly and causally responding magnetodielectric bodies that can be embedded in another linear and
causal magnetodielectric medium are derived. Consistency with microscopic harmonic-oscillator models of the
matter is shown. The theory is applied to planar structures, and proper generalizations of Casimir’s and
Lifshitz-type formulas are given.
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I. INTRODUCTION particular, if the body linearly responds to the electric and
It is well known that the introduction of momentum and induction fields and the medium the body is embedded in is

energy of the macroscopic electromagnetic field require§!SO @ linear one, then the Casimir force can be expressed
careful consideration, even for linear media. In fact, insertiorsolely in terms of the classicéletarded Green tensor, which
of constitutive relations into Gauss'’s and Ampere’s laws prein turn is determined by the response functions of the mag-
vents one, in general, from deriving local balance equationgetodielectric matter under consideration.
of a similar type as in the microscopic theory. However, with  We show that the Casimir force formula found in this way
quite restrictive(and most questionabl@ssumptions about is consistent with microscopic theories based on harmonic-
the material under consideration, these difficulties can be forescillator models of dispersing and absorbing dielectric mat-
mally overcome. Therefore, textbooks typically resort to ap-ter. The formula is valid under very general conditions, and
proximate formulas that are based on assumptions such &pables one to study in a consistent way the Casimir force on
guasimonochromatic fields and lossless mefdig?]. Al- linearly responding, dispersing, and absorbing magnetodi-
though the limitations inherent in such theories are ratheelectric bodies that are not necessarily placed in vacuum but
obvious, they are nevertheless applied beyond their range ofiay also be surrounded by a dispersing and absorbing linear
validity. magnetodielectric medium. Since magnetodielectric matter is
A typical example is the Casimir effect, which is closely included in the theory, it is possible to consider also left-
related to the changes in the vacuum electromagnetic-fieldanded material®]. To illustrate the theory, we apply it to a
energy and/or momentum floggtres$ induced by the pres- planar geometry and derive a proper extension of Lifshitz-
ence of inhomogeneous matter. With regard to the calculatype formulas, with emphasis also on the extension of Ca-
tion of the Casimir force acting on macroscopic bodies thasimir’s original formula.
are embedded in a medium, the question of what are the The paper is organized as follows. In Sec. Il, the stress
correct expressions for these quantities becomes crucial. Fréensor associated with tiigacroscopigLorentz force is in-
quently, expressions that seem reasonable at first glancetroduced. The Casimir force is calculated in Sec. Ill, and Sec.
such as Minkowski's stress tensor—have been taken folV makes contact with the microscopic harmonic-oscillator
granted without justification. As we shall see, this has led tonodel. The application of the theory to planar structures is
incorrect extensions of the well-known Lifshitz formula for given in Sec. V, and a summary and some concluding re-
the Casimir force between two dielectric half-spaces sepamarks are given in Sec. VI.
rated by vacuum to the case where the interspace is not
empty but also filled with materidB-5] (see also the text-
books[6—8] and references thergin Il. LORENTZ FORCE AND STRESS TENSOR
In this paper, we reconsider, within the framework of o ) )
macroscopic quantum electrodynamics, the problem of the Let us begin with the classical Maxwell equations for the
calculation of Casimir forces, by regarding the Lorentz force€l€ctric and induction field& andB in the presence of mat-
density as the fundamental quantity. The Lorentz force actinde"
on somegmacroscopitspatial region containingelectrically
neutra) matter is of course the corresponding volume inte- VB=0 (1)
gral of the Lorentz force density, where the relevant charge '
and current densities may be thought of as being expressed
in terms of the polarization and the magnetization of the /B
matter. As a consequence, the Casimir force on a macro- V XE+—=0, (2)
scopic body and, equivalently, the stress on its surface ot
can be expressed—in close analogy with microscopic
electrodynamics—in terms of the electric and induction
fields, irrespective of any specific constitutive relations. In g VE=p, 3
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1 JE magnetic force~ acting on the matter inside it,
MOVXB_SOE=J- (4)
. . ., . _ F= f drf. (13)
In this paper “dot products” are written without the dot, and v

dyadic products are denoted By In Egs.(3) and(4), p and )

j coverall charges and currents of the system under considYsing Eq.(11), we have

eration. Within the framework of a macroscopic description, d

the “internal” charges and currents associated with the par- F :f daT - so—f d°E X B, (14)
ticles that form some neutral material system are commonly N dt)y

described in terms of polarization and magnetization fi€lds
and M, respectively. The remaining “external”
currents—if any—are kept explicitly, i.e.,

h dwhich is obviously also true if the space region is occupied
charges an by a macroscopic body, with the charges and currents being
“internal” ones described by polarization and magnetization

P = Pint + Pexts (5) fields. In particular, if the volume integral on the right-hand
side of this equation does not depend on time, then the total
i =hint+lext (6) force reduces to the surface integral
where F= f dF, (15)
Pint== VP, (7 N
where
. _dP
= V XM. (8) dF =daT =Tda (16)

As long as constitutive equatior(gelating the polarization May t_)e_ regarded as the infinitesimal force element acting on
and magnetization fields to the electric and induction fields & infinitesimal surface elemeda. Note that a constant term

are not introduced, Eqg1)~(8), which may also be inter- " the stress tensor does not contribute to the integral in Eq.
preted microscopically, are generally valid. Clearly, the de (15 and can therefore be omitted. In the calculation of the

fining Egs. (7) and (8) of P and M, respectively, can be Casimir force in Sec. lll, it will be necessary to make use of
satisfied for any choice dtonservell“internal” sources, the  this fact.

corresponding integrability condition being just _Expressing in Eq(16) the stress tensoF in terms of
Minkowski's stress tensom™) (which agrees with Abra-
IPint — ham’s stress tensgr]),
+ V int_ . (9)

1
M) = _=
Note that the “internal” sources typically comprise bound T"=DsE+HoB 2(DE +HB)1

charges and the associated currents—a concept that is com-
monly used together with spatial averaging in macroscopic =T+P®E-M ®B - E(PE— MB)1 (17)
electrodynamic$10]. 2 '

As known, the Lorentz force density one finds that

f=pE+jXB (10 1
can be rewritten with the help of Eq&l)<(4) as dF =daT™ -da| P& E-M @ B - E(PE_ MB) |,
d
f= VT—soa(E X B), (12) (18)
from which it is seen that in general
where the stress tensor dE % daT™_ (19)

1 . . . .
T=¢sEQE+ ,U«BlB ® B - =(goE% + ,u,ale)l (12 That is to say, the use of Minkowski's stress tensor is ex-
2 pected not to yield the correct force in general, whereas the

has been introducetl, unit tensoy. Clearly, Eqs.(10) and ~ Use of T, vyhich is formally_the_same as the stress tensor in
(11) are universally valid, regardless of whether the chargdhicroscopic electrodynamics, @wayscorrect.
and current densities have been decomposed according to L€t
Egs. (5)<8) or not. Note that essentially the same position P=P. . +P (20)
has been recently taken (ip1] in the (re)analysis of mea- nd TN
surements of the electromagnetic force that acts on dielectric
[12—-16 or magnetodielectri¢17] (see also Refs[18,19)
disks exposed to crossed electric and magnetic fiélts.a  be the decompositions of the polarization and the magneti-
different perspective, see also REZ0].) zation into induced partBj,g, Mg and noise part®y,My,

The integral of the Lorentz force densifyover some where the noise parts are closely related to dissipation. Sub-
space regior(volume V) gives of course the total electro- stituting in Eq.(18) for P and M the expression$20) and

M =Mjq+My (21
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(21), respectively, we see that force calculations that are - .

based on Minkowski's stress tensor are expected to be incor- E(r,o)= iMowf d*r'G(r,r, w)jn(r', o), (24)
rect with respect to both the induced parts and the noise parts

of the polarization and the magnetization in general. Clearly,

if—and only if—the aim is to calculate the force acting on é(r,w) = 4oV X f d3r’G(r,r’,w)fN(r’,w). (25)
bodies that are placed in a free-space region, thenbaifd - -

T |ead to the same result. . . .
. ; _ Here,G(r,r'’,w) is the classical Green tensor, which has to
The idea to regarflaccording to Eqs(10)—(13)] the Lor be determined from the equation

entz force acting on the totality of charges and currents be-

longing to a system under consideration as the fundamental @2

quantity is neither new11,21-23 nor particularly hard to VX k(r,w)V X G(r,r',w) = g«e(f,w)G(f,f',w)
agree with. Despite this, the use of Minkowski’s stress tensor

or related quantities has still been common in the calculation =o(r—r') (26)

of electromagnetic forces. In this context, let us make a few . . A
general remarks. The momentum that may be introduced ofpgether with the boundary condition at infinity, apdr , )
the basis of Eq(1l) is related to the Noether symmetry is defined by
expressing homogeneity of space. It must be distinguished - oA -
from the pseudomomentum related strict) homogeneity of In(r ) = —iwPy(r,) + V. X M\(r,o), (27)
the material. In connection with the so-called Minkowski- - ~ .
Abraham controversy, Reff21,24] analyze in a Lagrangian wherePy(r, ) andM(r, ) are, rfespectlvely, thefluctuat-
framework the meaning of different momentumlike quanti-ing) noise parts of the polarizatidd(r , ) and the magneti-
ties by consideration of explicitlassical dynamical models  zation I:D(r ,w) in the frequency domain,
of a homogeneous dielectric. In R¢21], the homogeneous R R R
dielectric is assumed to be lossless and treated in some mul- P(r,w) =ggle(r,w) = 1]E(r,w) + Py(r, ), (28
tipolar, long-wavelength approximatidifor an inclusion of
magnetic properties, sg@5]). In Ref. [24], the homoge- ¢ _ 5 v
neous dielectric is described by a single-resonance Drude- M(r, @) = o[ 1 = &(r,@)JB(r, @) + Mn(r, o) (29)
Lorentz model. All the calculations show that Hd1) [to- [Koz,ual,x(r L 0)=u X, w)].
gether with Egs.(10) and (12)] is really the momentum The Green tensdmas well ass(r,w) and «(r ,w)] is holo-
balance of the macroscopic electromagnetic field. morphic in the uppew half-plane and has the “reality” prop-
erty
Ill. CASIMIR FORCE ON BODIES EMBEDDED * * ,
IN DISPERSING AND ABSORBING MEDIA Grr',-w)=Grrw). (30
In classical electrodynamics, electrically neutral materialMoreover’ it obeys the reciprocity relation
bodies at zero temperature which do not carry a permanent G(r,r',w)=G'(r',r,w) (31
polarization and/or magnetization are not subject to a Lor- ) ) - )
entz force in the absence of external electromagnetic field$the superscripT denotes matrix transpositipand the inte-
As known, the situation changes in quantum electrodynamg@ral relation
ics, since the vacuum fluctuations of the electromagnetic _
field can give rise to a nonvanishing Lorentz force—the Ca- f d®s) [G(r,s,w) X VIm k(s,0)[Vs X G (5,1, 0)]
simir force. Its experimental demonstration has therefore

been regarded as a confirmation of quantum theory. w? .

To translate the classical formulas given in Sec. Il into the * 2C8rsoIme(sw)G (sr',0)=ImGr.r o),
language of quantum theory, let us consider linear, inhomo-
geneous media that locally respond to the electromagnetic (32)

field and can thus be characterized by a spatially varyingyhere the notation
complex permittivitys(r , w) and a spatially varying complex

permeabilityu(r , w). Following Ref.[26], we may write the G(r,r',w) X V' =- [V X GT(r,r",w)]" (33)
medium-assisted electric and induction field operators in th%
form of as been used. i A
. According to Ref.[26], Py(r,w) and M(r,w) can be
E(r) :f dwE(r, ) + H.C., (22)  related to bosonic fieldg(r , ) andfy(r, ), respectively, in
0 B such a way that the correéqual-tim¢ commutation rela-
tions of the electromagnetic field operators are satisfied,
B(r) = f dwB(r,w) + H.c., (23) Pn(r, o) =i[fisg Im e(r, )7V o(r,0),  (34)
0
where M (1, ) = [~ fiko Im &(r,@)/7 Y% (r,0), (35
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[Fadr, @), f1,(F, @)1= 84800 8 = 1) 8w - ') (36)

(A=e,m). Note that theﬂ(r , ) andf{(r ,w) play the role of

the dynamicalcanonical variables of the theory. Combining

Egs.(22—(25) with Egs.(27), (34), and(35) yields the elec-

tric and induction fields in terms of the dynamical variables.
The charge and current densities that are subject to the

Lorentz force are given by

p(r) = fo dwp(r,w) +H.c., (37)
0

j(r)= f ) dwj (r,w) + H.c., (39)
0

where, according to Eq¥5)—(8) (Pex=0,jex=0) together
with Egs. (27)—(29),

p(r.w) ==V {{e(r,w) = 1E(r, o)} + (i0) LV \(r,o)
(39)
and
j(r,0) = —iwege(r, ) - 1E(r, o)
+ VX {ko[1 = &(r, ) 1B(r, )} + (T, 0).
(40)

Using the definitions oﬂ:E(r,w), é(r,w), and j:N(r,w) to-

gether with the bosonic commutation relations for the funda-

mental fieldszk(r , ) andf{(r ,w), one can provéAppendix
A) that

[p(r),E(r")]=0, (41)
[p(r),B(r")]=0, (42)
[ik(r),Bi(r")]=0, (43)
and
(). B (r)]= 18021 85(r = 1) (44)

where the position-dependent plasma frequefiglr) is de-
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fi(r ,w)] and assuming them to be excited in thermal states,
we easily obtain, in close analogy to RE27],

A A 1 hw
fu(r,0) @ (" ")) = 5[00&( 2kBT) + 1}
X S olw—w)olr—r'),

(45)
. . 1 %
flr,o) @ fu(r',0)) = 5[00&( 2k:T) - 1]
X S dlw=w")ér —r’),
(46)
F(r,) @, (r",w'))=0. (47)

Making use of Eq(27) together with Egs(34) and(35), we
find that the correlation function@5)—(47) imply the corre-
lation functions

(in(r, ) @l )

fi hw
= Sw—-w')| coth ——=|+1
27T,LLO 2kBT

2
w ’— /—
X {?\’Im e(r,w)or —r")Vime(r', o)

+ V X [VIm k(r,w)é(r —1")

VIm «(r', 0")] X 6’}, (48)

() @ N o))

__h SNw- ’){cot%( ﬁw)—l}
—27T,LLO wme 2kBT

2
w — /—
X ?\e’lm er,w)o(r —=r")Vime(r',o’)

+ V X [VIm «(r,w)8(r —=r")VIm «(r’, )] X 6’}

fined by the asymptotic behavior of the permittivity for large (49
o in the upper half-plane according te(r,w)=1
-04r)/w?. The commutation relationg41)—(44) clearly and
show thatp(r) andj(r) really represent matter quantities. It - A
(in(r,w) @ jn(r', ")) =0. (50

is worth noting that Eq(44) exactly corresponds to the equa-
tion obtained when—on the basis of a microscopic
description—the current density is explicitly specified in
terms of particle velocitiegAppendix A).

If the field-matter system is in a number stdtefined

Using Egs.(22) and (23) together with Eqs(24) and (25)
and employing Eqs.31), (32), and(48)—50), we can calcu-
late the thermal-equilibrium correlation functions of the elec-
tric field and the induction field to obtain

with respect to the number (density operators

x(r w)fh(r w)] such as the ground state, or an incoherent _ o [~ oo

mixture of them such as a thermal state, then all one-time(E(r) ® E(r’)>——f dow’ COU‘( )Im G(r,r',w),
averages are evidently time-independent. Recalling the T Jo 2kgT

bosonic character of the fundamental fielﬁ$r,w) [and (51
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fipo

~ R * ho contributions, we may take the imaginary part of the whole
(B(r)®B(r'))=-—[ dwcot integral instead of the integrand in Es6) and rotate the
n 0 2kBT . . . . .
integration contour in the usual way toward the imaginary
XV X ImG(r,r',w) X v/ (52) frequency axis, on which the G.re.en tensor is fee¢all Eq.
(30)]. In the zero-temperature limit, the result is simply
Taking the limitT— 0 (i.e., replacing the hyperbolic cotan- " )
gent with unity yields the respective ground-state correla- o) :_ﬁJ dg[g—G(r rié)
tion functions. Note that the correlation functio(&l) and ’ e
(52) inherit the reciprocity property according to E§1).
Now we calculate the expectation value of the Lorentz +V XG(r,r',ig x 6’]. (57)
force [which is Hermitian—recall Eq941) and (43)],

™Jo

A A oA For nonzero temperatures, a sum over the poles of the hy-

F :f d*r(pE +] X B), (53)  perbolic cotangentcorresponding to the Matsubara frequen-
v cieg arises instead. It should be mentioned that the zero-
frequency contribution to the resulting series can be
problematic if the expression in the square brackets in Eq.

tively, are defined by Eqg37) and (38) together with Egs. (57) has a singularity there, which is the case when permit-

; . . tivities of Drude type(exhibiting a pole at zero frequency
(39) and(40). Following the line suggested by classical elec'.are employed. In fact, this unpleasant feature expresses the

trot(_jynarzlcs;”p:glrr;g pI;OrpZt'sgegtr:gntat(lz'r?p'er:?cfoe{csc%mrz?irt]n_ onceptual limitations of a spatially local description of the
tzr? |ct)_n a dW vati gutheléz : t’ r'] 9! | ersioun)of aterial response to the electromagnetic field, which disre-
€ time derivative In quantum-mechanical v gards spatial dispersion. It is known that, for materials with

Eq' (ﬂl14)t dCées noltscontrlgutisto the 1|‘orce,hwe f'ﬁppfnd'? (almos) freely movable charge carriers, this can become an
. ) that Egs. (15 and (16) apply, where e (time issue especially at low frequenciéarge free path lengths

m_depender)t stress tensor can be obtained, in agregm?nlgxtension of the quantization scheme to nonlocally respond-
with the classical Eq(12), from the quantum-mechanica ing materials would render it possible to include such mate-

expectation value rials in the calculation of Casimir forces in a consistent way.

whereE and B, respectively, are defined by EqR2) and
(23) together with Eqs(24) and (25), andp andj, respec-

T(r,r') = eoE(r) ® E(r')) + uoXB(r) ® B(r'))
_ %l[s(,(IAE(r)IAE(r’)} + M(;l(é(r)é(r’)}] (54) V. HARMONIC-OSCILLATOR MEDIUM

It is maybe illustrative to make contact with microscopic
in the limitr’ —r, where divergent bulk contributions are to approaches to the problem. The simplest and most widely
be removed before taking the linjitecall the remark below used model for describing linearly polarizable media is quite
Eg. (16)]. This is always possible if the body under study is certainly the harmonic-oscillator modéhclusion of mag-
embedded in a material environment that is homogeneous attic properties into the model is still scarc& account for
least in the vicinity of the body. If this is not the case, specialdissipation, the medium oscillators that are relevant to the
care and additional considerations are necessary, and it méiyiear interaction with the electromagnetic field—shortly re-
happen that physically interpretable results can hardly be eXerred to as medium oscillators—are also linearly coupled to
tracted. Note that in the calculation of the surface integral ininfinitely many heat bath oscillatorée.g., phonon modes
Eqg. (15) the “outer” values of the integrand should be used ifThe effect of the heat bath can then be adequately taken into
dV is the interface between anhomogeneoubody embed- account by including friction terms and associated noise

ded in a homogeneous environméseée Appendix B forces in the equations of motion of the medium oscillators.
Inserting Eqs(51) and(52) into Eq.(54) finally yields the  On a coarse-grained time scale, the friction terms are com-
stress tensor as monly regarded as being local in tinilarkov approxima-
1 tion), so that they can be characterized by simple damping
T(r,r) = lim {0(r,r’) - —1Tr0(r,r’)}, (55)  constants. It should be noted that the requirement of limited
o 2 time resolution implies that different, not strictly equivalent

noise forces are acceptable in that regiffier details of

where damping theory and oscillator models, see, e.g., Refs.
W _ N * how w? , [28-31).
or,r')= p dw cot T/ &2 ImG(r,r', w) In the context of the one-dimensional theory of the Ca-
0 B

simir force on absorbing bodies, the harmonic-oscillator
- model has been used to study the interaction of damped me-
=V XImG(r,r',w) X V'] (56)  dium oscillators with the transverse part of the quantized
one-dimensional electromagnetic field, with special empha-
As expected, the permittivitg(r,w) and the permeability sis on homogeneous medif82]. Extending the one-
u(r,w) do not appear explicitly in Eq56), but only via the  dimensional theory to three dimensions, we begin with the
Green tensoiG(r,r',w). Having removed divergent bulk Heisenberg equations of motion of the system in the form of
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the term “continuously varying field” applied to matter con-
sisting of well-distinguishable constituents already indicates
(58) some averaging. However, complying with established ter-
minology, we refer to this mesoscopic description as being
§(r,t) =p(r,t)/m, (59) microscopic throughout the paper. Note thatinitio calcu-
lations on a truly microscopic level would lead to time-
A 1: A ordered products in the treatment of the complicated interac-
V X B(r,t) = SE(r,t) = pg (r,1), (60)  tion problem even in linear electrodynamics, because of the
c interaction with the dissipative system. However, if this in-
teraction is treated in Born anduasiiMarkov approxima-
V % IAE(r,t) __ é(r,t), 61) tions,_then th_e closed equations derived in this way no longer
contain any time-ordered products.
wheres(r ,t) andp(r,t) are, respectively, the coordinate field  As the system evolves toward its dressed ground state as
and the momentum field of the medium oscillators, and  t— 0, the model can be show@ppendix Q to lead to the
. ) equal-time electromagnetic field correlation functions
J(r,t) =en(r)s(r,t) (62 g

is the (mode) current[ 7(r), number density of the medium t"fng(r’t) ®E(r, )= -
oscillatorg. Further,Fy(r,t) is the Langevin noise force act-

B(r,t) = — maS(r,t) = mya(r t) + eE(r, 1) + Fy(r 1),

dww? Im G(r,r', )
0

ing on the damped harmonic oscillatarg, damping con- (69)
stan). In addition to the equations of motion Ed58)—(61) and
and the definition(62), the commutation relation28] . .
" lim(B(r,t) ® B(r’',t))
~ Aoy | , t—o0
[S(r,t),p(r",)]= ——=alr =r’) (63 .
7(r) i -
=——— | doV XImG(r,r',w) X V' (70)
and ™ Jo
A A 2my. 9ot —t") if the heat bath that interacts with the medium oscillators is
[Fn(r.0),Fn(r,t)] = 77(r)'ﬁ&(r -r') o (64) assumed to have zero temperature. H&@,,r'’',w) is the

) Green tensor that is the solution to Eg6), with «(r , w) and
together with the standard commutators of the electromags—(r ,w), respectively, being the model-specific quantities
netic field are required to specify the model. The commu'[ato;((r w)=1 and
(64) ensures that Eq63) is preserved in time. Note that the '
proof given in Ref[28] extends to the inhomogeneous case
n=7(r) considered here. It should be stressed that the num-
ber densityz(r) is not allowed to have zerdsor infinities,

otherwise Eqs(63) and (64) were not well-defined. Further, Obviously, Egs.(69) and (70), which directly follow from
note that the microscopic model under consideration, correspond ex-

. A . actly to Egs.(51) and(52) in the zero-temperature limit.
E(r,t) =E'(r,t) + EL(r,1) (65) The (steady-stateLorentz force acting on the harmonic-

. o - L oscillator matter in some space regigns given by
is the full electric field consisting of both longitudinal and

transverse parts38],

en(r) 1
2

e(rmw)=1+ (71)

gom w%—w —iyo’

F = lim f dBr(p(r, HE(r,H) +j(r,t) X B(r,1), (72
R R t—ow Jy
E(”(r,t):fd?’r’ﬁ(i)(r —r"HE(r',1). (66) o . .

with p(r,t) andj(r,t) from Eqgs.(68) and(62), respectively.
The transverse part may be associated with a vector potentiﬁit this stage it not difficult to see that the procedure outlined

in the Coulomb gauge and expanded into orthogonal modéd Appendix B yieldsF in the form of Eq.(15) together with
in the usual way. By contrast, the longitudinal part is not acd- (16), where the stress tensor has exactly the form of Eq.

dynamical electromagnetic field variable but(fonlocally (02 together with Eq(57). This result shows that the micro-
determined by the oscillator field as scopic approach to the Casimir force fully confirms the mac-

roscopic approach as given in Sec. lll, where the calculations

El(r,t) = — el 7(n)&(r,0)]Veo, (67)  Were based on the quantized macroscopic electromagnetic
_ _ _ field, with the matter phenomenologically described in terms
implying the conservedmode) charge density of Kramers-Kronig consistent response functions. Thus, the

B(rH)=—eV (3Tl (69) Casimir force acting on a macroscopic piece of matter may

be viewed as “just” théquantum Lorentz force on the con-
which is consistent with Eq$60) and(62). Needless to say, stituting charges and currents, which, in a macroscopic de-
Egs.(62) and(68) do not actually represent the sources on ascription, can be expressed in terms of tfieduced and
truly microscopic level but rather on a mesoscopic one, sinceoise polarization and magnetization—a conceptually
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straightforward and satisfactory point of view. 3] +P)(1- n; 2)D [rPe?Biz + rf, e?Bi(d=2],

(76)
V. CASIMIR FORCE IN PLANAR STRUCTURES . L
with the definitions

Let us apply the theory to a planar magnetodielectric

2_ 2 —
structure defined according to nj =nj(e) = j(0) (), (77)
(6. zw), 2<0, B;= B (,0) = (WP0?Ic2 ~ )12, (79)
g(r,w) =1 gjlw), 0<z<d, (73) "
— — g O 16;0;
leuz0),  z>d;, Djo=Djolw,Q) =1 ~r{.r7. e, (79
) Note that the equationB;,(w,q)=0 determine, for reaf,
(z ), z<0, the frequencies of the guided waves in the planar structure,
_ _ . which are of major interest in all “mode summation” ap-
prw =) plo), 0<z<d, (74) proaches(In the presence of material losses, however, these
(ui(Zw), z>d. waves have complex frequencies and are not ordinary normal

modes) For practical reasons, it may be advantageous to
h 8 transform the integral over real frequencies in E£p) into
we need the Green tensor in E(ﬁﬁ), for both spatial argu- 5, integral along the imaginary frequency axis by means of
ments within the interspad®<z=2'<d;). The Green ten- ., integral techniquest. Eqgs. (55) and (57)]. In par-

sor is well known and can be taken, e.g., from R&B|.  icyjar, in the zero-temperature limit, E75) may be rewrit-
Since the transverse projectignof the wave vector is con- o as

served and the polarizatiorns=s,p decouple, the scattering

part of the Green tensor within the interspace can be ex- o[~ wi(id)

pressed in terms of reflection coefficienfs=r{,(w,q) refer- Ar.r) = 8712[ fJ Yig e, 91 zi£q). (80

ring to reflection of waves at the right-) and left(—) wall, i

respectively, as seen from the interspace. Explicicur- From the derivation it is obvious that the stress formula
rence expressions for the reflection coefficients are availabld75) [together with Eq(76)] allows for an arbitrary linear,

if the walls are multislab magnetodielectrics like Bragg mir- causal interspace medium. By contrast, Minkowski’'s stress
rors [27,33,34. (For continuous wall profiles, Riccati-type tensor[Eq.(17)] leads t0[4,27] (u;=1)

equations have to be solvg83].) In the simplest case of two

To determine the Casimir stress in the interspaeez€d;,

homogeneous, semi-infinite walls, the coefficierftsreduce TM(r r)=-— wdw coth( ho )

to the well-known Fresnel amplitudes. In the case first 2712 2kgT

treated by Lifshit{35], the interspace is empty and the walls o (2ifd

are nonmagnetic. v Ref dacs, E i J. (8D
o=s,p Djo’

A. Casimir stress within a nonempty interspace From Eq.(76) it is easily seen that for an empty interspace,

For the sake of generality, we first leave the wall structuré.€., &;=u;=1, g;(z, w,q) becomes independent paind sim-
unspecified. By modifying the expression for the scatteringplifies to
part of the Green tensor given in RE34] to also account for (7 2B
magnetic properties, from Ed55) together with Eq.(56) [(2.0,0) — g(0,q) = 48 2 : _ (82)
(without the bulk part of the Green tengat then follows ! J,,_Sp DJ,,
that the relevant stress tensor elem@&pfr,r) in the inter-

space 6<z<d, can be given in the form of In this case, andnly in this case, Eq(75) reduces to Eq.

(81), from which in the case of semi-infinitomogeneoys
) dielectric walls Lifshitz's well-known formuld35] can be

T, Ar,r)= dw coth< ho recovered. As already mentioned, formulas of the type of Eq.
772 2kgT (81) [which need not necessarily be derived within the stress
% () tensor approach to the Casimir fotdeave been claimed to
X Ref dqq—l—gj(z,w,q) (75) apply also to the case where the interspace is filled with
0 Bilw dielectric materia[3,5], at least if the material is nonabsorb-

, S ing [4] (see also the textbook6—8] and references thergin
(9=lal), where the functiom;(z,w,q), which in general de-  gj e

. " ! , (r,r) does not depend on the positianvithin the
pends on the position within the interspace, reads interspace, application of E€B1) implies the very paradoxi-

_ cal result that the force acting on any slice of material se-
9i(z.,0) = 2 B(1+n%) — (L - IDiriri Al lected within the interspace vanishes identically, regardless
+ 2[31(1 +n‘2) +0R(1-n 2)]Djp1 JPJF_eZIBJ i of the presence and arrangement of the remaining material

5 " 6.2 18,0 (in particular, regardless of the yet unspecified wallhis

= (B} + @) (L~ D r} ehi% + 1}, A4 77] unphysical result clearly shows that E§1) cannot be valid
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if the interspace is not empty, not even if it may be justified z-direction
to regard the interspace medium as nonabsorbing. In con-
trast, the stresd,(r,r) obtained from Eq.75) [together
with Eqg. (76)] is not uniform within an interspace if the
interspace is filled with a medium. Hence it gives rise, in
general, to a nonvanishing force on a slice of interspace ma-
terial, and no paradox appears.

Let us return to the stress formul@s) [together with Eq.

r3_

(76)]. It is not difficult to see that, for a nonempty interspace, g
the g integral in Eq.(75) fails to converge az=0 andz=d;,

i.e., on the interfaces where the different materials are in

immediate contact with each other. Mathematically, the rea- = 5,

son for this divergence can be seen in the fact that the reflec-

tion coefficients obtained under the assumptionirdinite @~ EZZ—. ... ... IS .

lateral extension of the system do not approach zerq as 0 1 2 3 4

tends to infinity. However, large values gfcorrespond to . .

very oliue vaveing waves. n any real planar seup ofy 10 L Herogeeos P enbeciod 1 & ronerpy sev

finite lateral extension, such high-waves clearly do not same Y g P

contribute to theg integral at all; they are not reflected but '

walk off instead. Note that a divergence of exactly the same

type already appears also in the standard case of an empty (" *
F= _ZJ de dg

8’77 0 0

i ) :

interspace in the limitd,—0. In order to(approximately %[%(OM,Q)—gl(dl,lécv]
take into account the finite lateral extension of an actual pla- ’
nar setup, an appropriately chosen cutoff valdepending (83)
on the lateral system sigdor the reflection coefficients at
high g values could be introduced, thereby rendering dhe
integral finite. Of course, a more satisfactory approach wouldg(i&,q) = B,(i£,9)=B5(i€,9)].
be to abandon the translational invariance from the outset, For a quantitative comparison with specific results ob-
which, however, leads to serious mathematical difficultiesained in Ref[4] on the basis of Minkowski's stress tensor,
since waves with different polarizations and transverse wavgve make the following simplifying assumptions. We assume
vectors are then no longer decoupled. that(i) all the reflection coefficients can be regarded as being

Since, according to Eq15), the Casimir force acting on a almost constant, an(i) the reflection coefficients], andrg_
body is given by the integral of the stress tensor over thean be approximated by tiisame single-interfaceFresnel
surface enclosing the body, the stress tensor on its own is @éflection coefficientr{,. Physically, these assumptions
less importance. What is really important is the integral forcemean that(i) the distancesl; andd; between the plate and
value over a closed surface. To obtain the fofper unit  the cavity walls must not be too small, afi) the plate must
areg acting on a(multilayered plate of infinite lateral ex- be thick enough. Moreover, the approximation scheme im-
tension, the stress on the two sides of the plate must be takgjlies that the permittivity and the permeability of the me-
into account. As the example in Sec. V B shows, it may thenjium the plate is embedded in can be replaced with their
happen that the parts of the stress tensor that diverge whestatic values briefly referred to asand u in the following,
the plate is approached from the two sides cancel each othgjith n=\eu being the static refractive index. From H{6)
out. In such a case, the Casimir forGeer unit areaon a it then follows that the difference of the functiogg(0,i£,q)

p|ate remains well defined even if its lateral extension |Sand gl(dlaiqu) appearing in Eq(83) can be approximated

B. Casimir force on a plate in a nonempty cavity

In order to make contact with recent work on the Casimir : )
0,i&,q) —gy(dy,ié,

force on bodies embedded in medli, let us calculate the 95(0:i£,0) = Ga(ci,0)
force acting at zero temperature on a homogeneous plate in a R P 11 21 L1
nonempty planar cavity, according to the five-region setup as B oap Ds, Dy, 2
sketched in Fig. 1. The cavity walls are labeledIby and '
|=4, the plate by=2, and the cavity regions that are filled 2( _i) 5. o ( _i)
with the medium the plate is embedded in are labeled by +A,071 2 +A,(B7+q7)| 1 i’
=1 and =3, with g(w)=¢1(w)=e3(w) and u(w)= uq(w) v v 2igd - v 2igd
=us(w). The total(volume force per unit transverse area {r1,2+r3+e2 °_ r1,2+r1_e2 1]} (84)
acting on the plate can be obtained (vgctoria) addition of D3, D1y

the two force contributions from the two sides of the plate.
Application of Eq.(80) then yields the total force per unit
transverse area in the form of (Ay=08,p~ 8,s), Where
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r$,e% - rieh = 1-Dgy 17Dy FW = iJw d§fo dqqiﬁ( i : g2 : )
D3, D1y r3-Ds, r1.D1, =)o Jo e?fh-1 e?fh-1
_ i(i _ i) 5 01
r{\D3, D,/ in place of Eq.(86) with u=1. For an almost perfectly re-

Substituting Eq(84) together with Eq(85) into Eq.(83), we flecting plate in a cavity with almost perfectly reflecting

(approximately obtain walls, standard evaluation of the integrals in E@1) then
yields, in place of Eq(89),
o[~ * M 1 1
F=—5 | dé¢ dqq_—E(———) hcm? 1 (1 1
SWZJ f I = Da’ Do’ F(M):__— S " 92
0 0 BU_S:) 3 1 240 \*"8 dg d;_l ’ ( )
1 1
X {2,82(1 + F) - Agé(n2 - 1)(r‘1’,2+ F) which in the limitd;— o reduces tdd,;=d)
1/2
hem 11
1 FM = — == 93
+ 2qu2<1 - ?> } ) (86) 240 |z d* (93

Note that Eq.(93) corresponds to the result derived in Ref.

; . ; ; . 137] by means of mode summation methods. Comparing Eq.
divergence; the integrals are well behaved. It is worth notin 4 :
that even without application of the approximation scheme,89) with Eq. (92) [or Eq. (90) with Eq. (93)], we see that

the integrals in the basic formul@3) do not diverge. The IF| < |FM), (94)
reason is that, for a chosen value &f the coefficients
rg (i£,q) and rf,(i¢,q) tend exponentially to the same i-e., the absolute value of the force(is>1) always smaller
single-interface Fresnel coefficien{,(i£,q) as q goes to t_han that prediqted from M_inkO\_Nski’s stress tensor. _Introdqc-
infinity, as may be seen from relations like tion of a (polarizabl¢ medium into the interspace is obvi-
ously associated with some screening of the plate, thereby
reducing the force acting on it. Since the internal charges and
currents of the interspace medium are not fully taken into
account in a theory that is based on Minkowski's stress ten-
rg,+ et _ sor or an equivalent formalism, the screening effegt is l_mder-
5= 1412 P By rg, if q— o (88)  estimated and consequently the force calculated in this way
1413 M- is overestimated. Although the assumptions made to derive
together with the relationg,,=r{,, (valid for arbitrary values the results given above are rather restrictive, the comparison
of & andq). Note thati8,— — if q— . As a consequence, Of Ed. (89) with Eqg. (92) clearly shows that the correct in-
the divergent contributions to thg integral in Eq.(83),  clusion of the medium into the theory can give rise to no-
which would arise fromgs(0,i£,q) and gy(d;,i£,q) sepa- ticeable effectdsee Fig. 2 o _
rately, combine in a convergent fashion. Thus, for the setup A consequence of the approximation scheme employed in
under study, a cutoff need not be introduced. this section is the appearance of the real values of the static
Let us return to Eq(86). If the two walls and the plate are Permittivity and the static permeability of the interspace ma-
almost perfectly reflecting, i.et{_~rg,~A,, rf,=A,, then terial in Eq.(89). However, the basic Eq83) is of course

From an inspection of Eq86) it is seen that there is no

o iBodo o
o _ T+ e?Prg,

=—————= 17, if q— oo, 87
1+ 1 +r§{/2e2|ﬁ2d2r(2r+ 1/2 q ( )

standard evaluation of the integrals lead<ris Ve ) valid for arbitrary linear magnetodielectric media with
Kramers-Kronig consistent permittivities and permeabilities.
Fo hem? ,u<2 . 1 )( 1 1) 89 The influence of material dispersion and absorption comes

T 240 NV £\3 3eu d dt) (89 into play when the distancel and/ord; are decreased. The

_ _ behavior of the permeability and the permittivity at nonzero
In particular, if only one wall is present, say the left one, thenfrequencies becomes then important.

Eq. (89) reduces tdd;— <, d;=d)

_ hear? E(Z 1 )1 90) VI. SUMMARY AND CONCLUSIONS

S|,
240 V213 3ep/d On the basis ofi) the quantized macroscopic electromag-
which is the generalization of Casimir’s well known formula netic field in the presence of causal linear magnetodielectric
[36] for the force between two almost perfectly reflecting media without spatial dispersion artil) the Lorentz force
plates separated by vaculm=e=1 in Eq.(90)] to the case acting on the internal charges and currents of the medium,
where the interspace between the plates is filled with a mew~e have derived general expressions for the Casimir force
dium of static permeabilityx and static permittivitye. acting on magnetodielectric bodies embedded in a common
In order to compare Eq89) with the force formula ob- magnetodielectric medium. All the matter has been allowed
tained on the basis of Minkowski's stress tensor, we note thaor being dispersing and absorbing. Specializing to planar
the use of Minkowski’s stress tensor for a nonmagnetic mestructures, we have generalized Lifshitz-type formylssng
dium leads tdsee Eqs(3.6) and (3.7) in Ref. [4]] valid for empty interspaceso the case where the interspaces
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g3(01|§1q) - gl(dlviga q)
0.8 1 1
=2 {2[32<1 +—2) +A,9 (1——)}"

N o=sp n n2
g 06 ,
- 24 o2 1 2 _ 102
= o4 +A(F )| 15 )L+ -t

0.2 e e2iﬁd3 _ r(r_eZiﬁdl

X 3+ 1 ' (95)
NU’
2 4 6 8 10
n where

1.5 N =1 - ro(rt{_GZi,Bdl + rg+e2iﬁd3) + (rO'Z _ taZ)rg_rg+e2iﬁ(d1+d3),

14 () (96)
& 13 with rf=r{,;=r3,; andt’=t7;=tg,, being single-plate reflec-
> tion and transmission coefficients, respectively. We thank
g . < , !
% 12 Marin-Slobodan Tomas for this suggestion.
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Eq. (92) (dashed curveis shown.(b) The ratioF™)/F is shown as
a function of the medium refractive index.

are filled with a magnetodielectric medium. In this context, APPENDIX A: PROOF OF EQS. (41)~(44)

we have analyzed the failure implied by basing the calcula- Using Egs.(24)—(26), we expresso(r ) andj(r ) as

tion of the Casimir force on Minkowski's stress tensor—
method that has been used in the literature but has nevgre fined by Eqs.(39) and (40), respec'uvely, in terms of

been proven correct. Interestingly, Lifshitz himself did notIn(r @) to obtain
address nonempty interspaces in his seminal arftg@%¢ "
For comparison reasons, we have studied in some detalil plr,w)=— Vf d3r’G(r,r’,w)fN(r’,w), (A1)
the Casimir force acting on a homogeneous plate embedded - c -
in a medium in a planar cavity. Applying standard approxi-
mations such as high reflection, we have explicitly demon- w2 R
strated that when the plate is embedded in a medium, then J(r,)= (V XV X - —2> Jd3r’G(r r'o)nr', o)
the force can noticeably differ from the result obtained on the ¢
basis of Minkowski’'s stress tensor. By the way, we have (A2)

given the correct extension of Casimir’s original formula for - .
the force between two perfectly reflecting plates to the cas y co_mblnlng Eqs:(27), (34.)’ and (35) with the standar'd
bosonic commutation relations for the fundamental fields

where the interspace between the plates is filled with a m

dium. f\(r, w) andf! A(r,w), it is not difficult to show thajN(r )
In order to make contact with microscopic theories, WeandJN(r w) obey the commutation relation

have also described the matter microscopically, by employ-

ing the model of damped harmonic oscillators, which is [fy(r,w),i(r’ "]

widely used for treating dielectric matter. Solving the o2

gquantum-mechanical equations of motion of the overall sys- - _5(w © ){ \m

tem (with the heat bath assumed in its ground State have Mo T

calculated the Lorentz force acting on a chosen matter ele-

ment. The result obtained in this way exactly corresponds to <& ~rvIme(r’,w’) + V. X vIm «(r,)8lr —r')

the general result obtained from the macroscopic approach. —_— .

This clearly shows that the use of Minkowski's stress tensor ~ VIM «(r’, ") X V" | . (A3)

to calculate the Casimir force is wrong in general, even if the K

matter may be regarded as being nonabsorbing. From Egs.(24), (25), (A1), and(A2) together with the com-
Note addedInstead of Eq(84), it may be advantageous mutation relation(A3), we derive, on recalling the Green-

to use the exact equation tensor relationg31) and(32),
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- t w?
[0, E'(".0)]= =5 80 =)V IMG(r.",0)

=-[p'(r,),E(r', 0], (A4)

[i(r, @), B (r', "]

2
:—ﬁé‘(w—w'){<v XV X—%)

m

XIm G(r,r',w) X 6’}
K

== [ji(r,),B(r", 0], (A5)

[p(r,®),BY(r",0")]
A ) VMG ) X ¥
= 77(:2 w—w rr,m

=[p'(r,),B(r', 0], (A6)

[(r,@),E-(r, )]

w

:—ﬁiwé(w—w')[(v X V X —‘é’—j)
XImGi(r,r’,w)]kl:[il(r,w),éﬁ(r',w')], (A7)
where
Gi(r,r’,w)zjd3sG(r,s,w)5i(s—r’). (A8)

Note that in Eq.(A6), G*(r,r’,w) may be replaced with
G(r,r’,w), because of the operationV’.

Equations(A4) and (A5) obviously imply the commuta-
tion relations

[p(r),E(r")]= J do f do'{[p(r,w),E'(r',0")]
0 0

+[p'(r,),E(r', )]} =0 (A9)

and

[3(r),By(r )] = f dw f doo' {{j(r,),B](r',0")]
0 0

+[Ji(r,@),B(r", )]} =0, (A10)

and hence Eqgg41) and (43) are seen to hold. Note in par-

ticular that the commutation relatio[f)(r),IAEi(r’)]:O is
valid. From Eqs(A6) and (A7), respectively, it follows that

PHYSICAL REVIEW A 71, 013814(2005

- 2ih [~ -
[,S(r),B(r’)]=—|—2f dowV ImGL(r,r',w) X V'
mC"Jo

(A11)
and
(), EH(r )]
2

2in [~
__an dww{(V X V X —w—z)lm Gi(r,r’,w)} .
T Jo c Kl

(A12)

To further evaluate the integrals in E¢é.11) and(A12),
we recall the asymptotic behavior efr ,w) and «(r , w) for
large w in the upper half-plane, viz.,

Q)

e(r,m)=1- PRt (A13)
2
K(r,w) = 1+Q;—(2r). (A14)

Substituting Eqs(A13) and (Al4) into Eqg. (26), we easily
see that the Green tensor asymptotically behaves like
C2
G(r,r',w)=-—dr-r’) (A15)
w
for large w in the upper half-plane. Thus, on recalling Eg.

(30) and the holomorphic behavior of the Green tensor, we
may evaluate the integral in EGA11) to prove Eq.(42),

e}

A % .
[p(r),B(r")]=~- ?PJ doo VG (r,r',w) X V’

h -
:——2f dowVGH(r,r',w) X V'
TC c

=—iAV & (r-r)XV'=0 (A16)

(P denotes principal valyieHere, we have replaced the prin-
cipal value integral along the real frequency axis by a con-
tour (C) integral over an infinitely large semicircle in the
upper half-plane and have used E415). Note that there is
no extra pole contribution frorm=0 [26]. To evaluate Eq.
(A12), we take into account that, according to Eg6), the
relation

2
(V X V X —%)Im Gi(r,r',w)
w2
=Im ?[s(r,w)—l]Gi(r,r’,w)

+V X[1-«k(r,w)]V X Gi(r,r’,w)} (A17)

may be used on the real axis. Inserting this relation into
Eqg. (A12) and recalling general properties efr,») and
k(r,w), we see that the evaluation of E&12) can be done
in exactly the same way as the evaluation of E411).
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Thus, making use of Eq$A13)—(A15), we derive APPENDIX B: QUANTUM LORENTZ FORCE

N - h w® ) Using Maxwell’s equation$l)—(4) (promoted to operator
[ik(r),E- ()] =~ ;f d‘*"‘)?[s(““’) - 1Gy(r.r',0) equation$ together with the commutation relatiofél) and
c (43) and relations of the type
=ihQA(r)sa(r=r"), (A18)

which is Eq.(44).

For a consistency check of the commutation relation
(A18), let us consider a set of atoms, with each of them
having one valence electrdp, charge;m, mass. Letr, be

E(r) X [V X E(r)]=-[V X E(r)] X E(r)

=v %E(r)é(r)—é(r) ® E(r)

the (fixed) positions ands, the relative coordinates of the ~[VE()]E(®), (B1)
electrons. The microscopi@lectron current density is then we derive
given by
(1) =63 801 — 1 a-5y). (a19)  POEMO A+ XBO) =[VT,r) o= = [V T~
A J - .
- B I" X E r I=r,
By assuming minimal coupling and Coulomb gauge, the ca- at[ () X B Jrr=r
nonical momenta of the electrons commute with the vector ~ =%0)  , R (B2)
potential A(r), whose conjugate momentum field is - &[E(r) X B(r') o=,

—-goE*(r). Hence, we derive
where

n el __e_2 _ _a A a2y Elipr
[Jk(l’),E| (r"]= m% or—rp SA)[Ak(rA+SA)vE| (r"] f(r,r’):so{é(r) - IAE(r’)—%llAE(r)IAE(r’)}
_ih

€0

ez & L P ’
a% 5(r - rA_SA)5k|(rA+SA_r ) +#61|:é(r) ® é(rr) _ %l é(r)é(rr):| (BS)

= @e_zz Sr-ra—-3085(r-r’). (A20) Iis areciprocal operator function of two spatial variables,
€M p - -
. o T(r,r)=T7(r",r), (B4)
In the macroscopic theory, the sum of théunctions in Eq. _ _
(A20) is expected to be replaced according to because of the commutation relations
D8 —ra-8)—> XA -ra-8),  (A21) [E(r),E(r")]=0=[B(r),B(r")]. (B5)
A A

Since the left-hand side of E¢B2) is Hermitian, so is either
where A(r) is a well-behaved function with unit integral, of the two alternative right-hand sides, which means that
JdA(r)=1. Further, in order to produce reasonable coarsesymmetrization is not necessary. Thus, Ed) is also valid
graining,A(r) must be sufficiently flat so that the change of as an operator equation, and the steady-state #&s.and
A(r) on atomic length scales can be regarded as being ne@i6) apply, with the stress tensor being defined by &4) in
ligibly small. With theS, acting on well localized electronic the limitr’ —r.

bound states, we may hence write To perform the limit, we write the force acting on some
AF =T p—8) = Ar 1. (A22) space regiotV in the form of
Thus, F= IimJ d3rfd3r’55(r )
o e—0Jy

DA -ra=8) =D Ar-r)=7(r), (A293)

A A XALVT(r,r )]+ [V T(r,r)1}, (B6)
where»(r) is the number density)(r) of the atoms, and the where §,(r —r’) approaches(r -r’) as e tends to zero. For
macroscopic version of E¢A20) reads instance, one could choose

. A it € - -
(k). B (r)]= =0 3q(r =), (A24) 5{1) = (4 tollr| - o), (87)
0

which corresponds to an average over a spherical surface of
From a comparison of E¢A24) with Eq. (A18), the relation  radiuse. Let us first consider the case in which the material
) n(r) properties are homogeneous everywhere, except at the sur-
Qir)=—— (A25)  face of the volume/, where they may change abruptly. The
oM function T(r,r’) can then be uniquely decomposed into a
is suggested to be valid, which is in full agreement with thebulk part, which is divergent at'=r, and a scattering part,

harmonic-oscillator model permittivity given by E(/1). which is well behaved at’=r, and we may write

013814-12



CASIMIR FORCE ACTING ON MAGNETODIELECTRIC.. PHYSICAL REVIEW A 71, 013814(2005

T(sca) )= VT(sca) , N, + V/T(sca) , DY 1 &2 R R .
B8

For the scattering part, the limé&— 0 simply restores thé
function, so Eq(B6) becomes

(C2

We are interested in the solution to E¢81) and(C2) which
is reached in the limit— oo, thereby being independent of
f d® Jd3r’5(r -r’) the initial conditions. We may represent it in terms of Fourier

F= f d® V TEA(r 1) + lim
v integrals according to

e—0Jvy
XALVTER e )]+ [V T ()]} (B9) .

” , dt .
The second term on the right-hand side of E89), which f(t) =J dwe™'f(w) = f(w) = 2—e"”tf(t). (C3
. . —o —op &TT
arises from the bulk part, vanishes, as can be seen from the
following argumen{39]. Since the bulk part is a function of

r—r'’. it follows that Note that thew integrals should be treated as principal value

integrals(with respect taw=0) if necessary. From Eq$C1)
and (C2) it follows that the Fourier transform&(r ,w) and
f dr f &' s(r =r") VTR 1) =Vb(e), - . - . .

v E(r,w) of §(r,t) andE(r,t), respectively, are determined by
(B10) S(r,w) = [mwé - mw? - imyw] {Fy(r, o) + €E(r,w)]
whereb is some vector that depends only on the parameter (C4)
and in this way selects, somewhat artificially, a particular
direction in space. However, the bulk part corresponds to gy
setup where the whole space is filled with homogeneous and

isotropic material, implying that such a preferred direction - W ~

does not exist, and we can conclude that_ligb(e)=0. To VXV XE(ro) - gE(f,w) = eun(r) w’8(r, ).
apply the divergence theorem to the first term on the right-

hand side of Eq(B9) and transform the volume integral into (CH

a surface integral, we note that if the material propertles
change discontinuously at the surfa®é of the chosen vol- Substitutings(r, ) from Eq. (C4) into Eq. (C5) and rear-
umeV [cf. Egs.(39) and (40)], thenT®®(r r) is also dis- anging, we obtain

continuous there. In view of the macroscopic description, it 2

is clear that the material properties can be regarded as chang- v x v x E(r,w) - is(l’ WE(r,w) = ,MOwJN(r o),

ing continuously across a sufficiently thin boundary layer. To ¢

include the net change across such a boundary layer, the (C6)
“outer” values of the integrand should be takemdicated by
N,), wheree(r,w), which is given by Eq(71), defines the per-

mittivity of the harmonic-oscillator medium, and
sz daT®@(r r). (B11)
Ny

) == “2e(r,0) - UEn(r0)  (C7)
In order to establish the validity of E¢B11) for the more e
general case of varying material properties inside the chosen
space regiorfwhose vicinity is again assumed to be homo-
geneouy one has to return to EqB6) and decompos®
including a thin boundary layer as described above into suf-

ficiently small, nonintersecting cellg;. Summing over all E(r,w):i,uowfd3r’G(r,r’,w)3N(r’,w), (C8)
cells, one can then show, by using similar arguments as B h

above, that in the limit of vanishingly small cellg,— 0, Eq. _
(B11) is obtained. whereG(r,r'’, w) is the Green tensor that, fa(r ,w)=1 and

e(r,w) from Eq. (71), solves Eq.(26) together with the
boundary condition at infinity.
To prove Eq.(69), we write

is the current density associated with the Langevin force. The
unique inversion of Eq(C6) is

APPENDIX C: PROOF OF EQS. (69) AND (70)

Combination of Eq(58) with Eq. (59) yields the second-
order differential equation im(E(r,t) @ E(r',t)) = “mJ dwf do’ e i(@roNt

(1) = = MwZ(r,1) = MyA(r, 1) + eE(r,0) + Fy(r 1), o O
(C1) X(E(r,0) ® E(r',0")), (C9)

and combination of Eq60) with Egs.(61) and(62) leads to  where, according to EqC8) [together with Eq(31)],
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(E(r,0) ® E(r',0))
=—,U,gww'fd3sf d®s'G(r,s, )

X <‘jN(S!w) ® ‘jN(S,!w,)>G(S,1r,lw,)'

If the heat bath is in the vacuum state, then

(C10)

(Fn(r,0) ® Ex(r',0))

_ myh
WUU)

or — ’)J do"0" 80" — w)dw”+ ')

(C11)
holds[28], and we find, on recalling EqC7),

,82
In(s,0) @ Iy(s', @) == =5 e(s,0) ~ Ule(s,0) = 1]
_‘yha(s S)f do’o"
X" = )i+ w'). (C12
Combining Egs(C9), (C10), and(C12), we derive
lim(E(r,t) ® E(r' 1))
{—oo
_myh (7 5f 3
=2 . dow® | d°sG(r,s, w)
oS0~ e o) g (€13

7(s)
From Eq.(72) it follows that the relation

PHYSICAL REVIEW A71, 013814(2005

[e(sw) - 1[e(s,—w) - 1] €
7(s)

Im &(s,w)
- ggMmy [0}

(C14)

is valid for realw. Hence, we may rewrite EGC13 as

t—oo o

4
IM(E(r 0 ® E(r' 1) = 14 dw% J d*sG(r,s, w)
0

(C15

XIm &(s,w)G(s,r',— w),

which by means of Eq$30) and(32) eventually leads to Eq.
(69).
To calculate

I|m<B(r ) @ B(r't) = Ilmf dwf do' e (@)t

X(B(r,0) ® B(r',)), (C16)

we express(é(r ,w)®|§(r’,w’)> in terms of (I:E(r,w)
®I:E(r’,a)’)>, by using Eq.(61) in the Fourier domain,

B(r,w)=(iw)tV X E(r,w). (C17)

By means of Egs(C10), (C12), and (C14) [together with
Egs.(30) and(32)] it is now not difficult to prove Eq(70).
Note that there are no problemsatO0.
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