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I. INTRODUCTION

It is well known that the introduction of momentum and
energy of the macroscopic electromagnetic field requires
careful consideration, even for linear media. In fact, insertion
of constitutive relations into Gauss’s and Ampere’s laws pre-
vents one, in general, from deriving local balance equations
of a similar type as in the microscopic theory. However, with
quite restrictivesand most questionabled assumptions about
the material under consideration, these difficulties can be for-
mally overcome. Therefore, textbooks typically resort to ap-
proximate formulas that are based on assumptions such as
quasimonochromatic fields and lossless mediaf1,2g. Al-
though the limitations inherent in such theories are rather
obvious, they are nevertheless applied beyond their range of
validity.

A typical example is the Casimir effect, which is closely
related to the changes in the vacuum electromagnetic-field
energy and/or momentum flowsstressd induced by the pres-
ence of inhomogeneous matter. With regard to the calcula-
tion of the Casimir force acting on macroscopic bodies that
are embedded in a medium, the question of what are the
correct expressions for these quantities becomes crucial. Fre-
quently, expressions that seem reasonable at first glance—
such as Minkowski’s stress tensor—have been taken for
granted without justification. As we shall see, this has led to
incorrect extensions of the well-known Lifshitz formula for
the Casimir force between two dielectric half-spaces sepa-
rated by vacuum to the case where the interspace is not
empty but also filled with materialf3–5g ssee also the text-
booksf6–8g and references thereind.

In this paper, we reconsider, within the framework of
macroscopic quantum electrodynamics, the problem of the
calculation of Casimir forces, by regarding the Lorentz force
density as the fundamental quantity. The Lorentz force acting
on somesmacroscopicd spatial region containingselectrically
neutrald matter is of course the corresponding volume inte-
gral of the Lorentz force density, where the relevant charge
and current densities may be thought of as being expressed
in terms of the polarization and the magnetization of the
matter. As a consequence, the Casimir force on a macro-
scopic body and, equivalently, the stress on its surface
can be expressed—in close analogy with microscopic
electrodynamics—in terms of the electric and induction
fields, irrespective of any specific constitutive relations. In

particular, if the body linearly responds to the electric and
induction fields and the medium the body is embedded in is
also a linear one, then the Casimir force can be expressed
solely in terms of the classicalsretardedd Green tensor, which
in turn is determined by the response functions of the mag-
netodielectric matter under consideration.

We show that the Casimir force formula found in this way
is consistent with microscopic theories based on harmonic-
oscillator models of dispersing and absorbing dielectric mat-
ter. The formula is valid under very general conditions, and
enables one to study in a consistent way the Casimir force on
linearly responding, dispersing, and absorbing magnetodi-
electric bodies that are not necessarily placed in vacuum but
may also be surrounded by a dispersing and absorbing linear
magnetodielectric medium. Since magnetodielectric matter is
included in the theory, it is possible to consider also left-
handed materialsf9g. To illustrate the theory, we apply it to a
planar geometry and derive a proper extension of Lifshitz-
type formulas, with emphasis also on the extension of Ca-
simir’s original formula.

The paper is organized as follows. In Sec. II, the stress
tensor associated with thesmacroscopicd Lorentz force is in-
troduced. The Casimir force is calculated in Sec. III, and Sec.
IV makes contact with the microscopic harmonic-oscillator
model. The application of the theory to planar structures is
given in Sec. V, and a summary and some concluding re-
marks are given in Sec. VI.

II. LORENTZ FORCE AND STRESS TENSOR

Let us begin with the classical Maxwell equations for the
electric and induction fieldsE andB in the presence of mat-
ter,

=B = 0, s1d

= 3 E +
]B

]t
= 0, s2d

«0 = E = r, s3d
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m0
−1 = 3 B − «0

]E

]t
= j . s4d

In this paper “dot products” are written without the dot, and
dyadic products are denoted bŷ. In Eqs.s3d ands4d, r and
j coverall charges and currents of the system under consid-
eration. Within the framework of a macroscopic description,
the “internal” charges and currents associated with the par-
ticles that form some neutral material system are commonly
described in terms of polarization and magnetization fieldsP
and M , respectively. The remaining “external” charges and
currents—if any—are kept explicitly, i.e.,

r = rint + rext, s5d

j = j int + j ext, s6d

where

rint = − = P, s7d

j int =
]P

]t
+ = 3 M . s8d

As long as constitutive equationssrelating the polarization
and magnetization fields to the electric and induction fieldsd
are not introduced, Eqs.s1d–s8d, which may also be inter-
preted microscopically, are generally valid. Clearly, the de-
fining Eqs. s7d and s8d of P and M , respectively, can be
satisfied for any choice ofsconservedd “internal” sources, the
corresponding integrability condition being just

]rint

]t
+ = j int = 0. s9d

Note that the “internal” sources typically comprise bound
charges and the associated currents—a concept that is com-
monly used together with spatial averaging in macroscopic
electrodynamicsf10g.

As known, the Lorentz force density

f = rE + j 3 B s10d

can be rewritten with the help of Eqs.s1d–s4d as

f = = T − «0
]

]t
sE 3 Bd, s11d

where the stress tensor

T = «0E ^ E + m0
−1B ^ B −

1

2
s«0E

2 + m0
−1B2d1 s12d

has been introduceds1, unit tensord. Clearly, Eqs.s10d and
s11d are universally valid, regardless of whether the charge
and current densities have been decomposed according to
Eqs. s5d–s8d or not. Note that essentially the same position
has been recently taken upf11g in the sredanalysis of mea-
surements of the electromagnetic force that acts on dielectric
f12–16g or magnetodielectricf17g ssee also Refs.f18,19gd
disks exposed to crossed electric and magnetic fields.sFor a
different perspective, see also Ref.f20g.d

The integral of the Lorentz force densityf over some
space regionsvolume Vd gives of course the total electro-

magnetic forceF acting on the matter inside it,

F =E
V

d3rf . s13d

Using Eq.s11d, we have

F =E
]V

daT − «0
d

dt
E

V

d3rE 3 B, s14d

which is obviously also true if the space region is occupied
by a macroscopic body, with the charges and currents being
“internal” ones described by polarization and magnetization
fields. In particular, if the volume integral on the right-hand
side of this equation does not depend on time, then the total
force reduces to the surface integral

F =E
]V

dF, s15d

where

dF = daT = Tda s16d

may be regarded as the infinitesimal force element acting on
an infinitesimal surface elementda. Note that a constant term
in the stress tensor does not contribute to the integral in Eq.
s15d and can therefore be omitted. In the calculation of the
Casimir force in Sec. III, it will be necessary to make use of
this fact.

Expressing in Eq.s16d the stress tensorT in terms of
Minkowski’s stress tensorTsMd swhich agrees with Abra-
ham’s stress tensorf7gd,

TsMd = D ^ E + H ^ B −
1

2
sDE + HBd1

= T + P ^ E − M ^ B −
1

2
sPE − MB d1, s17d

one finds that

dF = daTsMd − daFP ^ E − M ^ B −
1

2
sPE − MB dG ,

s18d

from which it is seen that in general

dF Þ daTsMd. s19d

That is to say, the use of Minkowski’s stress tensor is ex-
pected not to yield the correct force in general, whereas the
use ofT, which is formally the same as the stress tensor in
microscopic electrodynamics, isalwayscorrect.

Let

P = Pind + PN, s20d

M = M ind + M N s21d

be the decompositions of the polarization and the magneti-
zation into induced partsPind, M ind and noise partsPN,M N,
where the noise parts are closely related to dissipation. Sub-
stituting in Eq.s18d for P and M the expressionss20d and
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s21d, respectively, we see that force calculations that are
based on Minkowski’s stress tensor are expected to be incor-
rect with respect to both the induced parts and the noise parts
of the polarization and the magnetization in general. Clearly,
if—and only if—the aim is to calculate the force acting on
bodies that are placed in a free-space region, then bothT and
TsMd lead to the same result.

The idea to regardfaccording to Eqs.s10d–s13dg the Lor-
entz force acting on the totality of charges and currents be-
longing to a system under consideration as the fundamental
quantity is neither newf11,21–23g nor particularly hard to
agree with. Despite this, the use of Minkowski’s stress tensor
or related quantities has still been common in the calculation
of electromagnetic forces. In this context, let us make a few
general remarks. The momentum that may be introduced on
the basis of Eq.s11d is related to the Noether symmetry
expressing homogeneity of space. It must be distinguished
from the pseudomomentum related tosstrictd homogeneity of
the material. In connection with the so-called Minkowski-
Abraham controversy, Refs.f21,24g analyze in a Lagrangian
framework the meaning of different momentumlike quanti-
ties by consideration of explicitsclassicald dynamical models
of a homogeneous dielectric. In Ref.f21g, the homogeneous
dielectric is assumed to be lossless and treated in some mul-
tipolar, long-wavelength approximationsfor an inclusion of
magnetic properties, seef25gd. In Ref. f24g, the homoge-
neous dielectric is described by a single-resonance Drude-
Lorentz model. All the calculations show that Eq.s11d fto-
gether with Eqs.s10d and s12dg is really the momentum
balance of the macroscopic electromagnetic field.

III. CASIMIR FORCE ON BODIES EMBEDDED
IN DISPERSING AND ABSORBING MEDIA

In classical electrodynamics, electrically neutral material
bodies at zero temperature which do not carry a permanent
polarization and/or magnetization are not subject to a Lor-
entz force in the absence of external electromagnetic fields.
As known, the situation changes in quantum electrodynam-
ics, since the vacuum fluctuations of the electromagnetic
field can give rise to a nonvanishing Lorentz force—the Ca-
simir force. Its experimental demonstration has therefore
been regarded as a confirmation of quantum theory.

To translate the classical formulas given in Sec. II into the
language of quantum theory, let us consider linear, inhomo-
geneous media that locally respond to the electromagnetic
field and can thus be characterized by a spatially varying
complex permittivity«sr ,vd and a spatially varying complex
permeabilitymsr ,vd. Following Ref.f26g, we may write the
medium-assisted electric and induction field operators in the
form of

Êsr d =E
0

`

dvÊI sr ,vd + H.c., s22d

B̂sr d =E
0

`

dvB̂I sr ,vd + H.c., s23d

where

ÊI sr ,vd = im0vE d3r8Gsr ,r 8,vdĵINsr 8,vd, s24d

B̂I sr ,vd = m0 = 3E d3r8Gsr ,r 8,vdĵINsr 8,vd. s25d

Here,Gsr ,r 8 ,vd is the classical Green tensor, which has to
be determined from the equation

= 3 ksr ,vd = 3 Gsr ,r 8,vd −
v2

c2 «sr ,vdGsr ,r 8,vd

= dsr − r 8d s26d

together with the boundary condition at infinity, andĵINsr ,vd
is defined by

ĵINsr ,vd = − ivP̂I Nsr ,vd + = 3 M̂I Nsr ,vd, s27d

whereP̂I Nsr ,vd andM̂I Nsr ,vd are, respectively, thesfluctuat-

ingd noise parts of the polarizationP̂I sr ,vd and the magneti-

zation P̂I sr ,vd in the frequency domain,

P̂I sr ,vd = «0f«sr ,vd − 1gÊI sr ,vd + P̂I Nsr ,vd, s28d

M̂I sr ,vd = k0f1 − ksr ,vdgB̂I sr ,vd + M̂I Nsr ,vd s29d

fk0=m0
−1,ksr ,vd=m−1sr ,vdg.

The Green tensorfas well as«sr ,vd andksr ,vdg is holo-
morphic in the upperv half-plane and has the “reality” prop-
erty

Gsr ,r 8,− v*d = G*sr ,r 8,vd. s30d

Moreover, it obeys the reciprocity relation

Gsr ,r 8,vd = GTsr 8,r ,vd s31d

sthe superscriptT denotes matrix transpositiond and the inte-
gral relation

E d3sHfGsr ,s,vd 3 =ª sgIm kss,vdf=s 3 G*ss,r 8,vdg

+
v2

c2 Gsr ,s,vdIm «ss,vdG*ss,r 8,vdJ = Im Gsr ,r 8,vd,

s32d

where the notation

Gsr ,r 8,vd 3 =ª 8 = − f=8 3 GTsr ,r 8,vdgT s33d

has been used.

According to Ref.f26g, P̂I Nsr ,vd and M̂I Nsr ,vd can be

related to bosonic fieldsf̂esr ,vd and f̂msr ,vd, respectively, in
such a way that the correctsequal-timed commutation rela-
tions of the electromagnetic field operators are satisfied,

P̂I Nsr ,vd = if"«0 Im «sr ,vd/pg1/2f̂esr ,vd, s34d

M̂I Nsr ,vd = f− "k0 Im ksr ,vd/pg1/2f̂msr ,vd, s35d
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f f̂lksr ,vd, f̂l8l
† sr ,vdg = dkldll8dsr − r 8ddsv − v8d s36d

sl=e,md. Note that thef̂lsr ,vd and f̂l
†sr ,vd play the role of

the dynamicalscanonicald variables of the theory. Combining
Eqs.s22d–s25d with Eqs.s27d, s34d, ands35d yields the elec-
tric and induction fields in terms of the dynamical variables.

The charge and current densities that are subject to the
Lorentz force are given by

r̂sr d =E
0

`

dvr̂I sr ,vd + H.c., s37d

ĵ sr d =E
0

`

dvĵIsr ,vd + H.c., s38d

where, according to Eqs.s5d–s8d sr̂ext=0,ĵ ext=0d together
with Eqs.s27d–s29d,

r̂I sr ,vd = − «0 = hf«sr ,vd − 1gÊI sr ,vdj + sivd−1 = ĵINsr ,vd

s39d

and

ĵIsr ,vd = − iv«0f«sr ,vd − 1gÊI sr ,vd

+ = 3 hk0f1 − ksr ,vdgB̂I sr ,vdj + ĵINsr ,vd.

s40d

Using the definitions ofÊI sr ,vd, B̂I sr ,vd, and ĵINsr ,vd to-
gether with the bosonic commutation relations for the funda-

mental fieldsf̂lsr ,vd and f̂l
†sr ,vd, one can provesAppendix

Ad that

fr̂sr d,Êsr 8dg = 0, s41d

fr̂sr d,B̂sr 8dg = 0, s42d

f ĵ ksr d,B̂lsr 8dg = 0, s43d

and

f ĵ ksr d,Êl
'sr 8dg = i"V«

2sr ddkl
'sr − r 8d, s44d

where the position-dependent plasma frequencyV«sr d is de-
fined by the asymptotic behavior of the permittivity for large
v in the upper half-plane according to«sr ,vd.1
−V«

2sr d /v2. The commutation relationss41d–s44d clearly
show thatr̂sr d and ĵ sr d really represent matter quantities. It
is worth noting that Eq.s44d exactly corresponds to the equa-
tion obtained when—on the basis of a microscopic
description—the current density is explicitly specified in
terms of particle velocitiessAppendix Ad.

If the field-matter system is in a number statefdefined
with respect to the number sdensityd operators

f̂l
†sr ,vdf̂lsr ,vdg such as the ground state, or an incoherent

mixture of them such as a thermal state, then all one-time
averages are evidently time-independent. Recalling the
bosonic character of the fundamental fieldsf̂lsr ,vd fand

f̂l
†sr ,vdg and assuming them to be excited in thermal states,

we easily obtain, in close analogy to Ref.f27g,

kf̂lsr ,vd ^ f̂l8
† sr 8,v8dl =

1

2
FcothS "v

2kBT
D + 1G

3 dll8dsv − v8ddsr − r 8d,

s45d

kf̂l
†sr ,vd ^ f̂l8sr 8,v8dl =

1

2
FcothS "v

2kBT
D − 1G

3 dll8dsv − v8ddsr − r 8d,

s46d

kf̂lsr ,vd ^ f̂l8sr 8,v8dl = 0. s47d

Making use of Eq.s27d together with Eqs.s34d ands35d, we
find that the correlation functionss45d–s47d imply the corre-
lation functions

kĵINsr ,vd ^ ĵIN
† sr 8,v8dl

=
"

2pm0
dsv − v8dFcothS "v

2kBT
D + 1G

3 Hv2

c2
ÎIm «sr ,vddsr − r 8dÎIm «sr 8,v8d

+ = 3 fÎIm ksr ,vddsr − r 8d

ÎIm ksr 8,v8dg 3 =ª 8J , s48d

kĵIN
† sr ,vd ^ ĵINsr 8,v8dl

=
"

2pm0
dsv − v8dFcothS "v

2kBT
D − 1G

3 Hv2

c2
ÎIm «sr ,vddsr − r 8dÎIm «sr 8,v8d

+ = 3 fÎIm ksr ,vddsr − r 8dÎIm ksr 8,v8dg 3 =ª 8J ,

s49d

and

kĵINsr ,vd ^ ĵINsr 8,v8dl = 0. s50d

Using Eqs.s22d and s23d together with Eqs.s24d and s25d
and employing Eqs.s31d, s32d, ands48d–s50d, we can calcu-
late the thermal-equilibrium correlation functions of the elec-
tric field and the induction field to obtain

kÊsr d ^ Êsr 8dl =
"m0

p
E

0

`

dvv2 cothS "v

2kBT
DIm Gsr ,r 8,vd,

s51d
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kB̂sr d ^ B̂sr 8dl = −
"m0

p
E

0

`

dv cothS "v

2kBT
D

3= 3 Im Gsr ,r 8,vd 3 =ª 8. s52d

Taking the limit T→0 si.e., replacing the hyperbolic cotan-
gent with unityd yields the respective ground-state correla-
tion functions. Note that the correlation functionss51d and
s52d inherit the reciprocity property according to Eq.s31d.

Now we calculate the expectation value of the Lorentz
force fwhich is Hermitian—recall Eqs.s41d and s43dg,

F =E
V

d3rkr̂Ê + ĵ 3 B̂l, s53d

where Ê and B̂, respectively, are defined by Eqs.s22d and
s23d together with Eqs.s24d and s25d, and r̂ and ĵ , respec-
tively, are defined by Eqs.s37d and s38d together with Eqs.
s39d ands40d. Following the line suggested by classical elec-
trodynamics, paying proper attention to operator symmetri-
zation as well as regularization, and taking into account that
the time derivative in thesquantum-mechanical version ofd
Eq. s14d does not contribute to the force, we findsAppendix
Bd that Eqs. s15d and s16d apply, where the stime-
independentd stress tensor can be obtained, in agreement
with the classical Eq.s12d, from the quantum-mechanical
expectation value

Tsr ,r 8d = «0kÊsr d ^ Êsr 8dl + m0
−1kB̂sr d ^ B̂sr 8dl

−
1

2
1f«0kÊsr dÊsr 8dl + m0

−1kB̂sr dB̂sr 8dlg s54d

in the limit r 8→ r , where divergent bulk contributions are to
be removed before taking the limitfrecall the remark below
Eq. s16dg. This is always possible if the body under study is
embedded in a material environment that is homogeneous at
least in the vicinity of the body. If this is not the case, special
care and additional considerations are necessary, and it may
happen that physically interpretable results can hardly be ex-
tracted. Note that in the calculation of the surface integral in
Eq. s15d the “outer” values of the integrand should be used if
]V is the interface between aninhomogeneousbody embed-
ded in a homogeneous environmentssee Appendix Bd.

Inserting Eqs.s51d ands52d into Eq.s54d finally yields the
stress tensor as

Tsr ,r d = lim
r8→r

Fusr ,r 8d −
1

2
1Trusr ,r 8dG , s55d

where

usr ,r 8d =
"

p
E

0

`

dv cothS "v

2kBT
DFv2

c2 Im Gsr ,r 8,vd

− = 3 Im Gsr ,r 8,vd 3 =ª 8G . s56d

As expected, the permittivity«sr ,vd and the permeability
msr ,vd do not appear explicitly in Eq.s56d, but only via the
Green tensorGsr ,r 8 ,vd. Having removed divergent bulk

contributions, we may take the imaginary part of the whole
integral instead of the integrand in Eq.s56d and rotate the
integration contour in the usual way toward the imaginary
frequency axis, on which the Green tensor is realfrecall Eq.
s30dg. In the zero-temperature limit, the result is simply

usr ,r 8d = −
"

p
E

0

`

djF j2

c2Gsr ,r 8,ijd

+ = 3 Gsr ,r 8,ijd 3 =ª 8G . s57d

For nonzero temperatures, a sum over the poles of the hy-
perbolic cotangentscorresponding to the Matsubara frequen-
ciesd arises instead. It should be mentioned that the zero-
frequency contribution to the resulting series can be
problematic if the expression in the square brackets in Eq.
s57d has a singularity there, which is the case when permit-
tivities of Drude typesexhibiting a pole at zero frequencyd
are employed. In fact, this unpleasant feature expresses the
conceptual limitations of a spatially local description of the
material response to the electromagnetic field, which disre-
gards spatial dispersion. It is known that, for materials with
salmostd freely movable charge carriers, this can become an
issue especially at low frequenciesslarge free path lengthsd.
Extension of the quantization scheme to nonlocally respond-
ing materials would render it possible to include such mate-
rials in the calculation of Casimir forces in a consistent way.

IV. HARMONIC-OSCILLATOR MEDIUM

It is maybe illustrative to make contact with microscopic
approaches to the problem. The simplest and most widely
used model for describing linearly polarizable media is quite
certainly the harmonic-oscillator modelsinclusion of mag-
netic properties into the model is still scarced. To account for
dissipation, the medium oscillators that are relevant to the
linear interaction with the electromagnetic field—shortly re-
ferred to as medium oscillators—are also linearly coupled to
sinfinitely manyd heat bath oscillatorsse.g., phonon modesd.
The effect of the heat bath can then be adequately taken into
account by including friction terms and associated noise
forces in the equations of motion of the medium oscillators.
On a coarse-grained time scale, the friction terms are com-
monly regarded as being local in timesMarkov approxima-
tiond, so that they can be characterized by simple damping
constants. It should be noted that the requirement of limited
time resolution implies that different, not strictly equivalent
noise forces are acceptable in that regimesfor details of
damping theory and oscillator models, see, e.g., Refs.
f28–31gd.

In the context of the one-dimensional theory of the Ca-
simir force on absorbing bodies, the harmonic-oscillator
model has been used to study the interaction of damped me-
dium oscillators with the transverse part of the quantized
one-dimensional electromagnetic field, with special empha-
sis on homogeneous mediaf32g. Extending the one-
dimensional theory to three dimensions, we begin with the
Heisenberg equations of motion of the system in the form of
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ṗ̂sr ,td = − mv0
2ŝsr ,td − mgṡ̂sr ,td + eÊsr ,td + F̂Nsr ,td,

s58d

ṡ̂sr ,td = p̂sr ,td/m, s59d

= 3 B̂sr ,td −
1

c2Ê
˙ sr ,td = m0ĵ sr ,td, s60d

= 3 Êsr ,td = − B̂
˙ sr ,td, s61d

whereŝsr ,td andp̂sr ,td are, respectively, the coordinate field
and the momentum field of the medium oscillators, and

ĵ sr ,td = ehsr dṡ̂sr ,td s62d

is the smodeld currentfhsr d, number density of the medium

oscillatorsg. Further,F̂Nsr ,td is the Langevin noise force act-
ing on the damped harmonic oscillatorssg, damping con-
stantd. In addition to the equations of motion Eqs.s58d–s61d
and the definitions62d, the commutation relationsf28g

fŝsr ,td,p̂sr 8,tdg =
i"

hsr d
dsr − r 8d s63d

and

fF̂Nsr ,td,F̂Nsr 8,t8dg =
2mg

hsr d
i"dsr − r 8d

]dst − t8d
]t

s64d

together with the standard commutators of the electromag-
netic field are required to specify the model. The commutator
s64d ensures that Eq.s63d is preserved in time. Note that the
proof given in Ref.f28g extends to the inhomogeneous case
h=hsr d considered here. It should be stressed that the num-
ber densityhsr d is not allowed to have zerossnor infinitiesd,
otherwise Eqs.s63d ands64d were not well-defined. Further,
note that

Êsr ,td = Êisr ,td + Ê'sr ,td s65d

is the full electric field consisting of both longitudinal and
transverse partsf38g,

Êis'dsr ,td =E d3r8dis'dsr − r 8dÊsr 8,td. s66d

The transverse part may be associated with a vector potential
in the Coulomb gauge and expanded into orthogonal modes
in the usual way. By contrast, the longitudinal part is not a
dynamical electromagnetic field variable but issnonlocallyd
determined by the oscillator field as

Êisr ,td = − efhsr dŝsr ,tdgi/«0, s67d

implying the conservedsmodeld charge density

r̂sr ,td = − e= fhsr dŝsr ,tdg, s68d

which is consistent with Eqs.s60d ands62d. Needless to say,
Eqs.s62d ands68d do not actually represent the sources on a
truly microscopic level but rather on a mesoscopic one, since

the term “continuously varying field” applied to matter con-
sisting of well-distinguishable constituents already indicates
some averaging. However, complying with established ter-
minology, we refer to this mesoscopic description as being
microscopic throughout the paper. Note thatab initio calcu-
lations on a truly microscopic level would lead to time-
ordered products in the treatment of the complicated interac-
tion problem even in linear electrodynamics, because of the
interaction with the dissipative system. However, if this in-
teraction is treated in Born andsquasi-dMarkov approxima-
tions, then the closed equations derived in this way no longer
contain any time-ordered products.

As the system evolves toward its dressed ground state as
t→`, the model can be shownsAppendix Cd to lead to the
equal-time electromagnetic field correlation functions

lim
t→`

kÊsr ,td ^ Êsr 8,tdl =
"m0

p
E

0

`

dvv2 Im Gsr ,r 8,vd

s69d

and

lim
t→`

kB̂sr ,td ^ B̂sr 8,tdl

= −
"m0

p
E

0

`

dv = 3 Im Gsr ,r 8,vd 3 =ª 8 s70d

if the heat bath that interacts with the medium oscillators is
assumed to have zero temperature. Here,Gsr ,r 8 ,vd is the
Green tensor that is the solution to Eq.s26d, with ksr ,vd and
«sr ,vd, respectively, being the model-specific quantities
ksr ,vd;1 and

«sr ,vd = 1 +
e2hsr d

«0m

1

v0
2 − v2 − igv

. s71d

Obviously, Eqs.s69d and s70d, which directly follow from
the microscopic model under consideration, correspond ex-
actly to Eqs.s51d and s52d in the zero-temperature limit.

The ssteady-stated Lorentz force acting on the harmonic-
oscillator matter in some space regionV is given by

F = lim
t→`

E
V

d3rkr̂sr ,tdÊsr ,td + ĵ sr ,td 3 B̂sr ,tdl, s72d

with r̂sr ,td and ĵ sr ,td from Eqs.s68d and s62d, respectively.
At this stage it not difficult to see that the procedure outlined
in Appendix B yieldsF in the form of Eq.s15d together with
Eq. s16d, where the stress tensor has exactly the form of Eq.
s55d together with Eq.s57d. This result shows that the micro-
scopic approach to the Casimir force fully confirms the mac-
roscopic approach as given in Sec. III, where the calculations
were based on the quantized macroscopic electromagnetic
field, with the matter phenomenologically described in terms
of Kramers-Kronig consistent response functions. Thus, the
Casimir force acting on a macroscopic piece of matter may
be viewed as “just” thesquantumd Lorentz force on the con-
stituting charges and currents, which, in a macroscopic de-
scription, can be expressed in terms of thesinduced and
noised polarization and magnetization—a conceptually
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straightforward and satisfactory point of view.

V. CASIMIR FORCE IN PLANAR STRUCTURES

Let us apply the theory to a planar magnetodielectric
structure defined according to

«sr ,vd = 5«−sz,vd, z, 0,

« jsvd, 0 , z, dj ,

«+sz,vd, z. dj ,
6 s73d

msr ,vd = 5m−sz,vd, z, 0,

m jsvd, 0 , z, dj ,

m+sz,vd, z. dj .
6 s74d

To determine the Casimir stress in the interspace 0,z,dj,
we need the Green tensor in Eq.s56d for both spatial argu-
ments within the interspaces0,z=z8,djd. The Green ten-
sor is well known and can be taken, e.g., from Ref.f33g.
Since the transverse projectionq of the wave vector is con-
served and the polarizationss=s,p decouple, the scattering
part of the Green tensor within the interspace can be ex-
pressed in terms of reflection coefficientsr j±

s =r j±
s sv ,qd refer-

ring to reflection of waves at the rights1d and lefts2d wall,
respectively, as seen from the interspace. Explicitsrecur-
renced expressions for the reflection coefficients are available
if the walls are multislab magnetodielectrics like Bragg mir-
rors f27,33,34g. sFor continuous wall profiles, Riccati-type
equations have to be solvedf33g.d In the simplest case of two
homogeneous, semi-infinite walls, the coefficientsr j±

s reduce
to the well-known Fresnel amplitudes. In the case first
treated by Lifshitzf35g, the interspace is empty and the walls
are nonmagnetic.

A. Casimir stress within a nonempty interspace

For the sake of generality, we first leave the wall structure
unspecified. By modifying the expression for the scattering
part of the Green tensor given in Ref.f34g to also account for
magnetic properties, from Eq.s55d together with Eq.s56d
swithout the bulk part of the Green tensord it then follows
that the relevant stress tensor elementTzzsr ,r d in the inter-
space 0,z,dj can be given in the form of

Tzzsr ,r d = −
"

8p2E
0

`

dv cothS "v

2kBT
D

3 ReE
0

`

dqq
m jsvd

b jsv,qd
gjsz,v,qd s75d

sq= uqud, where the functiongjsz,v ,qd, which in general de-
pends on the positionz within the interspace, reads

gjsz,v,qd = 2fb j
2s1 + nj

−2d − q2s1 − nj
−2dgDjs

−1r j+
s r j−

s e2ib jdj

+ 2fb j
2s1 + nj

−2d + q2s1 − nj
−2dgDjp

−1r j+
p r j−

p e2ib jdj

− sb j
2 + q2ds1 − nj

−2dDjs
−1fr j−

s e2ib jz + r j+
s e2ib jsdj−zdg

+ sb j
2 + q2ds1 − nj

−2dDjp
−1fr−

pe2ib jz + r j+
p e2ib jsdj−zdg,

s76d

with the definitions

nj
2 = nj

2svd = « jsvdm jsvd, s77d

b j = b jsv,qd = sv2nj
2/c2 − q2d1/2, s78d

Djs = Djssv,qd = 1 − r j+
s r j−

s e2ib jdj . s79d

Note that the equationsDjssv ,qd=0 determine, for realq,
the frequencies of the guided waves in the planar structure,
which are of major interest in all “mode summation” ap-
proaches.sIn the presence of material losses, however, these
waves have complex frequencies and are not ordinary normal
modes.d For practical reasons, it may be advantageous to
transform the integral over real frequencies in Eq.s75d into
an integral along the imaginary frequency axis by means of
contour integral techniquesfcf. Eqs.s55d and s57dg. In par-
ticular, in the zero-temperature limit, Eq.s75d may be rewrit-
ten as

Tzzsr ,r d =
"

8p2E
0

`

djE
0

`

dqq
m jsijd

ib jsij,qd
gjsz,ij,qd. s80d

From the derivation it is obvious that the stress formula
s75d ftogether with Eq.s76dg allows for an arbitrary linear,
causal interspace medium. By contrast, Minkowski’s stress
tensorfEq. s17dg leads tof4,27g sm j ;1d

Tzz
sMdsr ,r d = −

"

2p2E
0

`

dv cothS "v

2kBT
D

3 ReE
0

`

dqqb j o
s=s,p

r j+
s r j−

s e2ib jdj

Djs
. s81d

From Eq.s76d it is easily seen that for an empty interspace,
i.e., « j =m j =1, gjsz,v ,qd becomes independent ofz and sim-
plifies to

gjsz,v,qd → gjsv,qd = 4b j
2 o

s=s,p

r j+
s r j−

s e2ib jdj

Djs
. s82d

In this case, andonly in this case, Eq.s75d reduces to Eq.
s81d, from which in the case of semi-infiniteshomogeneousd
dielectric walls Lifshitz’s well-known formulaf35g can be
recovered. As already mentioned, formulas of the type of Eq.
s81d fwhich need not necessarily be derived within the stress
tensor approach to the Casimir forceg have been claimed to
apply also to the case where the interspace is filled with
dielectric materialf3,5g, at least if the material is nonabsorb-
ing f4g ssee also the textbooksf6–8g and references thereind.
SinceTzz

sMdsr ,r d does not depend on the positionz within the
interspace, application of Eq.s81d implies the very paradoxi-
cal result that the force acting on any slice of material se-
lected within the interspace vanishes identically, regardless
of the presence and arrangement of the remaining material
sin particular, regardless of the yet unspecified wallsd. This
unphysical result clearly shows that Eq.s81d cannot be valid
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if the interspace is not empty, not even if it may be justified
to regard the interspace medium as nonabsorbing. In con-
trast, the stressTzzsr ,r d obtained from Eq.s75d ftogether
with Eq. s76dg is not uniform within an interspace if the
interspace is filled with a medium. Hence it gives rise, in
general, to a nonvanishing force on a slice of interspace ma-
terial, and no paradox appears.

Let us return to the stress formulas75d ftogether with Eq.
s76dg. It is not difficult to see that, for a nonempty interspace,
the q integral in Eq.s75d fails to converge atz=0 andz=dj,
i.e., on the interfaces where the different materials are in
immediate contact with each other. Mathematically, the rea-
son for this divergence can be seen in the fact that the reflec-
tion coefficients obtained under the assumption ofinfinite
lateral extension of the system do not approach zero asq
tends to infinity. However, large values ofq correspond to
very oblique traveling waves. In any real planar setup of
finite lateral extension, such high-q waves clearly do not
contribute to theq integral at all; they are not reflected but
walk off instead. Note that a divergence of exactly the same
type already appears also in the standard case of an empty
interspace in the limitdj →0. In order to sapproximatelyd
take into account the finite lateral extension of an actual pla-
nar setup, an appropriately chosen cutoff valuesdepending
on the lateral system sized for the reflection coefficients at
high q values could be introduced, thereby rendering theq
integral finite. Of course, a more satisfactory approach would
be to abandon the translational invariance from the outset,
which, however, leads to serious mathematical difficulties
since waves with different polarizations and transverse wave
vectors are then no longer decoupled.

Since, according to Eq.s15d, the Casimir force acting on a
body is given by the integral of the stress tensor over the
surface enclosing the body, the stress tensor on its own is of
less importance. What is really important is the integral force
value over a closed surface. To obtain the forcesper unit
aread acting on asmultilayeredd plate of infinite lateral ex-
tension, the stress on the two sides of the plate must be taken
into account. As the example in Sec. V B shows, it may then
happen that the parts of the stress tensor that diverge when
the plate is approached from the two sides cancel each other
out. In such a case, the Casimir forcesper unit aread on a
plate remains well defined even if its lateral extension is
assumed to be infinite.

B. Casimir force on a plate in a nonempty cavity

In order to make contact with recent work on the Casimir
force on bodies embedded in mediaf4g, let us calculate the
force acting at zero temperature on a homogeneous plate in a
nonempty planar cavity, according to the five-region setup as
sketched in Fig. 1. The cavity walls are labeled byl =0 and
l =4, the plate byl =2, and the cavity regions that are filled
with the medium the plate is embedded in are labeled byl
=1 and l =3, with «svd;«1svd=«3svd and msvd;m1svd
=m3svd. The total svolumed force per unit transverse area
acting on the plate can be obtained bysvectoriald addition of
the two force contributions from the two sides of the plate.
Application of Eq.s80d then yields the total force per unit
transverse area in the form of

F =
"

8p2E
0

`

djE
0

`

dqq
msijd

ibsij,qd
fg3s0,ij,qd − g1sd1,ij,qdg

s83d

fbsij ,qd;b1sij ,qd=b3sij ,qdg.
For a quantitative comparison with specific results ob-

tained in Ref.f4g on the basis of Minkowski’s stress tensor,
we make the following simplifying assumptions. We assume
thatsid all the reflection coefficients can be regarded as being
almost constant, andsii d the reflection coefficientsr1+

s andr3−
s

can be approximated by thessamed single-interfacesFresneld
reflection coefficient r1/2

s . Physically, these assumptions
mean thatsid the distancesd1 andd3 between the plate and
the cavity walls must not be too small, andsii d the plate must
be thick enough. Moreover, the approximation scheme im-
plies that the permittivity and the permeability of the me-
dium the plate is embedded in can be replaced with their
static values briefly referred to as« andm in the following,
with n=Î«m being the static refractive index. From Eq.s76d
it then follows that the difference of the functionsg3s0,ij ,qd
and g1sd1, ij ,qd appearing in Eq.s83d can be approximated
according to

g3s0,ij,qd − g1sd1,ij,qd

. o
s=s,p

H2S 1

D3s

−
1

D1s
DFb2S1 +

1

n2D
+ Dsq2S1 −

1

n2DG + Dssb2 + q2dS1 −
1

n2D
3 F r1/2

s + r3+
s e2ibd3

D3s

−
r1/2

s + r1−
s e2ibd1

D1s
GJ s84d

sDs=dsp−dssd, where

FIG. 1. Homogeneous plate embedded in a nonempty cavity.
The cavity medium on the right and left sides of the plate is the
same.
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r3+
s e2ibd3

D3s

−
r1−

s e2ibd1

D1s

=
1 − D3s

r3−
s D3s

−
1 − D1s

r1+
s D1s

.
1

r1/2
s S 1

D3s

−
1

D1s
D . s85d

Substituting Eq.s84d together with Eq.s85d into Eq.s83d, we
sapproximatelyd obtain

F =
"

8p2E
0

`

djE
0

`

dqq
m

ib o
s=s,p

S 1

D3s

−
1

D1s
D

3 H2b2S1 +
1

n2D − Ds

j2

c2sn2 − 1dSr1/2
s +

1

r1/2
s D

+ 2Dsq2S1 −
1

n2DJ . s86d

From an inspection of Eq.s86d it is seen that there is no
divergence; the integrals are well behaved. It is worth noting
that even without application of the approximation scheme,
the integrals in the basic formulas83d do not diverge. The
reason is that, for a chosen value ofj, the coefficients
r3−

s sij ,qd and r1+
s sij ,qd tend exponentially to the same

single-interface Fresnel coefficientr1/2
s sij ,qd as q goes to

infinity, as may be seen from relations like

r1+
s =

r1/2
s + e2ib2d2r2+

s

1 + r1/2
s e2ib2d2r2+

s → r1/2
s if q → `, s87d

r3−
s =

r3/2
s + e2ib2d2r2−

s

1 + r3/2
s e2ib2d2r2−

s → r3/2
s if q → ` s88d

together with the relationr3/2
s =r1/2

s svalid for arbitrary values
of j andqd. Note thatib2→−` if q→`. As a consequence,
the divergent contributions to theq integral in Eq. s83d,
which would arise fromg3s0,ij ,qd and g1sd1, ij ,qd sepa-
rately, combine in a convergent fashion. Thus, for the setup
under study, aq cutoff need not be introduced.

Let us return to Eq.s86d. If the two walls and the plate are
almost perfectly reflecting, i.e.,r1−

s . r3+
s .Ds, r1/2

s .Ds, then
standard evaluation of the integrals leads tosn=Î«md

F =
"cp2

240
Îm

«
S2

3
+

1

3«m
DS 1

d3
4 −

1

d1
4D . s89d

In particular, if only one wall is present, say the left one, then
Eq. s89d reduces tosd3→`, d1;dd

F = −
"cp2

240
Îm

«
S2

3
+

1

3«m
D 1

d4 , s90d

which is the generalization of Casimir’s well known formula
f36g for the force between two almost perfectly reflecting
plates separated by vacuumfm=«=1 in Eq.s90dg to the case
where the interspace between the plates is filled with a me-
dium of static permeabilitym and static permittivity«.

In order to compare Eq.s89d with the force formula ob-
tained on the basis of Minkowski’s stress tensor, we note that
the use of Minkowski’s stress tensor for a nonmagnetic me-
dium leads tofsee Eqs.s3.6d and s3.7d in Ref. f4gg

FsMd = −
"

p2E
0

`

djE
0

`

dqqibS 1

e−2ibd3 − 1
−

1

e−2ibd1 − 1
D
s91d

in place of Eq.s86d with m=1. For an almost perfectly re-
flecting plate in a cavity with almost perfectly reflecting
walls, standard evaluation of the integrals in Eq.s91d then
yields, in place of Eq.s89d,

FsMd =
"cp2

240

1
Î«

S 1

d3
4 −

1

d1
4D , s92d

which in the limit d3→` reduces tosd1;dd

FsMd = −
"cp2

240

1
Î«

1

d4 . s93d

Note that Eq.s93d corresponds to the result derived in Ref.
f37g by means of mode summation methods. Comparing Eq.
s89d with Eq. s92d for Eq. s90d with Eq. s93dg, we see that

uFu ø uFsMdu, s94d

i.e., the absolute value of the force issn.1d always smaller
than that predicted from Minkowski’s stress tensor. Introduc-
tion of a spolarizabled medium into the interspace is obvi-
ously associated with some screening of the plate, thereby
reducing the force acting on it. Since the internal charges and
currents of the interspace medium are not fully taken into
account in a theory that is based on Minkowski’s stress ten-
sor or an equivalent formalism, the screening effect is under-
estimated and consequently the force calculated in this way
is overestimated. Although the assumptions made to derive
the results given above are rather restrictive, the comparison
of Eq. s89d with Eq. s92d clearly shows that the correct in-
clusion of the medium into the theory can give rise to no-
ticeable effectsssee Fig. 2d.

A consequence of the approximation scheme employed in
this section is the appearance of the real values of the static
permittivity and the static permeability of the interspace ma-
terial in Eq. s89d. However, the basic Eq.s83d is of course
valid for arbitrary linear magnetodielectric media with
Kramers-Kronig consistent permittivities and permeabilities.
The influence of material dispersion and absorption comes
into play when the distancesd1 and/ord3 are decreased. The
behavior of the permeability and the permittivity at nonzero
frequencies becomes then important.

VI. SUMMARY AND CONCLUSIONS

On the basis ofsid the quantized macroscopic electromag-
netic field in the presence of causal linear magnetodielectric
media without spatial dispersion andsii d the Lorentz force
acting on the internal charges and currents of the medium,
we have derived general expressions for the Casimir force
acting on magnetodielectric bodies embedded in a common
magnetodielectric medium. All the matter has been allowed
for being dispersing and absorbing. Specializing to planar
structures, we have generalized Lifshitz-type formulassbeing
valid for empty interspacesd to the case where the interspaces
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are filled with a magnetodielectric medium. In this context,
we have analyzed the failure implied by basing the calcula-
tion of the Casimir force on Minkowski’s stress tensor—a
method that has been used in the literature but has never
been proven correct. Interestingly, Lifshitz himself did not
address nonempty interspaces in his seminal articlef35g.

For comparison reasons, we have studied in some detail
the Casimir force acting on a homogeneous plate embedded
in a medium in a planar cavity. Applying standard approxi-
mations such as high reflection, we have explicitly demon-
strated that when the plate is embedded in a medium, then
the force can noticeably differ from the result obtained on the
basis of Minkowski’s stress tensor. By the way, we have
given the correct extension of Casimir’s original formula for
the force between two perfectly reflecting plates to the case
where the interspace between the plates is filled with a me-
dium.

In order to make contact with microscopic theories, we
have also described the matter microscopically, by employ-
ing the model of damped harmonic oscillators, which is
widely used for treating dielectric matter. Solving the
quantum-mechanical equations of motion of the overall sys-
temswith the heat bath assumed in its ground stated, we have
calculated the Lorentz force acting on a chosen matter ele-
ment. The result obtained in this way exactly corresponds to
the general result obtained from the macroscopic approach.
This clearly shows that the use of Minkowski’s stress tensor
to calculate the Casimir force is wrong in general, even if the
matter may be regarded as being nonabsorbing.

Note added. Instead of Eq.s84d, it may be advantageous
to use the exact equation

g3s0,ij,qd − g1sd1,ij,qd

= o
s=s,p

H2Fb2S1 +
1

n2D + Dsq2S1 −
1

n2DGrs

+ Dssb2 + q2dS1 −
1

n2Ds1 + rs2 − ts2dJ
3

r3+
s e2ibd3 − r1−

s e2ibd1

Ns , s95d

where

Ns = 1 − rssr1−
s e2ibd1 + r3+

s e2ibd3d + srs2 − ts2dr1−
s r3+

s e2ibsd1+d3d,

s96d

with rs; r1/3
s =r3/1

s andts; t1/3
s = t3/1

s being single-plate reflec-
tion and transmission coefficients, respectively. We thank
Marin-Slobodan Tomaš for this suggestion.
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APPENDIX A: PROOF OF EQS. (41)–(44)

Using Eqs.s24d–s26d, we expressr̂I sr ,vd and ĵIsr ,vd as
defined by Eqs.s39d and s40d, respectively, in terms of
ĵINsr ,vd to obtain

r̂I sr ,vd =
iv

c2 =E d3r8Gsr ,r 8,vdĵINsr 8,vd, sA1d

ĵIsr ,vd = S= 3 = 3 −
v2

c2 D E d3r8Gsr ,r 8,vdĵINsr 8,vd.

sA2d

By combining Eqs.s27d, s34d, and s35d with the standard
bosonic commutation relations for the fundamental fields

f̂lsr ,vd and f̂l
†sr ,vd, it is not difficult to show thatĵINsr ,vd

and ĵIN
† sr ,vd obey the commutation relation

f ĵINksr ,vd, ĵINl
† sr 8,v8dg

=
"

m0p
dsv − v8dFv2

c2
ÎIm «sr ,vd

3dsr − r 8dÎIm «sr 8,v8d + = 3 ÎIm ksr ,vddsr − r 8d

ÎIm ksr 8,v8d 3 =ª 8G
kl

. sA3d

From Eqs.s24d, s25d, sA1d, andsA2d together with the com-
mutation relationsA3d, we derive, on recalling the Green-
tensor relationss31d and s32d,

FIG. 2. sad The Casimir forceF given by Eq.s89d ssolid curved
is shown as a function of the medium refractive indexn=Î«sm
=1d for chosen distancesd1 andd3. For comparison,FsMd given by
Eq. s92d sdashed curved is shown.sbd The ratioFsMd /F is shown as
a function of the medium refractive index.
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fr̂I sr ,vd,ÊI †sr 8,v8dg =
"

p

v2

c2 dsv − v8d = Im Gsr ,r 8,vd

= − fr̂I†sr ,vd,ÊI sr 8,v8dg, sA4d

f ĵIksr ,vd,B̂I l
†sr 8,v8dg

= −
"

p
dsv − v8dFS= 3 = 3 −

v2

c2 D
3Im Gsr ,r 8,vd 3 =ª 8G

kl

= − f ĵIk
†sr ,vd,B̂I lsr 8,v8dg, sA5d

fr̂I sr ,vd,B̂I †sr 8,v8dg

= −
"

p

iv

c2 dsv − v8d = Im G'sr ,r 8,vd 3 =ª 8

= fr̂I†sr ,vd,B̂I sr 8,v8dg, sA6d

f ĵIksr ,vd,ÊI l
'†sr 8,v8dg

= −
"

p
ivdsv − v8dFS= 3 = 3 −

v2

c2 D
3Im G'sr ,r 8,vdG

kl
= f ĵIk

†sr ,vd,ÊI l
'sr 8,v8dg, sA7d

where

G'sr ,r 8,vd =E d3sGsr ,s,vdd'ss− r 8d. sA8d

Note that in Eq.sA6d, G'sr ,r 8 ,vd may be replaced with

Gsr ,r 8 ,vd, because of the operation3=Q 8.
EquationssA4d and sA5d obviously imply the commuta-

tion relations

fr̂sr d,Êsr 8dg =E
0

`

dvE
0

`

dv8hfr̂I sr ,vd,ÊI †sr 8,v8dg

+ fr̂I†sr ,vd,ÊI sr 8,v8dgj = 0 sA9d

and

f ĵ ksr d,B̂lsr 8dg =E
0

`

dvE
0

`

dv8hf ĵIksr ,vd,B̂I l
†sr 8,v8dg

+ f ĵIk
†sr ,vd,B̂I lsr 8,v8dgj = 0, sA10d

and hence Eqs.s41d and s43d are seen to hold. Note in par-

ticular that the commutation relationfr̂sr d ,Ê'sr 8dg=0 is
valid. From Eqs.sA6d andsA7d, respectively, it follows that

fr̂sr d,B̂sr 8dg = −
2i"

pc2E
0

`

dvv = Im G'sr ,r 8,vd 3 =ª 8

sA11d

and

f ĵ ksr d,Êl
'sr 8dg

= −
2i"

p
E

0

`

dvvFS= 3 = 3 −
v2

c2 DIm G'sr ,r 8,vdG
kl

.

sA12d

To further evaluate the integrals in Eqs.sA11d andsA12d,
we recall the asymptotic behavior of«sr ,vd andksr ,vd for
largev in the upper half-plane, viz.,

«sr ,vd . 1 −
V«

2sr d
v2 , sA13d

ksr ,vd . 1 +
Vk

2sr d
v2 . sA14d

Substituting Eqs.sA13d and sA14d into Eq. s26d, we easily
see that the Green tensor asymptotically behaves like

Gsr ,r 8,vd . −
c2

v2dsr − r 8d sA15d

for large v in the upper half-plane. Thus, on recalling Eq.
s30d and the holomorphic behavior of the Green tensor, we
may evaluate the integral in Eq.sA11d to prove Eq.s42d,

fr̂sr d,B̂sr 8dg = −
"

pc2PE
−`

`

dvv = G'sr ,r 8,vd 3 =ª 8

= −
"

pc2E
C

dvv = G'sr ,r 8,vd 3 =ª 8

= − i" = d'sr − r 8d 3 =ª 8 = 0 sA16d

sP denotes principal valued. Here, we have replaced the prin-
cipal value integral along the real frequency axis by a con-
tour sCd integral over an infinitely large semicircle in the
upper half-plane and have used Eq.sA15d. Note that there is
no extra pole contribution fromv=0 f26g. To evaluate Eq.
sA12d, we take into account that, according to Eq.s26d, the
relation

S= 3 = 3 −
v2

c2 DIm G'sr ,r 8,vd

= ImHv2

c2 f«sr ,vd − 1gG'sr ,r 8,vd

+ = 3 f1 − ksr ,vdg = 3 G'sr ,r 8,vdJ sA17d

may be used on the realv axis. Inserting this relation into
Eq. sA12d and recalling general properties of«sr ,vd and
ksr ,vd, we see that the evaluation of Eq.sA12d can be done
in exactly the same way as the evaluation of Eq.sA11d.
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Thus, making use of Eqs.sA13d–sA15d, we derive

f ĵ ksr d,Êl
'sr 8dg = −

"

p
E

C

dvv
v2

c2 f«sr ,vd − 1gGkl
'sr ,r 8,vd

= i"V«
2sr ddkl

'sr − r 8d, sA18d

which is Eq.s44d.
For a consistency check of the commutation relation

sA18d, let us consider a set of atoms, with each of them
having one valence electronse, charge;m, massd. Let r A be
the sfixedd positions andŝA the relative coordinates of the
electrons. The microscopicselectrond current density is then
given by

ĵ sr d = eo
A

ṡ̂Adsr − r A − ŝAd. sA19d

By assuming minimal coupling and Coulomb gauge, the ca-
nonical momenta of the electrons commute with the vector

potential Âsr d, whose conjugate momentum field is

−«0Ê
'sr d. Hence, we derive

f ĵ ksr d,Êl
'sr 8dg = −

e2

m
o
A

dsr − r A − ŝAdfÂksr A + ŝAd,Êl
'sr 8dg

=
i"

«0

e2

m
o
A

dsr − r A − ŝAddkl
'sr A + ŝA − r 8d

=
i"

«0

e2

m
o
A

dsr − r A − ŝAddkl
'sr − r 8d. sA20d

In the macroscopic theory, the sum of thed functions in Eq.
sA20d is expected to be replaced according to

o
A

dsr − r A − ŝAd ° o
A

Dsr − r A − ŝAd, sA21d

where Dsr d is a well-behaved function with unit integral,
ed3rDsr d=1. Further, in order to produce reasonable coarse-
graining,Dsr d must be sufficiently flat so that the change of
Dsr d on atomic length scales can be regarded as being neg-
ligibly small. With theŝA acting on well localized electronic
bound states, we may hence write

Dsr − r A − ŝAd . Dsr − r Ad. sA22d

Thus,

o
A

Dsr − r A − ŝAd . o
A

Dsr − r Ad = hsr d, sA23d

wherehsr d is the number densityhsr d of the atoms, and the
macroscopic version of Eq.sA20d reads

f ĵ ksr d,Êl
'sr 8dg =

i"

«0

e2

m
hsr ddkl

'sr − r 8d. sA24d

From a comparison of Eq.sA24d with Eq. sA18d, the relation

V«
2sr d =

e2hsr d
«0m

sA25d

is suggested to be valid, which is in full agreement with the
harmonic-oscillator model permittivity given by Eq.s71d.

APPENDIX B: QUANTUM LORENTZ FORCE

Using Maxwell’s equationss1d–s4d spromoted to operator
equationsd together with the commutation relationss41d and
s43d and relations of the type

Êsr d 3 f= 3 Êsr dg = − f= 3 Êsr dg 3 Êsr d

= = F1

2
Êsr dÊsr d − Êsr d ^ Êsr dG

− f=Êsr dgÊsr d, sB1d

we derive

r̂sr dÊsr d + ĵ sr d 3 B̂sr d − f=T̂sr ,r 8dgr8=r − f=8T̂sr ,r 8dgr8=r

= «05
]

]t
fB̂sr 8d 3 Êsr dgr8=r ,

−
]

]t
fÊsr d 3 B̂sr 8dgr8=r ,6 sB2d

where

T̂sr ,r 8d = «0FÊsr d ^ Êsr 8d −
1

2
1 Êsr dÊsr 8dG

+ m0
−1FB̂sr d ^ B̂sr 8d −

1

2
1 B̂sr dB̂sr 8dG sB3d

is a reciprocal operator function of two spatial variables,

T̂sr ,r 8d = T̂Tsr 8,r d, sB4d

because of the commutation relations

fÊsr d,Êsr 8dg = 0 = fB̂sr d,B̂sr 8dg. sB5d

Since the left-hand side of Eq.sB2d is Hermitian, so is either
of the two alternative right-hand sides, which means that
symmetrization is not necessary. Thus, Eq.s11d is also valid
as an operator equation, and the steady-state Eqs.s15d and
s16d apply, with the stress tensor being defined by Eq.s54d in
the limit r 8→ r .

To perform the limit, we write the force acting on some
space regionV in the form of

F = lim
e→0
E

V

d3r E d3r8desr − r 8d

3 hf=Tsr ,r 8dg + f=8Tsr ,r 8dgj, sB6d

wheredesr −r 8d approachesdsr −r 8d as e tends to zero. For
instance, one could choose

desr d = s4pe2d−1dsur u − ed, sB7d

which corresponds to an average over a spherical surface of
radiuse. Let us first consider the case in which the material
properties are homogeneous everywhere, except at the sur-
face of the volumeV, where they may change abruptly. The
function Tsr ,r 8d can then be uniquely decomposed into a
bulk part, which is divergent atr 8=r , and a scattering part,
which is well behaved atr 8=r , and we may write
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=Tsscatdsr ,r d = f=Tsscatdsr ,r 8dgr8=r + f=8Tsscatdsr ,r 8dgr8=r .

sB8d

For the scattering part, the limite→0 simply restores thed
function, so Eq.sB6d becomes

F =E
V

d3r = Tsscatdsr ,r d + lim
e→0
E

V

d3r E d3r8desr − r 8d

3hf=Tsbulkdsr ,r 8dg + f=8Tsbulkdsr ,r 8dgj. sB9d

The second term on the right-hand side of Eq.sB9d, which
arises from the bulk part, vanishes, as can be seen from the
following argumentf39g. Since the bulk part is a function of
r −r 8, it follows that

E
V

d3r E d3r8desr − r 8d = Tsbulkdsr ,r 8d = Vbsed,

sB10d

whereb is some vector that depends only on the parametere,
and in this way selects, somewhat artificially, a particular
direction in space. However, the bulk part corresponds to a
setup where the whole space is filled with homogeneous and
isotropic material, implying that such a preferred direction
does not exist, and we can conclude that lime→0bsed=0. To
apply the divergence theorem to the first term on the right-
hand side of Eq.sB9d and transform the volume integral into
a surface integral, we note that if the material properties
change discontinuously at the surface]V of the chosen vol-
umeV fcf. Eqs.s39d and s40dg, thenTsscatdsr ,r d is also dis-
continuous there. In view of the macroscopic description, it
is clear that the material properties can be regarded as chang-
ing continuously across a sufficiently thin boundary layer. To
include the net change across such a boundary layer, the
“outer” values of the integrand should be takensindicated by
]V+d,

F =E
]V+

daTsscatdsr ,r d. sB11d

In order to establish the validity of Eq.sB11d for the more
general case of varying material properties inside the chosen
space regionswhose vicinity is again assumed to be homo-
geneousd, one has to return to Eq.sB6d and decomposeV
including a thin boundary layer as described above into suf-
ficiently small, nonintersecting cellsVi. Summing over all
cells, one can then show, by using similar arguments as
above, that in the limit of vanishingly small cells,Vi →0, Eq.
sB11d is obtained.

APPENDIX C: PROOF OF EQS. (69) AND (70)

Combination of Eq.s58d with Eq. s59d yields the second-
order differential equation

ms̈̂sr ,td = − mv0
2ŝsr ,td − mgṡ̂sr ,td + eÊsr ,td + F̂Nsr ,td,

sC1d

and combination of Eq.s60d with Eqs.s61d ands62d leads to

1

c2

]2

]t2
Êsr ,td + = 3 = 3 Êsr ,td = − em0hsr ds̈̂sr ,td.

sC2d

We are interested in the solution to Eqs.sC1d andsC2d which
is reached in the limitt→`, thereby being independent of
the initial conditions. We may represent it in terms of Fourier
integrals according to

fstd =E
−`

`

dve−ivt fIsvd ⇔ fIsvd =E
−`

` dt

2p
eivt fstd. sC3d

Note that thev integrals should be treated as principal value
integralsswith respect tov=0d if necessary. From Eqs.sC1d
and sC2d it follows that the Fourier transformsŝIsr ,vd and

ÊI sr ,vd of ŝsr ,td andÊsr ,td, respectively, are determined by

ŝIsr ,vd = fmv0
2 − mv2 − imgvg−1fF̂I Nsr ,vd + eÊI sr ,vdg

sC4d

and

= 3 = 3 ÊI sr ,vd −
v2

c2 ÊI sr ,vd = em0hsr dv2ŝIsr ,vd.

sC5d

SubstitutingŝIsr ,vd from Eq. sC4d into Eq. sC5d and rear-
ranging, we obtain

= 3 = 3 ÊI sr ,vd −
v2

c2 «sr ,vdÊI sr ,vd = im0vĴINsr ,vd,

sC6d

where«sr ,vd, which is given by Eq.s71d, defines the per-
mittivity of the harmonic-oscillator medium, and

ĴINsr ,vd = −
iv«0

e
f«sr ,vd − 1gF̂I Nsr ,vd sC7d

is the current density associated with the Langevin force. The
unique inversion of Eq.sC6d is

ÊI sr ,vd = im0vE d3r8Gsr ,r 8,vdĴINsr 8,vd, sC8d

whereGsr ,r 8 ,vd is the Green tensor that, forksr ,vd=1 and
«sr ,vd from Eq. s71d, solves Eq.s26d together with the
boundary condition at infinity.

To prove Eq.s69d, we write

lim
t→`

kÊsr ,td ^ Êsr 8,tdl = lim
t→`
E

−`

`

dvE
−`

`

dv8e−isv+v8dt

3kÊI sr ,vd ^ ÊI sr 8,v8dl, sC9d

where, according to Eq.sC8d ftogether with Eq.s31dg,
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kÊI sr ,vd ^ ÊI sr 8,v8dl

= − m0
2vv8E d3sE d3s8Gsr ,s,vd

3 kĴINss,vd ^ ĴINss8,v8dlGss8,r 8,v8d. sC10d

If the heat bath is in the vacuum state, then

kF̂I Nsr ,vd ^ F̂I Nsr 8,v8dl

=
mg"

phsr d
dsr − r 8dE

0

`

dv9v9dsv9 − vddsv9 + v8d

sC11d

holds f28g, and we find, on recalling Eq.sC7d,

kĴINss,vd ^ ĴINss8,v8dl = −
vv8«0

2

e2 f«ss,vd − 1gf«ss8,v8d − 1g

3
mg"

phssd
dss− s8dE

0

`

dv9v9

3dsv9 − vddsv9 + v8d. sC12d

Combining Eqs.sC9d, sC10d, andsC12d, we derive

lim
t→`

kÊsr ,td ^ Êsr 8,tdl

=
mg"

pe2c4E
0

`

dvv5E d3sGsr ,s,vd

3
f«ss,vd − 1gf«ss,− vd − 1g

hssd
Gss,r 8,− vd. sC13d

From Eq.s71d it follows that the relation

f«ss,vd − 1gf«ss,− vd − 1g
hssd

=
e2

«0mg

Im «ss,vd
v

sC14d

is valid for realv. Hence, we may rewrite Eq.sC13d as

lim
t→`

kÊsr ,td ^ Êsr 8,tdl =
"m0

p
E

0

`

dv
v4

c2 E d3sGsr ,s,vd

3Im «ss,vdGss,r 8,− vd, sC15d

which by means of Eqs.s30d ands32d eventually leads to Eq.
s69d.

To calculate

lim
t→`

kB̂sr ,td ^ B̂sr 8,tdl = lim
t→`
E

−`

`

dvE
−`

`

dv8e−isv+v8dt

3kB̂I sr ,vd ^ B̂I sr 8,v8dl, sC16d

we express kB̂I sr ,vd ^ B̂I sr 8 ,v8dl in terms of kÊI sr ,vd
^ ÊI sr 8 ,v8dl, by using Eq.s61d in the Fourier domain,

B̂I sr ,vd = sivd−1 = 3 ÊI sr ,vd. sC17d

By means of Eqs.sC10d, sC12d, and sC14d ftogether with
Eqs.s30d and s32dg it is now not difficult to prove Eq.s70d.
Note that there are no problems atv=0.
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