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Characterization of nonclassical optical fields by photodetection statistics

B. Picinbond and C. Bendjaballdh
Laboratoire des Signaux et Systémes, Ecole Supérieure d’Electricité, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France
(Received 2 September 2004; published 18 January)2005

Experiments on nonclassical optical fields have recently been performed. One of the main properties re-
ported is the antibunching effect of photoelectrons, a property that cannot be explained in the framework of the
classical theory of optical fields. By carefully studying the random point process of the detection of the optical
field, we show that bunching and antibunching effects can be fully explained by a concidence function. In the
classical theory, this function is a correlation function which introduces necessarily a bunching effect. But this
coincidence function has no reason to be in any case a correlation function. Therefore antibunching effects can
simply be derived from the properties of the coincidence function. After having given a precise definition of
this coincidence function, some of its properties are discussed and especially its relationship with bunching and
antibunching effects. Similarly, its relationship with statistical properties of lifetimes and intervals between
points of the process is established. Various examples are presented and analyzed. Several calculations and
computer simulations highlight the theoretical results.
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I. INTRODUCTION However, the mathematical description of the PP’s intro-

In the analysis of optical fields by photodetection experi-duced_by such fields is not a_lways satisfactory and introo!uces
ments, the only available information is the set of time in-Sometimes some contradictions. Thus the purpose of this pa-
stants{t;} at which photons are transformed into photoelec-Per is to clarify some of these questions.
trons. These instants are usually randomly distributed and AS the bunching or antibunching effects of photoelectrons
constitute a point proces$®P [1-3]. Therefore the basic are observed by coincidence devices with two photodetec-
problem in photodetection experiments is to extract som&ors, a particular attention is devoted in Sec. Il to bicoinci-
properties of the optical field from the analysis of this PP. dence functions describing these effects. One of the most

This was already the point of view of Blanc-Lapierre important points exhibited is that these bicoincidence func-
60 years ago in his study of the shot noise generated frortions which look like correlations functions are not correla-
low-intensity optical field§4]. Because of the limitations of tion functions as frequently assumed. Section IlI is devoted
experimental devices at that time, it was shown that there igo the analysis of classical optical fields or to the analysis of
no memory effect and the consequence is that the photod€PP. The purpose is to present some characteristic properties
tection PP is a Poisson process. Similar results were obtainest such PP’s in such a way that violation of at least one of
by Rice at the same tim&]. them leads to the conclusion that the optical field is not clas-

Twenty years after, the realization of the laser stimulated a&ical. The results of experiments concerning nonclassical op-
new interest in these problems. Indeed natural and laseical fields are discussed in Sec. IV. In the last section we
lights do not exhibit the same PP’s in photoelectron experipresent some results of experiments concluding with non-
ments. There were a great number of experiments to verifglassical behavior and this discussion leads to a more careful
this fact and reviews of these studies can be found@#8|.  analysis of some PP’s.

In particular thebunching effecof photoelectrons was dis-

covered 9], showing that the PP is not a Poisson process but

a compound Poisson proce@SPB, introduced empirically Il. COINCIDENCE AND BUNCHING FUNCTIONS
by Mandel[10].

Some years later, this result was shown by Glauber in hi
famous papers on quantum theory of optical detectio o L
[11,12. Inppgrticular thqe bunching effe)(/:t of phF())toeIectrons oféqualto the number of pomts in the tm’_ne interifat + 7). We
classical optical fields appears as a direct consequence of tR§SUMe that this process is regular—i.e., that there is no ac-
fact that such fields generate a CPP. cumu!anon point. This means that a small interval cannpt

These papers and some others introduced the possibili§PNtain more than one point of the process or, more explic-
of nonclassical optical fields and in particular of fields intro- Ity that
ducing anantibunching effectThus the door was open to PIN(t,At) > 1] = o(At), (2.1
realize such nonclassical optical fields and various results
were published13,14.

Consider a time PP, which is a random distribution of
Ime instants;, and letN(t, 7) be the random variabléRV)

PIN(t,At) = 1] = A () At + o(At), (2.2)

whereP means the probability anki(t) is the densityof the

*Electronic address: Bernard.Picinbono@Iss.supelec.fr PP. As a consequence we hagN(t,At)=0]=1-A(t)At
"Electronic address: Cherif.Bendjaballah@Iss.supelec.fr +0(At). If \(t) is constant, the process is said todiation-
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ary, and this is assumed in all what follows. Let us now=1]. This does of course not appear in the case of a Poisson
introduce the concept of the coincidence function of a PP. PP, because the fundamental property of Poisson processes is
to be memoryless.

However, since the fact that there is a point=a0 is not

o ) a statistical event, we shall introduce a small intervtl at

than twg small time intervals at different time instants. A

coincidence event is characterized by the fact that there is IA:(t,At,At’) 2 P{[N(t,At) = 1][[N(0,At") = 1]}. (2.7
one point of the PP in each of these intervals. In what follows ) ) ) o ) )
we restrict the ana|ysis to bicoincidence described hD.p.a The bunChIng eﬂ:ect IS deSCI’Ibed by the I|m|t Of th|5 fUnCt|On

A. Coincidence

incidence functiony(t,t’), t#t’, defined by whenAt’—0 or
P{IN(t,At) = 1][N(t',At") = 1]} = y(t, ") AtAt’ + o(At,At"). F(t,At) = lim IE(t,At,At’). (2.9
(2.3 At’io
Since the PP is stationary, this coincidence function only! N€ conditional probability=(t, At,At’) can be expressed as
d_epends onr=t-t’ and is equivalent to a functiod(-) de- R P{IN(t,Ab) = 1][N(0,At) = 1]}
fined for 7# 0 by F(t,At,At") = , (2.9

P{IN(0,At") = 1]}

c(n=c-n=ytt=7, 7#0. (24 and it results from Eqs(2.2) and (2.3) that F(t, At =b(t)At
In general the RV'IN(t,At) andN(t’,At’) become uncorre- with
lated for large values of, which is expressed as o)

lim c(7) = \2. (2.5) b(t) £ - (2.10

This bunching function &) has the same properties of the

On the other hand, as E.4) cannot be used for=0, we coincidence functiore(t), and especially E¢2.5) yields

state by definitiorc(0) =lim_q c(7).
Note that the basic property éfoisson processds that lim b(t) = \. (2.11)

the variablesN(t,At) and N(t’,At’) are independent. This to0

yields c(7)=\? for any 7 and this is the simplest example of

o ; For a Poisson procesk(t)=\. Then we shall say that there
coincidence function.

. , is a bunching effect dtif b(t) >\ and an antibunching effect
AC‘fOrd'”g o Eq. (2.1 the RV's N(t’At). .and N(t in the opposite case. Note that the bunching effect is not
-7, At) take only, the values 0 or 1 for sufficiently small \,ocassarily an intrinsic property of a PP because for the same
intervalsAt and At’, and this yields PP instants can exist with bunching effects and the other
E[N(t, ADN(t = 7,At')] = c(DALAY +0(At,At'), (2.6) with antibunching effects. Ib(t)>\ for anyt, we say that
the PP is of gpermanenbunching effect.
whereE means the expectation value. From this relation it

seems natural to identifg(7) to the correlation function of a
continuous time signal sometimes called intensity of the PP.
This is often dond15,16. However, it is important to note In counting experiments we study the statistical properties
that, despite the appearance in its definition, the coincidencef the RVN(t, T). In the stationary case, they are the same of
function c(7) is not a correlation functionindeed a correla- those of N(0,T). We shall now see that the second-order
tion functionr(7) must satisfy some constraints and, moreproperties can be deduced from the coincidence function in-
precisely, must be positive definite, which is characterized byroduced above.

the fact that its Fourier transforr&(f) is positive (power Consider a partition of the interv@D,T] in subintervals
spectrum. As a consequendg(7)| <r(0). This has no reason [t;,tj+At;]. Thus we can write

to be true forc(7) and there are various examples of PP

wherec(7)>c(0). It is even possible, as seen later, to have N(0,T) =2 N(t;, At), (212
PP’s for which there exists, such thatc(7)=0 for |7/ < 7. '

Furthermore, it can be shown thetr) is not arbitrary and and, passing to the limit\(0,T) is defined by the stochastic
must satisfy some conditions that will be discussed in anintegral
other paper.

C. Counting

T
N(O,T)=f dN(6), (2.13
B. Bunching effect 0

The coincidence function has a direct application in thewhere the incrementdN(6) are the RV'sN(6,d6).
description of théounching(or antibunching effect in a PP. We deduce from Eq(2.2) that E[dN(6)]=\d6, which
This effect is related to the fact that the presence of a point ofields the mean valud&[N(0,T)]=AT. Similarly we can
the process at=0 can modify the probabilityP[N(t,At)  write
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E. First-order approximation

In some specific situations it is possible to approximate
Eqg. (2.18 by its first term,b(t) = f4(t). In this case coinci-
For 6# ¢" we deduce from Eq(2.6) that E[dN(6)dN(6")]  dence measurements are equivalent to first-order lifetime
=c(f-6')dede’. But it is necessary to use an expressionmeasurements. Thus, instead of using a coincidence device,
valid for any 6, 6'. For this we note that it results from Egs. it is sometimes more appropriate to use a time to amplitude
(2.1) and (2.2 thatE[dN?*(6)]=\dé. This allows us to write  converter (TAC) to reach the coincidence functioa(t)
the complete expression [15-18.

e , , , Let us discuss some conditions allowing this approxima-

ELdN(O)AN(6")] = [c(6 - ') + A6 - 6)]d6de, tion. Let 7y be the radius of variation of the coincidence
(2.19  functionc(t). This means that for> 7, c(t) = A2, which, ac-
cording to Eq.(2.5), is its asymptotic value. For a stationary
PP the mean value of the distance between two points is the
inverse of the densityk. Then, if \7g<<1, the probability to
have more than one point in the interfal,t] with t<ry is
very low. As a consequence in the domain of variation(of
the bunching function is approximately equal to the PDF of
the lifetime of order 1. We shall see that there are PP’s where

T T
E[N?(0,T)] = f J E[dN(6)dN(¢")]. (2.14
0 0

where ¢(-) is the coincidence function ané(-) the Dirac
distribution. This must be inserted into E@.14) to obtain
E[N%(0,T)].

Actually we are more interested in the varianceNgd, T)
defined byo?=E[N?(0,T)]-EZN(0,T)]. It results from the
previous equations that this variance can be expressed as

gﬁl(T) =\T+g(T), (2.16) this can always be satisfied, and this especially the case of
- CPP’s. On the other hand, there are PP’s where this approxi-
where the functiorg is mation can never be used and this is discussed in the follow-

T T ing. As a consequence it must be pointed out that results of
g(T) :J f c(f- 6')dade’ — \?T2. (2.17 experiments involving classical6] and nonclassical states
o Jo of radiation as wel[15] must be carefully interpreted.

: (t)=)2 : ; _ In conclusion of this section we note that the coincidence
Eor P0|§son processesit) =%, which yleldsg(T) 0. We ._functionc(t) defined by Eq(2.4), which is not, in general, a

find again the well-known result that the variance of a Pois- . . :
son RV is equal to its mean. By convention we shall say tha?orrelanon function, allows one to calculate the bunching

. : ; effect and also second-order counting statistics of an arbi-
if g(T) <0 we have a sub-Poisson behavior and(if) >0 a . ;
super-Poisson behavior. Note that this propertyNe®,T) trary PP. Conversely this function can be deduced from the

can depend off and, as for the bunching effect, is not nec- PDF's of the various lifetimes of the process or from the

. Lo ©counting probabilities.
essarily an intrinsic property of the PP. Note also that while gp

the bunching effect is due to the behavior at two time in-
stantst; andt;, the variance corresponds to the whole interval
T.

Ill. PHOTODETECTION OF CLASSICAL OPTICAL
FIELDS: COMPOUND POISSON PROCESSES

As indicated previously, it results from the quantum
theory of optical detection that the PP appearing in classical
- _ ) fields is a compound Poisson process, sometimes called a

The lifetimeL of orderk is the RV equal to the distance doubly stochastic PE2,3]. This is the reason why such PP’s
between a point; of the PP and théth point of this process  4re sometimes called in what follows classical PP’s.
posteriq_r tot;. Because of the assumption of stationarity, the  These CPP’s have various specific properties analyzed be-
probability distribution ofi does not depend an and then |\, This introduces a possible test for deciding whether or
we can assume that=0. For all processes considered herenot 5 given optical fieldor a PR is classical. Indeed, if the
the RV's L are continuous and characterized by their prob-pp gptained from this field in photodetection experiments
ability distribution function(PDP) fi(t). The quantityf () At goes not satisfy at least one of these properties, it cannot be
is by definition the probability to have one point of the PP ing cpp, and the optical field analyzed cannot be classical.
[t,t+At] andk—-1 points in[0,t], conditionally to one point
att=0. But it results from Eq(2.10 thatb(t)At is the prob-
ability to have one point ifit,t+At] conditional to one point
at 0. As a result we have

D. Lifetimes

A. General properties

The CPP’s are Poisson PP’s in which the denkity is a
stationary random functiof3]. It can be denoted (t,w).
c(t) ” This means that for a given—say, og—the PP is a nonsta-
b(t) = N > (). (2.189  tionary Poisson process defined by the density wp).
k=l For classical optical fields it is possible to define a light
This equation yields the relationship between the coinciintensity I(t) which is a positive and, in general, random
dence functiorb(t) and the set of PDFE(t) of the lifetimes  function notedi(t, w). It results from the quantum theory of
of all orders. It is clear that it will play an important role for optical photodetection that for classical fields the PP of pho-
all processes defined from their lifetimes, especially renewalodetection is a CPP with a denskyt, w) proportional to the
processes. this light intensityl(t, w).
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For a givenw the coincidence function appearing in Eq.  Indeed we deduce from Eq§2.10 and (3.3) that b(t)
(2.3) becomes =(1/N)y()+\. Then the conditionb(t)>\ ensuring the
,o L , bunching effect is realized as soon ggt)>0. This can
Ct,t', ) =ML ML, 0), (3.1 appear for any value df and this is, for example, the case of
which is a conditional probability. By taking the expectation the exponential correlation function.
with respect tow, we obtain a marginal probability defining If that is not the case, then there existly gauch that there
the coincidence function by is a bunching effect for<t,. This results from the facts that
, , the correlation functiony,(7) is continuous, its maximum
c(t,t') = EINt o)A, w)]. (3.2 value is reached for=0, andy,(0) >0 because it is the
As it was assumed that(t) is stationary, this function de- variance of\(t).
pends only ort—t’. Let y,(7) be the correlation function of
A(t). Using this function in Eq(2.4) yields B. Modulation and first-order approximation

OERNGER S (3.3 Suppose that the random density characterizing a CPP can
be modulated or expressed X&) =aA(t) wherea is a non-
random constant related to a possible modulation effect. The
coincidence functiori3.3) can be expressed as

whereN=E[\(t)] is the mean value of(t), the density of the
PP. As a consequence we deduce Ef5 because it is
known that the correlation functiog(7) of an ergodic ran-
dom function tends to zero whertends to infinity. Inserting c(t) = a’[ya(t) + A?], (3.9

Eq. (3.3 into Eq. (2.17) yields where y,(t) andA are the correlation function and the mean

T (T , , value ofA, respectively.
a(m) =J f W06 )dedo’. (3.4 It is clear from this equation that it is always possible to

070 modulate the density of the process by varyimgvithout
As (1) is a positive definite function, this quantity is positive changing the shape of its coincidence function. This is called
whateverT is, and we conclude that a CPP is always ofan invariance by modulation. This invariance by modulation
Super-Poisson type In fag(T) has a physica' meaning and is in fact a test for classical fle|d:§.9,2(] It is eSpeCia”y
is simply the variance of the R\ygx(e)da. important for applying the first-order approximation intro-

Finally the life times used in E¢2.18 are the expecta- duced above. Indeed, as the densitys aA, it is always

tion values of the lifetimes of a nonstationary PoissonPOSSible to reach the conditior,<1 by using a sufficiently
process—i.e. small . In this operation the shape oft) given by Eq.(3.8)

does not change. However, this property has no reason to be
m(t)*? general. In particular, since a CPP yields necessarily a
k=1 (3.9 bunching effect, any PP with antibunching effect cannot be a
CPP one, and there is no reason to assume that the first
where approximation can be valid.
t Finally, we can state the question whether or not this in-
m(t) :J N 6)dé. (3.6)  variance by modulation is characteristic of a CPP. The an-
0 swer is certainly no, because we have only a second-order
property that is insufficient to define a PP. However, if this
invariance property is valid for any coincidence function de-
fined as Eq.(2.3) but with n arbitrary time instantgt;} in-
stead of 2, then the process is necessarily a CPP. We do not
) ) present here the proof of this result.
Because a CPP is always a super-Poisson process, we cangtarting from the PP generated by photodetection of an
deduce from Egs(2.5) and(3.4) that, for a CPP, we have  gptjcal field, two questions can be asked) Is the field
2 classical or not?b) If not, how does one determine some
on( >m™, 0T, 3.7 properties of the corresponding nonclassical PP and, espe-

1
fi(t) = X E [ exd — m(t) IN(0)A(t)

It results from these equations thga(0)=0 for k> 1. Let us
summarize some properties of CPP.

1. Counting

wherem(t) is the mean value df(t,T) equal to\T. cially, its bunching or coincidence function? The answers to
these question can be obtained from counting or from life-
2. Lifetimes times measurements or from a combination of the two.
The PDFf(t) for k>1 is zero fort=0 or f,(0)=0, be-
causem(0)=0. If a given PP does not satisff least oneof C. Counting experiments
these properties, it cannot be a CPP. For special states of light—e.g., squeezed states—several

photoncounting experiments have been performed to prove
the nonclassical character of these stdte®, for example,

A CPP has necessarily a bunching effect in the neighboureferences if13]).
hood of the origin, and this bunching effect can be perma- From these experiments, it can be shown that the condi-
nent. tion (3.7) is not satisfied and the conclusion is that the PP

3. Bunching effects
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cannot be classical. However, from this result only, it is im-edge of the PDF,(t) obtained by using a TAC.

possible to get some properties of this nonclassical PP. The Let us examine this point by analyzing the case of a re-
minimum work would be to present an analysisaif(T) in newal PP with a uniform distribution. Such a process is char-
terms of T and use Eqs(2.16 and (2.17) to obtain some acterized by the fact that the distandgsi) between succes-
information about the coincidence functi@(t) which de- sive points are independent and identical distributkD )

scribes the second-order properties of the PP. RV’s. Thus their common PDF functiofy(t) defines com-
pletely the PP.
D. Lifetime experiments Because of thindependencef the successivi, (i), their

I I . , sum, which yields higher-order lifetimes, is given by the
The principle of the lifetime experiments is based on theconvolution(denoted by asterisks

utilization of TAC devices. The output of these devices de-

livers the time distances between successive points. These O =@ *f0) = ... * ft) & ).

time distances are then treated by a multichannel analyzer, T (3.9

for example, or processed with a computer. Finally, the result ) ] ]

is an estimation of 4(t), the PDF of the lifetime of order 1 !\Iote thgt in case thd(t) is exponential, the renewal process

introduced above. The experiments show that this function i§ @ Poisson process. . _

not maximum at the origin of time axis. Using the first-order  Suppose now thak, (lifetime of order 3 is uniformly

approximation introduced above, many authors conclude th&tistributed in a given interval. In this case the explicit ex-

f4(t) is an approximation of the coincidence function calledPression offy(t) is complicated, except fde=2 andk=3, but

correlation function in the discussion. Thus it seems that théhese convolutiong3.9) can easy be calculated numerically.

results of the experiments yield answers to the two questions More precisely, suppose that the PDF Lof is equal to

stated aboveta) The PP is not classicalb) Its coincidence 1/2a in the |n§erval[1—a,1+a]. and zero elsewhere. As a

function is measured and exhibits an antibunching effect. consequence its mean value is 1 for angnd the density
These two conclusions must be analyzed with some carsatisfiesn=1. Fora=1 we obtain a uniform d|str|but|or_1 in
(i) The PP is certainly not classical, but this conclusionthe interval[0,2]. On the contrary whem<1 the RVL, is_

can be obtained only by contradiction or by violation of at@lmost equal to 1, and this occurs for example in the jitter

least one of the properties of classical fields indicated aboveéffect in communication systems. .

For classical fields the first-order approximation is valid and Furthermore, itis easy to verify that the PDt) is sym-

the PDF of the first-order lifetime measured with a TAC metric with respect ta=k and equal to zero outside the

tends to the coincidence function which is a correlation funcinterval [k(1-a),k(1+a)]. As a consequence there is no

tion with a maximum at the origin. As this is not the case, theoverlapping betweerf,_,(t) and f(t) if (n—-1)(1+a)<n(1

PP is not classical. —a) or a<1/(2n-1). Finally, if a satisfies this inequality,
(i) On the other hand, the conclusion concerning the anthe PDF'sf,(t) do not overlap fo <k and there is an over-

tibunching effect, as indicated in the title of the paper, cannotapping effect if¢ > k.

be deduced from these experiments. Indeed, as the PP is not These properties appear clearly in Fig. 1. Figure 1.1 is

classicalsee(i)] the first-order approximation has no reasondrawn fora=1/3.There is no overlapping betwedpandf,

to be valid and there is no reason to deduce the coincidenand the four discontinuities appear clearly. Figures 1.2, 1.3,

function (and thus the antibunching effgainly from knowl-  and 1.4 are drawn foa=1/5,a=1/7, anda=1/9, respec-
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tively. In Fig. 1.4 there is no overlapping betwegn f,, f5, limit our aim to present only results of computer experi-
f4, andfg and there are five points of discontinuity. ments.
Note also that all these curves tend to the asymptotic
valuex =1 but the speed of convergence decrease avitfor
small values ofa there are some oscillations that disappear A. Definition of the model
whent increases and at the limit @=0 the RV's become | et y, be a sequence of IID positive random variables

instantsk. _ _ _ P. Let alsov; be sequence of 1ID random variables indepen-
Let us now present some propertieshf). It is possible  gent of theu;'s, and taking only the values 1 or O with the
to show that the derivative di(t) is continuous with respect probabilitiesp andq=1-p, respectively.

to time, except at points of the abscissa, alt+a,2 Consider the signat; defined by the recursion
-2a,2,2+2. For the particular valua=1/3, obtained from o
1+a=2-2a, there remain only four abscissa of discontinu- Xie1 = 0% + (L =0)U; = viX + vl (4.1

ity. There is of course an antibunchi_ng effect for small values1t is clear from this equation that the marginal PDF is com-
of t. However, it is not permanent since there are values of | v and is still f(t)
i .

whereb(t)>A=1. If p=0, %;1=U;, and these RV'’s describe the renewal PP

f:ﬁt us c;pmeltbfacklto trt]ﬁ ?liﬁsnt?n sLe}tedfat t?e beglnnlngefined byu;. If p#0, there exists a correlation between the
ot this section. TLIs ciear that the bunching function appear, ;’s and the corresponding correlation function can be calcu-

ing in Fig. 1 cannot be approximated by the first-order PD ated. Letm and o2 be the mean value and the variance

Which is the_rectangular function centered at 1 and appearingssociated witli(t), respectively. This means that the R's
also in the figure. are second order. The case whefeis not finite requires a

Similarly the conclusion on a bunching or antibunching o
effect cannot be deduced from the analysig,éf only, and sriaaetmﬂc treatment not presented here. It results fron{4d)

for enlightening this point we shall now present some theo-

retical results and computer experiments on some nonclassi- E[ X% ] = E[Xo(Vk-1Xk=1 + Uk1Ui-1) ]
cal PP’s. We do not claim that these PP’s correspond to spe- _ 5

cific optical fields, which is a question outside the scope of = PE[XpX-1] + (L = p)m”. (4.2)

this paper, and this is the reason to use the expressions pftroducing the correlation function defined byy,
classical or nonclassical PP’s. =E[XgX_1]— NP yields

Yirr = Py = 02 = o2plttl (4.3

because any correlation function is an even function. This
means that Eq(4.1) introduces an exponential correlation
Eunction whatever the PDIKt). Note that the correlated PP
is entirely defined byf(t) andp. In other wordsp introduces

a correlation in the starting renewal procésslefined byu;
without changing the marginal distribution of the lifetime.

IV. CORRELATED POINT PROCESSES

Let {t;} be the time instantéor pointg of a stationary PP
and x;=t;—t;_; the distance between successive points, 0
lifetime, also noted previously ds(i). The quantities are
the values of a stationary discrete tifi#T) positive random
signal. The relatiorx;=L4(i) means that the set of all station-
ary PP’s is equal to the set of all stationary positive random
signals, and this remark is the starting point of this section.

If the RV’s x; are independent, which means that the sig-
nal x; is a positive white noise, the corresponding PP is a As we are interested in the discussion of bunching and
renewal PP. If, moreover, the PDF of the RV,’SS exponen- antibunching effects in PP’s, we shall introduce a class of
tial, the PP is a pure Poisson process. PDF's depending on one parameteand including as a par-

Our purpose is to delete thessumption of independence ticular case the exponential distribution corresponding to
or to study some PP’s with correlated lifetimes. However, apure Poisson processes.
the property of noncorrelation is quite insufficient to define a The family of PDF's used below is introduced by the
random signal, we shall introduce a specific model of correfollowing argument. LetF(t) be an arbitrary distribution
lated PP’s including as a particular case the renewal profunction (DF). It is a nondecreasing function varying from 0
cesses and also the Poisson processes. to 1. The same property is valid fdfl"(t)=F'(t), which

This model is defined by two parameters. The first pne ensures that it is still a DF. But in this transformation there is
specifies the correlation function between the successive ir& shift of the possible values to the right. As an example, if
tervals of the PRlifetime of order 3. The latterr specifies F(\)=1 or if the RV X defined byF(-) satisfiesX<\, we
the marginal PDF of these intervals. obtain in the limitr—o the DF FIl(t)=u(t-\), which

By using this model, it is possible to obtain some analyti-means that the RX is almost surely equal ta.
cal expressions concerning the PDF's appearing in Egq. We shall apply this idea to the exponential distribution
(2.18. In this case we shall compare the results of computecharacterizing a pure Poisson process when the parameter
experiments with the relevant theoretical calculations. Inof the model4.1) is zero. The exponential DF of mean value
other cases calculations are almost impossible and we shdll\ is F(t)=1-exg-\t). The PDF associated witf{'(t) is

B. Distribution of the lifetime of order 1
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obtained by calculating its derivative, which yields the value Let us first indicate the general procedure of this calcula-

of the PDF of the first-order lifetime by tion. Letty be an arbitrary point of the PP. The Ry is the
e — 1 distancel ; betweenty and the first point, of the PP poste-
f17(0) = r[1 - exp= A)J"“Nexp(- M), (44 tior to t,. Similarly the distance., betweent, and thekth

These functions are displayed in Fig. 2 for1l and the Point of the PP posterior t@) is Ly=Xo*+X;+ "+~ +X1. The
following values ofr: 1.5, 2, 3, 4, 5, 6. The exponential functionf,(t) is the PDF ofL,.

distribution obtained for=1 is not represented in this figure. It results from Eq(4.1) thatx, takes two valueg, andug

The effect on the small values bfis evident and the maxi- With probabilitiesp and g, respectively. To each of these
mum is shifted to the right when increases. It is obvious Vvalues we can associate by the same procedure two values of

that the mean value, which has no simple analytical exprest- By repeating the procedure it is clear thgtL, takes 2
sion, is an increasing function of possible values which are sum of independent RV’s. As a
The last point is to generate a white noigavith the PDF ~ consequence the PDF &f is a sum of convolutions. The

(4.4). For this there is a classical procedure which makes usanalytical expression of these convolutions is difficult to be
of the inverse functiorGl") of the DF functionFl')(t). An  obtained except in the case of exponential distribution

elementary calculation yields In this last case, the principle of the calculation is pre-
sented in the Appendix. Let us give the results of the calcu-
G(x) = = (1/M)In(L -xM"). (4.5 lation summarized by the expressions of the first five values

It is known that ifw; is a white noise uniformly distributed in O.f fk(t)' By definition we havef;(t)=A exp(=Ab). I_n order to
[0, 1], the signal defined by, =Gl (w;) is a white noise with simplify thg presentation of the results, we introduce the
the PDF(4.4). functions f,(x)=(1/N)f(x) where x=\t and g=g(x)
In conclusion, it is possible to construct a PP defined by=exp-x/k), k integer. We have fl(x)zel and fz(x)
thex; with exponential correlated lifetimes of order 1 defined_ 1 /256, +gxe. The other functions.(x) are
by p and of PDF4.4) defined byr and represented in Fig. 2. (1/2)pe,* a8 )
At this step it is worth pointing out that we have here a
good example of PP where the first-order approximation dis-
cussed in Sec. Il Eannot be appliedindeed by varying
andr without changing (t) we obtain different PP’s with the A 3 5 _
same PDF of the lifetime or order 1. As a consequence all fa09 = p(1/4)es + pofes — e, + (1/4)xe,]
these processes cannot be distinguished by using only this +3p2e, - (x+ 2)e ] + (1/6)0°%e;,  (4.7)
PDF, even by varying the density, which is the main idea of )
a first-order approximation. and finally

f5(x) = (1/3)pPes + 2pa(e, - €)) + (1/2)gPCe;,  (4.6)

C. Calculations fs(x) = (1/5)p’es + p°al(2/3)(es — €)) + 2(e5 -~ €))]

In order to calculate the bunching functibft) defined by + (314 PP (1 - 2X)e; + (2x — 4)e, + 3e;]
Eqg. (2.18, it would be necessary to calculate all the PDF’s 5 44
fi(t) appearing in this expression for the PP defined by Eq. +2pa- (0 + 4x+ B)ey + 8ey + (1/24)9"X e,
(4.2). It is in general an almost impossible task. (4.8
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FIG. 3. Lifetime distributionsfk(t) versust,
time in dimensionless units. The curves are plot-
ted for p=0.5 and indexed with the values &f

=1,2,3,4,5.
These functions are presented in Fig. 3 fox0.5. The D. Computer experiments
function f5(x) is Qresented in Fig. 4 for various values f 1. Principles of realizations and processing
It is clear thatf,(0)=p*~'/k, and it results from the prop-  As noticed above, the model introduces a correlated PP

erty (i) of Sec. I B1 that the PP analyzed in this section defined by the parametepsandr and giving the Poisson
cannot be a CPP except whprO, where it is a pure Pois- processes in the particular case0 andr=1. However, the
son process. calculation of the bunching function and even of the PDF's
Note also that the first-order approximation discussed pref,(t) is not easy, except far=1, as discussed in the Appen-
viously cannot be applied. Indeed, as all th&) satisfy  dix. Then it is necessary to proceed by simulation of by
f(x)=(1/Mf(x), the bunching function defined by Eg. making a computer experiment. It is easy to generate by
(2.18 has the same property and can be writtenf)@s) computer samples of the signalor samples of the associ-

=(1/M\)b(x). Therefore a variation of the density of the ated PP. For this we note that in E.(ql"l). the signalx; is
generated from two independent white signalandv;. The

process does not changéx) which can never be approxi- first one is deduced from a white noige uniformly distrib-

mated by}A‘l(x), even whem — 0. uted in [0,1] by applying the transformatiom;=G"(w;)
N S Ly S S S S A SR S
0.18_ ................. , ...................................................................................
D2
016k -\ e AN\ NPT TN RPN e SR S S
AN\
oaals ) A - N\ SR T TR SRR b, U e
AN\ e
0'12_ ....... VVVVVVVVV ......... ......... .......... .......... .......... .......... .......... .......... FlG. 4. Llfetime dlstrlbutlonsf’\s(t) Versust’
oal A 1\ C\ AN L R L L L] Lo time in dimensionless units. Curves 1, 2, 3, 4, 5,
’ ' o : : : E : : : and 6 correspond tp=0, 0.3, 0.5, 0.7, 0.9, and 1,
el /|| S AN RN\E e S S S S S respectively.
0.06[7 - =
ooak /][ —_— S _— N\ T IR — _— j
ool [ /. S S S S N S S S
o 1 1 1 1 1 1
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0 20 40 60 80 100 120 140 160 180 200 FIG. 5. Computer samples 1-4 of lifetimes
g g ' g g g g g g simulated withp=0, 0.1, 0.5, 0.9, 1.

0 20 40 60 80 100 120 140 160 180 200

whereGll(x) is the function defined by Eq4.5). The latter  successive points;fh a particular realization of the PP. The

v; takes only two values 0 or 1 and can be obtained from th@xperimental realizations afi(i) are thus

white noisew; independent ofv; and also uniformly distrib- , . . .

uted in[0,1]. For this we introducey;=u(w;—1+p), where LD =Ly(i+ D+ Ly(i+2)+ - +Ly(i + k). (4.9

u(-) is the conventional unit step function. Itis clear tbais ~ The normalized histogram df,(i) yields an estimation of

still a white noise and thaP(v;=1)=p. The two signalsy;  f,(t). The precision of the method depends first on the total

anduv; define entirely the signa¢ and therefore the PP. numberN of points of the PP analyzed in the experiment. In
From samples ok;, it is possible to evaluate the PDF’s the following this number is usually of the order of®1The

f(t) and to obtain an approximation of the bunching func-other parameters involved in the precision of the method are

tion by the following procedure. the number and width of windows used for calculating the
In order to apply Eq(2.18) it is necessary to estimate the histogram. This is a classical topic in all the procedures of

PDF’sfi(t) of a PP generated by a computer experiment. LePDF estimation from histograms and standard methods are

L, be the RV defined in Sec. Il D as the lifetime of oréletn  available.

order to estimate experimentallfy(t) it suffices to use a The last problem is to find the value of the the number

normalized histogram of the realizatiobg(i) of L, obtained of terms of Eq.(2.18 necessary to obtain a good approxi-

in a PP generated experimentally by a computer. For thignation of Eq.(2.18. There is no simple and general method

purpose we consider the sequehgé) of distances between for this problem. However, by examining the case of pure

1 T T T T T T T T T A
05f i
0 . . , , e e e
0 05 1 15 2 25 3 35 4 45 5
0.4 T T T T T T T
0.2% |
0 1 1 1 1 T + B I T S W T T N T N N A 1
0 1 2 3 4 5 6 7 8
oz i ' ' ' ' ' ' ' ' FIG. 6. Computer simulations and theoretical
’ results of various lifetime distribution§(t) for
o1r ) k=1,2,3,4,5versust, time in dimensionless
0 1 1 1 1 1 1 1 + 4 4 ke | .
0 1 2 3 4 5 6 7 8 9 10 units.
0.2 T T T T T T T T T
01F 4
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FIG. 7. Approximated bunching functions
b(t) versust, time in dimensionless units in cases
of correlated PP’'¢p=0.6) for three values oK
=5,10,20. Thecurve in solid line is the exact
function calculated foK=5 (see the Appendix

-1

Poisson processes for which the analytical expressions of allhis yields that ifx;'s are independent, which is the case for
the PDF'sf,(t) are known, it is simple to derive it. In fact, it p=0, the PP is a Poisson process. This corresponds to the
is easily shown by computer calculations that for a Poissogamples presented in the top figure of Fig. 5. The other val-
process of density=1, the valueK=10 yields an excellent ues ofp are 0.1, 0.5, and 0.9. The effect of the correlation
approximation ofb(t)=1 of Eq.(2.18 for t<5. Fork=50, between successive lifetimes is especially evident in the last

the approximation is excellent far< 30. But instead of es- [9ure. . ,
timating thek PDF's ,(t) appearing in Eq(2.18), it is sim- In Fig. 6 are represented experimental values of the PDF's

pler to make a direct estimation of this function for a given of lifetimes of order 1-5 calculated with=0.6 andr=1.
This last value allows us to use results of calculations pre-

%ented in Sec. VC. The experimental points are indicated by
the symbol(+) and the solid curves are calculated from Egs.
, (4.6—4.8). There is an excellent accordance between experi-
PDF's fi(t). mental and theoretical results.

We emphasize that all the PP’s studied here have a life-
time of order 1 identical to the lifetime of order 1 of a Pois-

a. Samples and PDF’s of the lifetimeédarious examples son process. However, they are not Poisson because of the
of samples oL (i)=x; are presented in Fig. 5. In this figure correlation of successive lifetimes. They are not either CPP
the distributionf(t) common to all the cases is exponential. because the PDF&(t) do not satisfyf,(0)=0 for k> 1.

all valuesL,(i) for 1<i<N and 1sk=<K. This procedure
yields directly an estimation di(t) without calculating the

2. Results of computer experiments

0.04 T T T T T T T T T
0.03_"7.,_'_'.;'—.5 .......... ......... .......... .......... .......... .......... .......... .......... ..........
Ty, z z z z 5
0.02F - AP P X LTy P
; : 5 A S T
: ‘ : : : : : ; + o+ 4
0.01 1 Il Il 1 1 1 1 Il 1
0 1 2 3 4 5 6 7 8 9 10

0.015 T T T T T T T T T
: : : ' : 1 : FIG. 8. Approximated bunching functions
b(t) versust, time in dimensionless units for three
types of PP’s. From the top, the values of the
parameters ar&=20 andr=1, p=0.6,r=1, p

OO U L Y F I R W LRI R Rk et

0.005 i i i i i i : i j =0, r=3, p=0.6, respectively.
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b. Evaluation of the parameter.KWe have previously TABLE I. Method for calculation of?3(x)_
mentioned the consequences of the replacement of the series
(2.18 by a finite sum in studying a pure Poisson process. We

shall analyze the same problem for correlated PP’s introRV 3o 2%+ Uy Xo+2U; Xo*Up+Uy
duced in this section. We use the same condition as in Fig. Brob. p? pg pq pq
that arep=0.6,r=1, andf,(t) exponential. In this case we Symbol [3,0,0 [2,1,0 [2,1,0 [1,1,1

have the explicit expressions @f(t) for 1<k<5 by Eqgs.
(4.6—(4.8). By using these expressions and limiting the se-

ries (2.18 to the first five termgwhich means that the value wherex, is deduced fronx, by Eq.(4.1). As a consequence
of K introduced above is)5we can calculate the approxi- |, is equal to %, andxy+u; with the probabilitiesp andg,
mated bunching function and compare the results with thosgaspectively. By repeating the procedure the RVs equal
obtained experimentally. This appears in the curve indexegy x +x,+x, and Table | indicates its value and their corre-
by 5 in Fig. 7. Here also we note an excellent fit betweens,onding probabilities.

theoretical and experimental results. On the other hand, the' Thg |ast row indicates the possible structure of the sum of
two experimental curves obtained wiki=10 andK=20  jnqenendent RV's. For examplg, 1,0 means that in the sum
cannot be verified by the calculation because in these case$ i, ce terms. two are equal. Continuing with this proce-
the explicit analytical expressions of the PDF's of I|fet|mesdure, the Iifetirﬁd_4=xo+x1+x2+x3 takes eight possible val-

of OArfirCr;'%2Ers?gﬁnt\?vfc\gﬂnﬁrgpgf?g? interest ues indicated below with their corresponding probabilities
’ @nd symbolgsee Table I\

per(il‘()ac\:/t\lly ?R;hciymagﬁtgyflelgalg’_ the theoretical calculations fi The same procedure can be appliedlfgwhich takes 16
(i) In the domairt e [0, 3], the approximations with 10 or possible Yalues easy to express but not ,reprodgced h,ere. All
20 terms are quite similar. these R_Vs are sums of_mdependent RV’s. Their PDF’s can
¢. Bunching EffectsSimulation results concerning bunch- be obtained by convolutions from the PDt) of L;.
ing effects are displayed in Figs. 7 and 8. The following The calculation of these convolutions is tedious, except
comments are of some importance. when the PDF common to all the RVjs is exponential or
The two first subfigures of Fig. 8 are calculated ferl.  whenfy(t)=\ exp(-At).
This means that in the two cases the first-order lifetime has Before continuing, let us point out the following property
an exponential distribution. The second subfigure is calcuwhich simplifies the calculation. 1&,(t) and a,(t) are two
lated forp=0, which means that the PP is a Poisson procespDF’s satisfyinga;(t)=A&(x), with x=At, their convolution
with a constant bunching function. This appears in the figureyt) ijs a PDF with the same structure—i.e(t)=A&(X). Its
and yields a good idea of the quality of the approximationrgof is obvious and results immediately from the calcula-
These two figures clearly show that the bunching effect cangon of the convolution. As a consequence we can assume
not be deduced from the analysis of the PDR) of the  h4t\=1 and calculate only the functiorx).

first-order lifetime. _ _ The remaining task is now to calculate all the convolu-
Finally, the last subfigure of Fig. 8 shows that, as eX-ong yielding the PDF's of the RV’s appearing in the tables.

pected, the use of a displaced exponential distribution de- ~qer 2 The possible RV’s arexg and x+Us;. As a re-

fined by Eq.(4.4) yields an antibunching effect. Other results g ¢

not reported here show an interesting behavior of the bunch-
ing function wherr increases, displaying some analogy with - _
the results appearing in Fig. 1. This point will be discussed f1(x) = (1/2)pe, + qxa,
elsewhere.

(A1)

where the functiong =g (x) are those defined previously.
ACKNOWLEDGMENTS Order 3 It appears in Table | that there are only three
The Laboratoire des Signaux et Systémes is a joint Iaboghs:tmct convolutiond;(x) to calculate. The first notefd; is

- . ' . the PDF of X, or hg;(x)=(1/3)e;. The second ish;x(x)
t f the CNRS and the Ecole S d’Electricit 3t v 32
ratory of tne an © Ecole supeneure ectricr’ [(1/2)e,*e;1](x), and one obtains easily,(x)=e,—€;. The

and associated with the Université Paris-Orsay, France. The : - )
authors would like to thank Don Scarl for helpful comments. 125t One ishss(x) =€, e, &, which is hg5(x)=(1/2)x"€;. Us-
ing the relationf;(x) = p?hg; + 2pghs,+g2hgs yields Eq.(4.6).

APPENDIX: CALCULATIONS OF THE PDF'S Order 4 Among the eight terms appearing in the table,

OF LIFETIMES there are only five different structures giving five functions
As indicated above, the lifetime of order 1 is the Ry  h4(x). The function coming froni4,0,0,q is clearly hy;(x)
equal tox,. The lifetime of order 2 is the RWL,=x,+x;  =(1/4)e;. Similarly hs(x) coming from [3,1,0,0 is

TABLE Il. Method for calculation off4(x).

RV 4Xq 3Xpt+U3 2Xp+2u, 2Xp+Us+Us Xo+3Uy Xo+2U;+U3 Xo+Uq+2U, XptugtUs+us
Prob. p p%q PPq pef p%q pef P o
Symbol [4,0,0,0 [3,1,0,0 [2,2,0,0 [2,1,1,0 [3,1,0,0 [2,1,1,0 [2,1,14 [1,1,1,1
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[(1/3)e3#€;](x), and the calculation yieldB,,(x)=(1/2)(e;
-e;). The term associated with[2,2,0,J is hys(X)
=(1/4)[ey*e,|(x)=(1/4)xe,. For[2,1,1,J we obtainh,,(x)
=[(1/2)e,*e;*e;|(X)(X) =2e,— (x+2)e,. Finally the structure
[1,1,1,]] yleldS h45(X):[el*el*el*el](x):(1/6)xzel.

Grouping all these terms with their corresponding probabili-

ties yields Eq.(4.7).

Order 5 The general procedure is the same and we give

PHYSICAL REVIEW A 71, 013812(2005
[3,2,0,0,0 hgz=e3—e,
[3,1,1,0,0 hgsa=(1/4)[3e3- (2x+ 3)e,],
[2,2,1,0,0 hss=(1/2)[(x— 2)e, + 2],

[2,1,1,1,0 hgg=(1/2)[- (X + 4x + 8)e; + 8e,],

only the seven different functions appearing in the calcula-

tion of the 16 terms of5(x):

[5,0,0,0,0 hsy=(1/5)es,

[4,1,0,0,0 hsy=(1/3)(es— &),

[1,1,1,1,1 hg,= (1/24X%,. (A2)

Using these functions for the calculation of all termsfgﬁk)
yields Eq.(4.8).
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