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Experiments on nonclassical optical fields have recently been performed. One of the main properties re-
ported is the antibunching effect of photoelectrons, a property that cannot be explained in the framework of the
classical theory of optical fields. By carefully studying the random point process of the detection of the optical
field, we show that bunching and antibunching effects can be fully explained by a concidence function. In the
classical theory, this function is a correlation function which introduces necessarily a bunching effect. But this
coincidence function has no reason to be in any case a correlation function. Therefore antibunching effects can
simply be derived from the properties of the coincidence function. After having given a precise definition of
this coincidence function, some of its properties are discussed and especially its relationship with bunching and
antibunching effects. Similarly, its relationship with statistical properties of lifetimes and intervals between
points of the process is established. Various examples are presented and analyzed. Several calculations and
computer simulations highlight the theoretical results.
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I. INTRODUCTION

In the analysis of optical fields by photodetection experi-
ments, the only available information is the set of time in-
stantshtij at which photons are transformed into photoelec-
trons. These instants are usually randomly distributed and
constitute a point processsPPd f1–3g. Therefore the basic
problem in photodetection experiments is to extract some
properties of the optical field from the analysis of this PP.

This was already the point of view of Blanc-Lapierre
60 years ago in his study of the shot noise generated from
low-intensity optical fieldsf4g. Because of the limitations of
experimental devices at that time, it was shown that there is
no memory effect and the consequence is that the photode-
tection PP is a Poisson process. Similar results were obtained
by Rice at the same timef5g.

Twenty years after, the realization of the laser stimulated a
new interest in these problems. Indeed natural and laser
lights do not exhibit the same PP’s in photoelectron experi-
ments. There were a great number of experiments to verify
this fact and reviews of these studies can be found inf6–8g.
In particular thebunching effectof photoelectrons was dis-
coveredf9g, showing that the PP is not a Poisson process but
a compound Poisson processsCPPd, introduced empirically
by Mandelf10g.

Some years later, this result was shown by Glauber in his
famous papers on quantum theory of optical detection
f11,12g. In particular the bunching effect of photoelectrons of
classical optical fields appears as a direct consequence of the
fact that such fields generate a CPP.

These papers and some others introduced the possibility
of nonclassical optical fields and in particular of fields intro-
ducing anantibunching effect. Thus the door was open to
realize such nonclassical optical fields and various results
were publishedf13,14g.

However, the mathematical description of the PP’s intro-
duced by such fields is not always satisfactory and introduces
sometimes some contradictions. Thus the purpose of this pa-
per is to clarify some of these questions.

As the bunching or antibunching effects of photoelectrons
are observed by coincidence devices with two photodetec-
tors, a particular attention is devoted in Sec. II to bicoinci-
dence functions describing these effects. One of the most
important points exhibited is that these bicoincidence func-
tions which look like correlations functions are not correla-
tion functions as frequently assumed. Section III is devoted
to the analysis of classical optical fields or to the analysis of
CPP. The purpose is to present some characteristic properties
of such PP’s in such a way that violation of at least one of
them leads to the conclusion that the optical field is not clas-
sical. The results of experiments concerning nonclassical op-
tical fields are discussed in Sec. IV. In the last section we
present some results of experiments concluding with non-
classical behavior and this discussion leads to a more careful
analysis of some PP’s.

II. COINCIDENCE AND BUNCHING FUNCTIONS

Consider a time PP, which is a random distribution of
time instantsti, and letNst ,td be the random variablesRVd
equal to the number of points in the time intervalft ,t+tg. We
assume that this process is regular—i.e., that there is no ac-
cumulation point. This means that a small interval cannot
contain more than one point of the process or, more explic-
itly, that

PfNst,Dtd . 1g = osDtd, s2.1d

PfNst,Dtd = 1g = lstdDt + osDtd, s2.2d

whereP means the probability andlstd is thedensityof the
PP. As a consequence we havePfNst ,Dtd=0g=1−lstdDt
+osDtd. If lstd is constant, the process is said to bestation-
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ary, and this is assumed in all what follows. Let us now
introduce the concept of the coincidence function of a PP.

A. Coincidence

In coincidence measurements we consider twosor more
than twod small time intervals at different time instants. A
coincidence event is characterized by the fact that there is
one point of the PP in each of these intervals. In what follows
we restrict the analysis to bicoincidence described by aco-
incidence functiongst ,t8d, tÞ t8, defined by

PhfNst,Dtd = 1gfNst8,Dt8d = 1gj = gst,t8dDtDt8 + osDt,Dt8d.

s2.3d

Since the PP is stationary, this coincidence function only
depends ont= t− t8 and is equivalent to a functioncs·d de-
fined for tÞ0 by

cstd = cs− td = gst,t − td, t Þ 0. s2.4d

In general the RV’sNst ,Dtd andNst8 ,Dt8d become uncorre-
lated for large values oft, which is expressed as

lim
t→`

cstd = l2. s2.5d

On the other hand, as Eq.s2.4d cannot be used fort=0, we
state by definitioncs0d=limt→0 cstd.

Note that the basic property ofPoisson processesis that
the variablesNst ,Dtd and Nst8 ,Dt8d are independent. This
yields cstd=l2 for any t and this is the simplest example of
coincidence function.

According to Eq. s2.1d the RV’s Nst ,Dtd and Nst
−t ,Dt8d take only the values 0 or 1 for sufficiently small
intervalsDt andDt8, and this yields

EfNst,DtdNst − t,Dt8dg = cstdDtDt8 + osDt,Dt8d, s2.6d

whereE means the expectation value. From this relation it
seems natural to identifycstd to the correlation function of a
continuous time signal sometimes called intensity of the PP.
This is often donef15,16g. However, it is important to note
that, despite the appearance in its definition, the coincidence
function cstd is not a correlation function. Indeed a correla-
tion function rstd must satisfy some constraints and, more
precisely, must be positive definite, which is characterized by
the fact that its Fourier transformSsfd is positive spower
spectrumd. As a consequenceurstduø rs0d. This has no reason
to be true forcstd and there are various examples of PP
wherecstd.cs0d. It is even possible, as seen later, to have
PP’s for which there existst0 such thatcstd=0 for utu,t0.
Furthermore, it can be shown thatcstd is not arbitrary and
must satisfy some conditions that will be discussed in an-
other paper.

B. Bunching effect

The coincidence function has a direct application in the
description of thebunchingsor antibunchingd effect in a PP.
This effect is related to the fact that the presence of a point of
the process att=0 can modify the probabilityPfNst ,Dtd

=1g. This does of course not appear in the case of a Poisson
PP, because the fundamental property of Poisson processes is
to be memoryless.

However, since the fact that there is a point att=0 is not
a statistical event, we shall introduce a small intervalDt8 at
t=0 and use the conditional probability

F̂st,Dt,Dt8d, PhfNst,Dtd = 1gufNs0,Dt8d = 1gj. s2.7d

The bunching effect is described by the limit of this function
whenDt8→0 or

Fst,Dtd, lim
Dt8→0

F̂st,Dt,Dt8d. s2.8d

The conditional probabilityF̂st ,Dt ,Dt8d can be expressed as

F̂st,Dt,Dt8d =
PhfNst,Dtd = 1gfNs0,Dt8d = 1gj

PhfNs0,Dt8d = 1gj
, s2.9d

and it results from Eqs.s2.2d and s2.3d that Fst ,Dtd=bstdDt
with

bstd, cstd
l

. s2.10d

This bunching function bstd has the same properties of the
coincidence functioncstd, and especially Eq.s2.5d yields

lim
t→`

bstd = l. s2.11d

For a Poisson process,bstd=l. Then we shall say that there
is a bunching effect att if bstd.l and an antibunching effect
in the opposite case. Note that the bunching effect is not
necessarily an intrinsic property of a PP because for the same
PP instantst can exist with bunching effects and the other
with antibunching effects. Ifbstd.l for any t, we say that
the PP is of apermanentbunching effect.

C. Counting

In counting experiments we study the statistical properties
of the RVNst ,Td. In the stationary case, they are the same of
those of Ns0,Td. We shall now see that the second-order
properties can be deduced from the coincidence function in-
troduced above.

Consider a partition of the intervalf0,Tg in subintervals
fti ,ti +Dtig. Thus we can write

Ns0,Td = o
i

Nsti,Dtid, s2.12d

and, passing to the limit,Ns0,Td is defined by the stochastic
integral

Ns0,Td =E
0

T

dNsud, s2.13d

where the incrementsdNsud are the RV’sNsu ,dud.
We deduce from Eq.s2.2d that EfdNsudg=ldu, which

yields the mean valueEfNs0,Tdg=lT. Similarly we can
write
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EfN2s0,Tdg =E
0

TE
0

T

EfdNsuddNsu8dg. s2.14d

For uÞu8 we deduce from Eq.s2.6d that EfdNsuddNsu8dg
=csu−u8ddudu8. But it is necessary to use an expression
valid for anyu, u8. For this we note that it results from Eqs.
s2.1d ands2.2d that EfdN2sudg=ldu. This allows us to write
the complete expression

EfdNsuddNsu8dg = fcsu − u8d + ldsu − u8dgdudu8,

s2.15d

where cs·d is the coincidence function andds·d the Dirac
distribution. This must be inserted into Eq.s2.14d to obtain
EfN2s0,Tdg.

Actually we are more interested in the variance ofNs0,Td
defined bysN

2 =EfN2s0,Tdg−E2fNs0,Tdg. It results from the
previous equations that this variance can be expressed as

sN
2sTd = lT + gsTd, s2.16d

where the functiong is

gsTd =E
0

TE
0

T

csu − u8ddudu8 − l2T2. s2.17d

For Poisson processes,cstd=l2, which yields gsTd=0. We
find again the well-known result that the variance of a Pois-
son RV is equal to its mean. By convention we shall say that
if gsTd,0 we have a sub-Poisson behavior and ifgsTd.0 a
super-Poisson behavior. Note that this property ofNs0,Td
can depend onT and, as for the bunching effect, is not nec-
essarily an intrinsic property of the PP. Note also that while
the bunching effect is due to the behavior at two time in-
stantsti andtj, the variance corresponds to the whole interval
T.

D. Lifetimes

The lifetimeLk of orderk is the RV equal to the distance
between a pointti of the PP and thekth point of this process
posterior toti. Because of the assumption of stationarity, the
probability distribution ofLk does not depend onti, and then
we can assume thatti =0. For all processes considered here
the RV’s Lk are continuous and characterized by their prob-
ability distribution functionsPDFd fkstd. The quantityfkstdDt
is by definition the probability to have one point of the PP in
ft ,t+Dtg andk−1 points inf0,tg, conditionally to one point
at t=0. But it results from Eq.s2.10d thatbstdDt is the prob-
ability to have one point inft ,t+Dtg conditional to one point
at 0. As a result we have

bstd =
cstd
l

= o
k=1

`

fkstd. s2.18d

This equation yields the relationship between the coinci-
dence functionbstd and the set of PDFsfkstd of the lifetimes
of all orders. It is clear that it will play an important role for
all processes defined from their lifetimes, especially renewal
processes.

E. First-order approximation

In some specific situations it is possible to approximate
Eq. s2.18d by its first term,bstd< f1std. In this case coinci-
dence measurements are equivalent to first-order lifetime
measurements. Thus, instead of using a coincidence device,
it is sometimes more appropriate to use a time to amplitude
converter sTACd to reach the coincidence functioncstd
f15–18g.

Let us discuss some conditions allowing this approxima-
tion. Let t0 be the radius of variation of the coincidence
function cstd. This means that fort.t0 cstd<l2, which, ac-
cording to Eq.s2.5d, is its asymptotic value. For a stationary
PP the mean value of the distance between two points is the
inverse of the densityl. Then, if lt0!1, the probability to
have more than one point in the intervalf0,tg with t,t0 is
very low. As a consequence in the domain of variation ofcstd
the bunching function is approximately equal to the PDF of
the lifetime of order 1. We shall see that there are PP’s where
this can always be satisfied, and this especially the case of
CPP’s. On the other hand, there are PP’s where this approxi-
mation can never be used and this is discussed in the follow-
ing. As a consequence it must be pointed out that results of
experiments involving classicalf16g and nonclassical states
of radiation as wellf15g must be carefully interpreted.

In conclusion of this section we note that the coincidence
functioncstd defined by Eq.s2.4d, which is not, in general, a
correlation function, allows one to calculate the bunching
effect and also second-order counting statistics of an arbi-
trary PP. Conversely this function can be deduced from the
PDF’s of the various lifetimes of the process or from the
counting probabilities.

III. PHOTODETECTION OF CLASSICAL OPTICAL
FIELDS: COMPOUND POISSON PROCESSES

As indicated previously, it results from the quantum
theory of optical detection that the PP appearing in classical
fields is a compound Poisson process, sometimes called a
doubly stochastic PPf2,3g. This is the reason why such PP’s
are sometimes called in what follows classical PP’s.

These CPP’s have various specific properties analyzed be-
low. This introduces a possible test for deciding whether or
not a given optical fieldsor a PPd is classical. Indeed, if the
PP obtained from this field in photodetection experiments
does not satisfy at least one of these properties, it cannot be
a CPP, and the optical field analyzed cannot be classical.

A. General properties

The CPP’s are Poisson PP’s in which the densitylstd is a
stationary random functionf3g. It can be denotedlst ,vd.
This means that for a givenv—say,v0—the PP is a nonsta-
tionary Poisson process defined by the densitylst ,v0d.

For classical optical fields it is possible to define a light
intensity Istd which is a positive and, in general, random
function notedIst ,vd. It results from the quantum theory of
optical photodetection that for classical fields the PP of pho-
todetection is a CPP with a densitylst ,vd proportional to the
this light intensityIst ,vd.
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For a givenv the coincidence function appearing in Eq.
s2.3d becomes

cst,t8,vd = lst,vdlst8,vd, s3.1d

which is a conditional probability. By taking the expectation
with respect tov, we obtain a marginal probability defining
the coincidence function by

cst,t8d = Eflst,vdlst8,vdg. s3.2d

As it was assumed thatlstd is stationary, this function de-
pends only ont− t8. Let glstd be the correlation function of
lstd. Using this function in Eq.s2.4d yields

cstd = glstd + l2, s3.3d

wherel=Eflstdg is the mean value oflstd, the density of the
PP. As a consequence we deduce Eq.s2.5d because it is
known that the correlation functiongstd of an ergodic ran-
dom function tends to zero whent tends to infinity. Inserting
Eq. s3.3d into Eq. s2.17d yields

gsTd =E
0

TE
0

T

glsu − u8ddudu8. s3.4d

As gstd is a positive definite function, this quantity is positive
whateverT is, and we conclude that a CPP is always of
super-Poisson type. In factgsTd has a physical meaning and
is simply the variance of the RVe0

Tlsuddu.
Finally the life times used in Eq.s2.18d are the expecta-

tion values of the lifetimes of a nonstationary Poisson
process—i.e.,

fkstd =
1

l
EFexpf− mstdgls0dlstd

mstdk−1

sk − 1d! G , s3.5d

where

mstd =E
0

t

lsuddu. s3.6d

It results from these equations thatfks0d=0 for k.1. Let us
summarize some properties of CPP.

1. Counting

Because a CPP is always a super-Poisson process, we can
deduce from Eqs.s2.5d and s3.4d that, for a CPP, we have

sN
2sTd . msTd, ∀ T, s3.7d

wheremstd is the mean value ofNst ,Td equal tolT.

2. Lifetimes

The PDF fkstd for k.1 is zero fort=0 or fks0d=0, be-
causems0d=0. If a given PP does not satisfyat least oneof
these properties, it cannot be a CPP.

3. Bunching effects

A CPP has necessarily a bunching effect in the neighbour-
hood of the origin, and this bunching effect can be perma-
nent.

Indeed we deduce from Eqs.s2.10d and s3.3d that bstd
=s1/ldglstd+l. Then the conditionbstd.l ensuring the
bunching effect is realized as soon asglstd.0. This can
appear for any value oft, and this is, for example, the case of
the exponential correlation function.

If that is not the case, then there exists at0 such that there
is a bunching effect fort, t0. This results from the facts that
the correlation functionglstd is continuous, its maximum
value is reached fort=0, and gls0d.0 because it is the
variance oflstd.

B. Modulation and first-order approximation

Suppose that the random density characterizing a CPP can
be modulated or expressed aslstd=aAstd wherea is a non-
random constant related to a possible modulation effect. The
coincidence functions3.3d can be expressed as

cstd = a2fgAstd + A2g, s3.8d

wheregAstd andA are the correlation function and the mean
value ofA, respectively.

It is clear from this equation that it is always possible to
modulate the density of the process by varyinga without
changing the shape of its coincidence function. This is called
an invariance by modulation. This invariance by modulation
is in fact a test for classical fieldsf19,20g. It is especially
important for applying the first-order approximation intro-
duced above. Indeed, as the densityl is aA, it is always
possible to reach the conditionlt0!1 by using a sufficiently
smalla. In this operation the shape ofcstd given by Eq.s3.8d
does not change. However, this property has no reason to be
general. In particular, since a CPP yields necessarily a
bunching effect, any PP with antibunching effect cannot be a
CPP one, and there is no reason to assume that the first
approximation can be valid.

Finally, we can state the question whether or not this in-
variance by modulation is characteristic of a CPP. The an-
swer is certainly no, because we have only a second-order
property that is insufficient to define a PP. However, if this
invariance property is valid for any coincidence function de-
fined as Eq.s2.3d but with n arbitrary time instantshtij in-
stead of 2, then the process is necessarily a CPP. We do not
present here the proof of this result.

Starting from the PP generated by photodetection of an
optical field, two questions can be asked:sad Is the field
classical or not?sbd If not, how does one determine some
properties of the corresponding nonclassical PP and, espe-
cially, its bunching or coincidence function? The answers to
these question can be obtained from counting or from life-
times measurements or from a combination of the two.

C. Counting experiments

For special states of light—e.g., squeezed states—several
photoncounting experiments have been performed to prove
the nonclassical character of these statesssee, for example,
references inf13gd.

From these experiments, it can be shown that the condi-
tion s3.7d is not satisfied and the conclusion is that the PP
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cannot be classical. However, from this result only, it is im-
possible to get some properties of this nonclassical PP. The
minimum work would be to present an analysis ofsN

2sTd in
terms of T and use Eqs.s2.16d and s2.17d to obtain some
information about the coincidence functioncstd which de-
scribes the second-order properties of the PP.

D. Lifetime experiments

The principle of the lifetime experiments is based on the
utilization of TAC devices. The output of these devices de-
livers the time distances between successive points. These
time distances are then treated by a multichannel analyzer,
for example, or processed with a computer. Finally, the result
is an estimation off1std, the PDF of the lifetime of order 1
introduced above. The experiments show that this function is
not maximum at the origin of time axis. Using the first-order
approximation introduced above, many authors conclude that
f1std is an approximation of the coincidence function called
correlation function in the discussion. Thus it seems that the
results of the experiments yield answers to the two questions
stated above:sad The PP is not classical.sbd Its coincidence
function is measured and exhibits an antibunching effect.

These two conclusions must be analyzed with some care.
sid The PP is certainly not classical, but this conclusion

can be obtained only by contradiction or by violation of at
least one of the properties of classical fields indicated above.
For classical fields the first-order approximation is valid and
the PDF of the first-order lifetime measured with a TAC
tends to the coincidence function which is a correlation func-
tion with a maximum at the origin. As this is not the case, the
PP is not classical.

sii d On the other hand, the conclusion concerning the an-
tibunching effect, as indicated in the title of the paper, cannot
be deduced from these experiments. Indeed, as the PP is not
classicalfseesidg the first-order approximation has no reason
to be valid and there is no reason to deduce the coincidence
function sand thus the antibunching effectd only from knowl-

edge of the PDFf1std obtained by using a TAC.
Let us examine this point by analyzing the case of a re-

newal PP with a uniform distribution. Such a process is char-
acterized by the fact that the distancesL1sid between succes-
sive points are independent and identical distributedsIID d
RV’s. Thus their common PDF functionf1std defines com-
pletely the PP.

Because of theindependenceof the successiveL1sid, their
sum, which yields higher-order lifetimes, is given by the
convolutionsdenoted by asterisksd

s3.9d

Note that in case thatfstd is exponential, the renewal process
is a Poisson process.

Suppose now thatL1 slifetime of order 1d is uniformly
distributed in a given interval. In this case the explicit ex-
pression offkstd is complicated, except fork=2 andk=3, but
these convolutionss3.9d can easy be calculated numerically.

More precisely, suppose that the PDF ofL1 is equal to
1/2a in the intervalf1−a,1+ag and zero elsewhere. As a
consequence its mean value is 1 for anya and the density
satisfiesl=1. For a=1 we obtain a uniform distribution in
the intervalf0,2g. On the contrary whena!1 the RVL1 is
almost equal to 1, and this occurs for example in the jitter
effect in communication systems.

Furthermore, it is easy to verify that the PDFfkstd is sym-
metric with respect tot=k and equal to zero outside the
interval fks1−ad ,ks1+adg. As a consequence there is no
overlapping betweenfk−1std and fkstd if sn−1ds1+ad,ns1
−ad or a,1/s2n−1d. Finally, if a satisfies this inequality,
the PDF’sf,std do not overlap for,øk and there is an over-
lapping effect if,.k.

These properties appear clearly in Fig. 1. Figure 1.1 is
drawn fora=1/3.There is no overlapping betweenf1 and f2
and the four discontinuities appear clearly. Figures 1.2, 1.3,
and 1.4 are drawn fora=1/5, a=1/7, anda=1/9, respec-

FIG. 1. Bunching functions versus time in di-
mensionless units for renewal process with uni-
form lifetime PDF. Curves 1, 2, 3, and 4 are plot-
ted for values ofa equal to 1/3, 1/5, 1/7, and
1/9, respectively.
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tively. In Fig. 1.4 there is no overlapping betweenf1, f2, f3,
f4, and f5 and there are five points of discontinuity.

Note also that all these curves tend to the asymptotic
valuel=1 but the speed of convergence decrease witha. For
small values ofa there are some oscillations that disappear
when t increases and at the limit ofa=0 the RV’s become
deterministic andcstd is a set of Dirac functions at the time
instantsk.

Let us now present some properties ofbstd. It is possible
to show that the derivative ofbstd is continuous with respect
to time, except at points of the abscissa, 1−a,1+a,2
−2a,2 ,2+2a. For the particular valuea=1/3,obtained from
1+a=2−2a, there remain only four abscissa of discontinu-
ity. There is of course an antibunching effect for small values
of t. However, it is not permanent since there are values oft
wherebstd.l=1.

Let us come back to the question stated at the beginning
of this section. It is clear that the bunching function appear-
ing in Fig. 1 cannot be approximated by the first-order PDF
which is the rectangular function centered at 1 and appearing
also in the figure.

Similarly the conclusion on a bunching or antibunching
effect cannot be deduced from the analysis off1std only, and
for enlightening this point we shall now present some theo-
retical results and computer experiments on some nonclassi-
cal PP’s. We do not claim that these PP’s correspond to spe-
cific optical fields, which is a question outside the scope of
this paper, and this is the reason to use the expressions of
classical or nonclassical PP’s.

IV. CORRELATED POINT PROCESSES

Let htij be the time instantssor pointsd of a stationary PP
and xi = ti − ti−1 the distance between successive points, or
lifetime, also noted previously asL1sid. The quantitiesxi are
the values of a stationary discrete timesDTd positive random
signal. The relationxi =L1sid means that the set of all station-
ary PP’s is equal to the set of all stationary positive random
signals, and this remark is the starting point of this section.

If the RV’s xi are independent, which means that the sig-
nal xi is a positive white noise, the corresponding PP is a
renewal PP. If, moreover, the PDF of the RV’sxi is exponen-
tial, the PP is a pure Poisson process.

Our purpose is to delete theassumption of independence
or to study some PP’s with correlated lifetimes. However, as
the property of noncorrelation is quite insufficient to define a
random signal, we shall introduce a specific model of corre-
lated PP’s including as a particular case the renewal pro-
cesses and also the Poisson processes.

This model is defined by two parameters. The first onep
specifies the correlation function between the successive in-
tervals of the PPslifetime of order 1d. The latterr specifies
the marginal PDF of these intervals.

By using this model, it is possible to obtain some analyti-
cal expressions concerning the PDF’s appearing in Eq.
s2.18d. In this case we shall compare the results of computer
experiments with the relevant theoretical calculations. In
other cases calculations are almost impossible and we shall

limit our aim to present only results of computer experi-
ments.

A. Definition of the model

Let ui be a sequence of IID positive random variables
characterized by the PDFfstd. This defines a renewal process
P. Let alsovi be sequence of IID random variables indepen-
dent of theui’s, and taking only the values 1 or 0 with the
probabilitiesp andq=1−p, respectively.

Consider the signalxi defined by the recursion

xi+1 = vixi + s1 − vidui = vixi + v̄iui . s4.1d

It is clear from this equation that the marginal PDF is com-
mon to allxi and is still fstd.

If p=0, xi+1=ui, and these RV’s describe the renewal PP
defined byui. If pÞ0, there exists a correlation between the
xi’s and the corresponding correlation function can be calcu-
lated. Let m and s2 be the mean value and the variance
associated withfstd, respectively. This means that the RV’sxi

are second order. The case wheres2 is not finite requires a
specific treatment not presented here. It results from Eq.s4.1d
that

Efx0xkg = Efx0svk−1xk−1 + v̄k−1uk−1dg

= pEfx0xk−1g + s1 − pdm2. s4.2d

Introducing the correlation function defined bygk
=Efx0xk−1g−m2 yields

gk+1 = pgk = s2pk+1 = s2puk+1u, s4.3d

because any correlation function is an even function. This
means that Eq.s4.1d introduces an exponential correlation
function whatever the PDFfstd. Note that the correlated PP
is entirely defined byfstd andp. In other wordsp introduces
a correlation in the starting renewal processP defined byui
without changing the marginal distribution of the lifetime.

B. Distribution of the lifetime of order 1

As we are interested in the discussion of bunching and
antibunching effects in PP’s, we shall introduce a class of
PDF’s depending on one parameterr and including as a par-
ticular case the exponential distribution corresponding to
pure Poisson processes.

The family of PDF’s used below is introduced by the
following argument. LetFstd be an arbitrary distribution
function sDFd. It is a nondecreasing function varying from 0
to 1. The same property is valid forFfrgstd=Frstd, which
ensures that it is still a DF. But in this transformation there is
a shift of the possible values to the right. As an example, if
Fsld=1 or if the RV X defined byFs·d satisfiesXøl, we
obtain in the limit r →` the DF Ff`gstd=ust−ld, which
means that the RVX is almost surely equal tol.

We shall apply this idea to the exponential distribution
characterizing a pure Poisson process when the parameterp
of the models4.1d is zero. The exponential DF of mean value
1/l is Fstd=1−exps−ltd. The PDF associated withFfrgstd is
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obtained by calculating its derivative, which yields the value
of the PDF of the first-order lifetime by

f1
frgstd = rf1 − exps− ltdgr−1lexps− ltd. s4.4d

These functions are displayed in Fig. 2 forl=1 and the
following values of r: 1.5, 2, 3, 4, 5, 6. The exponential
distribution obtained forr =1 is not represented in this figure.
The effect on the small values oft is evident and the maxi-
mum is shifted to the right whenr increases. It is obvious
that the mean value, which has no simple analytical expres-
sion, is an increasing function ofr.

The last point is to generate a white noiseui with the PDF
s4.4d. For this there is a classical procedure which makes use
of the inverse functionGfrg of the DF functionFfrgstd. An
elementary calculation yields

Gfrgsxd = − s1/ldlns1 − x1/rd. s4.5d

It is known that ifwi is a white noise uniformly distributed in
f0, 1g, the signal defined byui =Gfrgswid is a white noise with
the PDFs4.4d.

In conclusion, it is possible to construct a PP defined by
thexi with exponential correlated lifetimes of order 1 defined
by p and of PDFs4.4d defined byr and represented in Fig. 2.

At this step it is worth pointing out that we have here a
good example of PP where the first-order approximation dis-
cussed in Sec. II Ecannot be applied. Indeed by varyingp
andr without changingfstd we obtain different PP’s with the
same PDF of the lifetime or order 1. As a consequence all
these processes cannot be distinguished by using only this
PDF, even by varying the density, which is the main idea of
a first-order approximation.

C. Calculations

In order to calculate the bunching functionbstd defined by
Eq. s2.18d, it would be necessary to calculate all the PDF’s
fkstd appearing in this expression for the PP defined by Eq.
s4.1d. It is in general an almost impossible task.

Let us first indicate the general procedure of this calcula-
tion. Let t0 be an arbitrary point of the PP. The RVx0 is the
distanceL1 betweent0 and the first pointt1 of the PP poste-
rior to t0. Similarly the distanceLk betweent0 and thekth
point of the PP posterior tot0 is Lk=x0+x1+¯ +xk−1. The
function fkstd is the PDF ofLk.

It results from Eq.s4.1d thatx1 takes two valuesx0 andu0
with probabilities p and q, respectively. To each of these
values we can associate by the same procedure two values of
x2. By repeating the procedure it is clear thatxk=Lk takes 2k

possible values which are sum of independent RV’s. As a
consequence the PDF ofLk is a sum of convolutions. The
analytical expression of these convolutions is difficult to be
obtained except in the case of exponential distribution

In this last case, the principle of the calculation is pre-
sented in the Appendix. Let us give the results of the calcu-
lation summarized by the expressions of the first five values
of fkstd. By definition we havef1std=l exps−ltd. In order to
simplify the presentation of the results, we introduce the

functions f̂ ksxd=s1/ldfksxd where x=lt and ek=eksxd
=exps−x/kd, k integer. We have f̂1sxd=e1 and f̂2sxd
=s1/2dpe2+qxe1. The other functionsf̂ ksxd are

f̂3sxd = s1/3dp2e3 + 2pqse2 − e1d + s1/2dq2x2e1, s4.6d

f̂4sxd = p3s1/4de4 + p2qfe3 − e1 + s1/4dxe2g

+ 3pq2f2e2 − sx + 2de1g + s1/6dq3x3e1, s4.7d

and finally

f̂5sxd = s1/5dp4e5 + p3qfs2/3dse4 − e1d + 2se3 − e2dg

+ s3/4dp2q2fs1 − 2xde1 + s2x − 4de2 + 3e3g

+ 2pq3f− sx2 + 4x + 8de1 + 8e2g + s1/24dq4x4e1.

s4.8d

FIG. 2. Shifted exponential PDF’s versus time
in dimensionless units. The curves are plotted for
l=1 and indexed with the values ofr
=3/2,2,3,4,5,6.
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These functions are presented in Fig. 3 forp=0.5. The

function f̂5sxd is presented in Fig. 4 for various values ofp.

It is clear thatf̂ ks0d=pk−1/k, and it results from the prop-
erty sii d of Sec. III B 1 that the PP analyzed in this section
cannot be a CPP except whenp=0, where it is a pure Pois-
son process.

Note also that the first-order approximation discussed pre-
viously cannot be applied. Indeed, as all thef tstd satisfy

f̂ ksxd=s1/ldfksxd, the bunching function defined by Eq.

s2.18d has the same property and can be written asb̂sxd
=s1/ldbsxd. Therefore a variation of the densityl of the

process does not changeb̂sxd which can never be approxi-

mated byf̂1sxd, even whenl→0.

D. Computer experiments

1. Principles of realizations and processing

As noticed above, the model introduces a correlated PP
defined by the parametersp and r and giving the Poisson
processes in the particular casep=0 andr =1. However, the
calculation of the bunching function and even of the PDF’s
fkstd is not easy, except forr =1, as discussed in the Appen-
dix. Then it is necessary to proceed by simulation of by
making a computer experiment. It is easy to generate by
computer samples of the signalxi or samples of the associ-
ated PP. For this we note that in Eq.s4.1d the signalxi is
generated from two independent white signalsui andvi. The
first one is deduced from a white noisewi uniformly distrib-
uted in f0,1g by applying the transformationui =Gfrgswid

FIG. 3. Lifetime distributionsf̂ kstd versust,
time in dimensionless units. The curves are plot-
ted for p=0.5 and indexed with the values ofk
=1,2,3,4,5.

FIG. 4. Lifetime distributionsf̂5std versust,
time in dimensionless units. Curves 1, 2, 3, 4, 5,
and 6 correspond top=0, 0.3, 0.5, 0.7, 0.9, and 1,
respectively.
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whereGfrgsxd is the function defined by Eq.s4.5d. The latter
vi takes only two values 0 or 1 and can be obtained from the
white noisew̄i independent ofwi and also uniformly distrib-
uted in f0,1g. For this we introducevi =usw̄i −1+pd, where
us·d is the conventional unit step function. It is clear thatvi is
still a white noise and thatPsvi =1d=p. The two signalsui

andvi define entirely the signalxi and therefore the PP.
From samples ofxi, it is possible to evaluate the PDF’s

fkstd and to obtain an approximation of the bunching func-
tion by the following procedure.

In order to apply Eq.s2.18d it is necessary to estimate the
PDF’s fkstd of a PP generated by a computer experiment. Let
Lk be the RV defined in Sec. II D as the lifetime of orderk. In
order to estimate experimentallyfkstd it suffices to use a
normalized histogram of the realizationsLksid of Lk obtained
in a PP generated experimentally by a computer. For this
purpose we consider the sequenceL1sid of distances between

successive points Pi in a particular realization of the PP. The
experimental realizations ofLksid are thus

Lksid = L1si + 1d + L1si + 2d + ¯ + L1si + kd. s4.9d

The normalized histogram ofLksid yields an estimation of
fkstd. The precision of the method depends first on the total
numberN of points of the PP analyzed in the experiment. In
the following this number is usually of the order of 106. The
other parameters involved in the precision of the method are
the number and width of windows used for calculating the
histogram. This is a classical topic in all the procedures of
PDF estimation from histograms and standard methods are
available.

The last problem is to find the value of theK, the number
of terms of Eq.s2.18d necessary to obtain a good approxi-
mation of Eq.s2.18d. There is no simple and general method
for this problem. However, by examining the case of pure

FIG. 5. Computer samples 1–4 of lifetimes
simulated withp=0, 0.1, 0.5, 0.9, 1.

FIG. 6. Computer simulations and theoretical
results of various lifetime distributionsfkstd for
k=1,2,3,4,5 versus t, time in dimensionless
units.
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Poisson processes for which the analytical expressions of all
the PDF’sfkstd are known, it is simple to derive it. In fact, it
is easily shown by computer calculations that for a Poisson
process of densityl=1, the valueK=10 yields an excellent
approximation ofbstd=1 of Eq. s2.18d for t,5. For K=50,
the approximation is excellent fort,30. But instead of es-
timating theK PDF’s fkstd appearing in Eq.s2.18d, it is sim-
pler to make a direct estimation of this function for a given
K. This is simply obtained by using in the same histograms
all valuesLksid for 1ø i øN and 1økøK. This procedure
yields directly an estimation ofbstd without calculating the
PDF’s fkstd.

2. Results of computer experiments

a. Samples and PDF’s of the lifetimes. Various examples
of samples ofL1sid=xi are presented in Fig. 5. In this figure
the distributionfstd common to all the cases is exponential.

This yields that ifxi’s are independent, which is the case for
p=0, the PP is a Poisson process. This corresponds to the
samples presented in the top figure of Fig. 5. The other val-
ues ofp are 0.1, 0.5, and 0.9. The effect of the correlation
between successive lifetimes is especially evident in the last
figure.

In Fig. 6 are represented experimental values of the PDF’s
of lifetimes of order 1–5 calculated withp=0.6 andr =1.
This last value allows us to use results of calculations pre-
sented in Sec. VC. The experimental points are indicated by
the symbols1d and the solid curves are calculated from Eqs.
s4.6d–s4.8d. There is an excellent accordance between experi-
mental and theoretical results.

We emphasize that all the PP’s studied here have a life-
time of order 1 identical to the lifetime of order 1 of a Pois-
son process. However, they are not Poisson because of the
correlation of successive lifetimes. They are not either CPP
because the PDF’sfkstd do not satisfyfks0d=0 for k.1.

FIG. 7. Approximated bunching functions
bstd versust, time in dimensionless units in cases
of correlated PP’ssp=0.6d for three values ofK
=5,10,20. Thecurve in solid line is the exact
function calculated forK=5 ssee the Appendixd.

FIG. 8. Approximated bunching functions
bstd versust, time in dimensionless units for three
types of PP’s. From the top, the values of the
parameters areK=20 and r =1, p=0.6, r =1, p
=0, r =3, p=0.6, respectively.
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b. Evaluation of the parameter K. We have previously
mentioned the consequences of the replacement of the series
s2.18d by a finite sum in studying a pure Poisson process. We
shall analyze the same problem for correlated PP’s intro-
duced in this section. We use the same condition as in Fig. 6
that arep=0.6, r =1, and f1std exponential. In this case we
have the explicit expressions offkstd for 1økø5 by Eqs.
s4.6d–s4.8d. By using these expressions and limiting the se-
ries s2.18d to the first five termsswhich means that the value
of K introduced above is 5d, we can calculate the approxi-
mated bunching function and compare the results with those
obtained experimentally. This appears in the curve indexed
by 5 in Fig. 7. Here also we note an excellent fit between
theoretical and experimental results. On the other hand, the
two experimental curves obtained withK=10 and K=20
cannot be verified by the calculation because in these cases
the explicit analytical expressions of the PDF’s of lifetimes
of order higher than 5 is very complicated.

As a conclusion, two comments are of interest
sid When they are available, the theoretical calculations fit

perfectly the computer results.
sii d In the domaintP f0,3g, the approximations with 10 or

20 terms are quite similar.
c. Bunching Effects. Simulation results concerning bunch-

ing effects are displayed in Figs. 7 and 8. The following
comments are of some importance.

The two first subfigures of Fig. 8 are calculated forr =1.
This means that in the two cases the first-order lifetime has
an exponential distribution. The second subfigure is calcu-
lated forp=0, which means that the PP is a Poisson process
with a constant bunching function. This appears in the figure
and yields a good idea of the quality of the approximation.
These two figures clearly show that the bunching effect can-
not be deduced from the analysis of the PDFf1std of the
first-order lifetime.

Finally, the last subfigure of Fig. 8 shows that, as ex-
pected, the use of a displaced exponential distribution de-
fined by Eq.s4.4d yields an antibunching effect. Other results
not reported here show an interesting behavior of the bunch-
ing function whenr increases, displaying some analogy with
the results appearing in Fig. 1. This point will be discussed
elsewhere.
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APPENDIX: CALCULATIONS OF THE PDF’S
OF LIFETIMES

As indicated above, the lifetime of order 1 is the RVL1
equal tox0. The lifetime of order 2 is the RVL2=x0+x1

wherex1 is deduced fromx0 by Eq. s4.1d. As a consequence
L2 is equal to 2x0 andx0+u1 with the probabilitiesp andq,
respectively. By repeating the procedure the RVL3 is equal
to x0+x1+x2 and Table I indicates its value and their corre-
sponding probabilities.

The last row indicates the possible structure of the sum of
independent RV’s. For examplef2,1,0g means that in the sum
of three terms, two are equal. Continuing with this proce-
dure, the lifetimeL4=x0+x1+x2+x3 takes eight possible val-
ues indicated below with their corresponding probabilities
and symbolsssee Table IId.

The same procedure can be applied forL5 which takes 16
possible values easy to express but not reproduced here. All
these RV’s are sums of independent RV’s. Their PDF’s can
be obtained by convolutions from the PDFf1std of L1.

The calculation of these convolutions is tedious, except
when the PDF common to all the RV’sxi is exponential or
when f1std=l exps−ltd.

Before continuing, let us point out the following property
which simplifies the calculation. Ifa1std and a2std are two
PDF’s satisfyingaistd=lâisxd, with x=lt, their convolution
cstd is a PDF with the same structure—i.e.,cstd=lĉsxd. Its
proof is obvious and results immediately from the calcula-
tion of the convolution. As a consequence we can assume
that l=1 and calculate only the functionsĉsxd.

The remaining task is now to calculate all the convolu-
tions yielding the PDF’s of the RV’s appearing in the tables.

Order 2. The possible RV’s are 2x0 and x0+u1. As a re-
sult,

f̂1sxd = s1/2dpe2 + qxe1, sA1d

where the functionsei =eisxd are those defined previously.
Order 3. It appears in Table I that there are only three

distinct convolutionsh3isxd to calculate. The first notedf31 is
the PDF of 3x0 or h31sxd=s1/3de3. The second ish32sxd
=fs1/2de2pe1gsxd, and one obtains easilyh32sxd=e2−e1. The
last one ish33sxd=e1pe1pe1 which is h33sxd=s1/2dx2e1. Us-

ing the relationf̂3sxd=p2h31+2pqh32+q2h33 yields Eq.s4.6d.
Order 4. Among the eight terms appearing in the table,

there are only five different structures giving five functions
h4isxd. The function coming fromf4,0,0,0g is clearly h41sxd
=s1/4de4. Similarly h42sxd coming from f3,1,0,0g is

TABLE I. Method for calculation off̂3sxd.

RV 3x0 2x0+u2 x0+2u1 x0+u1+u2

Prob. p2 pq pq pq

Symbol f3,0,0g f2,1,0g f2,1,0g f1,1,1g

TABLE II. Method for calculation off̂4sxd.

RV 4x0 3x0+u3 2x0+2u2 2x0+u2+u3 x0+3u1 x0+2u1+u3 x0+u1+2u2 x0+u1+u2+u3

Prob. p3 p2q p2q pq2 p2q pq2 pq2 q3

Symbol f4,0,0,0g f3,1,0,0g f2,2,0,0g f2,1,1,0g f3,1,0,0g f2,1,1,0g f2,1,1,0g f1,1,1,1g
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fs1/3de3pe1gsxd, and the calculation yieldsh42sxd=s1/2dse3

−e1d. The term associated withf2,2,0,0g is h43sxd
=s1/4dfe2pe2gsxd=s1/4dxe2. For f2,1,1,0g we obtainh44sxd
=fs1/2de2pe1pe1gsxdsxd=2e2−sx+2de1. Finally the structure
f1,1,1,1g yields h45sxd=fe1pe1pe1pe1gsxd=s1/6dx2e1.
Grouping all these terms with their corresponding probabili-
ties yields Eq.s4.7d.

Order 5. The general procedure is the same and we give
only the seven different functions appearing in the calcula-

tion of the 16 terms off̂5sxd:

f5,0,0,0,0g h51 = s1/5de5,

f4,1,0,0,0g h52 = s1/3dse4 − e1d,

f3,2,0,0,0g h53 = e3 − e2,

f3,1,1,0,0g h54 = s1/4df3e3 − s2x + 3de1g,

f2,2,1,0,0g h55 = s1/2dfsx − 2de2 + 2e1g,

f2,1,1,1,0g h56 = s1/2df− sx2 + 4x + 8de1 + 8e2g,

f1,1,1,1,1g h57 = s1/24dx4e1. sA2d

Using these functions for the calculation of all terms off̂3sxd
yields Eq.s4.8d.
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