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A formalism for multiport devices is developed in which the creation and annihilation operators at the output
are related with those at the input through a finite Fourier transform. By considering two specific inputs of
number states and coherent states, we show how these devices can be used to produce multimode Schrödinger
cat states and can be combined to create multipath interferometers. We introduce uncertainty relations for the
distributions of particles in the input modes and the correlations between the output modes. These allow us to
determine how the phase resolution of the output state scales with the number of ports and particles. This
scaling is of fundamental interest for schemes that seek to use multipath interferometers for enhanced mea-
surement precision.
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I. INTRODUCTION

Devices that manipulate the entanglements between quan-
tum systems are of great interest from both a theoretical and
a practical point of view. Mach-Zehnder interferometers, for
example, have played an important role in quantum optics
f1–9g and have far-reaching potential applications that in-
clude optical gyroscopes and gravitational wave detectors.
More general multiport devices have also been studied in the
literature for both photons and atomsf10–12g. These devices
perform unitary transformations and could be used as gates
in quantum-information processing schemes on networks or
as generalized beam splitters in interferometers. The interest
in these devices has been increasing rapidly as progress is
made toward their physical implementation. Multiport beam
splitters with six or eight ports have been experimentally
demonstrated for photonsf13g and experiments with Bose-
Einstein condensates trapped in optical lattices suggest an
exciting avenue for their realization with atomsf14,15g.

In this paper we consider a special case of 2d-port devices
in which the creation and annihilation operatorshaM

† ,aMj of
photonssor atomsd at thed inputs are related to the creation
and annihilation operatorshAM

† ,AMj of photonssor atomsd at
the d outputs through a finite Fourier transform. This can be
thought of as the multiport analog of a beam splitter. In this
case, each output is a combination of all the inputs with
equal weights, which leads to interesting results. We develop
a theoretical formalism for the operation of this device and
consider the results for particular inputs. We show that there
are uncertainty relations that connect the distribution of pho-
tons in the various modes at the input, with the correlations
between the various modes at the output. These uncertainty
relations are constraints which provide a deeper insight into
the system.

The format of this paper is as follows. In Sec. II we begin
by presenting the basic formalism and the unitary transfor-
mation associated with Fourier multiport devices. In Sec. III

we use this formalism to study particular examples which
elucidate the operation of the device. In particular, we show
that a certain superposition of number states at the input
produces a multimode Schrödinger cat state at the output
comprised from number states with all photons in one mode.
We also consider the case of coherent state inputs and show
that a coherent state in one of the inputsswith vacua in all
other inputsd will split into d coherent states with an equal
average number of photons at each of the outputs. Further-
more, the phases of the coherent states at the output indicate
the particular channel at which the coherent state entered the
device. This could have useful applications in quantum opti-
cal networks and in the general area of multipath interferom-
etry.

In Sec. IV A we consider the number distributionknMl
swherenM =aM

† aMd of photons in the input modes; and the
first-order correlationkCKl swhereCK=d−1/2oLAL

† AL−Kd be-
tween the output modes. We show that there is an uncertainty
relation which states that when one of these distributions is
narrow, the other one is wide. Uncertainty relations involving
higher moments of these quantities can also be formulated.
For example, in Sec. IV B we consider the distributionDnM

2

which describes the uncertainty in the photon number in the
input modes; and the distributionDCK

2 which describes
second-order correlations at the output modes. As before, we
show that there is an uncertainty relation which inversely
relates the widths of these distributions.

In Sec. V we use our results to analyze the phase uncer-
tainties at the output ports. This enables us to derive a scaling
law for the phase resolution in terms of the number of ports
and the total number of particles involved. This result is of
great importance for optimizing the measurement resolution
that will be able to be achieved in proposed multiport inter-
ferometers. Finally, in Sec. VI we conclude with a discussion
and an overview of our results.

II. FOURIER MULTIPORT DEVICES

We consider a 2d-port device withd inputs andd outputs.
We denote asha,a†j the annihilation and creation operators
of photons at the input; and we use the notation
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aM = 1 ^ ¯ ^ a ^ ¯ ^ 1,

aM
† = 1 ^ ¯ ^ a†

^ ¯ ^ 1,

faM,aK
†g = dsM,Kd s1d

for the annihilation and creation operators of photons at the
Mth input. For convenience, the indices are integers modulo
d; they belong inZd sthe set of integers modulodd. dsM ,Kd
is Kronecker’s deltafit is equal to 1 whenM =K smodulo
ddg. In a similar way, we use the notationAM andAM

† for the
annihilation and creation operators of photons at the output.

We consider multiport devices for which the annihilation
and creation operators at the output are related to those at the
input through the finite Fourier transform

AM = UaMU† = d−1/2o
K

aKvKM, v = expSi
2p

d
D ,

AM
† = UaM

† U† = d−1/2o
K

aK
†v−KM , s2d

whereU is the unitary transformation performed by the de-
vice. U is a special case of symplectic Sps2n,Rd transforma-
tions and is given explicitly below. The inverse relation is

aM = d−1/2o
K

AKv−KM, aM
† = d−1/2o

K

AK
†vKM . s3d

It is easily seen that the vacuum stateu0, . . . ,0l is the same
with respect to thehaMj operators, as it is with respect to the
hAMj operators. But the number eigenstates ofnK=aK

†aK are
different from the number eigenstates ofNK=UaK

†aKU†

=AK
†AK; and we use the notationuM1, . . . ,Mdla and

uM1, . . . ,MdlA for those states correspondingly:

nKuM1, . . . ,Mdla = MKuM1, . . . ,Mdla,

NKuM1, . . . ,MdlA = MKuM1, . . . ,MdlA,

uM1, . . . ,MdlA = UuM1, . . . ,Mdla. s4d

We also use the terms “a photons” and “A photons” in
relation to haK ,aK

†j and hAK ,AK
†j, respectively. We next use

Eq. s2d and the relation

1

d
o
M

vMsK−Ld = dsK,Ld s5d

to prove that

o
M

nM = o
K

NK. s6d

Therefore the Fourier multiport device preserves the total
number of photons.

A. The unitary transformation

Having defined the Fourier multiport transformation, we
would now like to find an explicit form for the operatorU

appearing in Eq.s2d. We consider the operator

U = expFi o
M,K

aM
† FMKaKG , s7d

whereFMK is elementsM ,Kd of a Hermitiand3d matrix F.
It is known se.g.,f16gd that

UaMU† = o
K

FMKaK, F = exps− iFd. s8d

F is a d3d matrix and it is the matrix exponential of −iF.
In our case we wantF to be the finite Fourier matrixse.g.,

f17,18gd

FMK = d−1/2vMK, v = expSi
2p

d
D . s9d

This matrix obeys the relations

FF† = 1, F4 = 1. s10d

The matrixF is simply the logarithm of the matrixF, times
i:

F = i ln F. s11d

For numerical calculations, the logarithm of a matrix is
readily available in computer librariesse.g.,MATLAB d.

For more theoretical work, we will express the matrixF
in terms of its eigenvalues and eigenvectors. Equations10d
shows that the eigenvalues ofF are i, −1, −i, 1. There exists
a lot of literature on the eigenvalues and eigenvectors ofF
f17g, and for our purposes it suffices to writeF as

F = iÃsid − Ãs−1d − iÃs−id + Ãs1d, s12d

whereÃsid, Ãs−1d, Ãs−id, Ãs1d, are projection operators into
the eigenspaces corresponding to the eigenvaluesi, −1, −i, 1,
respectively. It is now easily seen that the matrixF can be
written as

F = −
p

2
Ãsid − pÃs−1d −

3p

2
Ãs−id. s13d

TheÃs1d does not appear because it is multiplied by ln 1 and
so vanishes. Therefore the operatorU can be written as

U = UsidUs−1dUs−id,

Usid = expF− i
p

2 o
M,K

aM
† ÃsidMKaKG, Usid

4 = 1,

Us−1d = expF− ipo
M,K

aM
† Ãs−1dMKaKG, Us−1d

2 = 1,

Us−id = expF− i
3p

2 o
M,K

aM
† Ãs−idMKaKG, Us−id

4 = 1. s14d

We have taken into account here thatoM,KaM
† ÃsidMKaK,

oM,KaM
† Ãs−1dMKaK, oM,KaM

† Ãs−idMKaK, andoM,KaM
† Ãs1dMKaK

commute with each other. It follows that

U4 = 1. s15d
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III. EXAMPLES

In this section we discuss two specific examples of input
states that elucidate the operation of the device. In the first,
we consider how number states are transformed and show
how superpositions of number states can be used to create
Schrödinger cat states at the output. In the second, we con-
sider coherent states and study some of their properties when
they are passed through the device.

A. Number states

A number state withn photons in theMth mode can be
written as

u0, . . . ,nsMd, . . . ,0lA =
sAM

† dn

sn!d1/2u0, . . . ,0l, s16d

where the superscriptsMd indicates thatn is in the Mth
mode. We then use Eq.s2d to prove

vKMsAM
† dn = d−n/2 o

n1,. . .,nd

n!

n1! . . . nd!

3sa1
†dn1 . . . sad

†dndv−Msn1+2n2+¯+dnd−Kd s17d

where the sum is over all non-negative integers such thatn
=n1+¯ +nd. Summation overM, taking into account Eq.
s5d, gives

vKsA1
†dn + ¯ + vKdsAd

†dn

= d1−n/2 o
n1,. . .,nd

n!

n1! ¯ nd!
sa1

†dn1
¯ sad

†dnd,

s18d

where the sum is over all non-negative integers such that

n = n1 + ¯ + nd; n1 + 2n2 + ¯ + dnd = Ksmoddd.

s19d

The second constraint means that the number of terms in the
sum of Eq.s18d is drastically reduced in comparison to Eq.
s17d sit is divided bydd. Acting with Eq.s18d on the vacuum
we prove

usKl = d−1/2fvKun, . . . ,0lA + ¯ + vKdu0, . . . ,nlAg

= ds1−nd/2 o
n1,. . .,nd

F n!

n1! ¯ nd!
G1/2

un1, . . . ,ndla, s20d

where the summation is over non-negative integers which
obey the constraints of Eq.s19d. The left-hand side is a
Schrödinger cat; it is a superposition of number states ofA
photons withn photons in one of the modes and zero photons
in the rest of the modes. The right-hand side is a superposi-
tion of number states ofa photons. We can show that with
respect to bothA photons anda photons these states have the
same average number of photons in each mode:

kN̂1l = ¯ = kN̂dl =
n

d
, kn̂1l = ¯ = kn̂dl =

n

d
. s21d

We can also show that the various statesusKl are orthogonal
to each other,

ksKusLl = dsK,Ld. s22d

B. Coherent states

We now consider the case of a coherent state in theMth
mode. This can be written as

u0, . . . ,bsMd, . . . ,0la = DaM
sbdu0, . . . ,0l s23d

whereDaM
sbd is the displacement operator

DaM
sbd ; expfbaM

† − b * aMg s24d

andb is a complex number. The indexaM indicates that this
is a displacement operator with respect toaM andaM

† .
Using Eq.s2d it is straightforward to show that

bAM
† − b * AM = d−1/2o

K

fbv−KMaK
† − b * vKMaKg s25d

and this leads to the relation

DAM
sbd = Da1

sd−1/2bv−MdDa2
sd−1/2bv−2Md

¯ Dad
sd−1/2bv−dMd. s26d

Acting with these operators on the vacuum we get the coher-
ent states

u0, . . . ,bsMd, . . . ,0lA = ud−1/2bv−M, . . . ,d−1/2bv−dMla.

s27d

The left-hand side is a coherent state with respect to theA
operators. It is a tensor product of vacua with the coherent
stateubl in the Mth mode. The right-hand side is a coherent
state with respect toa operators.

It is seen that coherent states with phases 2pM /d at the
inputs produce a coherent state in one of the outputs and
vacua in all other outputs. This is a multimode generalization
of the well-known two-mode result. An interesting applica-
tion of these states is in multimode interferometry schemes.
If we were to start with a coherent state in one of the input
modes,M, and vacua in all other inputs, we would get co-
herent states in all outputs with phases 2pM /d. If we then
applied a linearly varying phase across these output modes,
the change in phase of modej would be DQ j = jh. For h
=2p /d, the state becomes

ud−1/2bv−sM−1d, . . . ,d−1/2bv−dsM−1dlA s28d

and if we transform it back through the Fourier device, we
get

u0, . . . ,bsM−1d, . . . ,0la, s29d

i.e., the coherent state has moved along one mode relative to
the initial state. This scheme is a multimode generalization of
an interferometer. However, instead of measuring the phase
shift via the population at two output modes, we measure it
at d modes. This gives a finer measurement scale and may
lead to enhanced precision.

Another possible application of this device is to split a
coherent state into many other coherent states. It can be seen
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from Eq. s27d directly that a coherent state with an average
number of ubu2 photons will be split intod coherent states
each with an average number ofubu2/d photons.

Equations27d can be generalized into

ub1, . . . ,bdlA = uB1, . . . ,Bdla, BM = o
K

sF−1dMKbK,

s30d

whereF−1 is the inverse Fourier matrix

sF−1dMK = d−1/2v−MK. s31d

We note that if thed-dimensional vectorhbKj is an eigenvec-
tor of the Fourier matrixF−1 f17,18g, thenBM =lbM wherel
is the corresponding eigenvalue, which takes one of the val-
ues 1,i, −1, −i. We see that for the eigenvectors with eigen-
value 1, the corresponding coherent states exit unaltered
from the device; and for the eigenvectors with eigenvaluei,
−1, −i, the phase of each of the coherent states changes by
p /2, p, 3p /2, correspondingly.

IV. UNCERTAINTY RELATIONS

We can gain a deeper understanding of these systems by
considering the uncertainty relations between the input and
output modes. In the following subsections we focus on two
particular cases and discuss uncertainty relations involving
first- and second-order correlations of the output modes.

A. First-order correlations

We use Eq.s3d in conjunction with Eq.s5d to prove that

nM ; aM
† aM = d−1/2o

K

CKvKM , s32d

where

CK = d−1/2o
L

AL
† AL−K,

fCK,CMg = 0, CK
† = C−K. s33d

It is seen that the operatorsnM andCK are related through a
finite Fourier transform. Taking the expectation values with
respect to an arbitrary stateusl we find

knMl = d−1/2o
K

kCKlvKM . s34d

knMl is the distribution of the number ofa photons in the
various modes, in the stateusl. kCKl is the A-photon first-
order correlation between the modesL and L−K, summed
over all L. kC0l in particular is the total average number of
photons in the stateusl swith a normalization factord. The
width of the distributionukCKlu2 can be interpreted as a cor-
relation length between the variousA modes at the output.

The distributionknMl is related to the distributionkCKl
through a finite Fourier transform. There is an uncertainty
relation associated with every Fourier transform, which
qualitatively asserts that if theuknMlu2 as a function ofM is

narrow, then theukCKlu2 as a function ofK is wide; and vice
versa. We can quantify this with the entropic uncertainty re-
lations f19g. We first use Parseval’s theorem to prove

o
M

uknMlu2 = o
M

ukCMlu2 s35d

and then define the probability distributions

pK =
uknKlu2

oM
uknMlu2

, sK =
ukCKlu2

oM
ukCMlu2

. s36d

The pK characterizes the distribution ofa photons into the
various modes, in the stateusl. ThesK characterizes the first-
order correlations between the modes forA photons. We in-
troduce the entropies

S1 = − o
K

pK ln pK, S2 = − o
K

sK ln sK. s37d

S1 takes its minimum value zero, whenpK=dsK ,K0d, and its
maximum value lnd when pK is the uniform distribution
pK=1/d. A similar remark holds forS2. The entropic uncer-
tainty relation states that

S1 + S2 ù ln d. s38d

We apply this entropic uncertainty relation to the stateusKl
of Eq. s20d studied in Sec. III A. Fornù2 we can easily
show thatkCKl=d−1/2ndsK ,0d which givessK=dsK ,0d and
S2=0. For n=1 we can show thatkCKl=d−1/2 which gives
sK=1/d andS2= ln d. We have seen in Eq.s21d that in this
example the average number ofa photons in each mode is
the same; and this shows thatpK=1/d and S1= ln d. In this
example, for nù2 the entropic inequality is satisfied as
equality; and forn=1 it becomesS1+S2=2 ln d. ln d.

We also apply the entropic uncertainty relation to the co-
herent state example of Eq.s27d studied in Sec. III B. We can
easily show thatkCKl=d−1/2ubu2dsK ,Md which gives sK

=dsK ,Md and S2=0. We also haveknKl= ubu2 which gives
pK=1/d and S1= ln d. In this example also, the entropic in-
equality is satisfied as equality.

The entropic inequality is a rigorous way of quantifying
the uncertainty principle associated with finite Fourier trans-
forms. At larged, for practical purposes it is intuitively more
clear to use the uncertainties

Dknl = Fo
K

K2pK − So
M

MpMD2G1/2
,

DkCl = Fo
K

K2sK − So
M

MsMD2G1/2
. s39d

Dknl is the width of the distribution ofa photons into the
various modes.DkCl is the correlation length between the
modes forA-photons.

Heuristically we can say that

Dknl ,
1

DkCl
. s40d
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B. Second-order correlations

We use Eq.s32d in conjunction with Eq.s5d to prove that

nM
2 = d−1/2o

K

GKvKM , s41d

where

GK = d−1/2o
L

CL−K
† CL = d−3/2 o

L,M,J
AM−L+KAM

† AJ
†AJ−L,

fGK,GMg = 0, GK
† = G−K. s42d

It is seen that the operatorsnM
2 andGK are related through a

finite Fourier transform. Taking the expectation values with
respect to an arbitrary stateusl we find

knM
2 l = d−1/2o

K

kGKlvKM . s43d

We then define

DnM
2 ; knM

2 l − knMl2,

DCK
2 ; kGKl − d−1/2o

L

kCL−K
† lkCLl, s44d

and using Eqs.s34d and s43d, we prove that

DnM
2 = d−1/2o

K

DCK
2vKM . s45d

DnM
2 is the uncertainty in the number ofa photons in theMth

mode, in the stateusl. DCK
2 involves second-order correla-

tions of A photons. The finite Fourier transform implies that
if the distributionDCK

2 is very narrowsas a function ofKd,
then the distributionDnM

2 is very widesas a function ofMd,
and vice versa.

We can quantify this with the entropic uncertainty rela-
tions. We first use Parseval’s theorem to prove

o
M

DnM
2 = o

K

DCK
2 s46d

and then define the probability distributions

pK8 =
DnK

2

oM
DnM

2
, sK8 =

DCK
2

oM
DCM

2
s47d

and the entropies

S18 = − o
K

pK8 ln pK8 , S28 = − o
K

sK8 ln sK8 . s48d

S18 takes its minimum value zero whenpK8 =dsK ,K0d; and its
maximum value lnd when pK8 is the uniform distribution
pK8 =1/d. A similar remark holds forS28. The entropic uncer-
tainty relation states that

S18 + S28 ù ln d. s49d

We apply the entropic uncertainty relation to the coherent
state example of Eq.s27d studied in Sec. III B. We can show
that DCK

2 =d−1/2ubu2dsK ,0d which givessK8 =dsK ,0d and S28
=0. We also haveDnM

2 = ubu2 which givespK8 =1/d and S18

=ln d. In this example the entropic inequality is satisfied as
equality.

As we explained in the previous section, the entropic in-
equality is a rigorous way of quantifying the uncertainty
principle associated with finite Fourier transforms. At large
d, for practical purposes it is intuitively more clear to use the
uncertainties

dsDknld = Fo
K

K2pK8 − So
M

MpM8 D2G1/2
,

dsDkCld = Fo
K

K2sK8 − So
M

MsM8 D2G1/2
. s50d

Heuristically we can say that

dsDknld ,
1

dsDkCld
. s51d

V. PHASE UNCERTAINTIES

One possible application of these devices is in multipath
interferometers. In such schemes, the phase uncertainties be-
tween the output modes are of key importance. In this sec-
tion, we consider how these uncertainties scale with the
number of ports and the total number of atoms involved.

We denote the phase associated with the operators
hAM

† ,AMj as uM. The problems associated with a rigorous
formalism for phases are well knownf20–22g. We can ex-
press the operatorsAM

† , AM as

AM = EMsAM
† AMd1/2, AM

† = sAM
† AMd1/2EM

† ,

EM = o
N=0

`

uNlkN + 1u,

EMEM
† = 1, EM

† EM = 1 − u0lk0u. s52d

HereEM is the exponential of the phaseuM operator and it is
sfor infinite-dimensional Hilbert spacesd isometric but not
unitary.

In a truncatedD-dimensional Hilbert space, whereN
takes integer values moduloD, sand uDl;u0ld

EM = o
N=0

D−1

uNlkN + 1u. s53d

Now EM is unitary and the phase operatoruM is Hermitian.
In the large-D limit we write heuristically

DuM ,
1

DNM
. s54d

In the example of Eq.s20d studied in Sec. III A

kNM
2 l =

n2

d
, kNMl =

n

d
, DNM

2 = Fn2

d
−

n2

d2G . s55d

Therefore for larged
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DuM ,
Îd

n
. s56d

This phase uncertaintyDuM is of particular interest for
schemes which use number correlated inputs to improve the
precision of interferometersf1,6g. The scaling given bys56d
is important for generalizing these schemes to multiport de-
vices such as large arrays of condensates in optical lattices
f14,15g. As an indication of the phase resolution that may be
achieved by this method, experimentalistsf15g have number-
squeezed an array of about 12 condensates with a total num-
ber of around 104 atoms. For a highly squeezed system, this
would enable phase resolutions of the order ofDuM ,3
310−4.

VI. DISCUSSION

We have developed a theoretical analysis of multiport de-
vices where the creation and annihilation operators at the
output are related to those at the input through a finite Fou-
rier transform. Such devices perform the unitary transforma-
tion of Eqs.s7d and s11d.

We have shown that there are uncertainty relations that
connect the distribution of photons into the various modes at
the input, with the correlations between the various modes at
the output. They have been expressed quantitatively with en-
tropic quantities in Eqs.s38d and s49d. In the large-d limit
they can be written in the simpler form given in Eqs.s40d
and s51d.

We have presented examples which elucidate the opera-
tion of the device. In Eq.s20d we have shown that a certain
superposition of number states at the input produces at the
output a Schrödinger cat state comprised of number states
with all photons in one mode. In Eq.s27d we have shown
that coherent states with phases 2pM /d at the inputs produce
a coherent state in one of the outputs and vacua in all other
outputs. The reverse process can be used to split a coherent
state into many other coherent states.

We have also discussed phase uncertainties in this device.
We have shown that for the example of Eq.s20d, DuM

,Îd/n. This result is important for considering how the
measurement resolutions that can be achieved with multipath
interferometers scale with the number of paths. These multi-
port Fourier devices may be able to be implemented in both
optical and atomic systems. Possibilities include using com-
binations of beam splitters for photons or allowing Joseph-
son coupling between atomic condensates trapped in an op-
tical lattice.
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