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Fourier multiport devices
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A formalism for multiport devices is developed in which the creation and annihilation operators at the output
are related with those at the input through a finite Fourier transform. By considering two specific inputs of
number states and coherent states, we show how these devices can be used to produce multimode Schrodinger
cat states and can be combined to create multipath interferometers. We introduce uncertainty relations for the
distributions of particles in the input modes and the correlations between the output modes. These allow us to
determine how the phase resolution of the output state scales with the number of ports and particles. This
scaling is of fundamental interest for schemes that seek to use multipath interferometers for enhanced mea-
surement precision.
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I. INTRODUCTION we use this formalism to study particular examples which

Devi that ioulate th tandl ts bet elucidate the operation of the device. In particular, we show
evices that manipulate the entanglements between quall,; 5 certain superposition of number states at the input

tum sy§tems are of great interest from bpth a theoretical angroduces a multimode Schrdodinger cat state at the output
a practical point of view. Mach-Zehnder interferometers, forcomprised from number states with all photons in one mode.

example, have played an important role in quantum OPUCRye also consider the case of coherent state inputs and show

[1-9] and have far-reaching potential applications that IN“that a coherent state in one of the inpGisith vacua in all

clude optical gyroscopes r_:md gravitational wave d.ete.Ctoerther inputg will split into d coherent states with an equal
More general multiport devices have also been studied in th verage number of photons at each of the outputs. Further-
literature for both photons and atofiiD-12. These devices more, the phases of the coherent states at the output indicate

perform unitary transformations and could be used as gat&ge haricylar channel at which the coherent state entered the

in quantum-information processing schemes on networks %evice. This could have useful applications in quantum opti-

as generalizgd heam splitter_s in intgrferom.eters. The intereg&l networks and in the general area of multipath interferom-
in these devices has been increasing rapidly as progress é?ry

made toward their physical implementation. Multiport beam Iﬁ Sec. IVA we consider the number distributigny,)
splitters with six or eight ports have been experimentally(Wheren I:aT ay) of photons in the input modes: an'\é the
demonstrated for photorjd 3] and experiments with Bose- M~ EMEM P P '

ot : _ lzs At )
Einstein condensates trapped in optical lattices suggest dfstorder correlatioC) (whereCy=d ZAVAL-K) be-
exciting avenue for their realization with atorfis4,15. tween the output modes. We show that there is an uncertainty

In this paper we consider a special case &§rt devices relation which states that when one of these distributions is
in which the creation and annihilation operatdeg, ,ay} of narrow, the other one is wide. Uncertainty relations involving

photons(or atoms at thed inputs are related to the creation higher momer_lts of these quant|t|e§ can alsq b_e fo_rmulated.
and annihilation operatof\,, A} of photons(or atoms at For examplg, in Sec. IVB we coln3|der the dlstrlbutztsmf,_I

the d outputs through a finite Fourier transform. This can beWhICh descnb.es the uncer_ta|r_1ty n thezphot_on numbe_r in the
thought of as the multiport analog of a beam splitter. In thig"PUt modes; and the distributioACy, which describes
case, each output is a combination of all the inputs Withsecond-order correlaﬂons at thg output mOdeS'.AS t_)efore, we
equal weights, which leads to interesting results. We develo how that thgre IS an uncertamty .relat|on which inversely
a theoretical formalism for the operation of this device and elates the widths of these distributions.

consider the results for particular inputs. We show that ther _In_ Sec. V we use our resu!ts to analyze the p_hase uncer-
are uncertainty relations that connect the distribution of pho—alntles at the output ports. Th's enables us to derive a scaling
tons in the various modes at the input, with the correlationéaw for the phase resolution in terms of the number of ports

between the various modes at the output. These uncertain d the total number of.pa}rt.icles involved. This result is .Of
relations are constraints which provide a deeper insight int reat importance for optimizing t_he measurement reso_lutlon
the system. hat will be able to be achieved in proposed multiport inter-

The format of this paper is as follows. In Sec. Il we beginferometers. Finally, in Sec. VI we conclude with a discussion

by presenting the basic formalism and the unitary transforf’lnd an overview of our results.

mation associated with Fourier multiport devices. In Sec. IlI
Il. FOURIER MULTIPORT DEVICES

We consider a @port device withd inputs andd outputs.
*Permanent address: Department of Computing, University oMe denote aga,a'} the annihilation and creation operators
Bradford, Bradford BD7 1DP, United Kingdom. of photons at the input; and we use the notation
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ay=1® - ®a® - ®1, appearing in Eq(2). We consider the operator

+o_ U=expiX a;\rAq)MKaK], (7)
MK

a,=1® - 2a'e- - 1,
1 _ whered,,k is elemen{M,K) of a Hermitiand X d matrix ®.
ay,a] = 8M,K 1 : MK
(3w, 3] = 3M.K) @ It is known (e.g.,[16]) that
for the annihilation and creation operators of photons at the _
Mth input. For convenience, the indices are integers modulo UayU'=2 Fykax, F=exg-id). (8)
d; they belong inZ, (the set of integers moduld). 5(M,K) K
is Kronecker's deltdit is equal to 1 wherM=K (modulo  F s adx d matrix and it is the matrix exponential of.

d)]. In a similar way, we use the notatid, andA}, for the In our case we warft to be the finite Fourier matrite.g.,
annihilation and creation operators of photons at the outpuf.17,18)

We consider multiport devices for which the annihilation )
1 an
and creation operators at the output are related to those at the Fuc=d2oMK o= ex;{i—). (9)
input through the finite Fourier transform d

21

This matrix obeys the relations
Ay =UayUT=d V2> a M, w:exp<iF>, y
K

FFT=1, F*=1. (10)

The matrix® is simply the logarithm of the matrik, times
Al =UaluT=d 2y al ™M, @ i
K

whereU is the unitary transformation performed by the de- ®=iinF. (19
vice. U is a special case of symplectic (@p,R) transforma- For numerical calculations, the logarithm of a matrix is
tions and is given explicitly below. The inverse relation is readily available in computer librarigg.g.,MATLAB ).
For more theoretical work, we will express the maidix
ay =d Y2 Aco™™, al,=d V2 Alo™.  (3) in terms of its eigenvalues and eigenvectors. Equatigh
K K shows that the eigenvalues Bfarei, -1, -, 1. There exists
It is easily seen that the vacuum stéle... ,0 is the same 2 lot of literature on the eigenva_lues and eigenvectork of
with respect to théa,,} operators, as it is with respect to the [17]; and for our purposes it suffices to writeas
{Ay} operators. But the number eigenstates\of ala. are F=iwg -~ ey - 1w+ ©a, (12)
different from the number eigenstates df=Ua}acU’ o )
=AlA¢; and we use the notatiodMy,..., My, and Wherew, @y, @i, () are projection operators into

My, ..., Mg for those states correspondingly: the eigenspaces corresponding to the eigenvajues -, 1,
respectively. It is now easily seen that the matkixcan be
nK|M1, s ,Md>a: MK|M1, caa ,Md)a, ertten as
— T 3
NK|M11 ’Md>A_MK|Ml’ ’Md>A’ (I):_Em(i)_ﬂ-m(—l)_?m(_i)' (13)
Mg, ... Mg)a=U[My, ... M. (4)  Thew, does not appear because it is multiplied by In 1 and
We also use the termsa“photons” and A photons” in SO vanishes. Therefore the operatbcan be written as

relation tof{ay,ak} and{Ac,Al}, respectively. We next use U=UyU Ui

Eq. (2) and the relation
1S mk-a) U = —iZS Al Ut =1
az w =48(K,A) (5) (i) = eX | 2= AT (iHHmMKAK | =1
M :

to prove that )
U(—l) = eXﬁ:— |’7TE aI,,m(_l)MKaK], U(Z_l) = 1,
> Ny = > N - (6) MK
M K

3
Therefore the Fourier multiport device preserves the total U(_i)=exp[—i7772 a;(,lm(_i)MKaK], Uf‘_i)=1. (14)
number of photons. M.K

We have taken into account here thEp,,,KaI,lm(i)MKaK,

. . T T T
A. The unitary transformation ZMKAMT (~1)MKAKs ZM KD (— MKk and Xy kay @ 1)mkak

Having defined the Fourier multiport transformation, we commute with each other. It follows that

would now like to find an explicit form for the operattt u4=1. (15

013809-2



FOURIER MULTIPORT DEVICES PHYSICAL REVIEW A71, 013809(2009

1. EXAMPLES (sqlsp) = 8K, A). (22

In this section we discuss two specific examples of input
states that elucidate the operation of the device. In the first,
we consider how number states are transformed and show B. Coherent states
how superpositions of number states can be used to create
Schrédinger cat states at the output. In the second, we con-
sider coherent states and study some of their properties whéR

We now consider the case of a coherent state inMite
ode. This can be written as

they are passed through the device. o, ... BM . 0,= DaM(ﬁ)|0, ...,0 (23)
A. Number states whereD, (B) is the displacement operator
A number state withv photons in theMth mode can be N .
written as Da,,(B) = exd Bay — B* au] (24
™) (A" and g is a complex number. The indey, indicates that this
0, ... ™, 08 (V,)1/2|0, s O (16) s a displacement operator with respecatp anda,.

Using Eq.(2) it is straightforward to show that
where the superscriptM) indicates thatv is in the Mth

mode. We then use E) to prove BAY = B* Ay =d VD [Bo™Mal - B* o May] (25)
K
|
oMAL) =d2 % and this leads to the relation
ey L P 1125 M 1123 ~2M
X(a{) v (ag)vdw—M(yl+2y2+---+dvd—K) (17) DAM(’B) - Dal(d Bo )DaZ(d Be )

: o -+ Dy (d7H2Bw™ M), 26
where the sum is over all non-negative integers such that ad( B (26)

=y +---+vg. Summation ovemM, taking into account Eq. Acting with these operators on the vacuum we get the coher-

(5), gives ent states
KA+ - + YA 00 B, .. = A 2B07M, . 2 My,
|
=gt2 2 ;(aI)Vl... (aé)”d, (27
vy Vil The left-hand side is a coherent state with respect toAthe

(18) operators. It is a tensor product of vacua with the coherent

. o state|8) in the Mth mode. The right-hand side is a coherent

where the sum is over all non-negative integers such that giate with respect ta operators.
v=v+ o g v+ 20+ oo +dug= K(modd). ~ Itis seen that coherent states with phase#/2d at the

inputs produce a coherent state in one of the outputs and

(19 vacua in all other outputs. This is a multimode generalization

The second constraint means that the number of terms in tH@f the well-known two-mode result. An interesting applica-
sum of Eq.(18) is drastically reduced in comparison to Eq. tion of these states is in multimode interferometry schemes.
(17) (it is divided byd). Acting with Eq.(18) on the vacuum If we were to start with a coherent state in one of the input

we prove modes,M, and vacua in all other inputs, we would get co-
herent states in all outputs with phases\2/d. If we then
— gLl K Kd . . .
s =d "y, ... 0at + @0, ... vl applied a linearly varying phase across these output modes,

L2 . 172 the change in phase of modewould be A®;=j». For n
=diz 3 v v, . vadar (200 =27/d, the state becomes

Vs Vg
-1/2 5, ~(M-1) -1/2 5, ~d(M-1)

where the summation is over non-negative integers which B 0B 2 (28)
obey the constraints of Eq19). The left-hand side is a and if we transform it back through the Fourier device, we
Schrédinger cat; it is a superposition of number state8 of get
photons withy photons in one of the modes and zero photons _
i i ide i i 0,... M, ....0 (29
in the rest of the modes. The right-hand side is a superposi- R v Ya

tion of number states od photons. We can show that with j e the coherent state has moved along one mode relative to
respect to bottA photons and photons these states have the the initial state. This scheme is a multimode generalization of

same average number of photons in each mode: an interferometer. However, instead of measuring the phase
. . " v shift via the population at two output modes, we measure it
(Npy =+ =(Ng)= g (A= =(Ag) = rE (21)  atd modes. This gives a finer measurement scale and may
lead to enhanced precision.
We can also show that the various std&$ are orthogonal Another possible application of this device is to split a
to each other, coherent state into many other coherent states. It can be seen

013809-3
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from Eq. (27) directly that a coherent state with an averag

number of|3|?> photons will be split intod coherent states

each with an average number |@2/d photons.
Equation(27) can be generalized into

1By, - Bda=B1, - Bda Bu= 2 (F kb,
K
(30)
whereF1 is the inverse Fourier matrix
(F i = d™ 2™ (31)

We note that if thed-dimensional vectofgBy} is an eigenvec-
tor of the Fourier matridé1 [17,18), thenB,,=\3,, wherex

PHYSICAL REVIEW A 71, 013809(2005

enarrow, then thé{(C,)|? as a function oK is wide; and vice
versa. We can quantify this with the entropic uncertainty re-
lations[19]. We first use Parseval’s theorem to prove

2 K= 2 KCw)? (35)
M M
and then define the probability distributions
|<n|<>|2 |<CK>|2
==, == (36)
EM |<nM>|2 EM |<CM>|2

The px characterizes the distribution af photons into the
various modes, in the staf®. The o characterizes the first-

is the corresponding eigenvalue, which takes one of the valrder correlations between the modes Aophotons. We in-
ues 1,i, -1, -i. We see that for the eigenvectors with eigen-troduce the entropies
value 1, the corresponding coherent states exit unaltered

from the device; and for the eigenvectors with eigenvalue
-1, H, the phase of each of the coherent states changes
l2, m, 3w/2, correspondingly.

IV. UNCERTAINTY RELATIONS

S=-2pcInp, S=-Xoxlnox. (37
K K

by
S, takes its minimum value zero, whep=8§(K,K,), and its

maximum value Ird when pgx is the uniform distribution
pk=1/d. A similar remark holds fofS,. The entropic uncer-
tainty relation states that

considering the uncertainty relations between the input and

We can gain a deeper understanding of these systems by
i : S +S,=Ind.
output modes. In the following subsections we focus on two

(38)

particular cases and discuss uncertainty relations involving We apply this entropic uncertainty relation to the stag

first- and second-order correlations of the output modes.

A. First-order correlations

We use Eq(3) in conjunction with Eq(5) to prove that

Ny = ayay = d Y2 Cya*M, (32
K
where
Cx=d Y2 AlA,
A
[C,Cu]=0, CL=C. (33

It is seen that the operatong, andCy are related through a
finite Fourier transform. Taking the expectation values wit
respect to an arbitrary state we find

() =d2X (Co M. (34
K

(ny is the distribution of the number af photons in the

various modes, in the state). (Cy) is the A-photon first-

order correlation between the modasand A -K, summed

of Eq. (20) studied in Sec. Ill A. Forr=2 we can easily
show that(C,)=d Y?v8(K,0) which givesok=8(K,0) and
S,=0. For =1 we can show tha{C,)=d 2 which gives
ox=1/d andS,=Ind. We have seen in Eq21) that in this
example the average number @fphotons in each mode is
the same; and this shows that=1/d and S;=Ind. In this
example, forv=2 the entropic inequality is satisfied as
equality; and forv=1 it becomesS;+S,=2 Ind>In d.

We also apply the entropic uncertainty relation to the co-
herent state example of E®7) studied in Sec. lll B. We can
easily show that(Cx)=dY3B]28(K,M) which gives oy
=58(K,M) and S,=0. We also haveny)=|8J> which gives
pk=1/d and S;=Ind. In this example also, the entropic in-
equality is satisfied as equality.

The entropic inequality is a rigorous way of quantifying

hthe uncertainty principle associated with finite Fourier trans-
forms. At larged, for practical purposes it is intuitively more
clear to use the uncertainties

A(n) = [% K2pc - (% MpM)Z]”Z,

(39

A(C) = [% K20y — (% MUM)Z]W.

over all A. (Cy) in particular is the total average number of

photons in the stat¢s) (with a normalization factor The

width of the distribution){Cy)|? can be interpreted as a cor-

relation length between the variodsmodes at the output.
The distribution{ny,) is related to the distributiodCy)

A(n)y is the width of the distribution of photons into the
various modesA(C) is the correlation length between the
modes forA-photons.

Heuristically we can say that

through a finite Fourier transform. There is an uncertainty

relation associated with every Fourier transform, whic
qualitatively asserts that if thény)|? as a function oM is

1

A(C)

h

Aln) ~ (40)
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B. Second-order correlations
We use Eq(32) in conjunction with Eq(5) to prove that

Ny = A2 GroM, (41)
K

where

G =d2X Cl(Cr\=d¥2 > Ay rucAUAIAL L,
A AMJ

[Gk,Gw]=0, Gl=G.

It is seen that the operatoré,I and Gy are related through a

(42)

finite Fourier transform. Taking the expectation values with

respect to an arbitrary stafg we find

() = d 22 (G ™. (43)
K
We then define
Angy = (niy) = (ny)?,
ACk = (G ~ X (CL(Cy), (44)
and using Eqs(34) and(43), we prove that
(45)

Ang, =d ™2 ACR M.
K

Anf,I is the uncertainty in the number afphotons in theMth
mode, in the statés). ACZ involves second-order correla-

tions of A photons. The finite Fourier transform implies that

if the distributionACﬁ is very narrow(as a function o),
then the distributiomnf,I is very wide(as a function oM),
and vice versa.

We can quantify this with the entropic uncertainty rela-

tions. We first use Parseval’s theorem to prove

> An3 =X AC2 (46)
M K
and then define the probability distributions
Ang AC
k= Ok=— (47)
2 Angy >, AC
and the entropies
S=->piInp, S=->okIno,. (48
K K

S, takes its minimum value zero whez} = 8(K,Kp); and its

maximum value Ird when py is the uniform distribution
px=1/d. A similar remark holds foS,. The entropic uncer-
tainty relation states that

S/+S,=Ind. (49)

We apply the entropic uncertainty relation to the coherent

state example of Eq27) studied in Sec. Ill B. We can show
that ACZ=d*38/28(K,0) which givesoy=8(K,0) and S,
=0. We also haveAnZ, =|B[?> which givespy=1/d and S|

PHYSICAL REVIEW A71, 013809(2009

=Ind. In this example the entropic inequality is satisfied as
equality.

As we explained in the previous section, the entropic in-
equality is a rigorous way of quantifying the uncertainty
principle associated with finite Fourier transforms. At large
d, for practical purposes it is intuitively more clear to use the
uncertainties

S(A(M) = [2 o= (2 Mp&ﬂ)z]”z,
K M
SA(C) = {E o (2 Magﬂﬂl’z. (50
K M
Heuristically we can say that
1
S(A(ny) ~ 5AC) (52

V. PHASE UNCERTAINTIES

One possible application of these devices is in multipath
interferometers. In such schemes, the phase uncertainties be-
tween the output modes are of key importance. In this sec-
tion, we consider how these uncertainties scale with the
number of ports and the total number of atoms involved.

We denote the phase associated with the operators
{Al' Ay} as 6. The problems associated with a rigorous
formalism for phases are well know20-22. We can ex-
press the operaton%“,:,l, Ay as

Aw = En(ALAWYZ Al = (AL AW YEY,,

©

Ev= > [NXN+1
N=0

EvElL =1, ELEw=1-0X0]. (52)

HereE,, is the exponential of the phagg operator and it is
(for infinite-dimensional Hilbert spacgssometric but not
unitary.

In a truncatedD-dimensional Hilbert space, whens
takes integer values modul, (and|D)=|0))

D-1

Ev= 2 INXN+1].
N=0

(53

Now E,, is unitary and the phase operatf); is Hermitian.
In the largeb limit we write heuristically

1
Aby ~ . 54
Y ANy, (54)
In the example of Eq(20) studied in Sec. lll A
2 v 2P
<Nf/|>:g. <NM>:E’ AN%F{E‘@] (55

Therefore for largal
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—_

\d We have presented examples which elucidate the opera-
Ay ~—. (56) tion of the device. In Eq(20) we have shown that a certain
v superposition of number states at the input produces at the
This phase uncertainty\6,, is of particular interest for output a Schrodinger cat state comprised of number states
schemes which use number correlated inputs to improve theith all photons in one mode. In E¢27) we have shown
precision of interferometerd,6]. The scaling given by56) that coherent states with phases\2/d at the inputs produce
is important for generalizing these schemes to multiport dea coherent state in one of the outputs and vacua in all other
vices such as large arrays of condensates in optical latticemutputs. The reverse process can be used to split a coherent
[14,15. As an indication of the phase resolution that may bestate into many other coherent states.
achieved by this method, experimentalists] have number- We have also discussed phase uncertainties in this device.
squeezed an array of about 12 condensates with a total nue_have shown that for the example of E@O0), A6y
ber of around 1Hatoms. For a highly squeezed system, this~ vd/v. This result is important for considering how the
would enable phase resolutions of the orderAdfy,~3  measurement resolutions that can be achieved with multipath
X104, interferometers scale with the number of paths. These multi-
port Fourier devices may be able to be implemented in both
VI. DISCUSSION optical and atomic systems. Possibilities include using com-
binations of beam splitters for photons or allowing Joseph-

We have developed a theoretical analysis of multiport de lina bet tomi d tas t di
vices where the creation and annihilation operators at th§22| ?gtl:igéng etween atomic condensates trapped in an op-

output are related to those at the input through a finite Fou-
rier transform. Such devices perform the unitary transforma-
tion of Egs.(7) and(11). . _ ACKNOWLEDGMENTS
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