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We consider intensity-field correlation functions for a two-level atom in a degenerate optical parametric
oscillatorsOPOd, which would result from a conditioned homodyne measurement. Analytic results are obtained
in the limit of weak driving fields using quantum trajectory methods for both the transmitted and fluorescent
fields. This system is unique in that after detection of a photon, it is known that one excitation is in the system,
in either the atom or cavity mode. We find large violations of inequalities satisfied by classical fields, for both
transmitted and fluorescent fields. This is in contrast to the usual cavity QED system of an atom in a driven
cavity where we do not find nonclassical behavior in the intensity-field correlation function in fluorescence.
This is understood in terms of a relationship between the intensity-field correlation function and the second-
order intensity correlation function, as well as the different amount of field-atom entanglement in the two
systems. We show that for weak-field cavity QED one must have photon bunching to have nonclassical
behavior in the intensity-field correlation function. We compare our results to those of an ordinary OPO.
Finally, we also consider cross correlations, where we examine the transmittedsfluorescentd field conditioned
by detection of a fluorescentstransmittedd photon.

DOI: 10.1103/PhysRevA.71.013807 PACS numberssd: 42.50.Ct, 42.50.Lc, 42.50.Ar

I. INTRODUCTION

Carmichael and co-workersf1g have recently introduced
an intensity-field correlation function that has proven to be of
great interest. Typically quantum opticians have dealt with
the field-field correlation function gs1dstd
=kE* s0dEstdl / kEl2 or the intensity-intensity correlation
functiongs2dstd=kIs0dIstdl / kIl2. Carmichaelet al. introduced
the correlation function

hustd =
kIs0dEustdl

kIlkEul
, s1d

whereEu is an electric-field quadrature. This is in essence a
correlation between particlelike aspects of lightsintensity
measurement as photon detectiond and wavelike aspectssthe
interferometric nature of a field quadrature measurementd.
For an optical parametric oscillatorsOPOd or a driven cavity
QED system, this correlation function has been predicted to
exhibit large violations of a Schwartz inequality that would
be satisfied by classical fieldsf1g. It has also been proposed
as a measurement of squeezing that is independent of detec-
tor efficiency f1g. Recent experiments on the cavity QED
system have verified the large violations for the transmitted
field f2g, as well as the relation ofhustd to the spectrum of
squeezingf3g. This experimental program has also examined
quantum fluctuations at the subphoton levelf4g. Denisovet
al. f5g have shown that for stronger fieldshustd is not time
symmetric, and this has been traced to a violation of detailed
balance.

Here we investigate the behavior ofhustd for a two-level
atom inside an OPO, in the weak-driving-field limit, and

look at both transmitted and fluorescent fields.
Jin and Xiaof6,7g considered phase and intensity bistabil-

ity for this system. Further they considered the spectrum of
squeezing and incoherent spectra for that system. Agarwal
f8g has previously considered the two-level atom in an OPO,
with a strong driving field incident directly on the atoms,
from the side of the cavity. He considered the strong driving
limit where the external field dressed the atoms and found
modifications of the Mollow triplet in that case. Clemenset
al. f9g considered the incoherent spectrum in this system in
the weak-field limit and found a variety of nonclassical ef-
fects. In the strong-coupling regime, the incoherent spectrum
consisted of a vacuum-Rabi doublet with holes in each side-
band. Outside the strong-coupling regime, spectral holes and
narrowing were reported. These were attributed to quantum
interference between various emission pathways, which van-
ishes when the number of intracavity photons increases and
the number of pathways increases. Our results here illustrate,
again, the nonclassical nature of this system with weak driv-
ing fields.

In this paper we find that the nonclassical behavior of
hustd for the transmitted field is on the same order as that of
an OPO withno atom in it. The new feature here is that the
fluorescent field exhibits nonclassical behavior of the same
order as the transmitted field. This does not occur in the
fluorescent field of the driven cavity with a two-level atom in
it; in the ordinary OPO, there is of course no fluorescence.
This is explained in terms of the strong entanglement in-
duced between the atom and cavity mode upon detection.
Also we understand this in terms of a relation betweenhus0d
andgs2ds0d for weakly driven cavity QED systems.

Further we present results for the transmitted field condi-
tioned on the direction of a fluorescent photon and vice
versa. We find that the conditioned field is not strongly de-
pendent on whether it was conditioned on detection of a*Electronic address: ricepr@muohio.edu
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transmittedor fluorescent field. Again this is a consequence
of the entanglement in the system. In Sec. II we examine the
physical system under consideration. The intensity-field cor-
relation function for transmitted light is calculated in Sec. III.
The intensity-field correlation of the fluorescent light is con-
sidered in Sec. IV. Section V consists of an examination of
cross correlations, where we examine the transmittedsfluo-
rescentd field conditioned by detection of a fluorescent
stransmittedd photon. We then conclude in Sec. VI.

II. PHYSICAL SYSTEM

We first consider a single two-level atom inside an optical
cavity, which also contains a material with axs2d nonlinear-
ity. The atom and cavity are assumed to be resonant atv and
the system is driven by light at 2v. The system is shown in
Fig. 1.

The interaction of this driving field with the nonlinear
material produces light at the subharmonicv. This light con-
sists of correlated pairs of photons orsvery weaklyd quadra-
ture squeezed light. In the limit of weak driving fields, these
correlated pairs are created in the cavity and eventually two
photons leave the cavity either through the end mirror or as
fluorescence out the side before the next pair is generated.
Hence we may view the system as an atom-cavity system
driven by the occasional pair of correlated photons. This is in
contrast to shining weakly squeezed light onto the cavity, as
it is not certain in that case that both entangled photons get
into the cavity.

In the language of squeezed light, we are interested in the
limit N→0, whereN=sinh2r is the average photon number
of the squeezed field, withr the usual squeezing parameter.
As N is increased the effects we consider here vanish. We
wish to understand these effects in terms of photon correla-
tions rather than the usual effects of quadrature squeezed
light, where typically the largest nonclassical effects are seen
in the large-N limit. The system is described by a master
equation in Lindblad form

ṙ = − i"fH,rg + Ldissr ; Lr, s2d

where the system Hamiltonian is

H = i"Fsa†2
− a2d + i"gsa†s− − as+d + "vSa†a +

1

2
szD .

s3d

Here, g=msv0/"e0Vd1/2 is the usual Jaynes-Cummings
atom-field coupling in the rotating-wave and dipole approxi-
mations. The cavity-mode volume isV, and the atomic di-
pole matrix element connecting ground and excited states is
m. The effective two-photon driving fieldF is proportional to
the intensityI ins2v0d of a driving field at twice the resonant
frequency of the atomsand resonant cavityd and thexs2d of
the nonlinear crystal in the cavity, as

F = − ikinSF
p
DÎ«0VT

"v
eifxs2dI ins2vd. s4d

The cavity finesse isF, and T and f are the intensity
transmission coefficient and phase change at the input mirror.
We also havekin=cT8 /L as the cavity-field loss rate through
the input mirror. The transmissionT8 of the input mirror is
taken to be vanishingly small, with a largeI ins2v0d, so thatF
is finite. Hence we effectively consider a single-ended cavity.
The dissipative Liouvillian describing loss due to the leaky
end mirror and spontaneous emission out the side of the
cavity is

Ldissr =
g

2
s2s−rs+ − s+s−r − rs+s−d + ks2ara† − a†ar

− ra†ad. s5d

Hereg is the spontaneous emission rate to all modes other
than the privileged cavity mode, hereafter referred to as the
vacuum modes. The field decay rate of the cavity at the
output mirror isk. As we are working in the weak-driving-
field limit, we only consider states of the system with up to
two quanta—i.e.,

u0 − l,u0 + l,u1 − l,u1 + l,u2 − l. s6d

Here, the first index corresponds to the excitation of the field
sn=number of quantad and the second index denotes the
number of energy quanta in the atomss1 for ground state
and2 for excited stated. The use of a truncated basis in the
weak field is well known in cavity QED; the canonical sys-
tem of an atom or atoms in a driven optical cavityf10g. It has
also been used previously in work on this very system, vali-
dated by simulations including more photon states; see in
particular Fig. 8 in Ref.f9g.

We describe the system by a conditioned wave function,
which evolves via a non-Hermitian Hamiltonian, and associ-
ated collapse processesf11g. These are given by

uccstdl = o
n=0

`

Cg,nstde−iEg,ntug,nl + Ce,nstde−iEe,ntue,nl, s7d

HD = − ika†a + − i
g

2
s+ + i"Fsa†2

− a2d + i"gsa†s− − as+d,

s8d

where we also have collapse operators

C = Îka, s9d

FIG. 1. Two-level atom inside a driven optical parametric oscil-
lator.F2 is the input photon flux at frequency 2v, g is the atom-field
coupling, g is the spontaneous emission rate out the sides of the
cavity, and 2k is the rate of intracavity intensity decay.
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A =Îg

2
s−, s10d

representing cavity loss and spontaneous emission, respec-
tively.

Let us address the feasibility of experiments on this sys-
tem. It would be very difficult to place a second-harmonic
crystal inside a small-volume microcavity; however, here we
seek a very small nonlinearity. This is to ensure that we are
in the weak-field limit; the driving field that the atoms and
cavity mode see is the occasionaly pair of photons. One
could envision a nonlinear material in the mirror itself or a
second atomic species and isotope with external fields to
create a nonlinearity. The problem that must be faced is the
alteration of theQ of the cavity dueto this nonlinear material.
Nonunit photodetection efficiency does not affect normalized
correlation functions; it merely lowers the count rates and
increases the time the experiment must run. This may pose
practical problems in terms of how long lasers can be locked.
The intensity-field correlation function has been measured
though and has been shown to be an efficiency-independent
measure of squeezingf2–4g. With a zero mean field, the
addition of an offset field is a new complication in this setup.
The atom must be known to be in the cavity, but this can be
detected by various means; the atom must stay in the cavity
for several atomic or cavity lifetimes, whichever is shorter.
The averaging is over a set of correlations after a trigger
event.

III. hu„t… FOR THE TRANSMITTED FIELD

We now turn to our calculations forhustd. For a quantized
field we have

hu
TTstd =

kT:â†s0dâs0dâustd:l

kâ†âlkâul
=

k:â†s0dâustdâs0d:l
kâ†âlkâul

,

s11d

where we have utilized normal and time ordering and defined
the electric-field quadrature operatorsas measured by a bal-
anced homodyne detectord

âu =
1

2
sâe−ıu + â†eıud, s12d

whereu is the phase of the local oscillator with respect to the
average signal field. The superscriptTT refers to the fact that
the field and intensity of interest are the transmitted ones.

This normalized correlation function is not well defined
for a field of zero average valuesi.e., kâl=0d. In that case, it
is convenient to introduce an offset by combining the input
field with an offset field at a beam splitter. The signal mode

is then b̂= â+aeıu where u is adjusted to match the local
oscillator phase. The choice of

a = Îkâ†âl s13d

results in the maximum signal-to-noise ratio in an experi-
ment.

As with other correlation functions, like the second-order
intensity correlation functiongs2dstd, restrictions can be

placed onhustd if there is an underlying positive-definite
probability distribution function for the amplitude and phase
of the electric field—i.e., that the field is classical albeit sto-
chastic. If one ignores third-order correlations that vanish in
the weak-field limit, Carmichaelet al. have shown thatf1g

hu
TTstd = 1 + 2

k:Dâus0dDâustd:l
kDâ†Dâl

, s14d

and we see that the intensity-field correlation function is con-
nected to the spectrum of squeezing:

Susvd ~ E
0

`

dt cossvtdfhustd − 1g. s15d

From this, it has been shown that the Schwartz inequality
would yield

0 ø hus0d − 1 ø 1 s16d

or, generalizing to anyt,

0 ø hustd ø 2 s17d

for classical fields. Whenever there is squeezing, these in-
equalities do not hold forhustd. Giant violations of these
inequalities have been predicted for an optical parametric
oscillator and a group ofN atoms in a driven optical cavity
f1g and have been recently observed in the cavity QED sys-
tem f2–4g.

How does one perform a measurement ofhustd? One first
detects a photon, waits a timet, and measureskâul. A prac-
tical way to do that is shown in Fig. 2. Recall that the op-
erator â is a mode with both signal from the source and
offset field, â=a+Dâ. To understand this we examine the
structure of

FIG. 2. A schematic of the measurement ofhustd. This is a
balanced homodyne detectionsBHDd, conditioned on a trigger pho-
todetectionsPDd. A part of the strong local oscillatorsLOd is used
as the offset field after adjusting the offset amplitude with a neutral
density filtersNDd
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hu
TTstd =

kâ†s0dâustdâs0dl
kâ†âlkâ0l

. s18d

We see that with theâ acting to the right and theâ† acting to
the left at t=0, a collapsed state is prepared, the collapse
being that of the loss of a photon from the field correspond-
ing to a detection event. Then att=t one measureskâul
conditionedon the previous detection. This differs from a
direct measurement ofkâul with no conditioning. An en-
semble average of the latter measurementssnecessary to get
a good signal-to-noise ratiod would yield zero due to phase
fluctuations. The conditioned balanced homodynesBHDd
measurement essentially looks at members of the ensemble
with the same phase, a phase that is set by the photodetec-
tion. The result is that

hu
TTstd =

knlSSkâustdlc

knlSSkâustdlSS

=
kâustdlc

kâ0stdlSS

. s19d

We now construct an analytic solution using the quantum
trajectory method and again look at weak driving fields. We
find

kâ†s0dâustdâs0dl = kcc
Tuâuucc

Tl, s20d

where ucc
Tl is the collapsed state produced by the photode-

tection event. We need only keep the states with two or less
excitationsstotal in the cavity mode or internal energyd for
weak driving fields.

The equations for the relevant probability amplitudes are

Ċg,0 = − FCg,2,

Ċg,1 = gCe,0 − kCg,1,

Ċe,0 = − gCg,1 − g/2Ce,0,

Ċg,2 = gÎ2Ce,1 + FCg,0 − 2kCg,2,

Ċe,1 = − Î2gCg,2 − sk + g/2dCe,1. s21d

The steady-state solutions are easy to findsto orderFd:

Cg,0
SS = 1,

Cg,1
SS = 0,

Ce,0
SS = 0,

Cg,2
SS =

F

2

k + g/2

g2 + ksk + g/2d
,

Ce,1
SS =

− 1
Î2

gF

g2 + ksk + g/2d
, s22d

where we assume that the system starts in the ground state
and thatCg,0,1 for weak fields. After a collapse, the wave
function will evolve from the collapsed state back to the
steady state. The zero- and two-photon amplitudes scale as

F. As the one-photon amplitudes are fed by decay from the
two-photon states, we assume that they also scale asF. The
expressions forhustd just depend on the one-photon ampli-
tudes conditioned on a detection event in the fluorescent or
transmitted field. The solution to these is

Cg,1std = expF− Sk

2
+

g

4
DtG3Cg,1s0dcoshsVt/2d

+ 2

gCe,0s0d − Sk

2
−

g

4
DCg,1s0d

V
sinhsVt/2d4 ,

s23d

Ce,0std = expF− Sk

2
+

g

4
DtG3Ce,0s0dcoshsVt/2d

+ 2
Sk

2
−

g

4
DCe,0s0d − gCg,1s0d

V
sinhsVt/2d4 ,

s24d

with

V = Îsk − g/2d2 − 4g2. s25d

The steady-state photon number is given by

kâ†âl = 2uCg,2
SSu2 + uCe,1

SSu2. s26d

For an initial trigger detection in the transmitted field, the
appropriate collapsed state is given by

ucc
Tl =

âucSSl
uâucSSlu

. s27d

In the weak-field limit this becomes

ucc
Tl =

Î2Cg,2
SSug,1l + Ce,1

SSue,0l
Î2uCg,2

SSu2 + uCe,1
SSu2

. s28d

Note that there is no population in the ground state. Upon
detection of a transmitted photon, as they are created in
pairs, we find ourselves certain in the knowledge that one
quantum is in the system, either in a cavity-mode excitation
sphotond or an internal excitation of the atom. While this
might be a difficult way to prepare such a state, by proper
choice ofg, k, andg, almost any superposition ofue,0l and
ug,1l may be created. In the weak field the probability of
more than two quanta in the system initially is negligible;
this is not the case for higher excitations, where correlated
pairs begin to overlap. As this certainty of the number of
quanta is at the heart of all the nonclassical effects observed,
these will vanish as the driving field increases. It is this driv-
ing of the system by the occasional pair of photons in an
entangled state that creates most of the interesting effects.
After the detection, the system evolves in time,
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ucc
Tl = Cg,1

CTstdug,1l + Ce,0
CTstdue,0l, s29d

where the superscriptCT indicates a collapse associated with
a photon detection in transmission. The appropriate initial
conditions are

Cg,1
CTs0d =

Î2Cg,2
SS

Î2uCg,2
SSu2 + uCe,1

SSu2
, s30d

Ce,0
CTs0d =

Ce,1
SS

Î2uCg,2
SSu2 + uCe,1

SSu2
. s31d

In terms of the one-photon probability amplitudes, we find

hu
TTstd = 1 +

Î2Cg,1
CTstdCg,2

SS + Ce,0
CTstdCe,1

SS

Î2uCg,2
SSu2 + uCe,1

SSu2
+

Cg,1
CTstdcosu

Î2uCg,2
SSu2 + uCe,1

SSu2
.

s32d

The first two terms are of order unity, while the third term is
of order 1/F. For weak fields, this term can be arbitrarily
large, in violation of the inequalitys16d. In Fig. 3 we have a
plot of hu

TTstd for weak couplingsg/g=1.5, g/k=0.375d,
with cavity decay dominant over spontaneous emission
sk /g=5.0d. We find large violations of the inequalitys16d,
both aboveshu

TTstd.2d and belowshu
TTstd,0d the classi-

cally allowed region. For the ordinary OPO, only the former
is true sthe dotted line in Fig. 3d. In this and all following
figures, we have chosen a value ofF that has been shown to
place us in the weak-field limit in previous workf9g. The
overall size of the violations of the inequalitys16d is of the
same orders1/Fd as it is in the ordinary OPOf1g. For weak
couplingsg/g or g/k!1d, with spontaneous emission domi-
nant over cavity decaysk /g.1d we find only violations
above, as in the ordinary OPO, again of the same order. In
this case there is no difference between the two-level atom in
an OPO and the ordinary OPO. This is due to the fact that the
probability of the atom to be in the ground state is quite high;
after detection of a transmitted photon, the state is very close
to that of a single-photon Fock state in the cavity as in the
ordinary OPO. In Fig. 4 we have a plot ofhu

TTstd for strong

couplingsg/g=5.0,g/k=10.0d, and we find large violations
of inequality s16d, both above and below the classically al-
lowed region, with the appearance of vacuum-Rabi oscilla-
tions. These oscillations are of course due to the interchange
of energy between the cavity mode and atom, which does not
occur in the ordinary OPO, as there is no atom there.

IV. hu„t… FOR THE FLUORESCENT FIELD

The fluorescent field is proportional to the dipole moment
of the atom:

Êfl ~ ŝ−e−ivt + ŝ+eivt. s33d

The intensity of the fluorescent field is given by

I fl ~ kŝ+s−l, s34d

and we define the dipole quadrature operator

su =
1

2
sŝ−e−iu + ŝ+eiud. s35d

By considering photon detection in fluorescence followed by
a balanced homodyne measurement of the fluorescent field,
we obtain

hu
FFstd =

kT:ŝ+s0dŝ−s0dŝustd:l

kŝ+ŝ−lkŝ0l
=

k:ŝ+s0dŝustdŝ−s0d:l
kŝ+ŝlkŝ0l

.

s36d

Here again we must add an offset as the average fluores-
cent fieldkŝ−l=0. The size of the offset is chosen again to
maximize the signal-to-noise ratio in an experiment,a
=Îks+ŝ−l=ÎkDŝ+Dŝ−l:

FIG. 3. Plot ofhu
TTstd vs t=kt for the two-level atom in an OPO

ssolid lined and for an ordinary OPOsdotted lined. We usek /g
=5.0,g/g=1.5, andF /g=0.01, withkâ†âl=7.5310−4. The dashed
lines indicate the range allowed for classical fields.

FIG. 4. Plot of hu
TTstd vs t=gt for k /g=0.5, g/g=5.0, and

F /g=0.1 with kâ†âl=4.0310−4. The dashed lines indicate the
range allowed for classical fields.
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hu
FFstd = 1 + 2

k:Dŝus0dDŝustd:l
kDŝ+Dŝ−l

. s37d

In terms of quantum trajectories, what is the state of the
system after emission of a fluorescent photon out the side?
The corresponding collapse operator issÎg /2dŝ−. So the
state of the system after the emission of a fluorescent photon
is

ucc
Fl =

ŝ−ucSSl
uŝ−ucSSlu

= ug,0l, s38d

where the latter relation holds in the weak-field limit. Ini-
tially there is no entanglement between the atom and field;
we have a product of atom in ground state and a one-photon
Fock state for the cavity mode. However, due to the fact that
there is no vacuum field contribution to this state, on a time
scale of 1/g we find substantial entanglement. In the weak-
field limit, we find that

hu
FFstd = 1 +Cg,1

CFstd +
Ce,0

CFstd
Ce,1

SS cosu s39d

=2 +
Ce,0

CFstd
Ce,1

SS cosu, s40d

whereCF means conditioned on detection in fluorescence. In
Fig. 5 we have a plot ofhu

FFstd for weak couplingsg/g
=0.1, g/k=0.02d, with cavity decay dominant over sponta-
neous emissionsk /g=5.0d. At t=0.0, we findhu

FFs0d=2.0,
which is not nonclassical. It is not 0, as the offset field makes
a contribution to the measured field here. Very quickly
hu

FFstd decreases below zero and we find a large violation of
inequality s16d, but only above the classically allowed re-
gion, not also below as was the case for the transmitted field.
The same holds true when spontaneous emission is the domi-
nant loss mechanism with weak coupling. Here we again find
violations of the inequalitys16d or order 1/F. This doesnot

occur in a driven atom-cavity system. There we have found
no violations of the inequalitys16d. In Fig. 5sbd we have a
plot of hu

TTstd for strong couplingsg/g=5.0, g/k=10.0d,
with cavity decay and spontaneous emission loss rates
equivalentsk /g=0.5d. Again, att=0.0, we findhu

FFs0d=2.0,
which is not nonclassical. At later times, we find large vio-
lations of inequalitys16d from above and below. Recall that
hu

FF is essentially a quadrature-field measurement of the fluo-
rescent field given that a fluorescent photon was detected at
t=0. The fluorescent field isp out of phase with the driving
field, which is reflected in the initially decreasing behavior of
hu

FF. Due to the presence of the offsetsin phase with the local
oscillator, 0° in our plotsd, hu

FF is really a quadrature-field
measurement ofâ=a+Dâ, which is the sum of the offsetsin
phase with the LOd and the radiated dipole fieldsout of phase
with the LOd. Otherwisehu

FFs0d would be zero, as the enve-
lope of the fluorescent field vanishes after a spontaneous
emission event, as there is no net dipole.

In Fig. 6, we exhibithu
FF for a two-level atom in a driven

optical cavity in the weak field limit. Here as beforef10g the
driving field is resonant with the atom and cavity. Notice that
there is no nonclassical behavior either for weak or strong
coupling. A thorough examination of parameter space has
found no nonclassical behavior in the fluorescent field con-
ditioned on detection of a fluorescent photon for this system.
The value ofhu

FF at t=0.0 is 0.0 as there is no dipole to emit
after emission of a fluorescent photon. So we find that in the
case ofhu

FF one does not necessarily have nonclassical be-
havior as opposed to the value of the second-order intensity
correlation functiongs2ds0d at zero delay time; this of course
comes from the inability of a single atom to simultaneously
fluoresce two photons. In the present case, the nonclassical-
ity stems from the generation of strong entanglement be-
tween the atom and cavity field after the detection att=0.0;
in the ordinary cavity QEDsCQEDd system, after the first
detection there is still a large vacuum component in the state
after detection and hence there is not as much atom-cavity
entanglement as in the OPO system.

One can also show that the inequality

FIG. 5. hu
FFstd for the fluorescent field vst=gt for sad k /g

=3.0, g/g=1.0, andF /g=0.1 and sbd k /g=0.5, g/g=5.0, and
F /g=0.1. The dashed lines indicate the range allowed for classical
fields.

FIG. 6. hu
FFstd for the fluorescent field of a two-level atom in a

driven optical cavity vst=gt for sad k /g=0.5, g/g=3.0, andF /g
=0.1 andsbd k /g=5.0, g/g=2.0, andF /g=0.1.
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hu
2std ø gs2dstd s41d

must be satisfied if the underlying field is classical in nature.
In both cases considered herestwo-level atom inside an
OPOd and the usual CQED system of atoms in a resonantly
driven cavity, one has

gs2ds0d = uCg,2
ss u2 = hu

2s0d. s42d

To have nonclassical behavior inhus0d one must have bunch-
ing; this makes sense as the first photon serves as a trigger,
and if a second photon is not around, there is no signal. With
this in hand, we can understand why one has nonclassical
behavior forhus0d for the transmitted field but not for the
fluorescent field for the cavity QED system. In the case of
the fluorescence, onealways has perfect antibunching for
one atom, and hence no nonclassical behavior in either of the
two cases considered here att=0.0. In the case of transmis-
sion, one can have bunching, and all reported nonclassical
behavior inhus0d to date has been in such a regime. For later
timest, we have

gTT
s2dstd = uCg,1

CTstdu2 = uhu
TTstdu2. s43d

Recall that the second-order intensity correlation function
gs2dstd must satisfy certain inequalities if there is an under-
lying classical field. These are

gs2ds0d ù 1, s44d

gs2ds0 + d ù gs2ds0d, s45d

ugs2dstd − 1u ø ugs2ds0d − 1u. s46d

Violations of the last inequalitys46d are referred to as over-
shoots and undershoots, respectively. In the fluorescence
from the ordinary CQED system, this inequality is not vio-
lated; in particular, the second-order intensity correlation
function is initially zero and rises monotonically to unity for
weak fields or it can oscillate between 0 and 2 for strong
coupling as shown in Fig. 6. Hence by Eq.s43d there will be
no nonclassical behavior inhu

FFstd. On the other hand, over-
shoots and undershoots are common for the second-order
intensity correlation function for the transmitted light in the
ordinary CQED system. Hence there we can find nonclassi-
cal behavior inhu

TTstd. In the case of the two-level atom in an
OPO, we have strong bunching in the transmitted field and
not in fluorescence. But we have strong overshoots in both
systems, leading to nonclassical behavior inhu

FFstd. The
overshoots for the two-level atom in an OPO are noted by
considering the square ofhu

FFstd as plotted in Fig. 5.

V. CROSS CORRELATIONS

In this section, we consider the measurement of a
transmitted-sfluorescent-d field conditioned on the detection
of a fluorescentstransmittedd photon. First we consider the
fluorescent-field measurement triggered by a detection of a
transmitted photon,

hu
FTstd = 1 +Cg,1

CFstd +
Ce,0

CFstd
Ce,1

SS cosu, s47d

where here the superscriptCF refers to a conditioning on a
fluorescent detection. This is easily obtained by using the
solutionss23d and s24d with initial conditions given by Eq.
s38d. In Fig. 7, we plothu

TFstd for weak coupling. We see that
the transmitted field measured by the homodyne detector is
essentially the same, whether it is conditioned on a detection
in fluorescence or transmission. This is due to the fact that
after either type of detection, the excitation that is left in the
system is either totallysfluorescent click conditionedd or
mainly stransmitted click conditionedd in the cavity field. In
Fig. 8, we look at the fluorescent field conditioned on either
a transmitted or fluorescent click. Here we see a difference in
hus0d; this is easily explained as the detection of a fluorescent
photon places the atom in a ground state and the fluorescent
field is then zero. For a transmitted photon triggering event,
we do not necessarily have the atom in the ground state.

In the case of strong coupling, we do of course see
vacuum-Rabi oscillations in the cross correlations, as well as
a large phase shift in the fluorescent field depending on

FIG. 7. hu
FTstd for a two-level atom in an optical parametric

oscillator vs t=gt for k /g=5.0, g/g=1.5, and F /g=0.1. The
dashed line ishu

TTstd for the same parameters.

FIG. 8. hu
TFstd for a two-level atom in an optical parametric

oscillator vs t=gt for k /g=5.0, g/g=1.5, and F /g=0.1. The
dashed line ishu

FFstd for the same parameters.
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which type of event triggered the field. The fluorescent field
measured after a transmission event triggering is essentially
the fluorescent field of a single atom driven by a single pho-
ton; this is because after a fluorescent click we know that
there is a photon in the cavity. For the transmitted field, we
see in Fig. 9 that if the trigger event is a fluorescent photon
rather than a transmitted photon, we have a larger fieldsand
larger nonclassicalityd. This is due to the fact that detection
of a fluorescent event puts the atom in the ground state, with
one photon in the cavity. For strong coupling, there is nearly
an equal probability for the remaining excitation to be in the
atom or field; hence, a fluorescent trigger will yield a larger
field. For the fluorescent field, we see in Fig. 10 that on
detection of a transmitted photon, there is a resultant dipole
field; for a fluorescent trigger, that is not the case.

VI. CONCLUSIONS

We have investigated the intensity-field correlation func-
tions for transmitted and fluorescent fields of a two-level
atom in an optical parametric oscillator in the weak-field
limit. In this limit we essentially have a cavity QED system
where an occasional pair of photons appears in the cavity and

interacts with the system. After detection of a transmitted or
fluorescent photon, we know that there is one excitation left
in the system. For the intensity-field correlation function,
which is essentially a quadrature-field measurement condi-
tioned on a photon detection, we have found violations of the
classical inequalitys16d. Unlike the OPO without a two-level
atom our system violates the upperand lower bounds over a
wide range of parameters. Vacuum-Rabi oscillations appear
for large Jaynes-Cummings couplingssg.k ,gd. These in-
equalities are also violated for the fluorescent field, resulting
from spontaneous emission from the atom. The inequality is
violated from below only in the weak-coupling regimes and
both above and below in the strong-coupling regime. We also
find that for this system and the ordinary CQED system there
is no nonclassical behavior inhu

FFs0d. This is due to the fact
that detection of a fluorescent photon puts the atom into the
ground state and the system into a product of field and
atomic states with no entanglement. We have also tied this to
the fact that for weak fields there is a relation between non-
classical intensity-field correlations and bunching. We have
further examined cross correlations—for example, the homo-
dyned fluorescent field after detection of a fluorescent pho-
ton. This is essentially the electric field of an atom being
driven from the ground state by a single photon field.
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FIG. 9. hu
FTstd for a two-level atom in an optical parametric

oscillator vs t=gt for k /g=0.5, g/g=5.0, and F /g=0.1. The
dashed line ishu

TTstd for the same parameters.

FIG. 10. hu
TFstd for a two-level atom in an optical parametric

oscillator vs t=gt for k /g=0.5, g/g=5.0, and F /g=0.1. The
dashed line ishu

FFstd for the same parameters.
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