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We present a general analysis for the criteria to stop and store light coherently. We show that a light pulse
can be stopped in any physical system, provided that(i) the system bandwidth can be compressed to zero;(ii )
the system has sufficient degrees of freedom to accommodate the pulse, and the bandwidth compression occurs
while the pulse is in the system; and(iii ) the bandwidth compression is done reversibly in an adiabatic fashion
that preserves the phase space and the information in the original photon pulse during the entire duration of the
stopping process. Based upon this general criterion, we present a brief discussion of stopping-light schemes
using atomic resonances, and a detailed analysis of the all-optical scheme that we recently proposed. We show
that the all-optical scheme can achieve arbitrarily small group velocities for large bandwidth pulses, and opens
up new opportunities in both fundamental sciences and technological applications.
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I. INTRODUCTION

The ability to drastically slow down the propagation
speed of light, and to coherently stop and store optical
pulses, holds the key to the ultimate control of light, and has
profound implications for optical communications[1] and
quantum information processing[2–4]. In optical communi-
cations, for example, a key function that is currently lacking
is the presence of dynamic optical buffering. The ability to
stop light could therefore enable far more flexible optical
network architectures. In quantum information processing,
photons have been a very attractive carrier for quantum in-
formation, due to the fact that they interact very weakly
among themselves and also with the environment. Conse-
quently, quantum coherence of a photon can be preserved
over very long time and distance scales at room temperature.
However, the weak photon-photon interaction also intro-
duces a very fundamental problem in quantum information
processing, and prevents the realization of a photonic quan-
tum gate unless coherent or resonant light-matter interaction
is used[5]. Such use of coherent and resonant light-matter
interaction is fundamentally limiting since electronic systems
tend to couple to environment strongly. By reducing the
group velocity of photons, the interaction time between pho-
tons can be dramatically increased for a given propagation
distance. This is quite significant as it can enable ultralow
power switches and even single-photon quantum gates with
the use of only weak nonresonant nonlinearities if photons
can be stopped all-optically. Thus, the capability to stop light
all-optically could fundamentally alter the outlook of quan-
tum information processing.

To stop light, a necessary requirement is to create a sys-
tem that can generate small group velocities. Small group
velocities can be accomplished with the use of either atomic
or optical resonances. Near atomic resonances, the group ve-
locity reduction by many orders of magnitude has been ob-
served [6]. Furthermore, the dissipation of energy due to

spontaneous emission and the resulting loss of coherence
that typically occur at atomic resonances can be suppressed
with quantum interference schemes such as the electromag-
netic induced transparency(EIT) [7], Raman assisted inter-
ference effects[8], and coherent spectral hole creation[9],
leading to coherent atomic states with very long lifetimes.
With such techniques, group velocity of light as small as
17 m/s or even less has been demonstrated experimentally
[10–14]. On the other hand, with the use of optical reso-
nances in passive dielectric structures, such as the coupled
resonator optical waveguides(CROW) [15–17] and the pho-
tonic crystal waveguide band edges[18], small group veloci-
ties have also been both predicted and demonstrated.

However, having a system with slow group velocity alone
is not sufficient to stop light. As we explicitly discuss in this
paper, any static resonator system is limited by a fundamen-
tal bandwidth-delay product, which constrains the minimum
achievable group velocity for the entire bandwidth of optical
signals. Consequently, no static resonator system can stop
light pulses with a finite and nonzero bandwidth. In the
atomic systems, light stopping has been accomplished by the
use of dynamic systems in which the optical pulse is trans-
ferred (at least partially) to the long-lifetime electronic co-
herences[19–25]. However, the use of the electronic states
has fundamentally limited the applications of stopping light
in communications and quantum computing systems. In this
paper, we show that the use of electronic coherence is in fact
not necessary, and we present an in-depth discussion of the
general criterion for stopping light[26] that is applicable to
any resonance with atomic, optical, or any other physical
origin.

The paper is organized as follows. In Sec. II, we discuss
the bandwidth-delay product and the resulting limitations.
We then introduce in Sec. III the general criterion that should
be satisfied to stop light pulses in any system. This criterion
allows one to overcome the constraints imposed by the
delay-bandwidth product, and to generate arbitrarily small
group velocities for optical pulses. Understanding of such a
criterion may thus enable the construction of new systems
for stopping light pulses. Based on this general criterion, we
discuss in Sec. IV the presently known atomic stop-light*Email address: fatih@stanford.edu
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schemes, as well as the all-optical stop-light scheme we re-
cently introduced. And we conclude with a discussion of
possible implications of stopping light all-optically.

II. THE CONSTRAINT OF DELAY-BANDWIDTH
PRODUCT: SLOWING LIGHT VERSUS STOPPING LIGHT

The fundamental constraint in any static resonator system
is the so-called bandwidth-delay product[27,28]—the group
delay from an optical resonance is inversely proportional to
the bandwidth within which the delay occurs. For a given
resonance, the total phase shiftf across the resonance fre-
quency ismp, wherem is the order of the resonance(for a
single-mode resonatorm=1, for an all-pass resonatorm=2).
Thus, we have the following constraint regarding the group
delaydt=df /dv:

E dvdt =E dv
df

dv
= mp, s1d

where the integration range covers the entire resonant line
shape. Thus, the minimum group velocity that is accomplish-
able by complexes of such resonators is approximately

vg <
L

dt
=

Ldv

mp
=

Ldf

2m
, s2d

whereL is the physical length of the resonator. The group
velocity a static system can achieve scales linearly with the
system bandwidth and the physical dimensions of the reso-
nators. Thus, the group velocity cannot be zero for the entire
signal bandwidth unless the signal bandwidth is zero.

More detailed estimates of delay-bandwidth product can
be made for specific examples of slow light structures. In a
CROW waveguide structure, for example, the minimum
group velocity that can be accomplished for pulses at
10 Gbit/s rate with a wavelength of 1.55mm is approxi-
mately 10−2 c for minimal distortion. And the corresponding
delay one can achieve for a chip size of a few millimeters is
less than a nanosecond for a propagation distance of a few
millimeters. Similar arguments regarding delay-bandwidth
product apply to stationary electronic resonances[29].

Thus, while the use of static resonators can slow down the
propagation of light, it cannot bring the group velocity of a
light pulse to zero. Stopping light necessarily violates the
delay-bandwidth product constraint in static resonator sys-
tems. Consequently, stopping light, by definition, requires
one to use a dynamic optical system.

III. GENERAL CRITERIA: ILLUSTRATED
WITH A ONE-BAND MODEL

To overcome the delay-bandwidth product constraint to
stop light, a system must be able to simultaneously satisfy
two seemingly contradicting requirements. On one hand, in
order for the system to be able to accommodate the entire
pulse bandwidth, the bandwidth of the system must neces-
sarily be wide and the group velocity is therefore large. On
the other hand, stopping light requires the group velocity to
be extremely small, and thus the bandwidth has to be infini-

tesimally small. The way to satisfy simultaneously such
seemingly contradicting requirements is to create a dynamic
system where both the system and signal bandwidth change
as a function of time such that the following criteria are
fulfilled [26]:

(a) The system must possess large tunability in its band-
width. To allow for an optical pulse with a given bandwidth
to enter the system, the system must possess an initial state
with a sufficiently large bandwidth, and hence a large group
velocity, as required by the delay-bandwidth product[Fig.
1(a)]. To stop the pulse in the system, on the other hand, the
group velocity of the pulse needs to be reduced to almost
zero. Thus, the system bandwidth should also go to zero for
all wave-vector components[Fig. 1(b)].

(b) The tuning of the system needs to be performed in a
manner such that the bandwidth of the pulse is reversibly
compressed. Such signal bandwidth compression is neces-
sary in order to accommodate the pulse as the system band-
width is reduced[Fig. 1(b)]. Thus, the tuning process must
occur while the pulse is completely in the system, and must
be performed in an adiabatic[31] fashion to preserve all the
coherent information encoded in the original pulse.

A particularly powerful way to stop light is to use a trans-
lationally invariant system[30], and to tune the system in a
translationally invariant manner. In doing so, one prevents
any scattering in the momentum space, and thus the second
condition, which dictates the use of a reversible bandwidth
compression process, becomes easier to implement. Any
translationally invariant system can be described in terms of
a band diagram that relates the frequencies and wave vectors
of the eigenmodes, as shown in the bottom panels of Fig. 1.
In such a system, a light pulse can be stopped by evolving
the system from an initial state, where the slope of the band
is large(left panel in the bottom of Fig. 1), to a final state,
where the slope of the band is zero(middle panel in the
bottom of Fig. 1). The initial state, which has a large system
bandwidth, is used to accommodate the entire bandwidth of
the signal pulse, with each frequency component of the sig-
nal pulse occupying a unique wave vector. In the final state,
the group velocity(i.e., the slope) is reduced to zero for all
the signal wave-vector components, consequently the system
bandwidth is reduced to zero(middle panel in Fig. 1). By
performing the process of system bandwidth compression
while the photon pulse is in the system, and by doing so in
an adiabatic fashion, the signal bandwidth can also be com-
pressed to zero, resulting in the stopping of light without
losing any coherent information. The details for adiabaticity
depend upon specific systems, and will be discussed specifi-
cally in later parts. Here, it is sufficient to point out that the
system bandwidth compression process performs a fre-
quency conversion for each wave-vector component of the
photon pulse. And by performing this process while preserv-
ing the translational invariance, the bandwidth reduction pro-
cess can preserve the coherent phase information of the
original pulse as spatial phase variation even when both the
system and the signal bandwidth are reduced to zero.

In practice, all physical systems that have been imple-
mented to stop light involve the use of multiple bands. Such
a multiple band system results from the coupling of multiple
subsystems in a translationally invariant fashion(Fig. 2).
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Each subsystem can be designed to possess dramatically dif-
ferent optical properties. And by modulating the relative fre-
quencies of the subsystems, the eigenstates of the system can
evolve adiabatically between the subsystems, resulting in
dramatic changes in optical properties.

Both the electronic stop-light schemes[19–24], and the
all-optical scheme we introduced recently[26] can be under-
stood within the framework of such a general system. For
instance, in EIT, the system consists of two stationary sub-
systems of atomic levels and the propagating free-space elec-
tromagnetic modes. The coupling between the atomic sub-
systems induced by an external electromagnetic control field,
and the coupling between the atomic systems and the free-
space mode, result in the band structure shown in Fig. 3[32].
By decreasing the strength of the control field, one of the
eigenstates(the band in the middle in Fig. 3) adiabatically
evolves from propagating free-space optical waves to coher-
ent electronic states, resulting in dramatic compression of the
system bandwidth. And a light pulse can be stopped by per-
forming such a process while the entire optical pulse is in the
system[19–24].

IV. ALL-OPTICAL IMPLEMENTATION

The use of electronic states to coherently store the optical
information, however, imposes severe constraints on the op-
erating conditions and degrades the coherence properties of

FIG. 1. (Color) Schematic of a one-band model for stopping
light. The system and signal bandwidth should be time-dependent.
In the top panels, the system bandwidth and the spectral shape of
the signal pulse are indicated by the gray block and the filled red
curves, respectively. In the bottom panels, the spectral shapes of the
pulse are superimposed on the band diagrams of the system. A pulse
can be stopped and then released by evolving the system from(a) to
(c). (a) The initial state. The system bandwidth(and hence the
group velocity) is large in order to accommodate a signal with a
given signal bandwidth.(b) The state in which the group velocity is
reduced to zero. Here both the system bandwidth and the signal
bandwidth are compressed to zero.(c) The final state. The original
signal bandwidth and the group velocity are recovered, and the
pulse is released with all coherent information preserved. Axes are
in arbitrary units.

FIG. 2. Schematic for a tunable optical system consisting of
several subsystems. Each subsystem has a different characteristic.
The subsystems are coupled together in a way that preserves the
translational symmetry of the overall system along the propagation
direction of photons. By modulating the subsystems, the electro-
magnetic field can be adiabatically transferred among the sub-
systems, dramatically changing the spectral properties of both the
system and the fields.

FIG. 3. (Color) Bandwidth compression via modulating dark
polaritons, as employed in the EIT stopping light schemes.(a) The
externally applied field controls the splitting of the dressed polar-
iton states.(b) The bandwidth of the midband is given by the energy
splitting between the dressed states, and can be reduced to zero
when the external field is turned off. Axes are in arbitrary units.
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photons. Furthermore, only a few very special and delicate
electronic resonances available in nature can be used. All the
experimentally demonstrated operating bandwidths are far
too small to be useful for most purposes. The storage times
are fundamentally limited by electronic decoherence pro-
cesses. The wavelength ranges where such effects can be
observed are also very limited. Furthermore, while promising
steps have been taken for room-temperature operation in
solid-state systems[23,24], it still remains a great challenge
to implement such schemes on-chip with integrated optoelec-
tronic technologies at room temperature. Consequently, it is
of great interest to pursue the control of light speed using
optical resonances in photonic structures including dielectric
microcavities[33] and photonic crystals[34–36]. The opera-
tion of photonic structures does not require electronic coher-
ences, and is almost completely independent of temperature.
Such structures can be defined by lithography and are there-
fore defined in solid-state systems on-chip, and can operate
at any wavelength range of interest.

To tune an all-optical system, the most convenient way is
to modulate the refractive index. For transparent materials
with low loss, the accomplishable refractive index change is
generally quite smallsdn/n<10−4d. Consequently, to imple-
ment an all-optical scheme for stopping light, one will need
to construct special systems in which the bandwidth can be
compressed by many orders of magnitude with small refrac-
tive index tuning. Many approaches invented for tunable de-
lay or dispersion compensation applications in fact cannot be
used. Consider, for example, fiber Bragg gratings, or holo-
graphically defined three-dimensional periodic structures. In
these systems the group velocity can be reduced to zero at a
photonic band edge. For externally incident light, by adjust-
ing either the dielectric constant or the periodicity, the group
velocity and the dispersion properties of the system can
therefore be tuned. However, in these systems the group ve-
locity would be zero only at a single wave vector(Fig. 4),
and yet for stopping light one needs to be able to reduce the

FIG. 4. (Color) Schematic of a band diagram of a one-
dimensional photonic crystal. The splitting at the band edge results
in group velocity reduction, but only over a narrow wave-vector
range. In particular, the group velocity goes to zero only at a single
wave-vector component. Axes are in arbitrary units.

FIG. 5. (Color) The basic building block of the all-optical stop-
light system. The disks represent cavities, and the arrows indicate
available evanescent coupling pathways between the cavities and
the waveguides. A waveguide cavityA is inserted into a waveguide,
and one or more side cavitiesBi are side-coupled toA. Photons
tunnel through multiple pathways indicated by black, blue, and red
lines, resulting in Fano interference that is tunable by adjusting the
resonant frequency of the cavities.

FIG. 6. (Color) Transmission spectra through the system of Fig.
5, but with a single side-cavityB1. The spectra are calculated for
photonic crystal structures shown on the right sides of the figures.
The gray dots represent the position of the dielectric rods in a per-
fect crystal. These rods have a dielectric constant of 11.56 and a
radius of 0.2a, wherea is the lattice constant. The black dots rep-
resent the cavities with a radius of 0.1a, and a dielectric constant
that is tunable. The field patterns that correspond to the lower-
frequency transmission peak are also shown on the right sides. The
spectra and the field patterns are for(a) vA−vB,−ubu and (b) vA

−vB. ubu, whereb is the coupling constant between the cavities.
Notice the dramatic variations of the width of the lower-frequency
transmission peak as a function of the resonant frequencies.
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group velocity to zero for an entire range of wave vectors.
Moreover, the strong dispersion at the band edges can lead to
large distortion of the pulses. Similarly, while the bandwidth
of a CROW waveguide can in principle be slightly modu-
lated by changing the coupling constants between the micro-
cavities, it is not possible to reduce the bandwidth to zero
due to the availability of only limited index modulations.

Guided by the general concepts introduced in the previous
section, we implemented a system where arbitrarily large
group velocity reduction for all wave vectors can be accom-
plished with realistic physical constraints[26]. In such a sys-
tem, arbitrary group velocity reduction can be achieved fast
enough before light pulses can pass through the system. And
to completely stop light requires only the use of small index
modulationssdn/n,10−4d performed at moderate speeds 1
−10 GHz, even in the presence of significant losses. The
modulation accomplishes a coherent frequency conversion
process for all spectral components, and reversibly com-
presses the bandwidth of the incident pulse by an arbitrarily
large amount. Unlike the EIT scheme, however, the propa-

gating electromagnetic field is not transformed to coherent
quantum states of electrons, but rather converted to a station-
ary electromagnetic field distribution.

A. Tunable Fano resonance

In order to construct a system that can change its band-
width dramatically, we use resonant optical structures that
generate sharp tunable resonances through Fano interference.
To illustrate the interference process, we consider a basic
building block, as shown in Fig. 5, that consists of a resona-
tor A that is directly coupled to a waveguide, and one or
more side cavitiesBi that are side coupled to the waveguide
cavity A. A photon can transmit through this system via mul-
tiple pathways, with the spectral characteristics depending
strongly on the relative resonance frequencies of the resona-
tors. The presence of such multiple resonance pathways
leads to Fano interference[37]. For the case of a single side
cavity, the transmissionT as a function of the input fre-
quencyv can be derived using coupled-mode theory[38] as

T = USout

Sin
U2

= U afisv − vAd + gAg
− sv − vAdsv − vBd + b2 + gAgB + ifsv − vBdgA + sv − vAdgBg

U2

, s3d

whereSout andSin are the output and input field amplitudes,
respectively. As shown in Fig. 6, where coupling constantsa
and b are taken to be equal and losses are taken to begA
=gB=b /10, small variation of the resonant frequenciesvA
and vB leads to dramatic change in the bandwidth of the
system. Such variation can be accomplished by modulating
the refractive index in the cavity region. When cavityA has
a much lower resonance frequency than that of cavityB, the
lower-frequency eigenstate of the system has the character-
istic of cavity A, with a broad bandwidth due to its coupling
to the waveguides[Fig. 6(a), left panel]. The energy of such
a state is strongly localized in the cavityA [Fig. 6(a), right
panel]. On the other hand, when cavityB has a much lower
resonance frequency than that of cavityA, the lower-
frequency eigenstate exhibits a narrow transmission peak,
characteristic of cavityB that is weakly coupled to the wave-
guide modes[Fig. 6(b), left panel]. And the eigenstate’s en-
ergy is strongly localized in the cavityB [Fig. 6(b), right
panel]. Small modulations of the resonant frequencies thus
lead to strong modulations of the bandwidth of the system.

B. Caterpillar resonator system

To obtain a system with information storage capacity, we
cascade the basic building block in Fig. 5 in a translationally
invariant configuration as shown in Fig. 7 to generate a pe-
riodic array of cavities. Each unit cell of the periodic array
contains a waveguide cavityA, which is coupled to the
nearest-neighbor unit cells to form a coupled resonator opti-

cal waveguide, and one or more side cavitiesB1 and B2,
which couples only to the cavities in the same unit cell. The
side cavities in adjacent unit cells are placed in an alternating
geometry in order to prevent direct coupling between them.
This system is an example of the general scheme in Fig. 2,
where each set ofith side cavitiesBi forms a subsystem with
very narrow bandwidth by themselves, and the waveguide
cavitiesA form a subsystem with large bandwidth.

The band structure of such a system consists of two bands
v±,k (Fig. 8) [26], and we focus on the lower bandv−,k,
which has a group velocity at the band center of

vg− = ReFdv−,k

dk
G

k=p/2,

= a, ReF1 −
D + isgA − gBd

ÎfD + isgA − gBdg2 + 4b2G s4d

with D;vA−vB. When D!−ubu, the lower band exhibits
the characteristics of the waveguide cavities, and thus has a
large group velocitysvg.2a,d and a large bandwidth[Fig.
8(a)]. The bandwidth of the lower system eigenstate de-
creases asvB is reduced andvA is increased[Fig. 8(b)].
When D@ ubu [Fig. 8(c)], the lower band exhibits the char-
acteristic of the side cavities with extremely narrow band-
width, and the group velocity at the band center(and also the
bandwidth) is reduced by a ratio of
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Sb

D
D2

+
sgA − gBd3

4D3 . s5d

Importantly, the bandwidth reduction ratio and the group ve-
locity become independent of loss whengA andgB are equal,
which can be adjusted externally. Also, by increasing the
number of side cavities in each unit cell as shown in Fig. 7,
the minimum achievable group velocity at the band center
can be further reduced to 2a,pi=1

r sbi /Dd2, where r is the
number of the side cavities in each unit cell, andbi is the
coupling constant between thesi-1dth andith side cavities as
shown in Fig. 7. Thus, the group velocity can be reduced
exponentially with linear increase in system complexity, and
significant group velocity tuning can be accomplished with
the use of small refractive index variation that changes the
resonant frequenciesvA andvB.

In this system, a pulse can be stopped by the following
dynamic process: We start withD!−ubu, such that the lower
band has a large bandwidth. By placing the center ofv−,k at
the pulse carrier frequencyv0 [Fig. 8(a)], the lower band can
accommodate the entire pulse, with each spectral component
of the pulse occupying a unique wave vector. After the pulse
is completely in the system, we vary the resonance frequen-
cies until D@ ubu [Fig. 8(c)], at a rate that is slow enough
compared with the frequency separation between the lower
and the upper bands.[The frequency separation reaches a
minimum value of 2ubu whenD=0 as shown in Fig. 8(b) at
the anticrossing point]. Assuming a constant and equal rate
of change in the cavity resonance frequencies withr
;dD /dt, the system can be described with the Landau-Zener
model, and the probability of scattering from one of the
eigenstates to the other eigenstate is equal toPscat=expf
−2pb2/ rg [39]. The modulation of the cavity resonances pre-
serves translational symmetry of the system. Therefore, cross
talk between different wave-vector components of the pulse

is prevented during the entire tuning process as indicated by
the red dashed lines in Fig. 8. Also, the slow modulation rate
ensures that each wave-vector component of the pulse fol-
lows only the lower bandv−,k, with negligible scattering into
the upper bandv+,k (i.e., the system evolves in an adiabatic
[31] fashion). Consequently, the pulse bandwidth is revers-

FIG. 7. (Color) Schematic of a tunable microcavity system used
to stop light. The system consists of a periodic array of coupled
Fano resonances shown in Fig. 5. Each unit cell of the array con-
tains a waveguide cavityA, which couples to nearest-neighbor cells
via evanescent coupling with a coupling strengtha. Each wave-
guide cavityA is also coupled to either one or more side cavities.
The coupling strengths between the waveguide cavities and the side
cavities, and among the side cavities themselves, are labeledbi. The
figure shows the case with two side cavities, labeled asB1 andB2.

FIG. 8. (Color) Schematic of the frequency bandsv+ andv− for
the system shown in Fig. 6 with a single side cavity in each unit
cell. vA and vB are the resonance frequencies for the waveguide
cavitiesA and the side cavitiesB, respectively, andk is the wave
vector. In the left panels, the red and blue curves correspond to the
bands for the side cavitiesA andB by themselves, respectively. The
waveguide cavitiesA are coupled to each other and thus the red
curve has a large bandwidth. The side cavitiesB are not coupled to
each other and thus the blue curve has zero bandwidth. The right
panels are the band structures for the coupled system. The figure
includes three cases.(a) vA−vB!−ubu. The lower-frequency band
v− exhibits the characteristic of the subsystem of waveguide cavi-
ties A with a large bandwidth, and it is centered at the pulse fre-
quencyv0 to accept an incoming pulse with large bandwidth.(b)
vA<vB. The waveguide cavitiesA and the side cavitiesB are near-
resonant. The upper and lower bands on the right display a mixed
character of both subsystems of waveguide cavitiesA and side cavi-
tiesB. Here, the distance between the upper and lower bands is near
its minimum sv−,k−v+,k<2ubud. (c) vA−vB@ ubu. The lower-
frequency bandv− exhibits the characteristic of the subsystem of
side cavitiesB with a very narrow bandwidth. Axes are in arbitrary
units.
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ibly compressed via energy exchange with the modulator,
while all the information encoded in the pulse is preserved.
An implementation of this dynamic system in photonic crys-
tals has been computationally demonstrated previously[26].

C. A practical three-stage system

In practical optoelectronic devices[40], one can achieve
index modulation strengthssdn/nd on the order of 10−4 at a
maximum speed exceeding 10 GHz with intrinsic electro-
optic effects in bulk GaAs. Since such modulation strength is
far weaker compared with what is used here in the FDTD
simulation, the coupled-mode theory should apply even more
accurately in the realistic situation. Therefore, using coupled-
mode theory, we have simulated the structure shown in Fig. 7
with the two side cavities coupled to each waveguide cavity.
We use coupling constants ofb1=10−5 vA andb2=10−6 vA,
a maximum index shift ofdn/n=10−4, and we assume a
cavity loss rate ofg=4310−7 vA that has been measured in
on-chip microcavity structures[41]. A waveguide-cavity
coupling constant ofa=10−5 vA is used to accommodate a
1 ns pulse. In this system, the process of energy transfer
between multiple subsystems(Fig. 2) occurs in two stages
[Fig. 9(a)]. First, the field is transferred from the cavitiesA to
B1, and the group velocity is reduced from its speed of
100 km/s(as limited by the bandwidth-delay product for a
1 ns pulse) to 1 km/s. Since the coupling constant between
the cavities A and B1 is large, this first bandwidth-
compression process can be done rather rapidly within a time
duration of a few nanoseconds without violating the adiaba-
ticity condition. At the end of the process, the field localizes
at the side cavitiesB1. The next bandwidth compression
stage occurs between cavitiesB1 andB2. Here, the modula-
tion speed is slowed down when cavitiesB1 and B2 reach
resonance neart=4tpass [when the frequency difference be-
tween the eigenstates reaches a minimum ofb2 as shown in
Fig. 8(b)] in order to obey adiabaticity, and then the modu-
lation can be accelerated again as the separation between the
resonance frequencies increases. At the end of this compres-
sion process, the group velocity reduces to below 10 cm/s.
The use of three side cavities in the above example would
decrease the speed of light down to 10mm/s using a cou-
pling constantb3 equal tob2=10−6 vA. The group velocity
decreases exponentially with a linear increase in the number
of side-cavity stages, as explained earlier. Thus, there is no
limit on the achievable minimum speed of light for a pulse
with a finite initial bandwidth in practical physical systems.
The same process repeated in reverse recovers the original
pulse shape without any distortion att=14.5tpass in spite of
the significant loss present. Thus the bandwidth compression
mechanism is very robust against loss. If the cavity lifetime
is improved only to a microsecond, nearly 99% of the origi-
nal pulse energy can be recovered. At such ultraslow speeds,
the pulses stay stationery in the side cavities and experience
negligible forward propagation. The storage times then be-
come limited only by the cavity lifetimes. Importantly, the
storage times are also independent of the pulse bandwidths,
which enable the use of ultrahigh quality-factor microcavi-
ties to store short(large bandwidth) pulses coherently, by

overcoming the fundamental bandwidth constraints in ultra-
high Q cavities.

D. General scaling analysis

Below we provide detailed discussion of our scheme
given the constraints on optical losses and available index
modulation strengths. The operating bandwidth of our sys-
tem is limited by the strength of index modulations available.
A system can accommodate a pulse with a bandwidth no
greater than the largest system bandwidth. To compress the
bandwidth of such a pulse to zero, the largest frequency shift
dv required is thus comparable to the largest system band-
width. On the other hand, the largest frequency shift that can
be accomplished for a given index modulation isvdn/n,
wherev is the center frequency of the pulse. Therefore, the
operating bandwidth of the system is on the order of

FIG. 9. (Color) Coupled mode theory simulation of a two-stage
system with loss. The system is shown in Fig. 7. The losses of the
cavities are taken from the measured losses in integrated on-chip
microcavities[34]. (a) The red, blue, and green lines represent the
relative changes in the refractive indices of the cavitiesA, B, andC,
respectively, as a function of time. The group velocities of the pulse
at several instances are also provided.(b) The blue line represents
the incident pulse intensity in arbitrary units as recorded in the first
waveguide cavity. The red line represents intensity as recorded in
the last waveguide cavity, after the dynamical index tuning pro-
cesses shown in(a).
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dv , vdn/n. s6d

Since the pulses can be stopped before they propagate long
distances, dispersion is not too critical, and a large portion of
the system bandwidth can be utilized. For a small refractive
index shift ofdn/n=10−4, and assuming a carrier frequency
of approximately 200 THz, as used in optical communica-
tions, the achievable bandwidth is comparable to the band-
width of a single wavelength channels20 GHzd in high-
speed optical systems. In comparison, the atomic stop-light
schemes have experimentally demonstrated bandwidths of
less than 100 kHz[21–24]. The all-optical scheme thus rep-
resents a great improvement in the bandwidth of a light pulse
that can be stopped.

The bandwidth compression process requires a finite
number of cavities. The required system dimensions are de-
termined by the spatial length of the pulse in the waveguide
and by the duration of the modulation primarily during the
first stage of the field transfer. Together, these two factors set
the total distanceL that the pulse travels before its initial
speed vg0 is reduced significantly:

L , vg0tpulse+ vg0tmod. s7d

Since the minimum initial group velocity vg0s=2a,d is pro-
portional to the signal bandwidths,4ad, and since the pulse
duration tpulse is inversely proportional to the initial signal
bandwidth, the first term on the rightmost side of Eq.(7) is
approximately a constant independent of the signal band-
width (e.g.,L,10,+vg0tmod). The second term can be mini-
mized by using the smallest modulation rise time allowed
within the adiabaticity constraint. Thus the first-stage cou-
pling constantb1 should be made large in order that fast
tuning can be performed while still satisfying adiabaticity
during modulation. Once the initial slowdown is accom-
plished, the pulse moves at a far slower speed, and does not
change its shape as it comes to a halt. Thus the modulation in
the subsequent stages can be made a lot slower, allowing the
use of much smaller coupling constants in subsequent stages
to accomplish further dramatic slowdown. Taking all these
considerations into account, for a signal bandwidth of about
10 GHz, and a modulation rise time of 0.1 ns achievable in
electro-optic systems, about 100 cavity pairs would be suffi-
cient. Thus chip-scale implementation of such systems for
large bandwidth signals is foreseeable.

In this particular system, the achievable maximum group
velocity reduction is related to the coupling constant between
the cavities and scales exponentially with the number of side
cavities, and thus it is unlimited in principle. However, the
time duration in which the bandwidth compression process
should occur is limited by the optical loss rateg if a signifi-
cant part of the pulse energy should be preserved. Because of
the adiabaticity requirement, this constraint on the minimum
pulse compression duration determines the maximum num-
ber of subsystem stagesh and the minimum coupling con-
stantsbi between these stages. Accordingly, let us assume
that the total modulation duration is an order of magnitude
smaller than the cavity decay time to prevent losses, and that
the secondary subsystem coupling rates are all equalsbi

=bd and an order of magnitude larger than the modulation

rate to satisfy adiabaticity. Then, coupling constantsb should
be roughly on the order ofhg. Since the reduction ratio of
the group velocity issb /Dd2h<shg /Dd2h, we minimize this
ratio with respect to the number of stagesh, and obtainh
=D /ge, which represents the optimal number of stages
needed for maximum group velocity reduction in the pres-
ence of losses. In addition to the group velocity reduction
ratio, the minimum achievable group velocity is also deter-
mined by the initial group velocity of the pulses2a,d, which
is related to the pulse bandwidth through the bandwidth-
delay product. Combining these two factors, we have

vg = 2a,p
i=1

r

sbi/DdD/ge. s8d

Taking into account both effects, we can obtain a total group
velocity reduction much below 1 Å per hour for a 10 GHz
bandwidth pulse without the pulse being attenuated even in
the presence of lossy cavities with quality factors of 107.
These estimates show that in these systems, even in the pres-
ence of losses, the pulses can essentially be stopped for all
practical purposes.

V. CONCLUDING REMARKS

There are several potential applications for the all-optical
bandwidth modulation and stopping light schemes. Multiple
pulses can be held simultaneously in the system, and desired
pulses can then be released on demand. This capability might
enable controlled entanglement of networks of quantum sys-
tems in distant microcavities via photons, thus opening up
the possibility of chip-scale photonic quantum information
processing. We further note that the technique of coherent
field transfer between multiple systems(Fig. 2) can be used
to combine all-optical systems and atomic systems to over-
come some of the fundamental bandwidth and wavelength
limitations in the atomic systems. For example, the first few
subsystems of such a system can be all-optical resonators
with a large bandwidth to accommodate a fast optical pulse,
and the last subsystem can consist of nuclear spin states with
long lifetimes to store the electromagnetic coherence.

The loss in optical resonator systems might be counter-
acted with the use of gain media in the cavities[42], or with
external amplification. Such capabilities could be important
for the use of such schemes in optical communication sys-
tems. The loss in principle can also be suppressed with the
use of three-dimensional photonic crystals. In such 3D crys-
tals, the loss is only limited by intrinsic material losses. By
using high-quality semiconductors or insulators, and by op-
erating at a wavelength below the mid electronic band gap,
the material loss might be quite low, and one might speculate
that the lifetime of optical resonators might eventually ex-
ceed that of atomic resonances. For example, the material
loss lifetime in fused silica is in fact on the order of 10−3 s,
and cavity quality factorssQ.83109d approaching this
limit have already been measured in quartz microspheres
[43]. Furthermore, optical modes with quality factors ap-
proaching 53108 with large spectral spacing have also been
demonstrated in integrated resonators[44]. With such long
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lifetime resonators, optical pulses can be stopped for dura-
tions sufficient for quantum information processing pur-
poses. Development of even lower loss materials than silica
without the requirement of making a fiber is also foreseeable.

The ultralow group velocity and bandwidth compression
also dramatically enhances nonlinear effects over the entire
bandwidths of pulses. This can enable single-photon quan-
tum gates using instantaneous nonlinearities below the mid-
band-gap of electronic systems. Since such nonresonant non-
linearities are practically decoherence-free, decoherence-free
on-chip quantum computing at room temperature might be
accomplished.

Since the required index of modulation is quite small, one
can use the intrinsic nonresonant electro-optical effects in
semiconductors to tune the refractive index, without using
any lossy resonant electronic excitations. The side cavities
where the photons are held ideally should possess a very
large quality factor. In our scheme, such side cavities do not
need to be modulated, and it is sufficient to modulate only
the waveguide cavities. Thus, electrical contacts can be
placed far away from the cavities that have high-quality fac-
tors. One might be able to further isolate the cavities from
the electrical contacts with the use of fringing electric fields.

Slight inaccuracies in microcavity resonance frequencies due
to fabrication tolerances can be compensated by the built-in
index tuning.

Using the few underlined basic principles above, it should
be possible to stop light pulses in a wide variety of different
physical systems, and the underlying ideas and schemes pre-
sented here are valid for all wave phenomena, including
acoustics and microwave signals. Finally, the general scheme
we presented can be used not only to stop light but also to
completely reshape its spectrum while the photon pulse is in
the system, leading to novel information-processing capabili-
ties.
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