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We discuss the geometrical optics of correlated imaging for two kinds of spatial correlations corresponding,
respectively, to a classical thermal light source and a quantum two-photon entangled source. Due to the
different features in the second-order spatial correlation, the two sources obey different imaging equations. The
quantum entangled source behaves as a mirror, whereas the classical thermal source looks like a phase-
conjugate mirror in the correlated imaging.
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An imaging method called coincidence imaging(corre-
lated imaging or ghost imaging) has drawn much attention
recently[1–11]. In this imaging system, the object and image
are separately illuminated by a pair of correlated beams, and
the image emerges through coincidence detection of the two
beams. The first coincidence imaging experiments were car-
ried out using a pair of entangled photons generated in spon-
taneous parametric down-conversion(SPDC) [1–3]. Re-
cently, Gatti et al. [6] found that the ghost imaging can
persist in high-gain SPDC, in which two entangled beams
contain a large number of photons. Later on, in their further
study appearing in[10], they proposed that the classical cor-
relation of two beams obtained by splitting incoherent ther-
mal radiation can perform the ghost imaging. However, the
subwavelength interference effect, which was also regarded
as a nonclassical effect related to two-photon entanglement,
may have a classical counterpart with a thermal light source
[10,12,13].

In this paper we focus on the geometrical optics of ghost
imaging for both an entangled photon pair and a classical
thermal light source. We find that the correlated imaging ex-
hibits distinct aspects that cannot be included in ordinary
imaging. However, the difference in spatial correlation be-
tween the quantum and classical sources is also reflected in
the geometrical optics. In the SPDC of a type-I crystal, the
down-converted beams contain both the quantum entangle-
ment and the classical thermal correlation. When the crystal
is used as a source, it can form a special dual correlation
imaging system, in which an object can simultaneously pro-
duce two correlated images. The system may find potential
application in optical design.

We consider classical thermal light described by
Esx ,z,td=eEsqdexpfiq ·xgdq expfiskz−vtdg, in which Esqd
is a stochastic variable obeying Gaussian statistics andq is
the transverse wave vector satisfyinguqu!k. For any thermal
statistics, the second-order spectral correlation is written as

kE * sq1dE * sq2dEsq28dEsq18dl
= kE * sq1dEsq18dlkE * sq2dEsq28dl

+ kE * sq1dEsq28dlkE * sq2dEsq18dl = Ssq1dSsq2d
3fdsq1 − q18ddsq2 − q28d + dsq1 − q28ddsq2 − q18dg, s1d

whereSsqd is the power spectrum of the spatial frequency.
For comparison, we show the second-order correlation of the
entangled beams generated in the lower gain limit of SPDC
[13],

kam
† sq1dan

†sq2dansq28damsq18dl

= W* sq1dWsq18ddsq1 + q2ddsq18 + q28d, s2d

where the subscriptsm andn indicate the polarizations of the
beams for a type-II crystal. The spectrumWsqd depends on
the transfer functions of SPDC. The equation is also valid for
a type-I crystal, in which the down-converted beams have
the same polarization, and the subscriptsm and n can be
omitted. Therefore, both the thermal light and the entangled
photon pair exhibit transverse wave vector correlation. The
former shows the self-correlation of transverse wave vectors
between positive and negative components, while the latter
shows the correlation of a pair of conjugate wave vectors
satisfying the momentum conservation, within the same spa-
tial frequency component.

To show correlated imaging of thermal light, we may use
a 50-50 beam splitter which divides the input beam into two
correlated beams. For the sake of comparison with the ther-
mal light, we assume central-frequency degeneracy for the
two-entangled-photon source. Furthermore, the beam splitter
is also applied to the quantum imaging system. This corre-
sponds to the collinear case of SPDC, where the entangled
down-converted photons are spatially divided by a beam
splitter for the coincidence imaging. However, for a type-II
phase-matching configuration, the down-converted beam is
divided by a polarization beam splitter[2]. We defineFisqd
si =1,2d as the two output fields of the beam splitter. For
both classical and quantum sources, the second-order corre-
lation of the output fieldskF1

*sq1dF1sq18dF2
*sq2dF2sq28dl is pro-

portional to that of the input, i.e., Eqs.(1) and (2). For sim-
plicity, we consider the one-dimensional case. Lethisx,x8d
si =1,2d be the impulse response function for thei path in the
correlated imaging scheme, then the joint intensity at the two
detective planes is obtained to be

kI1sx1dI2sx2dl

=E h1
*sx1,− q1dh1sx1,− q18dh2

*sx2,− q2dh2sx2,− q28d

3kF1
*sq1dF1sq18dF2

*sq2dF2sq28dldq1dq18dq2dq28, s3d*Corresponding author: wangkg@bnu.edu.cn

PHYSICAL REVIEW A 71, 013801(2005)

1050-2947/2005/71(1)/013801(5)/$23.00 ©2005 The American Physical Society013801-1



where hisx,qd=s1/Î2pdehisx,x8dexps−iqx8ddx8. Substitut-
ing Eqs.(1) and(2) into Eq.(3), we obtain the joint intensity

kI1sx1dI2sx2dl ~E Ssqduh1sx1,− qdu2dqE Ssqduh2sx2,− qdu2dq

+ UE Ssqdh1
*sx1,− qdh2sx2,− qddqU2

, s4ad

kI1sx1dI2sx2dl ~ UE Wsqdh1sx1,− qdh2sx2,qddqU2

, s4bd

for the classical and quantum sources, respectively. These
results are identical to those in Ref.[10] in which the joint
intensity correlations are evaluated by the impulse functions
hisx,x8d instead ofhisx,qd. Equations(4) show macroscopi-
cally the difference between the classical and quantum cor-
related imaging. For the thermal source, the first term of Eq.
(4a) reflects the background while the second term expresses
the correlated imaging. Therefore, the classical correlated
imaging has lower visibility than the quantum one. Further-
more, the nature of the wave vector correlations for the clas-
sical and quantum sources is also reflected in the correlations
of the two impulse response functions. This will result in
different imaging laws.

Now we discuss the two schemes of correlated imaging as
shown in Fig. 1. For simplicity, we assume that the beam
splitter is close to the source, so that the beam is divided
immediately from the source[14]. For scheme I, the two
impulse response functions are written as

h1sx1,qd = s1/Î2pdexpSikz1 − iqx1 − i
q2z1

2k
D , s5ad

h2sx2,qd =
1

2p
Î kf

isf − z3dfc
expFiksz2 + z3 + 2fcd

− i
q2

2k
Sz2 +

z3f

f − z3
DG

3E TsxdexpFi
kx2

2sz3 − fd

− iSkx2

fc
+

qf

f − z3
DxGdx sz3 Þ fd, s5bd

h2sx2,qd =
1

2pi
Î f

fc
expSiksz2 + f + 2fcd + i

q2

2k
sf − z2d

+ i
f

fc
x2qDTS−

qf

k
D sz3 = fd,

where f and fc are the focal lengths of the imaging lensF
and the collective lensFc, respectively,z1 and z2 are the
distances from the source to detectorD1 and lensF, respec-
tively, z3 is the distance between objectT and lensF, and
Tsxd is the transmission function of objectT. For scheme II,
however, the two impulse response functions are written as

h1sx1,qd =
1

2p
Î k

if c
expSiksz1 + 2fcd − i

z1q
2

2k
D

3E TsxdexpF− iSkx1

fc
+ qDxGdx, s6ad

h2sx2,qd =Î f

2psf − z3d
expFiksz2 + z3d − i

q2

2k
Sz2 +

z3f

f − z3
D

− i
qx2f

f − z3
− i

kx2
2

2sf − z3dG sz3 Þ fd, s6bd

h2sx2,qd =Î k

2pi f
expSiksz2 + fd + ik

x2
2

2f2sf − z2dD
3dSk

f
x2 + qD sz3 = fd,

wherez1 andz2 are the distances from the source to objectT
and the imaging lensF, respectively;z3 is the distance be-
tween lensF and detectorD2. In the broadband limit,Wsqd
andSsqd can be regarded as a constant in the integration, and
we calculate the joint intensity using Eq.(4). For both
schemes, we introduce the correlated imaging equations

1

z2 − z1
+

1

z3
=

1

f
for classical correlated imaging, s7ad

1

z2 + z1
+

1

z3
=

1

f
for quantum correlated imaging,s7bd

under which the correlated imaging is obtained to be

FIG. 1. Sketches of correlated imaging for(a) scheme I, where
objectT and the imaging lensF are in the same path and(b) scheme
II, whereT andF are in different paths.Fc is the collective lens so
that the object and the detector are placed in its two focal planes.
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kI1sx1dI2sx2dl , HuTfx1sf − z3d/fgu2 for scheme I,

uTfx2f/sf − z3dgu2 for scheme II.
J s8d

Equation(7b) is known for the quantum coincidence imag-
ing configured in scheme I[2], and we extend it now to
scheme II. Note that Eq.(8) is valid for both the quantum
and classical cases when the background term is removed for
the classical case. The correlated imaging(8) is independent
of positionx2 sx1d of detectorD2 sD1d for scheme I(II ), since
detectorD2 sD1d and lensFc form a collective detection.
However,z3 is the object distance for scheme I or the imag-
ing distance for scheme II, so that Eq.(8) gives the same
magnification as that in the ordinary imaging.

In the correlated imaging equations(7), the joint path
z2±z1 is the imaging distance for scheme I or the object
distance for scheme II, reflecting the nature of the quantum
and classical correlations. Although the correlated imaging
equation is similar to the ordinary one, it will cause rich and
even surprising imaging effects that cannot be covered by the
ordinary imaging law; for example, a virtual image can be-
come real, and vice versa. Let us discuss the two schemes in
detail.

Scheme I. When the object distance is greater than the
focal lengthz3. f, the joint path image distancez2±z1 is

positive. But this does not assure a real correlated image.
Sincez2 is positive by definition, andz1 could be either posi-
tive or negative, the former causes a real correlated image
while the latter causes a virtual one. In the casez3. f, the
condition for a real correlated image isz3f / sz3− fd−z2.0
s,0d for the source with quantum entanglement(classical
thermal correlation). For the opposite condition, however,
the correlated image is virtual. A virtual correlated image
cannot be directly observed in the correlated detection.

Next we consider the case of the object distance less than
the focal lengthz3, f, for which the joint pathz2±z1 as the
image distance is negative. This means thatz1 is negative for
the quantum coincidence imaging and positive for the clas-
sical correlated imaging; therefore, a virtual image in the
ordinary imaging system becomes real in the classical corre-
lated imaging.

The correlated imaging can be plotted by the graphics of
ray optics, by taking into account the correlation of rays
emitted from the source. We first plot the image in the ordi-
nary way. Then, for the source with quantum entanglement,
the image is reflected twice, first by the source and then by
the beam splitter. Obviously, the beam splitter plays the role
of a mirror. However, the quantum source emits a pair of
correlated rays with opposite transverse wave vectors, one to
the object and the other to the image, so that it also acts as a
mirror. For the source with the thermal correlation, the image
is reflected only by the beam splitter. This geometry is due to
the nature of the self-correlation of the wave vectors, so that
the thermal source acts as a phase-conjugate mirror and
hence the image is reflected to itself. According to these
rules, we plot the coincidence imaging forz3. f in Figs. 2

FIG. 2. Correlated imaging for scheme I in whichz3. f and the
conditionz3f / sz3− fd−z2.0 are satisfied.(a) A real correlated im-
age is formed for the source with quantum entanglement;(b) a
virtual correlated image is formed for the source with thermal cor-
relation. In Figs. 2–5 the objects, the real images, and the virtual
images are indicated by dark, gray, and hollow arrows, respectively,
and the intermediate images are indicated by dashed arrows.

FIG. 3. Same as in Fig. 2 but the conditionz3f/sz3− fd−z2,0 is
satisfied.(a) A virtual correlated image is formed for the source
with quantum entanglement;(b) a real correlated image is formed
for the source with thermal correlation.
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and 3, andz3, f in Fig. 4. For comparison, we arrange the
same optical setup for the two sources: the quantum en-
tanglement in Figs. 2(a), 3(a), and 4(a) and the classical ther-
mal correlation in Figs. 2(b), 3(b), and 4(b). The negative
image distancesz1 indicate the virtual images. These figures
verify the above analysis: while the quantum coincidence
image is virtual, the classical coincidence image must be
real, or vice versa.

Scheme II. In this scheme, the joint pathz2±z1 is the
object distance whilez3 is the image distance. Just as with
the ordinary imaging law, when the joint pathz2±z1 is
greater(less) than the focal length, the correlated image is
real (virtual). Different from scheme I, for the same optical
setup with different sources, the quantum and classical cor-
related images can be both real. In Fig. 5, we plot the two
real correlated images forz2±z1. f. In the graphics of this
scheme, we should move the object to the optical axes of the
lens. For the source with the quantum entanglement, the ob-
ject is reflected twice, first by the beam splitter and then by
the source, as shown in Fig. 5(a). For the classical correla-
tion, however, the object is reflected only by the beam split-
ter, as shown in Fig. 5(b).

It can be seen from Figs. 5 that, for the classical correla-

tion source, a real correlated image can be formed through
the beam splitter without using a lens. This fact is also in-
cluded in the imaging equation by setting an infinite focal
length for lensF. For the classical source, this results inz2

+z3=z1.0, and object and real imaging have an equal dis-
tance from the source. As indicated above, the classical ther-
mal source behaves as a phase conjugate mirror which re-
flects an object to itself. This feature manifests the self
correlation of the transverse wave vector for classical ther-
mal light.

Spatial thermal correlation(1) also exists in the SPDC
process. In type-II SPDC, the quantum entanglement occurs
between two beams with different polarizations. But if one
beam with a particular polarization is extracted, it exhibits
thermal correlation[13]. However, the beam generated in
type-I SPDC may incorporate both quantum entanglement
and classical thermal correlation[13]. When the gain of
SPDC is lower, the proportion of the thermal correlation is
lower than that of the quantum entanglement, i.e.,uSsqdu
, uWsqdu. In the case of strong SPDC coupling,uSsqdu is in-
creased and comparable withuWsqdu [12]. Using this source,
a dual correlated imaging system can be formed, in which
two kinds of correlated imaging are created simultaneously.
For scheme I, the classical correlated image is real while the
quantum one must be virtual, and vice versa. For scheme II,
however, the two images can be both real or both virtual, or
one real and the other virtual, depending on the values ofz1
andz2.

In summary, we have derived the correlated imaging
equation for the classical thermal light source and have
shown the macroscopic differences of quantum and classical
correlated imaging. The unusual and rich correlated imaging
effects may provide potential applications in optical designs.
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the National Natural Science Foundation of China, Project
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FIG. 4. Correlated imaging for scheme I in the casez3, f. (a) A
virtual correlated image is formed for the source with quantum
entanglement;(b) a real correlated image is formed for the source
with thermal correlation.

FIG. 5. Correlated imaging for scheme II in the casez2±z1. f.
The real correlated images are formed for both the sources:(a) with
quantum entanglement and(b) with thermal correlation.
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