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We study the generation of two-mode entanglement in a two-component Bose-Einstein condensate trapped
in a double-well potential. The dynamics of the system is shown to be equivalent to that of two coupled
harmonic oscillators in the low excitation regime. Strong entanglement between the two components can be
achieved if the interspecies interaction is sufficiently strong. In particular, the condensate constitutes a sym-
metric Gaussian system and hence its entanglement of formation can be measured directly by fluctuations in
the quadratures of the two constituent components.
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I. INTRODUCTION

Soon after the experimental realization of Bose-Einstein
condensates(BEC’s), rich physical phenomena have been
observed and predicted as well[1–3]. In particular, there has
been a surge of interest in the quantum tunneling dynamics
of BEC’s trapped in multiple wells, and much attention has
been focused on Josephson effect in such systems[2–4]. On
the other hand, it was shown that multiparticle entanglement
can be generated in BEC’s via the coherent interactions be-
tween the atoms[5,6], and thereafter BEC’s have played a
prominent role in the field of quantum information. For ex-
ample, both multiparticle entanglement(i.e., spin squeezing)
and two-mode entanglement can be generated in a spin-1
condensate with three hyperfine sublevels[7,8]. In this case,
two-mode entanglement, describing the inseparability be-
tween the two modes(respectively with spin projectionm
= ±1), can be used as quantum information protocols to fa-
cilitate quantum teleportation of continuous variables[9,10].

On the other hand, in addition to BEC’s with spin 0 and 1,
BEC’s with two internal degrees of freedom, e.g., the
uF=1,m=−1l and uF=2,m=2l sublevels of87Rb, are also
achievable experimentally and are often termed as two-
component condensates[11,12], which give rise to interest-
ing features such as phase separation[13] and the cancella-
tion of mean-field energy shift[14]. Such condensates can be
viewed as collections of interacting spin-1

2 particles and can
consequently display multiparticle entanglement through the
emergence of spin squeezing[15]. Likewise, two different
kinds of atoms(e.g., 41K and 87Rb) can also form stable
two-component BEC’s[16]. More interestingly, the interspe-
cies interaction of these two-component BEC’s can be varied
by the application of magnetic control[17], thus hastening
various experimental and theoretical investigations in this
field.

Recently, there have been several discussions on the dy-
namics of a two-component condensate trapped in a double-
well potential[18,19]. The behaviors of such systems, which
can be realized experimentally with the current technology,
are arguably much richer than those of single-component

condensates because of the interspecies interaction. For ex-
ample, in a recent paper[19] we studied the tunneling dy-
namics of a two-component condensate whose two compo-
nents are initially separated by the potential barrier between
a double well. We found that in the strong scattering regime
atoms in the two components can tunnel through the barrier
in a correlated manner[19]. As both the scattering strength
and the tunneling strength between the wells can be tuned
independently with various experimental techniques[17,20],
it is expected that such phenomena will become observable
in the near future.

In this paper, we consider a two-component condensate
trapped in a double-well potential. Both components of the
condensate are initially prepared in the ground state of the
double well and hence are separable at timet=0. The objec-
tive of the present paper is to study and quantify the genera-
tion of two-mode entanglement in such a condensate. Two-
mode entanglement is commonly attributed to the
inseparability of the density matrix describing two systems,
which can be found in various experimental situations and is
very useful in the applications of quantum measurement and
quantum information[21–23]. In fact, entanglement between
two ensembles of atoms with spin has recently been achieved
experimentally via interaction with polarized light[23], and
the concept of two-mode entanglement has been generalized
to describe such spin systems[7]. Since each component of a
two-component condensate in a double well can be described
as a collection of spin-12 particles, with the two spatially
localized modes in the two wells playing respectively the
roles of spin-up and spin-down states, the condensate is in
fact equivalent to two interacting gigantic spins that can be
described in terms of continuous variables[7]. While it has
been shown that the intraspecies interaction is able to create
spin squeezing for a single-component condensate trapped a
double-well potential[15], in this paper we will demonstrate
that the interspecies interaction is responsible for the genera-
tion of two-mode entanglement. It is the intriguing interplay
of the interspecies and the intraspecies interactions that
sparks our investigation in such systems. By applying the
Holstein-Primakoff transformation(HPT) [24], which re-
duces this two-spin system to two coupled oscillators, we
show that our system is exactly solvable as long as the num-
ber of excitations due to atom-atom interactions remains low.*Email address: ptleung@phy.cuhk.edu.hk
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More remarkably, the condensate in fact forms a symmetric
Gaussian system. Therefore we can directly evaluate the en-
tanglement of formation(i.e., the von Neumann entropy for a
pure state) of the system from the fluctuations in the quadra-
tures of the two constituent components[7,21,22,25]. In ac-
cordance with the schemes proposed recently by Duanet al.
[21,22] and Giedkeet al. [25], we define a two-mode en-
tanglement parameter that measures the fluctuations in the
quadratures and in turn analyze the degree of entanglement
between the two components of the condensate in the present
paper. Our discovery is that strong interspecies interaction
can lead to significant two-mode squeezing in the condensate
and hence strong entanglement between the two components.

The structure of our paper is as follows. In Sec. II, we
introduce the Hamiltonian of our system and classify it into
symmetric and asymmetric cases according to the properties
of the constituent condensates. In Sec. III, we consider spe-
cifically a system with a large number of atoms. An effective
Hamiltonian, which is exactly solvable, is then derived from
the HPT. In Sec. IV, we introduce the two-mode entangle-
ment parameter[7,21,22,25] to describe and quantify the en-
tanglement in our system. In Sec. V, we study in detail the
two-mode entanglement parameter for several typical cases.
Finally, we discuss the physical meaning of the two-mode
entanglement parameter in Sec. VI and consider generaliza-
tion our approach to mixed states.

II. TUNNELING TWO-COMPONENT BEC

We first consider the tunneling dynamics of a two-
component BEC trapped in a symmetric double-well poten-
tial. The total number of atoms in componentsA andB of the
condensate areNa and Nb, respectively. We will further as-
sume that the interaction between the atoms is sufficiently
weak and adopt the two-mode approximation to describe the
tunneling process. Under such approximation, the conden-
sate dwelling in each potential minimum is adequately de-
scribed by a single localized mode function[26–28]. Consid-
ering the effect of quantum tunneling and the conservation of
the particle number of each component, we obtain the
Hamiltonian of the system:

H =
Va

2
sâL

†âR + âR
†âLd +

Vb

2
sb̂L

†b̂R + b̂R
†b̂Ld + ksâL

†âLb̂L
†b̂L

+ âR
†âRb̂R

†b̂Rd +
ka

2
fsâL

†âLd2 + sâR
†âRd2g +

kb

2
fsb̂L

†b̂Ld2

+ sb̂R
†b̂Rd2g. s2.1d

Here âj
† sâjd and b̂j

† sb̂jd are, respectively, the creation(anni-
hilation) operators of componentsA andB residing in thej th
well, j =L ,R. Since there are two spatial modes(theL andR
modes) available for each component, the Hamiltonian
above in fact consists of four Bosonic operators. Besides, the
parametersVasVbd, kaskbd, andk are the tunneling, intraspe-
cies interaction strength of componentAsBd, and the inter-
species interaction strength, respectively.

For the convenience of the subsequent discussion of two-
mode entanglement, it is instructive to represent this Hamil-

tonian in terms of angular momentum operators by following
through the standard Schwinger oscillator model to construct
a set of spin operators for each component[29]:

Ĵax =
1

2
sâL

†âL − âR
†âRd,

Ĵay =
1

2i
sâL

†âR − âR
†âLd, s2.2d

Ĵaz =
1

2
sâL

†âR + âR
†âLd,

wherea=a,b. HereĴa=sĴax, Ĵay, Ĵazd obey the usual angular
momentum commutation relations. In the following we will

denote the eigenstates ofĴa
2 ; Ĵax

2 + Ĵay
2 + Ĵaz

2 and Ĵaz with

u ja ,mal such that Ĵa
2u ja ,mal= jas ja+1du ja ,mal, and

Ĵazu ja ,mal=mau ja ,mal, where ja=Na /2. After discarding
some constant terms, we rewrite the Hamiltonian(2.1) in

terms ofĴa and Ĵb:

H = VaĴaz+ VbĴbz+ kaĴax
2 + kbĴbx

2 + 2kĴaxĴbx. s2.3d

Despite the signs of the tunneling coefficientsVa andVb are
unimportant, we assume, for concreteness,Va.0 and Vb
.0 in the following discussion.

In the absence of atom-atom interactions, the ground state
of the system is obviously given by the product state
u ja,−jalu jb,−jbl and the two components are not entangled.
In the following discussion we consider how the atom-atom
interactions affect the evolution of the initial state,

uCst = 0dl = u ja,− jalu jb,− jbl, s2.4d

and show that the two components will get entangled
through the inter- and intraspecies interactions.

To facilitate later discussion on the phenomenon of en-
tanglement, we further classify two-component condensates
according to the symmetry properties of the two components
constituting the condensate. In asymmetrictwo-component
BEC, the parameters of componentA and componentB are
equal to one another, namelyVa=Vb andka=kb. These con-
ditions hold approximately for condensates consisting of the
hyperfine statesuF=1,m=−1l anduF=2,m=1l of 87Rb [12].
The two components of such condensates have essentially
same masses and magnetic moments and henceVa=Vb.
Their intraspecies scattering lengths are quite close and, in
addition, ka<kb<k [11]. In a quasi-identical two-
component BEC whereVa=Vb=V and ka=kb=k, the
Hamiltonian(2.3) reduces to

H1 = VĴz + kĴx
2, s2.5d

where Ĵ= Ĵa+ Ĵb is the total angular momentum of the sys-
tem. Despite that the Hamiltonian of such a two-component
condensate is identical to that of a single-component one
[15], the distinguishability of the two species entails the
study of two-mode entanglement.

Meanwhile, for asymmetrictwo-component BEC’s rel-
evant physical parameters of the two components are gener-
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ally different. For example, it has recently been observed in
the experiment that the condensates of potassium and ru-
bidium sRbuKd, which have different scattering lengths
and masses, can form stable two-component condensates
[16]. Therefore it is deemed appropriate to develop a generic
analytical scheme to study such condensates. In the follow-
ing discussion, we will make use of the HPT[24] to carry
out a thorough analytical investigation on the entanglement
between the two constituent components.

III. BOSONIC OPERATOR APPROXIMATION

In this section, we consider the evolution of a condensate
with large numbers of atoms and sufficiently weak scattering
strengths, namelyNasbd@1 andVasbd@ka,kb,k. As the ini-
tial state, given by Eq.(2.4), is the ground state of a nonin-
teracting condensate and the scattering strengths are weak,
only the low-lying states will be excited in the evolution and
the coherence of tunneling process can be maintained. The
current situation is in contradistinction to our previous study
[19] that discovered correlated tunneling of the two compo-
nents in the strong scattering regime. However, we will show
that the interspecies interaction does lead to nontrivial en-
tanglement of the two components.

To proceed, we apply the HPT to map angular momentum
operators into Bosonic operators[24,30] and show that under
the HPT our system is in fact equivalent to two coupled
harmonic oscillators. In HPT, the angular momentum opera-
tors

Ĵa± = Ĵax ± iĴay, a = a,b, s3.1d

and Ĵaz are expressed in terms of Bosonic operatorsâ, â†:

Ĵa+ = â†Î2ja − â†â, s3.2d

Ĵa− = sÎ2ja − â†âdâ, s3.3d

Ĵaz = sâ†â − jad. s3.4d

Here â† and â are standard Bosonic operators satisfying
fâ ,â†g=1. Hence the Hamiltonian(2.3) can be written as

H = o
a=a,b

FVasâ†â − jad +
ka ja

2
Sâ†Î1 −

â†â

2ja

+Î1 −
â†â

2ja

âD2G + kÎjajbSâ†Î1 −
â†â

2ja

+Î1 −
â†â

2ja
âDSb̂†Î1 −

b̂†b̂

2jb
+Î1 −

b̂†b̂

2jb
b̂D .

s3.5d

SinceVasbd@k ,ka,kb, it is arguable that

kâ†âl
2ja

! 1, s3.6d

leading to an approximate effective Hamiltonian,

Heff = Vaâ
†â + Vbb̂

†b̂ +
1

2
fkajasâ† + âd2 + kbjbsb̂† + b̂d2

+ 2kÎjajbsâ† + âdsb̂† + b̂dg. s3.7d

This Hamiltonian is analogous to that of two coupled oscil-
lators and completely captures the essence of the dynamics
of the two interacting BEC’s. Correspondingly, the initial
state(2.4) is given by the vacuum stateu0a,0bl of the two
decoupled oscillators described by the first two terms inHeff,
whereuna,nbl represents the Fock state of the oscillators.

To study the two-mode entanglement in the condensate, it
is advantageous to make use of the position and the momen-
tum operators:

q̂a =
1
Î2

sâ† + âd, p̂a = i
1
Î2

sâ† − âd, s3.8d

q̂b =
1
Î2

sb̂† + b̂d, p̂b = i
1
Î2

sb̂† − b̂d, s3.9d

and to rewrite the effective Hamiltonian as

Heff =
Va

2
sq̂a

2 + p̂a
2d +

Vb

2
sq̂b

2 + p̂b
2d + kajaq̂a

2 + kbjbq̂b
2

+ 2kÎjajbq̂aq̂b. s3.10d

It is then straightforward to solve the resulting equations of
motion of q̂astd, p̂astd, q̂bstd, and p̂bstd. For convenience, we
express the solutions in matrix form, which reads

Xstd ; „q̂astd,p̂astd,q̂bstd,p̂bstd…T = UstdXst = 0d.

s3.11d

Here Ustd is a real 434 matrix representing the evolution
operator and can be written as

U = SC E1

E2 D
D ,

with the 232 matricesC, D, andE being explicitly given by
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C =
1

sm2 − m1d
Sm2 cosv1t − m1 cosv2t Vasm2 sinv1t/v1 − m1 sinv2t/v2d

− sv1m2 sinv1t − v2m1 sinv2td/Va m2 cosv1t − m1 cosv2t
D ,

D =
1

sm2 − m1d
S− m1 cosv1t + m2 cosv2t − Vbsm1 sinv1t/v1 − m2 sinv2t/v2d

sm1v1 sinv1t − m2v2 sinv2td/Vb − m1 cosv1t + m2 cosv2t
D ,

E1 =
1

sm2 − m1d
S− scosv1t − cosv2td − Vbssinv1t/v1 − sinv2t/v2d

sv1 sinv1t − v2 sinv2td/Va − Vbscosv1t − cosv2td/Va
D ,

and

E2 =
1

sm2 − m1d
S− Vbscosv1t − cosv2td/Va − Vbssinv1t/v1 − sinv2t/v2d

sv1 sinv1t − v2 sinv2td/Va − scosv1t − cosv2td
D ,

where

m1s2d =
v1s2d

2 − Va
2 − 2kajaVa

2kVa
Îjajb

, s3.12d

and the normal-mode frequencies of the coupled oscillation
are

v1s2d = HSVa
2 + Vb

2

2
+ kajaVa + kbjbVbD ± FSVa

2 − Vb
2

2

+ kajaVa − kbjbVbD2

+ 4k2jajbVaVbG1/2J1/2

.

s3.13d

This approximate solution, which is based on HPT, is
valid as long as the condition(3.6) holds. However, if the
normal frequency is complex, the system will become un-
stable. We can therefore determine the stability condition
from Eq. (3.13):

uku ,
1

2
ÎSVa

ja
+ 2kaDSVb

jb
+ 2kbD ; kc. s3.14d

The HPT fails to yield a self-consistent solution for systems
violating the inequality. It is interesting to note that in the
limit where ja, jb→`, the condition for stability reduces to

uku , Îkakb ; ke, s3.15d

which is a well-known result for BEC’s in extended space,
and violation of Eq.(3.15) will lead to the phase separation
of two-component BEC’s[13,31]. It is also worthwhile to
note that the stability criterion(3.14) depends on the num-
bers of atoms in the double well and similar dependence has
previously been found for two-component BEC’s in a single
well [31]. We will, however, assume the stability criterion
(3.14) is satisfied throughout the present study and obtain
analytically the two-mode entanglement parameter for the
condensate, which will be defined in the following section.
We will see that in addition to yielding the analytic solution
to the tunneling dynamics, the HPT performed here also fa-
cilitates our study on two-mode entanglement.

IV. THEORY OF TWO-MODE ENTANGLEMENT

Entanglement between two systems that are described in
terms of continuous variables is usually indicated by an in-
equality in its Einstein-Podolsky-Rosen(EPR) uncertainty
[7,21,22]:

1

2
hkfDsq̂a + q̂bdg2l + kfDsp̂a − p̂bdg2lj , 1, s4.1d

where fq̂m, p̂ng= idmn for m,n=a,b. q̂asbd and p̂asbd are, re-
spectively, the position and momentum operators(or any
pairs of quadratures) of systemasbd, and the above inequal-
ity simply implies that the positions(momenta) of the par-
ticles are strongly anticorrelated(correlated). In general, con-
dition (4.1) is only a sufficient condition for entanglement
and does not imply separability of the two systems even if it
is violated[7,21]. However, it has recently been shown that a
necessary and sufficient condition for entanglement, which is
analogous to Eq.(4.1), can be established if the combined
system is a Gaussian one in the sense that if its Wigner
characteristic function, defined by

xswdsla,lbd = trfr expslaâ − la
* â† + lbb̂ − lb

* b̂†dg, s4.2d

is a Gaussian function ofla andlb [21,25]. Without loss of
generality, one can assume that the expectation values of all
quadratures vanish and hence the Wigner characteristic func-
tion of a Gaussian system is expressible as

xswdsla,lbd = expF−
1

2
LTMLG , s4.3d

whereM is a 434 real symmetric matrix and the matrixL is
defined byL;sla

I ,la
R,lb

I ,lb
RdT. As the characteristic func-

tion can also be written as

xswdsla,lbd = trfr expsiÎ2LTXdg, s4.4d

it is obvious that the matrix elements ofM are the correlation
functions of the quadrature variablesX=sq̂a, p̂a,q̂b, p̂bdT. In
fact, Mij =ksXiXj +XjXidl and thereforeM is termed the cova-
riance matrix.
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As the amount of entanglement between the two systems
is unaffected by local unitary operations, say local rotations
in the q-p plane and local squeezing operations, the matrix
M can be transformed into a standard formMs by several
local operations[21]:

Ms =1
n1 0 c1 0

0 n2 0 c2

c1 0 m1 0

0 c2 0 m2

2 ,

wheren1,n2,m1,m2 are positive numbers, and

n1 − 1

m1 − 1
=

n2 − 1

m2 − 1
, s4.5d

uc1u − uc2u = Îsn1 − 1dsm1 − 1d − Îsn2 − 1dsm2 − 1d.

s4.6d

It has recently been shown by Duanet al. that a Gaussian
system is entangled if and only if the following inequality is
satisfied[21,25]:

a0
2sn1 + n2d − 2suc1u + uc2ud + sm1 + m2d/a0

2 , 2a0
2 + 2/a0

2,

s4.7d

where

a0
2 =Îm1 − 1

n1 − 1
=Îm2 − 1

n2 − 1
. s4.8d

We therefore accordingly construct a two-mode entangle-
ment parameterjt [21,25]:

jt ;
a0

2sn1 + n2d − 2suc1u + uc2ud + sm1 + m2d/a0
2

2a0
2 + 2/a0

2 . s4.9d

Physically speaking,jt.0 is merely a suitably weighted
EPR-type uncertainty in the squeezed quadratures of the sys-
tem. The sufficient and necessary condition for entanglement
mentioned above can then be expressed in terms of an in-
equality involving this parameter:

jt , 1. s4.10d

If, in addition, the system is a symmetric one such that
n1=n2=m1=m2, Giedkeet al. [25] have recently shown that
the parameterjt can also yield the entanglement of formation
(EOF) of the system,EF, [32]:

EFsjtd = c+sjtdlnfc+sjtdg − c−sjtdlnfc−sjtdg if 0 , jt , 1,

=0 otherwise, s4.11d

where the functions c±szd are defined by c±szd
=fszd−1/2± szd1/2g2/4. It is noteworthy that EOF is a proper
measure of the degree of entanglement between two systems
and is equal to the von Neumann entropy if the compound
system remains in a pure state. However, unlike the von
Neumann entropy, EOF still works for mixed states. In fact,
Josseet al. have recently measured the EOF of a pair of non
separable light beams with this scheme[33]. In the following

section, we shall make use of the two-mode entanglement
parameterjt to study how the two components of a BEC
condensate trapped in double well are entangled.

V. TWO-MODE ENTANGLEMENT IN BEC’S

To study two-mode entanglement in BEC’s, we first show
that a two-component BEC indeed forms a Gaussian system.
Since

xswdsla,lb,td = trhr expfiÎ2LTXstdgj

= trhr expfiÎ2„UstdTL…

TXst = 0dgj, s5.1d

xswdsla,lb,td can be obtained fromxswdsla,lb,t=0d and we
therefore consider the characteristic function att=0. For the
initial state u0a,0bl, it is readily shown thatxswdsla,lb,t
=0d is a Gaussian function andMst=0d is an identity matrix.
xswdsla,lb,td at other times can simply be obtained by the
replacement L→UstdL. Consequently, we show that
xswdsla,lb,td is a Gaussian function ofL and

xswdsla,lb,td = expH−
1

2
fUTstdLgTMs0dUTstdLJ ,

s5.2d

which directly yields the covariance matrixMstd:

Mstd = UstdMs0dUTstd = UstdUTstd. s5.3d

Hence the condensate constitutes a Gaussian system to
which the two-mode entanglement parameter applies.

After applying several local unitary transformations to
Mstd, we obtain the matrixMsstd of our system, which reads

Msstd =1
n 0 c 0

0 n 0 − c

c 0 n 0

0 − c 0 n
2 .

Moreover, the matrix elements of the matrixMs are express-
ible in terms of the variances of the physical quantities as
follows:

n = 2hkq̂a
2stdlkp̂a

2stdl − fRekq̂astdp̂astdlg2j1/2

= 2hkq̂b
2stdlkp̂b

2stdl − fRekq̂bstdp̂bstdlg2j1/2, s5.4d

c = 2fReskq̂astdp̂bstdlkq̂bstdp̂astdl

− kq̂astdq̂bstdlkp̂astdp̂bstdldg1/2, s5.5d

and the variances are given in the Appendix for reference. It
is then obvious that our system is a symmetric one withn1
=n2=m1=m2=n and hencea0=1. Therefore one can use the
corresponding two-mode entanglement parameter, which is
given by

jt = n − c, s5.6d

to evaluate the EOF of the system[25].
Now we are ready to investigate the entanglement in our

system with the help ofjt and EFsjtd. We first consider a
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symmetric two-component condensate(e.g., a RbuRb con-
densate), whereka=kb andVa=Vb. The time evolution ofjt
for such a condensate is shown in Fig. 1, whereNa=Nb
=400,Va=Vb=50kb, andk=0.50kb [Fig. 1(a)]; k=kb [Fig.
1(b)]; k=1.12kb [Fig. 1(c)]. The solid line and empty circles
are, respectively, results obtained from the HPT and numeri-
cal diagonalization of the original Hamiltonian, showing that
the HPT indeed yields a good approximation in this regime.
We also show the time evolution of the EOF, which equals
the von Neumann entropy in this case, by the dashed line in
Fig. 1. It is obvious that our system is able to generate a
substantial amount of two-mode entanglement for most of
the time. Besides, one can see that there is a strong anticor-
relation between these two curves, which can be understood
asEFsjtd is a monotonically decreasing function ofjt for 0
øjtø1.

It is remarkable that the degree of entanglement depends
crucially on the interspecies interaction. Of course, it is ob-
vious that the EOF or the entropy is zero when the interspe-
cies interactionk vanishes. As shown in Figs. 1(a)–1(c), the
entanglement parameterjt decreases while the EOF in-
creases with increasingk. Therefore one can achieve optimal
squeezing by properly controlling the interaction parameters.
Besides, it is worthy of remark that in Fig. 1(c) kc.k.ke.
Therefore the system is still a stable one and the HPT re-
mains valid. Physically speaking, the availability of the two
spatially separated modes in fact stabilizes the condensate
despite thatk.ke [31].

We now switch our attention to asymmetric BEC’s con-
sisting of two components with different physical character-
istics. In fact, stable BEC’s of rubidium and potassium have
recently been achieved in experiments and it is also possible
to control the strength of interspecies interaction between the
two components with a magnetic field[17]. It is therefore
deemed appropriate to investigate how the entanglement in

such condensates changes with the interspecies interaction
strengthk. In the following, we assume that the tunneling
strengths and the intraspecies interaction strengths of the two
species are in the ratios of 1:1.45 and 1:1.33, respectively,
which are reasonable estimates of experimental data for a
RbuK condensate[26].

The two-mode entanglement parameters for three asym-
metric cases withk /kb=0.5,0.875,0.965 are, respectively,
shown in Figs. 2(a)–2(c). Considering the interspecies inter-
actionk as an adjustable parameter, we find that a smallerjt
(i.e., higher entanglement) can be obtained as the system
becomes closer to the point of stability limit given by Eq.
(3.14). As shown in Fig. 2(c), if k is increased and ap-
proaches the stability limit given by Eq.(3.14) from below,
the two-mode entanglement parameter(the EOF) can attain
much smaller(greater) values. Thus the significance of the
strength of interspecies interaction in two-mode entangle-
ment generation is clearly demonstrated.

From the results illustrated in Figs. 1 and 2 it is manifest
that a substantial increase of entanglement can be achieved
in the vicinity of the stability limit(3.14). In fact, this inter-
esting feature can be understood heuristically as follows. In
general, position(momentum) squeezed states of a harmonic
oscillator can be produced by strengthening(weakening) its
spring constant[34]. The two-component condensates can be
viewed as a coupled oscillators and at the critical point of
stability the eigenfrequenices aresVa

2+Vb
2+2kajaVa

+2kbjbVbd1/2 and zero. As one of these frequencies,v2=0, is
markedly different from those in the interaction free case, the
effect of squeezing in the position space and the momentum
space is much pronounced in the vicinity of the critical point.

To further elaborate this issue, we show the minimal value
of jt during the evolution of the coupled condensates and the
corresponding EOF as functions of the interspecies interac-

FIG. 1. The time evolution ofjt (solid line, left scale) and the
EOFEF (dashed line, right scale) are shown for the symmetric case
with Na=Nb=400; Va=Vb=50kb; and (a) k /kb=0.50; (b) k /kb

=1.00;(c) k /kb=1.12. To gauge the accuracy of the HPT, the exact
numerical solution ofjt is shown by the empty circles.

FIG. 2. The time evolution ofjt (solid line, left scale) and the
EOF EF (dashed line, right scale) are shown for the asymmetric
case withNa=Nb=400;ka=0.75kb; Va=34.5kb, Vb=50kb; and(a)
k /kb=0.50; (b) k /kb=0.875;(c) k /kb=0.965. To gauge the accu-
racy of the HPT, the exact numerical solution ofjt is shown by the
empty circles.
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tion strengthk in Fig. 3, which explicitly confirms that the
degree of entanglement increases drastically as the interspe-
cies interactionk is close to the stability limit given by Eq.
(3.14). In fact, both quantities change noticeably oncek
.ke. It is noteworthy that similar increase in entanglement
has previously been found in quantum phase transition of a
spin-chain model[35].

VI. DISCUSSION

In the present paper the entanglement between the two
components of a BEC condensate trapped in a double well is
studied analytically in the low excitation limit with the HPT,
and its accuracy is confirmed by comparison with the exact
numerical solution. As demonstrated in previous sections, the
degree of entanglement, gauged by the two-mode entangle-
ment parameter, depends strongly on the interspecies inter-
action that can be varied with the current technology[17,20].
We expect that our work can be applied to study entangle-
ment in two-component condensates such as RbuRb and
RbuK mixtures. Specifically, our result shows that the two
components of the condensate can remain in the tunneling
phase and yet get strongly entangled as long askc.k.ke.
On the other hand, it is worthy of remark that the two-mode
approximation adopted here fails to describe the long-term
dephasing of Josephson oscillations between two Bose-
Einstein condensates[36], which is an important issue for
asymmetric condensates. However, the results obtained here
still hold before such effect begins to prevail.

To gain more physical insight from our result, we note

that Ĵax andĴay, respectively, represent the population differ-
ence(measured by the operatordn̂a; âR

+âR−âL
+âL) and the

phase difference(measured by the relative phase operator

df̂a) of the a-species condensate in the two wells, where
a=a,b [3]. Therefore the two-mode entanglement parameter
jt=n−c, where

n = 2hkdn̂a
2stdlkdf̂a

2stdl − fRekdn̂astddf̂astdlg2j1/2

= 2hkdn̂b
2stdlkdf̂b

2stdl − fRekdn̂bstddf̂bstdlg2j1/2, s6.1d

c = 2hRefkdn̂astddf̂bstdlkdn̂bstddf̂astdl

− kdn̂astddn̂bstdlkdf̂astddf̂bstdlgj1/2, s6.2d

indeed measure the correlation ofdn̂a and df̂a. If the two
components are entangled and thereforejt,1, the fluctua-
tions in the population difference and phase difference of the
composite system are squeezed accordingly. Therefore it is
likely that the two-mode entanglement parameter between
the condensates could be measured directly with the current
experimental techniques(see, e.g., Ref.[37]).

On the other hand, in real experiments the temperature of
the condensate is not exactly zero[37]. Therefore it is worth
studying how the effect of finite temperature might affect the
entanglement that could be built up in the system during its
evolution when the initial state is a mixed state. Specifically,
we consider an initial state that can be written as a product of
two thermally equilibrium states maintained at a common
temperatureT, and the density matrix att=0 is given by

rs0d = ra ^ rb, s6.3d

where fora=a,b,

ra = f1 − exps− Va/kBTdgexps− Vaâa
†âa/kBTd. s6.4d

It is a mixed stated and its two components are obviously
separable att=0. The covariance matrix att=0, Ms0d, for
this initial state is

Ms0d =1
2n̄a + 1 0 0 0

0 2n̄a + 1 0 0

0 0 2n̄b + 1 0

0 0 0 2n̄b + 1
2 ,

where, as usual, the mean excitation numbern̄a is
fexpsVa /kBTd−1g−1. If the initial temperature and the tun-
neling frequency are of order 10−8 K and 1 kHz, respec-
tively, which are typical values in current experiment situa-
tions [20,37], the mean excitation number may reach order
unity and can give rise to non-negligible effect on the en-
tanglement parameter.

It is well known that the Wigner characteristic function of
a harmonic oscillator in a thermal mixed state is still a
Gaussian function[38]. So, it is readily shown that the sys-
tem considered in our paper remains in a Gaussian state and
one can use the two-mode entanglement parameter to study
the entanglement between the condensates. Following the ar-
gument outlined previously, one can show that the covari-
ance matrixMstd at t.0 is given byUstdMs0dUTstd, from
which the two-mode entanglement parameterjt can be ob-
tained accordingly. In particular, for a symmetric two-
component BEC withVa=Vb, the covariance matrixMstd is

FIG. 3. The maximal achievable values ofjt (empty circles, left
scale) and the EOFEF (crosses, right scale) during time evolution
are shown for different values of the normalized interspecies inter-
action strengthk /kb. The condensate is an asymmetric one with
Na=Nb=400; ka=0.75kb; and (a) Va=34.5kb, Vb=50kb, kc

=0.969kb; (b) Va=172.5kb, Vb=250kb, kc=1.385kb. The value of
kc is shown by the vertical dashed line in each diagram.
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just UstdUTstd multiplied by 2n̄a+1 (or equivalently 2n̄b+1)
and the system is again symmetric. The two-mode entangle-
ment parameterjt can then be used to determine whether the
system is entangled or not and to evaluate the entanglement
of formationEFsjtd as well. In Fig. 4 we show the two-mode
entanglement parameterjt and the entanglement of forma-
tion EF as functions of time for a symmetric two-component
BEC with the mean excitation numbern̄a=0.5. It is clearly
manifested that a substantial amount of entanglement can
still be achievable whenk is sufficiently strong. Therefore
the existence of finite thermal effects does not readily pre-
clude the occurrence of entanglement.

On the other hand, for an asymmetric two-component
BEC with VaÞVb, the covariance matrixMstd is no longer
symmetric with respect to the two interacting components.
Therefore, despite that one can still make use of the param-
eterjt to determine whether the system is entangled or not, it
is no longer possible to apply the method developed here to
obtainEF even ifjt,1 and other numerical schemes have to
be sought[32].

In summary, although there might be some complications
in quantifying the degree of entanglement if the initial state
of the condensate is a mixed state, the two-mode entangle-
ment parameter studied here can still give a necessary and
sufficient condition of the separability of the two conden-
sates.
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APPENDIX: EXPLICIT FORM OF THE VARIANCES

The explicit expressions of the variances are given here
for reference:

kq̂a
2l = o

i=1,2
hFi cos 2vit + Gi cosfv1 + s− 1di+1v2gt + Hij,

sA1d

kq̂b
2l =

1

Va
o

i=1,2
hmi

2VaFi cos 2vit − VbGi cosfv1 + s− 1di+1v2gt

+ mi
2VaHij, sA2d

kp̂a
2l =

− 1

Va
2 o

i=1,2
hvi

2Fi cos 2vit + s− 1di+1v1v2Gi

3cosfv1 + s− 1di+1v2gt + vi
2Hij, sA3d

kp̂b
2l =

− 1

VaVb
2 o

i=1,2
hmi

2vi
2VaFi cos 2vit + s− 1div1v2VbGi

3cosfv1 + s− 1di+1v2gt + mi
2vi

2VaHij, sA4d

Reskq̂aq̂bld =
1

2 o
i=1,2

h2miFi cos 2vit + sm1 + m2dGi

3cosfv1 + s− 1di+1v2gt + 2miHij, sA5d

Reskp̂ap̂bld =
− 1

2VaVb
o

i=1,2
h2mivi

2Fi cos 2vit + s− 1di+1v1v2

3sm1 + m2dGi cosfv1 + s− 1di+1v2gt

+ 2mivi
2Hij, sA6d

Reskq̂ap̂bld =
− 1

2Vb
o

i=1,2
h2miviFi sin 2vit + fm1v1

+ s− 1di+1m2v2gGi sinfv1 + s− 1di+1v2gtj,

sA7d

Reskq̂bp̂ald =
− 1

2Va
o

i=1,2
h2miviFi sin 2vit + fm2v1

+ s− 1di+1m1v2gGi sinfv1 + s− 1di+1v2gtj,

sA8d

where

FIG. 4. The time evolution ofjt (solid line, left scale) and the
EOF EF (dashed line, right scale) for a symmetric thermal BEC
with Na=Nb=400;Va=Vb=50kb; n̄a= n̄b=0.5; and(a) k /kb=0.50;
(b) k /kb=1.00; (c) k /kb=1.12.
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Fi =
m̃i

2

4sm1 − m2d2F1 +
1

m̃i
2 −

Va
2

vi
2 −

Vb
2

m̃i
2vi

2G , sA9d

Gi =
1

2sm1 − m2d2FVb

Va
− 1 + s− 1di VaVb

v1v2
+ s− 1di+1 Vb

2

v1v2
G ,

sA10d

Hi =
m̃i

2

4sm1 − m2d2F1 +
1

m̃i
2 +

Va

vi
2 +

Vb
2

m̃i
2vi

2G , sA11d

m̃ j = m1s1 − d j1d + m2s1 − d j2d. sA12d
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