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We show that coherent control of multiphoton transitions is possible in the strong field limit, even in the
presence of large dynamic Stark shifts. By tailoring the phase of an ultrafast laser pulse, one can compensate
for the dynamic Stark shift during the atom-field interaction to achieve efficient population transfer in two-
photon absorption. Numerical simulations for atomic sodium reveal efficient population transfer from theu3sl
ground state to theu4sl excited state using an appropriately shaped ultrafast laser pulse. The theory and
simulations provide insight into coherent control of more complicated multiphoton processes.
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I. INTRODUCTION

It is well known that the dynamic Stark shift plays an
important role in atomic and molecular interactions with
strong laser pulsesf1–10g. An important coherent control
goal is to transfer population efficiently to a target excited
state through multiphoton absorption using a strong, femto-
secondp pulse without leaving significant population in
other near-resonant statesf11,12g. Unfortunately, the strong
field regime is often precisely where the Stark shifts of en-
ergy levels are necessarily of the same order as the off-
diagonal terms that produce ap pulse in the atom-field
Hamiltonian. This means that the time-dependent intensity
can shift a target state out of resonance and nearby states into
resonance on the time scale of a Rabi oscillation. These two
effects make Stark shifts an important obstacle to the genera-
tion of strong field atomic and molecularp pulses. Closed-
loop control experiments that attempt to populate excited
electronic molecular states must implicitly account for these
shifts f13g. This paper shows how one can explicitly harness
the known form of the dynamic Stark shift to guide multi-
photon processes using tailored ultrafast laser fields. By out-
lining the control space for shaped pulse coherent control of
multiphoton absorption with a few simple parameters in an
idealized system, our results may allow for rapid identifica-
tion of the important regions of that control space in closed-
loop optimal control experiments.

To demonstrate control over multiphoton population
transfer using a shaped femtosecond laser pulse with explicit
treatment of the dynamic Stark shift, we consider nonpertur-
bative two-photon absorption on the sodiumu3sl-u4sl transi-
tion using light centered nearl0=777 nmf14g. Phase tailor-
ing in the time domain can compensate for the Stark shift to
maintain resonance between the initial and target states. The
maintenance of this resonance allows a two-photonp pulse
to transfer,100% of the population, while a failure to com-
pensate for the Stark shift leads to inefficient transfersbe-
tween 0 and 50% depending on pulse durationd.

Section II outlines the basic two-photon, two-level theory
and provides insights that are relevant to the simulations and
multiphoton coherent control. Section III presents and dis-

cusses simulation results for an essential states calculation in
sodium, demonstrating controllability for this simple system
f15–17g. Notably, these results also account for the near-
resonantu4sl-u7pl single-photon transition, which tests the
optimization of the two-photon absorption target in the pres-
ence of a three-photon transition that can trap population.
The paper also discusses the role of the center-frequency
detuning from the atomic two-photon resonance in conjunc-
tion with the phase tailoring.

II. THEORY

We consider population transfer from an atomic ground
state ugl to an excited stateuel. The states are coupled by
two-photon absorption from a pulsed laser field,«std
= 1

2«0e
−iv0tÎgstdeiwstd/2«̂+c.c., where«0 is the field strength,

v0 is the laser frequency,wstd /2 is the temporal phase of the
field, «̂ is the polarization vector, andgstd is the temporal
intensity profile. To concentrate on the essential physics, the
ground and excited states have the same angular momentum
quantum numberl =0. This is directly relevant for the so-
dium calculations below for theu3sl to u4sl transition. The
ground and excited states interact through a manifold of off-
resonant intermediate statesuml, with angular momentum
quantum numbersl .0, as illustrated in Fig. 1. The field we
consider is strong enough to induce multiphoton transitions
but not strong enough to ionize the atom by direct multipho-
ton absorption. The results presented here can be easily gen-
eralized to include transfer between two levels for whichl
.0.

The Hamiltonian for the atom plus field isĤ=ĤAtom

+ĤAF. Ĥatom represents the field-free atomic Hamiltonian,
which satisfies

ĤAtomuil = "viuil. s1d

Here, "vi are the energies of atomic levels represented by

the state vectorsuil. The interaction HamiltonianĤAF
=−m ·« describes the atom-field coupling in the dipole ap-
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proximation for atomic dipole momentm, which has matrix
elementsm ji =k j um ·«uil.

We initially expand the system state vectoruCstdl in terms
of the bare atomic eigenstates in the interaction picture,
uCstdl=oi=e,g,maistde−ivituil, whereaistd are state amplitudes.
The Schrödinger equation can be written as

i"ȧj = o
i=e,g,m

aistde−ivi j tk j uĤAFuil, s2d

where j =e,g,hmj and vi j =vi −v j. The intermediate states
s j =md, assumed to be far from resonance, only have signifi-
cant coupling to the ground and excited states,

i"ȧm = agstde−ivgmtkmuĤAFugl + aestde−ivemtkmuĤAFuel. s3d

Adiabatic elimination of the rapidly oscillating, off-
resonant amplitudes,amstd, involves formally integrating the
equations forȧm,

amstd =
i

2"
E

−`

t

dt8fmmeaest8de−ivemt8 + mmgagst8de−ivgmt8g

3 f«0
Îgst8deiwst8d/2e−iv0t8 + c.c.g. s4d

If the single-photon detunings from the intermediate states
are large compared to the field bandwidth, the two-photon
detuning, and the Stark shifts, the intermediate states adia-
batically follow the states of interest.

Equations4d is integrated by parts, keeping the boundary
term and ignoring the remaining integral, which contains
small terms. Substituting into Eq.s2d for ȧe andȧg and drop-
ping rapidly rotating terms in a two-photon rotating-wave
approximationsRWAd, the equations of motion can be writ-
ten as

ȧ = − iĤstda, a = Sag

ae
D s5d

and

Ĥstd = S vg
ssdstd x*stdeifDt−wstdg

xstde−ifDt−wstdg ve
ssdstd

D . s6d

Here, D=2v0−veg is the two-photon atom-field detuning,
and vg

ssdstd and ve
ssdstd represent the dynamic Stark shifts of

the ground and excited states, respectively,

vhe,gj
ssd std = − o

m

umhe,gjmu2

"2

I0gstd
ce0

vmhe,gj

vmhe,gj
2 − v0

2

= − o
m

umhe,gjmu2«0
2gstd

2"2

vmhe,gj

vmhe,gj
2 − v0

2 , s7d

Istd =
1

2
e0cu«stdu2 = I0gstd, s8d

wheree0 is the free-space electric permittivity andc is the
speed of light. In Eq.s6d, xstd represents the effective two-
photon atom-field couplingsRabi frequencyd between the
ground and excited states,

xstd = − o
m

memmmg

s2"d2

«0
2gstd

vmg− v0
. − Fo

m

mgmmme

s2"d2

«0
2gstd

vme+ v0
G*

.

s9d

These expressions for the Rabi frequencies are consistent
with the two-photon RWA given thatuDu!vmg−v0<vme
+v0. The expressions for the two photon Rabi rates given in
Eq. s9d are very similar to those used inf18g for the two-
photon coupling to Rydberg states in strong fields.

This form of the Hamiltonian demonstrates an important
feature of coherent control schemes that rely on amplitude
and phase shaping of a single, strong femtosecond pulse.
Even without complicated level crossings, if transitions to a
target state occur through multiphoton absorption and emis-
sion, the amplitudes of the near-resonant state couplings are
of the same order as the time-dependent energy shifts. This
means that pulse areas on the order ofp are inextricably
linked to dynamic relative phase shifts between states on the
order ofp sor energy shifts during the pulse on the order of
the Rabi frequencyd. The validity of the adiabatic approxi-
mation has been checked by comparing calculations with and
without explicit amplitudes for the essential intermediate
states. For the sodium calculations below, the equations of
motion also account for the resonant single-photon transition
from the u4sl to u7pl state explicitly.

Physical insight can be gained by transforming the Hamil-
tonian, Eq.s6d, into a slowly varying reference framef19g.
This field-interaction frame, in which the state amplitudes
are given bybg and be, rotates at twice the laser frequency
and takes into account the temporal field phase and the av-
erage Stark shift of the states,

agstd = bgstdeisDt−wd/2exps− i/2E
−`

t

fve
ssdst8d + vg

ssdst8dgdt8d,

FIG. 1. Level distribution for multiphoton population transfer.
Shown is also a single-photon resonant level.
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aestd = bestde−isDt−wd/2exps− i/2E
−`

t

fvexp
ssd st8d + vg

ssdst8dgdt8d.

s10d

We get, forĤ → Ĥ8,

Ĥ8 =1−
1

2
fdv

ssdstd − D + ẇstdg x*std

xstd
1

2
fdv

ssdstd − D + ẇstdg 2 ,

s11d

where the physically relevant differential Stark shift is de-
fined as

dv
ssdstd = ve

ssdstd − vg
ssdstd. s12d

Equations11d shows the fundamental physics of a multipho-
ton transition in the presence of Stark shifts without resonant
intermediate states. By coherently controlling the field’s tem-

poral phasewstd, one can cancel the diagonal elements ofĤ8
and transfer population efficiently fromugl to uel with a two-
photonp pulse:

E
−`

`

uxstdudt =
p

2
, s13d

wstd = Dt −E
−`

t

dv
ssdst8ddt8. s14d

Cancellation of the phase dynamically allows the two-photon
pulse to remain on resonance with the transition throughout
the pulse’s duration.

In our simplified atomic model, the Stark shiftdv
ssdstd and

detuningD directly dictate a choice ofwstd that can cancel
the field-induced phase. Note that adjusting the detuningD to
cancel the peak Stark shift,dv

ssdst=0d, corresponds to tuning
to the Stark-shifted resonance in the CW two-photon, two-
level modelf20g. The lesson more generally for optimal con-
trol processes may be that scalingwstd to follow the inte-
grated intensity profile, which is the known form of all Stark
phases, can provide a robust starting point for iterative pulse
shaping. For closed-loop learning control experiments that
exploit multiphoton electronic resonances, it may be possible
to combine Stark shift compensation with other control
schemesssuch as adiabatic rapid passage or chirped adiabatic
Raman passagef21,22gd to form a diagonal basis of controls
f23,24g. As learning control experiments have demonstrated,
many degrees of freedom are generally required to gain con-
trol in atomic and molecular systems interacting with strong
fields. The addition of Stark shift compensation as a control
parameter may simplify the control space by allowing other
control variables to effect control without multiple states be-
ing brought into resonance through dynamic Stark shifts.

In order to stimulate absorption and avoid nonresonant
two-photon Rabi dynamics, the relative phase between the
initial and target state,

astd =E
−`

t

dv
ssdst8ddt8 − Dt + wstd, s15d

must remain synchronized with the envelope ofxstd. Con-
trolling the phase of the field,wstd, as discussed below, cre-
ates a dynamically phased superposition of ground and ex-
cited states that maximizes the absorptive process during the
pulse action. In the weak field limit, the differential Stark
shift vanishes, and a resonant, unshaped pulsefD=wstd=0g
is the most effective for transferring population between the
two statesf25g. However, the weak field process is only valid
for uaestdu2!1.

More generally, a sufficient criteria for optimizing the
target-state population is to maximize the absolute value of
the integral,

E
−`

`

xstdexpfiastdgdt, s16d

for a fixed target pulse area like Eq.s13d. For a strong, reso-
nant pulsesD=0d without pulse shapingfwstd=0g, the differ-
ential Stark shiftdv

ssdstd pushes the states out of resonance
during the interaction, resulting in a small excited state prob-
ability amplitude. This can also be seen as a rapid, dynamic
phase advancement of the ground–excited-state coherence.
Stimulated absorption at the beginning of the pulse turns
quickly into stimulated emission, and the excited-state popu-
lation at the end of the pulse is much less than 1. However, if
one is capable of shaping a strong field pulse, then by choos-
ing wstd=−edv

ssdstd on the bare resonancesD=0d, one can
cancel the dynamic Stark effect and invert the population.
The bandwidth necessary to achieve this type of temporal
phase control is of the order of the unshaped pulse band-
width.

III. SIMULATION RESULTS

The theory above models a control scheme for population
transfer between theu3sl and u4sl states in atomic sodium.
Laser pulses with a central wavelength ofl0=2pv0/c
=777 nm are two-photon resonant with this transition. The
underlying theory shows that the shape of the pulse envelope
is not important here. Our simulations employ a Gaussian
pulse in time withgstd=e−st / td2 as the temporal intensity pro-
file. The pulse durationt was varied to give pulses with a
full width at half maximumsFWHMd of 10–200 fs in our
simulations. Using our previous notation,ag represents the
amplitude of theu3sl state,ae represents the amplitude of the
u4sl state, andar represents the amplitude of the near reso-
nantu7pl state. The shift of theu3sl state is downwardsnega-
tive in energyd as the temporal intensity envelope rises,
whereas the shift of theu4sl state is upwardspositived. This
results in the levels moving apart with increasing laser inten-
sity. In general, the Stark shifts for the initial and final states
will be in opposite directions if the importantsmost strongly
coupledd intermediate levels are above single-photon reso-
nance with the initial state and the final state is below single-
photon resonance with the important levels above it. A table
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with the values of dipole moments and Stark shifts for a
100 fs pulse, with center wavelengthl0=777 nm andp
pulse intensityI0=1.441931015 W/m2 is shown in Table I.

For excitation at 777 nm, all of theupl states are far from
being single-photon resonant with theu3sl and u4sl states
with the exception ofu7pl. The u7pl state has to be treated
differently from the nonresonant intermediate states dis-
cussed earlier. Including theu4sl to u7pl coupling in the nor-
mal RWA, the equations for this three-level system in the
interaction representation are

ȧgstd = − ivg
ssdagstd − ixstdeifDt−wstdgaestd,

ȧestd = − ive
ssdaestd − ixstde−ifDt−wstdgagstd

+
i

2"
mer«0

Îgstde−ifwstd/2−Dertgarstd,

ȧrstd =
i

2"
mre«0

Îgstdeifwstd/2−Dertgaestd − i
e2«0

2gstd
4mev0

2 arstd,

s17d

whereDer is the single-photon detuning on theuel→ url tran-
sition, Der=v0−vre, and me is the electron mass. The last
term in arstd is the Ponderomotive shiftf27g, which roughly
accounts for the Stark shift of theu7pl state owing to cou-
pling with the continuum. The Stark shift of theu7pl state
due to lower-lyings and d states is roughly two orders of
magnitude below the ponderomotive shift.

Our simulations involved integrating these coupled equa-
tions of motion for the state amplitudes over the range of
adjustable parameters. The importance of theu7pl state de-
pends on the pulse duration and pulse shape. There is some
interplay between the pulse duration, Stark shift, and detun-
ing, which can result in finalu7pl state populations from less
than 1% to greater than 12%. The two-photon Rabi fre-
quency scales with the pulse intensity while the single-
photon coupling between theu4sl and u7pl states scales with
the field. Thus, in the limit of very short pulses, theu3sl to
u4sl coupling can be made to dominate, and theu7pl state is

relatively unimportant. In general, while a two-level approxi-
mation leads to a clear and qualitatively accurate picture, the
u7pl state must be included for a quantitative description of
the dynamics. All calculations shown in this paper explicitly
account for theu7pl state.

For D=0, we chose the following temporal phase to dem-
onstrate the result of compensating the dynamic Stark effect:

wstd = − SE
−`

t

dv
ssdst8ddt8, s18d

where complete compensation occurs forS=1. The peak in-
tensity I0 for a p pulse is calculated according to Eq.s13d

Figure 2 shows the population of theu4sl state,uaestdu2,
from the numerical integration of Eqs.s17d for a 100-fs pulse
with different values of the parameterS. The inset shows the
dependence of theu4sl- and u7pl-state populations on pulse
duration forS=1. For a 100-fs pulse withS=1, almost all of
the population is transferred to theu4sl state by thep pulse,
and almost no population is transferred to theu7pl. For small
values ofS, the atomic phase begins to vary rapidly during a
pulse with the same intensity profile as the idealsS=1d pulse.
Excited-state population cannot build up as efficiently de-
spite the pulse satisfying Eq.s13d. In other words, forS=0,
the off-resonant Rabi dynamics caused by Stark-induced de-
tuning are evident. These results at zero detuning show that
multiphotonp pulses can be achieved by tailoring the tem-
poral phase of an ultrafast pulse to compensate for the dy-
namic Stark shift and that, in general, the phase compensa-
tion S can be used to control the population transfer.

However,S=1 is not the only possibility for achieving
full population transfer. Different combinations of detuning,
intensity, and phase compensation parameterS in Eq. s18d
can result in a relative atomic phase,astd, synchronized with
the Stark-influenced Rabi dynamics.

TABLE I. Peak Stark shifts and dipole moments for the Na lines
used in the present simulation. All values are for center frequency
v0=777 nm and idealp pulse intensity given by Eq.s13d. Peak
Stark shifts are calculated according to Eq.s7d, and dipole moments
are fromf26g.

Line
Dipole moment
s310−29 C md

Peak Stark shift
s31011 rad/sd

3s-3p 2.11624 −161.08

3s-4p 0.189714 −0.37528

3s-5p 0.0703758 −0.042240

4s-3p 2.09805 −112.97

4s-4p 4.87170 191.38

4s-5p 0.571564 9.9254

4s-6p 0.230556 4.9493

4s-8p 0.0893273 −1.5374

FIG. 2. Sodiumu4sl population,uaestdu2, for different values of
the phase compensation parameterS for a 100-fs Gaussian pulse
with peak intensity I0=1.4431015 W/m2 s1.4431011 W/cm2d
tuned to the bare resonance,l0=777 nm. The inset shows the final
u4sl and u7pl populations as a function of pulse durationsFWHMd.
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Figure 3 shows the final population of theu4sl state as a
function of S ffield phase given by Eq.s18dg and central
wavelengthl0. Darker regions represent a larger population.
Here, the peak intensityI0 is chosen for each value of the
central wavelengthl0 to create ap pulse.

Note the interesting case ofS=0. This corresponds to an
unshaped pulse. The plots in Fig. 3 indicate that efficient
population transfer occurs for an appropriate blue detuning
of the laser pulse. The detuning for which the population
transfer is maximized withS=0 is 0.79 times the peak Stark
shift. This Stark-shifted resonance contrasts with weak field
results where detuning cannot improve the efficiency of the
coherent population dynamicsf28g. The laser pulse shifts
through resonance on the rising and falling edges of the
pulse, being blue detuned at the beginning and end of the
pulse and red detuned in the middle. There are two critical
features for efficient population transfer forS=0. First, the
pulse area while blue detuned needs to match the pulse area
while red detuned. If the detuning is changed such that the
pulse area on one side of the resonance is greater than the
other, then the efficiency of population transfer is greatly
compromised. The phase advance while blue detuned must
be canceled by the phase delay while red detuned for maxi-
mum transfer. Second, the bandwidth of the pulse must be of
the order of or larger than the detuning and peak differential

Stark shift. In simulations where the dynamic Stark shift was
artificially increased to be much larger than the pulse band-
width, blue detuning of the pulse was not able to completely
compensate and less than 100% transfer was observed for
optimal detuning.

The population transfers explored in this paper are clearly
nonadiabatic. ForS=0, the pulse is symmetric in time, and
for all cases whereS.0, avoided crossings in a dressed-state
picture are traversed rapidly. These results are geared toward
experiments with shaped, intense femtosecond pulses and are
distinct from rapid adiabatic passagesRAPd f29g or Stark
chirped rapid adiabatic passagesSCRAPd f30g for which
population is transferred slowly. This was confirmed by the
calculation of the quasienergies of the three-level Hamil-
tonian, Eq.s17d, and from transformation of the slowly vary-

ing, two-level HamiltonianĤ8 into the dressed picture.

IV. CONCLUSION

In conclusion, we have shown that strong field multipho-
ton resonances can be controlled explicitly by phase tailoring
an ultrafast laser pulse. This control can be used to compen-
sate for the dynamic Stark shift in nonperturbative, two-
photon absorption. A simple formalism illustrates the nature
of the phase tailoring for an optimal pulse. More generally,
higher-order transitions occur in the presence of these strong,
intensity dependent shifts, where the field-induced detunings
are of the same order or larger than the effective coupling
strengths. Unlike single-photon transitions, where the detun-
ing is intensity independent, or a lambdasRamand system
involving ground states, where Stark shifts may cancel each
other out, the general coherent control problem involving
multiphoton transitions typically must account for these
types of strong field effects implicitly or explicitly. For sys-
tems where there are competing multiphoton resonances,
phase compensation for dynamic Stark shifts combined with
central frequency tuning and intensity may serve as effective
control parameters in directing population to a selected target
state. We believe that this has important implications for
strong field coherent control and are currently implementing
experiments to demonstrate these effects in atomic sodium.
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