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HD™* photodissociation in the scaled coordinate approach
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The scaled coordinate approach is applied to the problem of ptidtodissociation in a short, intense,
infrared laser pulse. Two- and three-dimensional models for the molecule aligned in the field of a linearly
polarized laser are studied. Scaling allows substantial improvements in the numerical accuracy and provides a
simple way to calculate the fragments’ energy spectra.
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[. INTRODUCTION density function, discuss improved numerical accuracy pro-
tvided by the method, and apply it to two- and three-

The numerical solution of the time-dependent” X e .
P rx‘jlmensmnal models of HDphotodisintegration.

Schrddinger equation remains the main tool for investigatio
of few-body systems in short intense laser puldes3]. One
common problem, though, with time-dependent approaches Il. SCALED COORDINATE APPROACH
is that they are necessarily limited to a finite integration vol- AND ITS PROPERTIES

ume: when part of the physical system reaches the boundary, |, this section we provide a brief introduction to the

artifacts due to reflections appear. This problem is ofternycgied coordinate approach and demonstrate some important
solved via absorbing boundary conditions by introducing angrge.time properties of the wave function in scaled coordi-
imaginary potential or masking function. Such boundary,tag

conditions, however, lead to lost information. Numerical so- Consider a particle of masa in a one-dimensional space

lutions are further complicated by a phase that accumulat€gescribed by a coordinateand acted upon by an external
rapidly with time and distance, making the wave funCt'onpotential V(x,t). The wave function satisfies the time-

oscillate rapidly. These oscillations make numerical approxi-d e . . : .
) i e ) ependent Schrodinger equatiofDSE) in atomic units,
mation of the wave function difficult, especially when long P 9 q B

propagation times are required. . d 1 &

A coordinate scaling technique that addresses both of 'E‘P(X't): 'Eﬁ*’v(x’t) W(x.1). (1)
these problems was proposed in Hé&fl as an adaptation of
the ideas in Ref[4], and one-dimensiondlLD) tests of the  The scaled coordinate approach amounts to a time-dependent
technique were reported in R§6]. This technique combines change of variables,
coordinate and wave function transformations that localize x=R(D)& @)
continuum wave packets in space and essentially eliminates
growing spatial oscillations. By analytically eliminating plus a wave function transformation,
these purely kinematic effects, the wave function can more o -
easily be propagated to larger times. The ability to propagate PS(£,1) = VReTMIRRAP (R 1), (3)

the wave function longer is essential for calculating the V€Where the dot indicates the time derivative. The scaled wave

locity distributions of the final state: the propagation must be . S e . o e
long enough that the final state fragments no longer interac,ffmCtIon V™ satisfies the following modified Schradinger

significantly with each other. Another useful feature of theequatlon:

scaled coordinate method is a straightforward way to extract < P T

the velocity distribution from the final state density function, i V(&) =| - 555+ V(RED + SmRR | WA(E ).
o , ; at 2mR 9 & 2

the wave function itself is not required. Further, knowledge

of the density function in the whole configuration space is (4)

not necessary, as all coordin.ates corresponding to the intgrr@his equation has been obtained by many authors in various
degrees of freedom of the final state fragments can be 'ntei:'ontexts[4,7—9|. In these cases, though, the scaling function

gratec_i out. Taken together, these features m_ake the sca!gplwas chosen as a physical quantity in the system, or to
coordinate approach extremely useful for treating systems i, .jjitate an approximate solution. In our case we BS®

several d_imensiolns. . facilitate the numerical—but otherwise exact—solution. For

The aim of this work is to demonstrate how the scaled tance in Ref[4] and subsequent developmefit9—13
coordinate approach works in practical calculations of MOyt reat the problem of ion-atom scattering, the scaling fac-
lecular dissociation. We demonstrate that the momentum dlq-Or Rwas taken to be the distance between nuclei which were

tribution can be extracted directly from the scaled coordinatgq5teq classically. As discussed in Ri&f, howeverR need

not correspond to a physical quantity and can be chosen to
have any convenient form.
*Electronic address: roudnev@phys.ksu.edu Equation(4) costs little more to solve numerically than
"Electronic address: esry@phys.ksu.edu the original equatioifl). It has, however, two properties that
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FIG. 1. (Color online Mo-
mentum distributions calculated
from a Fourier transfornfdashed
lines) and from the scaled coordi-
nate density functioigsolid lines.
The left panel shows free particle
evolution; and the right, photode-
tachment of a particle bound with
a short-range potential. The scal-
ing parameter i®,=1.414 for the
free particle case and 9.759
X108 for the photodetachment
model, making convergence of
scaled spatial distribution to the
momentum  distribution much
faster for the free particle.

Probability density (a.u.”)
Probability density (a.u.-l)

5
Momentum (a.u.) Momentum (a.u.)

must be taken into account: an extra time-dependent poten-- _ 1 .. p
. — ai(7l4) i (p12m)t\g, S| 203/

fcial %mRI%Z and bound states tha_t _sh_rink Rsgrows. The Yipy=e \f"mvxe v mvx't +O((most) ™).

impact of both factors can be minimized by choosing the )

second derivative of the scaling functi®it) to be smooth

enough to avoid |r(1jtror(]ju_cmg an extra, unphysical time scaleps formyla demonstrates that for infinite propagation time

In practice, a good choice is the wave function in scaled coordinates becomes stationary,
approaching the momentum space wave function up to a

1t<t phase. The kinetic factog®”2™t includes all the explicit
R(t) = ' 4 0 14 , (5) time dependence of the wave function in momentum space,
[1+v(t—1) " ,t=1 hence the scaled wave function is stationary.

In fact, the scaling method has played no critical role in
. . . - __this result since¥S is related to the usual lab-frame wave
wherevxl IS the, asymptotic sca_lmg coefr|.C|ent ar_1d has UNitSgnction by a simple transformation. Physically, we are doing
of velocity, while ty is the scaling start time. This function nothing more than using time of flight to calculate the mo-
has a continuous second derivative, which switches the extfaanym distribution. What the scaling method does is to
potential term on smoothly. The shrinking bound states cag,,re numerical time propagation to very large times a trac-
be handled using nonuniform grids that are denser in the,pie hrospect. It is thus possible to obtain the momentum
appropriate regions of conflgurauon space. . distribution directly from the scaled coordinate wave func-
Al Iarg_e tlmes, the scah_ng function behaV(_es liket) . tion without performing a Fourier transform. A similar ob-
—u,t, which insures some important asymptotic propertiesseryation was made in Refél2—15. In particular, combin-
for WS, As was shown in Refl6], for instance, the scaled ing our expression&) and(3) gives Eq.(48) from Ref.[15].
wave function does not oscillate as strongly as the original Equation (7) also suggests that the convergence of the
one, making it easier to approximate numerically. In particU-scajed wave function to its stationary form depends on the
lar, it was sho_wn that at large times a (_Sau55|an wave paCk%\tsymptotic scaling coefficienb, so that the fasteiR(t)
becomes stationary in the scaled coordinates. Here we Sket@?ows, the faster the density distribution in scaled coordi-

a genehrgllza(tjlon of FS'S rﬁsult. ion f hnates converges to the momentum density distribution. These
Totf IS end, consi er the momentum representation for thgy,seyations are illustrated in Fig. 1 by two test cases: a free
wave function, propagation of some initial statdeft column and a toy

model of a charged massivei=150m,) particle bound in a
- short-range potential experiencing a short intense laser pulse
q,(p,t):,i_f dxe P (x,t). (6)  (right column. The momentum distributions calculated at
v2mrJ o different propagation times are shown together with the cor-
responding distributions obtained from the scaled wave func-
tion using Eq.(7). For the free particle casé-ig. 1, left
Using the relationship between the scaled and unscaled ceolumn), the initial spatial distribution is indicated by the
ordinate representations for the wave functi@p evaluating  solid lines fort=0 and the mean velocity is zero. Since there
the integral(6) in the stationary phase approximatiphb], are no bound states, there are no limitationsvgnWe can
and assumin@(t) = v,t, we find the following expression for thus choose a large value to guarantee fast convergence of
the momentum representation: the scaled distribution to the momentum distribution. In the
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laser pulse. It is seen that the scaled results converge much
faster, requiring more than five times fewer grid points than
. without scaling to achieve the same accuracy. Another im-
portant feature of the scaled coordinate approach is that the
longer propagation times needed to achieve sufficient final
state channel separation do not require denser spatial grids.
As mentioned in Ref[5], the only factor that limits the
propagation time is the presence of bound states since the
bound states in scaled coordinates shrink with time. This
problem can be solved, however, by using nonuniform grids
more dense in the regions where the bound states are local-
ized. In practice, we employ a grid with points distributed as
T Lt x;«<i® near tht_a_ origin to handle .the bound. states th_at

1N smoothly transition tog i at large distances as is appropri-
ate for free propagation.

0.097
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3
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S
&
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FIG. 2. (Color onling Convergence of the ionization probability
for a model system with respect to the number of grid pdwt$he

solid line shows the scaled results and the dashed line the unscaled
results. Ill. SCALED COORDINATE APPROACH FOR HD *

IN A LASER FIELD

:ﬁ;c)gg(rjt; ﬁiﬁ;g'ﬁ : ’bgg%CS?:;gmji.gzeS;?g;r%nt%iﬁ 2%”;?; dt Although the scaled coordinate approach is very effective
' chen applied to atomic ionization, it is not so obvious that it

a short intense laser pulse in closer analogy to the presem . .
situation of molecular photodissociation. The scaling func-WIII .a'$° have ad_vantages for_ treating general molecular dis-
tion and grid must satisfy several conditior® the grid sociation. Thg primary complication is the complex structure
must accurately represent the bound state throughout th%'c configuration space due_ tq the presence of so multlple
whole propagation(ii) the propagation time must be long centers. In contrast to atomic ionization, molecular dissocia-
enough to stabilize the final state momentum distributiont'cr)en gggﬁiﬁ li)r?tgif?;?enr]wltcr:n%rzgoéiccu;ﬁmr‘i bgruart'% r?tgtzs(,:;vmch
such that the dissociated fragments feel no force due to thd 9 9 pace.
short range potential; an(i) the scaling start time must be

chosen to keep the whole wave function contained within the A. 2D model

grid. For illustration purposes, we have chosen the potential N ] . o

and laser parameters such that the corresponding spatial and The utility of scaled coordinates for HDlissociation can
temporal scales are comparable to the*Hibotodissociation € readily demonstrated using a 2D model. In this model, the
tiphoton absorption structure of the momentum distributionon€ dimensionz and R, respectively, assumed to be along
could be clearly seen. The well-distinguishable maxima athe laser polarization. Such a model describes both ionization
p=+2.2,+4.2, and +5.5 a.u. in the resulting distribution @nd dissociation processes. The time evolution of the three-
spectively. We have also seen that the time required to obtain P

a stable momentum distribution from a Fourier transform is i—W=[Hy+W1t)VP. (8)
comparable to the time required for convergence of the at

scaled coordinate distribution to the distribution in momen-|n, this equatiorH, is the field-free Hamiltoniafi20]

tum space.

The scaled coordinate approach provides other important 1 &1 P 1
numerical advantages as well. Besides making continuum 0~ zﬂpd3R2 2,ue<?22 \J’(z—zp)2+a(R)
wave packets stationary in space, the scaled coordinate ap-
proach insures that the number of nodes in the real or imagi- _ 1 + 1 (9)
nary parts of the wave function is about the same as the Viz+z)?+a(R) R’

number of peaks in the corresponding density function. Such : B
a function is more easily approximated numerically than theVherez,=[my/(my+my)JR and zy=[m,/(my+my)]R are the
original wave functionfwhich strongly oscillates in space POSitions of the proton and deuteran, andm are the pro-

dUe to thesd V2TRR factor in the Eq(3)], since fewer nodes ton and deuteron masses, apgy and . are the reduced

: . ) > masses,
require fewer points to represent the wave function to a given

accuracy. To demonstrate this fact, we solved the TDSE us- 1 1 1 1 1
ing a three-point finite difference scherf’] and operator- —=—+—and—=1+
splitti : : : : Mpd Mp My Me my, + My

plitting with Cayley approximations to the exponential op-
erators. The results are presented in Fig. 2, showing thAs is usual in reduced dimensions, the Coulomb potentials
convergence of the ionization probability for the model of aare softened. To make the model more realistic, we vary the

massive particle bound with a short-range potential in a shogparametera with the internuclear distance to reproduce the

(10)
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FIG. 3. Domains in configuration space corresponding to differ-
ent final states. The asymmetry of the domains is due to the nuclea 0015 i . i . i . i . 3 .
mass difference: H fragments move faster than D fragments with 0 0.001 0.002 1 /1%003 0.004 0.005

respect to the center of mass.
FIG. 4. (Color onling Convergence of the dissociation probabil-

ity in the 2D model.Py is the probability to dissociate to Hit and

1o, Born-Oppenheimer potential curve. The interaction with Po, 10 p+D.

the laser iqin the length gauge
my—m M+ my + 2 in the electronic coordinate aIready contain_s the quiver mo-
W(t) = E(t) PR_ —P z|, (11) tion of the electron, we apply scaling to the internuclear dis-
Mp+myg  mMy+my+1 tanceR only.
The results of convergence tests for Hround state
photodissociation at the intensityx710'* W/cn?, laser fre-

—E (7P uency »=0.058 a.u., and 10-fs FWHM long pulse are
B(t) = Boe cogwt + ¢). (12 ghownyin Fig. 4. There we plot the probabilitigs F())f ground
In this expressiony is the pulse duratione is the carrier state dissociation to each of the channels versus the inverse
frequency of the laserp is the carrier-envelope phase differ- number of grid points in the nuclear coordinate. Solid and
ence(CEPD), andE is the pulse amplitude in atomic units. dashed lines correspond to the scaled calculations, and the
In our calculations we take=248 a.u., corresponding to a dotted lines reflect the results obtained without scaling. The
10-fs full width at half maximum{FWHM) pulse, and carrier two scaled calculations differ by the scaling start time. The
frequencies otw=0.058 a.u. and=0.1 a.u. three-point finite difference scheme that we emply] is

Even though it is simple, the two-dimensional model al-expected to converge at the r&@éeN3), whereN is the num-
lows us to investigate the applicability of the scaling ap-ber of grid points in the internuclear distanBe Obviously,
proach to photodissociation processes. As mentioned abovkeoth scaled sets converge more smoothly than the unscaled
in contrast to atomic ionization, the dynamics of nuclei in aone. Further, the scaled results demonstrate the smooth con-
molecule generate much richer physics. The configuratiowergence for a much wider range of grid sizes, whereas the
space of the 2D model is shown in Fig. 3. The bound stateanscaled results can be considered smooth and monotonic
of the molecule are localized in the region labef®gh+ near  only when the number of grid points is more than 500 at
the coordinate origin. The two-body subsystems, i.e., hydrobest. It is also clear that the scaling start time is an important
gen and deuterium atoms, are localized in the infinite doparameter influencing the convergence rate. For the earlier
mainsQy andp. When scaling is applied to the electronic start time, the numerical error of the scaled calculations is
and nuclear coordinates, these domains start to shrink, makaore than two times smaller than the error of unscaled cal-
ing the corresponding dissociation channels more difficult taculations performed on a grid of the same number of points,
reproduce numerically. even though the scaling is turned on before the peak field of

Another practical problem comes from the dynamics of arthe laser.
electron in the field of an intense infrared laser. For laser It is instructive to compare these 2D dissociation prob-
intensities around 0 W/cn?, the classical electron quiver abilities with those from a 3D mod¢L8]. The 2D model is
amplitude is about 100 a.u. The combined requirements odible to qualitatively reproduce some properties obtained in
covering this range in the electronic coordinate, accuratelyhe 3D calculations. For instance, the prediction that the
reproducing the atomic channels, and representing the fastaximum dissociation probability is observed for a peak in-
oscillations of the wave function in the electronic coordinatetensity around =7 x 10" W/cn? (Fig. 5) is reproduced. To
induced by the interaction with the laser field lead to unreasome extent, CEPD effects can also been observed within the
sonably large electronic grids. For instance, tests with a 12D model (Fig. 6), although the magnitude of the effect is
model suggest that about 3000 grid points are required toot as big as predicted in three dimensions. In fact, only
obtain a numerically stable final state for the ionization chanscaling allowed us to reduce the numerical error sufficiently
nel. In this work, we concentrate our attention on dissociato see the small CEPD effect within the 2D model. Quanti-
tion only, and allow the ionized electrons to be absorbed irtative comparison, however, shows that the ground state dis-
the boundary region by an optical potential. Since we do nosociation probabilities calculated with the 2D model are un-
have to keep the free electrons in the final state and the griderestimated by about ten times with respect to more realistic

in which the electric fieldE(t) has a Gaussian envelope
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FIG. 7. (Color onling Carrier-envelope phase dependence of the
FIG. 5. (Color onling Kinetic energy distribution of the disso- HD* (2D mode) dissociation probability in the field of 10-fs

ciated fragments in the center of mass frame for a 2D model’z'of H FWHM, 785-nm laser pulse with peak intensity=7

The eighth excited state was exposed to a laser pulse of 10 fs 10 W/cn?. The error bars are estimated from convergence tests

FWHM, 1=10"> W/cn?, and @=0.1 a.u. The vertical dotted line |ike those shown in Fig. 4.

shows the position of the peak expected from energy conservation.

B. 3D model

A more realistic approach allows the electron two degrees
of freedom, corresponding to the assumption that the nuclei
are aligned with the linearly polarized laser and not allowed
Mo rotate. Considering initiab- electronic states, the azi-

3D calculations, consistent with the calculations of R&8).
The relationshif7) provides a simple way to recover the

velocity distribution from the scaled density function. To

demonstrate this point, we show in Fig. 7 the dissociatio

probz;l%ilifty ?V\t/rEMpTrturbati\lle reg_itr;)e_f(;)rla 2D m(zjdel OfHk muthal electron coordinate can be eliminated by symmetry.
In a 1u-1s > aser pulse witw=0.1a.u and a peak rpq iy dimensional configuration space is thus reduced to
intensity of 1xX 10*? W/cn?. The initial state is chosen as the three dimensiond,20,21: (R, p,2), whereR is the internu-
eighth vibrationally excited state =8) with an energyEs clear distance an(p,z) are the cylindrical coordinates of the

=-0.53 a.u. These parameters were chosen to produce AL ctron. In this case the operatdy in Eq. (8) reads
easily recognized energy distribution for one-photon absorp- ' '

tion in the perturbative regime. One photon absorption pro- 1 # 1 (a_z 10 & )

duces a distinctive peak aroun.d the fragment endigy 0 ZMpdf?Rz 2uc\dp? pdp 92
-Ey+w)/2, whereE;=-0.5 a.u. is the energy of the hydro-

gen atom ground state. As expected, the peak profile closely - 1 _ 1 + l_ (13)
follows the laser pulse frequency profile. The small devia- V(z=2z)%+p? N(z+zg?+p® R

tions from the exact laser frequency profile can be attributed

to nonlinear processes which do contribute even at a pea(lj< 'tA‘S n theIZDCmodeI, vz/jetapply scah_ng to the |n|tedrnucllea|r
intensity as low as ¥ 102 W/cn?. istance only. Compared to our previous unscaled calcula-

tions[18], scaling has allowed us to improve the number of
points in the nuclear coordinate by a factor of 2 while keep-
ing the error constant. The representation of states with large
nuclear separation could then be improved, yielding a preci-
sion about two times better overdfig. 8).
The fragment velocity distribution obtained from the

T scaled coordinate density function is presented in Fig. 9. The
T fragment center of mass frame velocities are reconstructed
1 from the scaled density function of the final time using mo-
mentum conservation. Channel selection is performed via in-
= tegrating the density function in electronic coordinates over
: the appropriate regions of configuration spéEgy. 3). The
- difference in the fragments’ velocity distributions for the dif-
ferent dissociation channels is clearly seen. Although the
structure of the velocity spectrum for a molecule dissociated

14 7 2 s by an ultrashort laser pulse is the subject for separate re-
I(10°° W/em) search, we can emphasize one important feature of the ve-

FIG. 6. (Color onling Intensity dependence of the HOX2D locity distribution. As was mentioned in R¢fL8] and shown

mode) dissociation probability in the field of 10-fs FWHM, in Fig. 8, the probability of dissociation is expected to dem-
785-nm laser pulse. onstrate clearly observable spatial asymmetry resulting from
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FIG. 8. (Color onling Carrier-envelope phase dependence of the  FIG. 10. (Color onling Dissociation of the HD ground state in

HD* dissociation probability in the field of 10-fs FWHM, 785-nm 10-fs, 785-nm laser pulse with peak intensity7x 10* W/cn?:
laser pulse with peak intensity=7x 10 W/cn?, 3D model. The  CEPD dependence of the probability density at the fragment rela-
open symbols denote our previois3] unscaled resultgcircles for  tive velocity 0.01 a.u.

Py and diamonds folPp). The filled symbols denote the present

scaled resultscircles for Py and diamonds foPp).

tance for the physics of short laser pulses interacting with

CEPD effects if channel selection is performed. Even stronmolecules. As was mentioned in R¢é], two fundamental

ger effects could be observed if channel selection is supple?roblems of wave function time propagation are solved by
mented with fragment velocity selection, as can be conthe scaled coordinate approach: the translation and spreading

cluded from Fig. 10. There we present the laser phasef free wave packets, which necessitate large grids, and the
dependence of the velocity-selected probability density. Thevave function phase rapidly growing in space and time,
total dissociation signal measured along the polarization diwhich requires dense grids or limited propagation times. The
rection varies by a factor of 3 depending on the laser phasscaling technique explicitly eliminates both problems with-
(Fig. 8), whereas the variation of a velocity-selected signalout any serious numerical complications. The scaled
covers a range of 1-10@ig. 10. Such sharp velocity selec- Schradinger equation is nearly as easy to solve as the origi-
tivity is not possible experimentally, but we expect that theng| one, but with fewer constraints for the grid and propaga-
strong enhancement should survive inclusion of experimeron time. The only limitation for time propagation is the
tal resolution. ability to reproduce bound states. For systems with a single
center, such as atoms, this problem can be easily solved us-
IV. SUMMARY ing nonuniform grids; multicenter molecular systems are
Techniques for the numerical solution of the time- More difficult to.trga't. Their §ub§ystems’ bound state; are
dependent Schrédinger equation are of fundamental impofdlstnbuted over infinite domains in at least one coordinate,
making them difficult to cover with a sufficiently dense grid.
Even so, applying the scaled coordinate method to only some

300 T T T T T T T =]
Z 250} (a) . of the coordinates still leads to important computational sav-
< 200 d H = ings. Our error estimate for the dissociation probability of
%150_— the HD' in a 10-fs infrared laser pulse has, for instance, been
8 "5’3: halved compared to our previous unscaled calculations. At
& ot the same time, the scaling technique provides an efficient
-0.004 0002 0 0002 0004 0006 0.008 way to extract fragment velocity distributions from a partial
Velocity (a.u.) . . . . .
- . . . . density funct|on mte_grated over all but t_he relatl_ve _coordl-
2T ' ' ! ! ! nates of the dissociated fragments. This quantity is much
£ (®) easier to manipulate than the wave function in the whole
& 3001 D P configuration space, which would be required when calculat-
% 2001 ing the velocity distributions with other techniques.
S 100
& ol

-0.004 -0.002 0 0.002 0.004 0.006 0.008
Velocity (a.u.)

FIG. 9. (Color onling Velocity distributions of the fragments in
the center-of-mass frame after dissociation of the*Hibbund state
in 10-fs, 785-nm laser pulse with peak intensity=7

X 10" W/cm?: (a) H+d channel andb) p+D channel.
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