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The scaled coordinate approach is applied to the problem of HD+ photodissociation in a short, intense,
infrared laser pulse. Two- and three-dimensional models for the molecule aligned in the field of a linearly
polarized laser are studied. Scaling allows substantial improvements in the numerical accuracy and provides a
simple way to calculate the fragments’ energy spectra.
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I. INTRODUCTION

The numerical solution of the time-dependent
Schrödinger equation remains the main tool for investigation
of few-body systems in short intense laser pulsesf1–3g. One
common problem, though, with time-dependent approaches
is that they are necessarily limited to a finite integration vol-
ume: when part of the physical system reaches the boundary,
artifacts due to reflections appear. This problem is often
solved via absorbing boundary conditions by introducing an
imaginary potential or masking function. Such boundary
conditions, however, lead to lost information. Numerical so-
lutions are further complicated by a phase that accumulates
rapidly with time and distance, making the wave function
oscillate rapidly. These oscillations make numerical approxi-
mation of the wave function difficult, especially when long
propagation times are required.

A coordinate scaling technique that addresses both of
these problems was proposed in Ref.f5g as an adaptation of
the ideas in Ref.f4g, and one-dimensionals1Dd tests of the
technique were reported in Ref.f6g. This technique combines
coordinate and wave function transformations that localize
continuum wave packets in space and essentially eliminates
growing spatial oscillations. By analytically eliminating
these purely kinematic effects, the wave function can more
easily be propagated to larger times. The ability to propagate
the wave function longer is essential for calculating the ve-
locity distributions of the final state: the propagation must be
long enough that the final state fragments no longer interact
significantly with each other. Another useful feature of the
scaled coordinate method is a straightforward way to extract
the velocity distribution from the final state density function,
the wave function itself is not required. Further, knowledge
of the density function in the whole configuration space is
not necessary, as all coordinates corresponding to the internal
degrees of freedom of the final state fragments can be inte-
grated out. Taken together, these features make the scaled
coordinate approach extremely useful for treating systems in
several dimensions.

The aim of this work is to demonstrate how the scaled
coordinate approach works in practical calculations of mo-
lecular dissociation. We demonstrate that the momentum dis-
tribution can be extracted directly from the scaled coordinate

density function, discuss improved numerical accuracy pro-
vided by the method, and apply it to two- and three-
dimensional models of HD+ photodisintegration.

II. SCALED COORDINATE APPROACH
AND ITS PROPERTIES

In this section we provide a brief introduction to the
scaled coordinate approach and demonstrate some important
large-time properties of the wave function in scaled coordi-
nates.

Consider a particle of massm in a one-dimensional space
described by a coordinatex and acted upon by an external
potential Vsx,td. The wave function satisfies the time-
dependent Schrödinger equationsTDSEd in atomic units,

i
]

] t
Csx,td = F−

1

2m

]2

] x2 + Vsx,tdGCsx,td. s1d

The scaled coordinate approach amounts to a time-dependent
change of variables,

x = Rstdj s2d

plus a wave function transformation,

CSsj,td = ÎRe−ism/2dRṘj2
CsRj,td, s3d

where the dot indicates the time derivative. The scaled wave
function CS satisfies the following modified Schrödinger
equation:

i
]

] t
CSsj,td = F−

1

2mR2

]2

] j2 + VsRj,td +
1

2
mRR̈j2GCSsj,td.

s4d

This equation has been obtained by many authors in various
contextsf4,7–9g. In these cases, though, the scaling function
R was chosen as a physical quantity in the system, or to
facilitate an approximate solution. In our case we useR to
facilitate the numerical—but otherwise exact—solution. For
instance, in Ref.f4g and subsequent developmentsf10–13g
that treat the problem of ion-atom scattering, the scaling fac-
tor R was taken to be the distance between nuclei which were
treated classically. As discussed in Ref.f5g, however,R need
not correspond to a physical quantity and can be chosen to
have any convenient form.

Equations4d costs little more to solve numerically than
the original equations1d. It has, however, two properties that
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must be taken into account: an extra time-dependent poten-

tial 1
2mRR̈j2 and bound states that shrink asR grows. The

impact of both factors can be minimized by choosing the
second derivative of the scaling functionRstd to be smooth
enough to avoid introducing an extra, unphysical time scale.
In practice, a good choice is

Rstd = H1 ,t , t0
f1 + vx

4st − t0d4g1/4 ,t ù t0
J , s5d

wherevx is the asymptotic scaling coefficient and has units
of velocity, while t0 is the scaling start time. This function
has a continuous second derivative, which switches the extra
potential term on smoothly. The shrinking bound states can
be handled using nonuniform grids that are denser in the
appropriate regions of configuration space.

At large times, the scaling function behaves likeRstd
→vxt, which insures some important asymptotic properties
for CS. As was shown in Ref.f6g, for instance, the scaled
wave function does not oscillate as strongly as the original
one, making it easier to approximate numerically. In particu-
lar, it was shown that at large times a Gaussian wave packet
becomes stationary in the scaled coordinates. Here we sketch
a generalization of this result.

To this end, consider the momentum representation for the
wave function,

C̃sp,td =
1

Î2p
E

−`

`

dxe−ipxCsx,td. s6d

Using the relationship between the scaled and unscaled co-
ordinate representations for the wave functions3d, evaluating
the integrals6d in the stationary phase approximationf16g,
and assumingRstd<vxt, we find the following expression for
the momentum representation:

C̃sp,td = e−isp/4d 1
Îmvx

eisp2/2mdtCSS p

mvx
,tD + O„smvx

2td−3/2
….

s7d

This formula demonstrates that for infinite propagation time
the wave function in scaled coordinates becomes stationary,
approaching the momentum space wave function up to a
phase. The kinetic factoreisp2/2mdt includes all the explicit
time dependence of the wave function in momentum space,
hence the scaled wave function is stationary.

In fact, the scaling method has played no critical role in
this result sinceCS is related to the usual lab-frame wave
function by a simple transformation. Physically, we are doing
nothing more than using time of flight to calculate the mo-
mentum distribution. What the scaling method does is to
make numerical time propagation to very large times a trac-
table prospect. It is thus possible to obtain the momentum
distribution directly from the scaled coordinate wave func-
tion without performing a Fourier transform. A similar ob-
servation was made in Refs.f12–15g. In particular, combin-
ing our expressionss7d ands3d gives Eq.s48d from Ref.f15g.

Equation s7d also suggests that the convergence of the
scaled wave function to its stationary form depends on the
asymptotic scaling coefficientvx so that the fasterRstd
grows, the faster the density distribution in scaled coordi-
nates converges to the momentum density distribution. These
observations are illustrated in Fig. 1 by two test cases: a free
propagation of some initial statesleft columnd and a toy
model of a charged massivesm=150med particle bound in a
short-range potential experiencing a short intense laser pulse
sright columnd. The momentum distributions calculated at
different propagation times are shown together with the cor-
responding distributions obtained from the scaled wave func-
tion using Eq.s7d. For the free particle casesFig. 1, left
columnd, the initial spatial distribution is indicated by the
solid lines fort=0 and the mean velocity is zero. Since there
are no bound states, there are no limitations onvx. We can
thus choose a large value to guarantee fast convergence of
the scaled distribution to the momentum distribution. In the

FIG. 1. sColor onlined Mo-
mentum distributions calculated
from a Fourier transformsdashed
linesd and from the scaled coordi-
nate density functionssolid linesd.
The left panel shows free particle
evolution; and the right, photode-
tachment of a particle bound with
a short-range potential. The scal-
ing parameter isvx=1.414 for the
free particle case and 9.759
310−3 for the photodetachment
model, making convergence of
scaled spatial distribution to the
momentum distribution much
faster for the free particle.
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second casesFig. 1, right columnd, the short-range potential
supports only one bound state. The system is then exposed to
a short intense laser pulse in closer analogy to the present
situation of molecular photodissociation. The scaling func-
tion and grid must satisfy several conditions:sid the grid
must accurately represent the bound state throughout the
whole propagation;sii d the propagation time must be long
enough to stabilize the final state momentum distribution
such that the dissociated fragments feel no force due to the
short range potential; andsiii d the scaling start time must be
chosen to keep the whole wave function contained within the
grid. For illustration purposes, we have chosen the potential
and laser parameters such that the corresponding spatial and
temporal scales are comparable to the HD+ photodissociation
case. Further, we chose the laser parameters so that the mul-
tiphoton absorption structure of the momentum distribution
could be clearly seen. The well-distinguishable maxima at
p= ±2.2, ±4.2, and ±5.5 a.u. in the resulting distribution
correspond to one-, two-, and three-photon absorption, re-
spectively. We have also seen that the time required to obtain
a stable momentum distribution from a Fourier transform is
comparable to the time required for convergence of the
scaled coordinate distribution to the distribution in momen-
tum space.

The scaled coordinate approach provides other important
numerical advantages as well. Besides making continuum
wave packets stationary in space, the scaled coordinate ap-
proach insures that the number of nodes in the real or imagi-
nary parts of the wave function is about the same as the
number of peaks in the corresponding density function. Such
a function is more easily approximated numerically than the
original wave functionfwhich strongly oscillates in space

due to theeis1/2dmRṘj2
factor in the Eq.s3dg, since fewer nodes

require fewer points to represent the wave function to a given
accuracy. To demonstrate this fact, we solved the TDSE us-
ing a three-point finite difference schemef17g and operator-
splitting with Cayley approximations to the exponential op-
erators. The results are presented in Fig. 2, showing the
convergence of the ionization probability for the model of a
massive particle bound with a short-range potential in a short

laser pulse. It is seen that the scaled results converge much
faster, requiring more than five times fewer grid points than
without scaling to achieve the same accuracy. Another im-
portant feature of the scaled coordinate approach is that the
longer propagation times needed to achieve sufficient final
state channel separation do not require denser spatial grids.
As mentioned in Ref.f5g, the only factor that limits the
propagation time is the presence of bound states since the
bound states in scaled coordinates shrink with time. This
problem can be solved, however, by using nonuniform grids
more dense in the regions where the bound states are local-
ized. In practice, we employ a grid with points distributed as
xi ~ i3 near the origin to handle the bound states that
smoothly transition toxi ~ i at large distances as is appropri-
ate for free propagation.

III. SCALED COORDINATE APPROACH FOR HD +

IN A LASER FIELD

Although the scaled coordinate approach is very effective
when applied to atomic ionization, it is not so obvious that it
will also have advantages for treating general molecular dis-
sociation. The primary complication is the complex structure
of configuration space due to the presence of so multiple
centers. In contrast to atomic ionization, molecular dissocia-
tion involves both atomic and molecular bound states which
are localized in different regions of configuration space.

A. 2D model

The utility of scaled coordinates for HD+ dissociation can
be readily demonstrated using a 2D model. In this model, the
motion of both the electron and the nuclei are restricted to
one dimension,z and R, respectively, assumed to be along
the laser polarization. Such a model describes both ionization
and dissociation processes. The time evolution of the three-
particle system is thus described by the Schrödinger equation

i
]

] t
C = fH0 + WstdgC. s8d

In this equationH0 is the field-free Hamiltonianf20g

H0 = −
1

2mpd

]2

] R2 −
1

2me

]2

] z2 −
1

Îsz− zpd2 + asRd

−
1

Îsz+ zdd2 + asRd
+

1

R
, s9d

wherezp=fmd/ smp+mddgR and zd=fmp/ smp+mddgR are the
positions of the proton and deuteron,mp andmd are the pro-
ton and deuteron masses, andmpd and me are the reduced
masses,

1

mpd
=

1

mp
+

1

md
and

1

me
= 1 +

1

mp + md
. s10d

As is usual in reduced dimensions, the Coulomb potentials
are softened. To make the model more realistic, we vary the
parametera with the internuclear distance to reproduce the

FIG. 2. sColor onlined Convergence of the ionization probability
for a model system with respect to the number of grid pointsN. The
solid line shows the scaled results and the dashed line the unscaled
results.
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1sg Born-Oppenheimer potential curve. The interaction with
the laser issin the length gauged

Wstd = EstdFmd − mp

mp + md
R−

mp + md + 2

mp + md + 1
zG , s11d

in which the electric fieldEstd has a Gaussian envelope

Estd = E0e
−st/td2 cossvt + fd. s12d

In this expression,t is the pulse duration,v is the carrier
frequency of the laser,f is the carrier-envelope phase differ-
encesCEPDd, andE0 is the pulse amplitude in atomic units.
In our calculations we taket=248 a.u., corresponding to a
10-fs full width at half maximumsFWHMd pulse, and carrier
frequencies ofv=0.058 a.u. andv=0.1 a.u.

Even though it is simple, the two-dimensional model al-
lows us to investigate the applicability of the scaling ap-
proach to photodissociation processes. As mentioned above,
in contrast to atomic ionization, the dynamics of nuclei in a
molecule generate much richer physics. The configuration
space of the 2D model is shown in Fig. 3. The bound states
of the molecule are localized in the region labeledVHD+ near
the coordinate origin. The two-body subsystems, i.e., hydro-
gen and deuterium atoms, are localized in the infinite do-
mainsVH andVD. When scaling is applied to the electronic
and nuclear coordinates, these domains start to shrink, mak-
ing the corresponding dissociation channels more difficult to
reproduce numerically.

Another practical problem comes from the dynamics of an
electron in the field of an intense infrared laser. For laser
intensities around 1015 W/cm2, the classical electron quiver
amplitude is about 100 a.u. The combined requirements of
covering this range in the electronic coordinate, accurately
reproducing the atomic channels, and representing the fast
oscillations of the wave function in the electronic coordinate
induced by the interaction with the laser field lead to unrea-
sonably large electronic grids. For instance, tests with a 1D
model suggest that about 3000 grid points are required to
obtain a numerically stable final state for the ionization chan-
nel. In this work, we concentrate our attention on dissocia-
tion only, and allow the ionized electrons to be absorbed in
the boundary region by an optical potential. Since we do not
have to keep the free electrons in the final state and the grid

in the electronic coordinate already contains the quiver mo-
tion of the electron, we apply scaling to the internuclear dis-
tanceR only.

The results of convergence tests for HD+ ground state
photodissociation at the intensity 731014 W/cm2, laser fre-
quency v=0.058 a.u., and 10-fs FWHM long pulse are
shown in Fig. 4. There we plot the probabilities of ground
state dissociation to each of the channels versus the inverse
number of grid points in the nuclear coordinate. Solid and
dashed lines correspond to the scaled calculations, and the
dotted lines reflect the results obtained without scaling. The
two scaled calculations differ by the scaling start time. The
three-point finite difference scheme that we employf17g is
expected to converge at the rateOsN−3d, whereN is the num-
ber of grid points in the internuclear distanceR. Obviously,
both scaled sets converge more smoothly than the unscaled
one. Further, the scaled results demonstrate the smooth con-
vergence for a much wider range of grid sizes, whereas the
unscaled results can be considered smooth and monotonic
only when the number of grid points is more than 500 at
best. It is also clear that the scaling start time is an important
parameter influencing the convergence rate. For the earlier
start time, the numerical error of the scaled calculations is
more than two times smaller than the error of unscaled cal-
culations performed on a grid of the same number of points,
even though the scaling is turned on before the peak field of
the laser.

It is instructive to compare these 2D dissociation prob-
abilities with those from a 3D modelf18g. The 2D model is
able to qualitatively reproduce some properties obtained in
the 3D calculations. For instance, the prediction that the
maximum dissociation probability is observed for a peak in-
tensity aroundI =731014 W/cm2 sFig. 5d is reproduced. To
some extent, CEPD effects can also been observed within the
2D model sFig. 6d, although the magnitude of the effect is
not as big as predicted in three dimensions. In fact, only
scaling allowed us to reduce the numerical error sufficiently
to see the small CEPD effect within the 2D model. Quanti-
tative comparison, however, shows that the ground state dis-
sociation probabilities calculated with the 2D model are un-
derestimated by about ten times with respect to more realistic

FIG. 3. Domains in configuration space corresponding to differ-
ent final states. The asymmetry of the domains is due to the nuclear
mass difference: H fragments move faster than D fragments with
respect to the center of mass.

FIG. 4. sColor onlined Convergence of the dissociation probabil-
ity in the 2D model.PH is the probability to dissociate to H+d; and
PD, to p+D.
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3D calculations, consistent with the calculations of Ref.f19g.
The relationships7d provides a simple way to recover the

velocity distribution from the scaled density function. To
demonstrate this point, we show in Fig. 7 the dissociation
probability in the perturbative regime for a 2D model of H2

+

in a 10-fs FWHM laser pulse withv=0.1 a.u and a peak
intensity of 131012 W/cm2. The initial state is chosen as the
eighth vibrationally excited statesv=8d with an energyE8

=−0.53 a.u. These parameters were chosen to produce an
easily recognized energy distribution for one-photon absorp-
tion in the perturbative regime. One photon absorption pro-
duces a distinctive peak around the fragment energysE8

−EH+vd /2, whereEH=−0.5 a.u. is the energy of the hydro-
gen atom ground state. As expected, the peak profile closely
follows the laser pulse frequency profile. The small devia-
tions from the exact laser frequency profile can be attributed
to nonlinear processes which do contribute even at a peak
intensity as low as 131012 W/cm2.

B. 3D model

A more realistic approach allows the electron two degrees
of freedom, corresponding to the assumption that the nuclei
are aligned with the linearly polarized laser and not allowed
to rotate. Considering initials electronic states, the azi-
muthal electron coordinate can be eliminated by symmetry.
The six-dimensional configuration space is thus reduced to
three dimensionalf2,20,21g: sR,r ,zd, whereR is the internu-
clear distance andsr ,zd are the cylindrical coordinates of the
electron. In this case the operatorH0 in Eq. s8d reads

H0 = −
1

2mpd

]2

] R2 −
1

2me
S ]2

] r2 +
1

r

]

] r
+

]2

] z2D
−

1
Îsz− zpd2 + r2

−
1

Îsz+ zdd2 + r2
+

1

R
. s13d

As in the 2D model, we apply scaling to the internuclear
distance only. Compared to our previous unscaled calcula-
tions f18g, scaling has allowed us to improve the number of
points in the nuclear coordinate by a factor of 2 while keep-
ing the error constant. The representation of states with large
nuclear separation could then be improved, yielding a preci-
sion about two times better overallsFig. 8d.

The fragment velocity distribution obtained from the
scaled coordinate density function is presented in Fig. 9. The
fragment center of mass frame velocities are reconstructed
from the scaled density function of the final time using mo-
mentum conservation. Channel selection is performed via in-
tegrating the density function in electronic coordinates over
the appropriate regions of configuration spacesFig. 3d. The
difference in the fragments’ velocity distributions for the dif-
ferent dissociation channels is clearly seen. Although the
structure of the velocity spectrum for a molecule dissociated
by an ultrashort laser pulse is the subject for separate re-
search, we can emphasize one important feature of the ve-
locity distribution. As was mentioned in Ref.f18g and shown
in Fig. 8, the probability of dissociation is expected to dem-
onstrate clearly observable spatial asymmetry resulting from

FIG. 5. sColor onlined Kinetic energy distribution of the disso-
ciated fragments in the center of mass frame for a 2D model of H2

+.
The eighth excited state was exposed to a laser pulse of 10 fs
FWHM, I =1012 W/cm2, and v=0.1 a.u. The vertical dotted line
shows the position of the peak expected from energy conservation.

FIG. 6. sColor onlined Intensity dependence of the HD+ s2D
modeld dissociation probability in the field of 10-fs FWHM,
785-nm laser pulse.

FIG. 7. sColor onlined Carrier-envelope phase dependence of the
HD+ s2D modeld dissociation probability in the field of 10-fs
FWHM, 785-nm laser pulse with peak intensityI =7
31014 W/cm2. The error bars are estimated from convergence tests
like those shown in Fig. 4.
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CEPD effects if channel selection is performed. Even stron-
ger effects could be observed if channel selection is supple-
mented with fragment velocity selection, as can be con-
cluded from Fig. 10. There we present the laser phase
dependence of the velocity-selected probability density. The
total dissociation signal measured along the polarization di-
rection varies by a factor of 3 depending on the laser phase
sFig. 8d, whereas the variation of a velocity-selected signal
covers a range of 1–100sFig. 10d. Such sharp velocity selec-
tivity is not possible experimentally, but we expect that the
strong enhancement should survive inclusion of experimen-
tal resolution.

IV. SUMMARY

Techniques for the numerical solution of the time-
dependent Schrödinger equation are of fundamental impor-

tance for the physics of short laser pulses interacting with
molecules. As was mentioned in Ref.f6g, two fundamental
problems of wave function time propagation are solved by
the scaled coordinate approach: the translation and spreading
of free wave packets, which necessitate large grids, and the
wave function phase rapidly growing in space and time,
which requires dense grids or limited propagation times. The
scaling technique explicitly eliminates both problems with-
out any serious numerical complications. The scaled
Schrödinger equation is nearly as easy to solve as the origi-
nal one, but with fewer constraints for the grid and propaga-
tion time. The only limitation for time propagation is the
ability to reproduce bound states. For systems with a single
center, such as atoms, this problem can be easily solved us-
ing nonuniform grids; multicenter molecular systems are
more difficult to treat. Their subsystems’ bound states are
distributed over infinite domains in at least one coordinate,
making them difficult to cover with a sufficiently dense grid.
Even so, applying the scaled coordinate method to only some
of the coordinates still leads to important computational sav-
ings. Our error estimate for the dissociation probability of
the HD+ in a 10-fs infrared laser pulse has, for instance, been
halved compared to our previous unscaled calculations. At
the same time, the scaling technique provides an efficient
way to extract fragment velocity distributions from a partial
density function integrated over all but the relative coordi-
nates of the dissociated fragments. This quantity is much
easier to manipulate than the wave function in the whole
configuration space, which would be required when calculat-
ing the velocity distributions with other techniques.
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FIG. 8. sColor onlined Carrier-envelope phase dependence of the
HD+ dissociation probability in the field of 10-fs FWHM, 785-nm
laser pulse with peak intensityI =731014 W/cm2, 3D model. The
open symbols denote our previousf18g unscaled resultsscircles for
PH and diamonds forPDd. The filled symbols denote the present
scaled resultsscircles forPH and diamonds forPDd.

FIG. 9. sColor onlined Velocity distributions of the fragments in
the center-of-mass frame after dissociation of the HD+ ground state
in 10-fs, 785-nm laser pulse with peak intensityI =7
31014 W/cm2: sad H+d channel andsbd p+D channel.

FIG. 10. sColor onlined Dissociation of the HD+ ground state in
10-fs, 785-nm laser pulse with peak intensityI =731014 W/cm2:
CEPD dependence of the probability density at the fragment rela-
tive velocity 0.01 a.u.
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