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The most basic scenario of quantum control involves the organized manipulation of pure dynamical states of
the system by means of unitary transformations. Recently, Vilela Mendes and Man’ko have shown that the
conditions for controllability on the state space become less restrictive if unitary control operations may be
supplemented by projective measurement. The present work builds on this idea, introducing the additional
element of indirect measurement to achieve a kind of remote control. The target system that is to be remotely
controlled is first entangled with another identical system, called the control system. The control system is then
subjected to unitary transformations plus projective measurement. As anticipated by Schrödinger, such control
via entanglement is necessarily probabilistic in nature. On the other hand, under appropriate conditions the
remote-control scenario offers the special advantages of robustness against decoherence and a greater reper-
toire of unitary transformations. Simulations carried out for a two-level system demonstrate that, with optimi-
zation of control parameters, a substantial gain in the population of reachable states can be realized.
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I. INTRODUCTION

The conditions under which a quantum-mechanical sys-
tem is controllable and the degree to which control is pos-
sible are issues of considerable theoretical and practical im-
portance. Many different definitions of controllability are
currently in play. Let us suppose the time development of the
system is described by a Schrödinger equationswith "=1d,

i
d

dt
ucstdl = FHo + o

n=1

r

fnstdHnGucstdl, s1d

where thefnstd are independent, bounded, measurable con-
trol functions. The most common notion of controllability is
pure-state controllabilityf1g, taken to mean that starting in
any given pure stateuc0= ucst0dl, there exists a set of control
functions fnstd such that any pure final stateuc fl= ucstfdl can
be reached at some later timetf . ti. This is equivalent to
saying that there exists a set of control functionsfnstd, a time
tf . t0, and a unitary operatorUstd satisfying

i
d

dt
Ustd = FHo + o

n=1

r

fnstdHnGUstd, s2d

such thatUst0duc0l= uc0l andUstfduc0l= uc fl. A stronger con-
dition is complete controllability, in the sense that any uni-
tary operatorU is dynamically accessible from the identity
operator.

The most incisive results are available for the restricted,
but practically important, case of a system with a finite num-
ber of energy levels, more precisely, a system whose eigen-
states span a Hilbert space with finite dimensionN. In par-
ticular, a necessary and sufficient condition for pure-state
controllability f1g is that the dynamical Lie groupGsAd gen-
erated by the set of operatorshiH0, iH1,…iHrj is equal to
UsNd, SUsNd, or sif N is evend either SpsN/2d or SpsN/2d

3Us1d. It may be shown that these conditions can only be
satisfied if the dynamical Lie algebra of the system is usNd,
susNd, or sif N is evend either spsN/2d or spsN/2d % Us1d.
Complete controllabilityof the N-level problem is naturally
more demanding: It is necessary and sufficient thatGsAd
coincide with the largest of the groups listed, namely UsNd.

We note that fundamental theorems on controllability
were established for a more general class of quantum sys-
tems at the very beginning of the subject of quantum control
f2–4g. This class includes continuous systems with un-
bounded observablesse.g., position, momentum, kinetic en-
ergyd, whose states span an infinite-dimensional Hilbert
space. The domain problems were dealt with by assuming
the existence of an analytical domain in the sense of Nelson
f5g, and available geometric methods for finite-dimensional
bilinear control systemsf6–9g were adapted to derive con-
trollability results in terms of certain Lie algebras. In fact,
theorems commonly stated for finite-level systems may be
extracted as special cases of the results of Ref.f2g.

The objective of this paper is to expand the scope of con-
trol beyond the implementation of unitary operators, exploit-
ing the phenomenon of entanglement and the option to carry
out measurements on the given systemsor its surrogated. In
the interest of transparency, we shall avoid troublesome do-
main problems by focusing on a quantum system described
in a state space of finite dimensionN.

We take as a starting point the recent result of Vilela
Mendes and Man’kof10g establishing that in some situa-
tions, a nonunitarily controllable system can be controlled by
the joint action of projective measurement plus unitary evo-
lution. More precisely:

Theorem.For a specified target stateuc fl, there exists a
family of observablesMfuc flg such that measurement of any
one of them on an arbitrary initial stateuc0l, followed by
unitary evolution, leads touc fl if GsAd is either OsNd or
SpsN/2d.

As pointed out in Ref.f10g, the system is already pure-
state controllable ifGsAd=SpsN/2d, but it still might be
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more efficient to use the measurement/evolution strategy.
Also, if both the initial and final states are fixed, pure-state
controllability may be achieved with this strategy even if
GsAd is a much smaller subgroup of UsNd than OsNd or
SpsN/2d.

Thus the conditions required for controllability are weak-
ened if unitary control is supplemented by projective mea-
surement. However, when the measurement is performed on
a given observable of the system, the possible outcomes are
necessarily restricted to the set of eigenstates of this observ-
able.

The present work aims to overcome this limitation by
extending the hybrid measurement/unitary approach to con-
trol a step further, exploring the additional prospects opened
by performing the measurement on anentangled partnerof
the system in questionscf. Ref. f11gd. The basic scheme is
introduced in Sec. II. As anticipated by Schrödingerf12g in
1935, a salient feature of this exploitation of entanglement is
that the “remote control” so attempted can no longer be ab-
solute, but is instead probabilistic in character. Nevertheless,
an enlargement of the reachable set of states can be achieved.
Alternative algebraic and geometric descriptions of the pro-
posed control scheme are presented in Sec. III. In Sec. IV, we
illustrate the possibilities opened by the remote-control strat-
egy for the simple case of a two-level systemsN=2d as re-
alized, for example, by a Pauli spin 1/2. The efficacy of the
method, measured by the number of reachable final states
and the probability of a successful outcome, is tested in a
simulation in which adjustable control parameters are opti-
mized to minimize the distance of the actual state from the
desired final state. In Sec. V we consider the effects of de-
coherence within the remote-control scenario. As usual, the
directly controlled system suffers from decoherence due to
its environment, whereas the remotely controlled target sys-
tem, kept isolated from its surroundings, remains immune.
We conclude in Sec. VI with some remarks on the genesis of
the idea proposed here, and on its further development.

II. CONTROL VIA ENTANGLEMENT

The proposed control scheme—control via indirect pro-
jective measurement—involves three basic steps. Two sys-
tems are involved:sid the target N-level system, which we
wish to move by means of indirect influences into a pre-
selected final state, andsii d the control system, an identical,
entangled partner of the target system which is directly
steered or shoved by control operations from the available
repertoire. It is supposed that the target system is initially in
a pure state,

ucstdl = o
i=1

N

ciuei
stdl, s3d

expressed in a convenient basishuei
stdlj. Likewise, the control

system is initially in a pure stateucscdl similarly expressed in
its own state space.

First, we entangle the target system with the control sys-
tem, e.g., by means of a nonlocal two-qubit operation. The
combined system undergoes the change

ucstdl ^ ucscdl = o
i=1

N

ciuei
stdl ^ o

l=1

N

bluel
scdl→

E
uxl = o

i=1

N

aiuei
stdluei

scdl,

s4d

whereE symbolizes entanglement and we suppress the tensor
product notation in the third member. In the density-matrix
formulation, the partial density matrix of the target system,
obtained by tracing over the control system, undergoes the
transformation

srstddi j = aiaj
* uei

stdlkej
stdu→

E
srstddi j = uaiu2uei

stdlkej
stdudi j . s5d

Second, one of the available unitary transformationsUstd
is applied to the control system thus:

ux8l = o
i,j=1

N

Ujiaiuei
stdluej

scdl. s6d

While rstd remains unaffected, the partial density matrix
rscd of the control system begins a forced evolution according
to

srscddi j = uaiu2uei
scdlkej

scdudi j

→ srscd8di j = o
k=1

N

Uikuaku2Ukj
* uei

scdlkej
scdu. s7d

In the third and final step, a projective measurement is
performed on the control system for a selected observableX.
Without loss of generality, we may assume that the basis
huei

scdlj in the state space of the control system is an eigenba-
sis of the chosen observable, which may then be expressed as

X = o
n=1

N

xnuen
scdlken

scdu. s8d

The measurement will then yield the eigenvaluexm of X with
probability

Pm = o
i=1

N

Umiuaiu2Uim
* , s9d

leaving the combined system in a state that is no longer
entangled, namely

uxm9 l =
1

ÎPm
o
k=1

N

Umkakuek
stdl ^ uem

scdl. s10d

It is seen that the final state of the target system is in
general asuperpositionof eigenstates of the observableX,
rather than the particular eigenstate corresponding to the re-
sult of measurement, as it would be in a simpledirect pro-
jective measurement. Furthermore, there areNs.1d possible
results of the three-step control procedure, which therefore
assumes a probabilistic character. As we shall see, the advan-
tage of certainty of outcome is traded for a potentially ex-
panded range of control. Another positive aspect of remote
control is that it can overcome the limitation of unitary con-
trol to transformations of the state of the target system within
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a restricted equivalence class determined by the set of eigen-
values of the initial density matrixf1g.

III. ALGEBRAIC AND GEOMETRIC DESCRIPTIONS
OF INDIRECT CONTROL

A. Algebraic treatment

The total effect of the indirect control scheme on the tar-
get system can be represented in terms of a set ofN diagonal
matricesYm=sUmldlnd representing Kraus operators, one for
each of theN possible results of the measurement performed
on the control system. Due the unpredictability of the final
state, the property of controllability, as strictly defined, does
not apply to the target system.

This situation contrasts with what is found in the theory of
universal quantum interfaces developed in Ref.f13g, where
similar schemes involving remote control are formalized, but
with broader intent within the contexts of quantum compu-
tation and quantum communication. In that work, the target
system is shown to be both controllable and observable
through control and observation of the control bit to which it
is coupled. The main distinction between the two approaches
is the following. In Ref.f13g, the control and target systems
remain in close proximity and the interaction between them
can have indefinite duration, whereas in the remote-control
scenario envisioned here, the systems are in transient inter-
action, and then separate from one another. In some circum-
stances, the disjunction of the two systems may prove desir-
able or advantageous.

Controllability being moot, our consideration turns to
reachable sets of the target system. It is easily seen that if the
control system is controllable, then every state of the target
system is reachable. Every unitary transformationU of the
target system is available for temporal manipulation of the
control system. To each of these there correspondN nonuni-
tary transformationsYm, and the mapping betweenU and
each of theYm is one-to-one. Hence every state of the target
system is reachable.

If the control system is not controllable, then a given state
of the target system may or may not be reachable. To illus-
trate this, consider the case in which both the control and

target systems are spin-1/2 particles. Let the unitary trans-
formations available for application be specified by

Usu,fd = Scossu/2d − sinsu/2deif

sinsu/2d cossu/2deif D , s11d

where 0øf,p and 0øuøp /2. In this case, the set of the
states reachable from an initial state on the equator of the
Bloch sphere covers only two quadrants of the Bloch sphere.

Let us apply these transformations to a control system that
is maximally entangled with the target system, and then per-
form a measurement on the spin componentsz of the control
system. The available transformations are then expanded to
include

Y1su,fd = Scossu/2d 0

0 − sinsu/2deif D ,

Y2su,fd = Ssinsu/2d 0

0 cossu/2deif D . s12d

Thus the reachable set for the target system is the whole
Bloch sphere, even if the set reachable by applying only the
specifiedU transformations is just two quadrants. We note
that the assumed condition of maximal entanglement simpli-
fies the proof but is not essential. This possibility for enlarge-
ment of the reachable set is demonstrated in the optimization
problem solved in the next section.

Sequential application of the probabilistic remote-control
scheme is not in general effective in further extension of the
range of control. TheYm matrices are diagonal and necessar-
ily commute with one another; consequently, the advantages
of a Lie algebra do not apply. Unlike unitary operators,
Kraus operators are not guaranteed the property that they can
be combined to give new directions of control in the state
spacef14g.

Finally, if Ym operations are combined with unitary op-
erations on the target system, the commutativity is lifted and
the repertoire of available transformations on the target sys-
tem is enlarged. Again we chose a two-level example to il-
lustrate the point. Suppose the only available quantum gate
for the system is the Hadamard gate,

UH =
1
Î2
F1 1

1 − 1
G . s13d

Then upon implementing the probabilistic remote-control
scheme for this target systemsinvolving entanglement, ap-
plication of the Hadamard gate on the control qubit, and
projective measurementd, we obtain an additional gate

Y2 = Z = F1 0

0 − 1
G . s14d

By successive applications ofUH and Z we further extend
the set of reachable states. In this case it happensY1= I and
Y2=Z are both unitary, but it will not generally be the case
that all theYm are unitary. It is interesting to note that the
probabilistic character of the control scheme can be over-
come by applying unitary transformations on the target sys-

FIG. 1. Coherent-vector representation of quantum dynamics for
a two-level system.sad The effect of entanglement on a pure state.
sbd Unitary transformation of a mixed state.scd Projective measure-
ment on either system of an entangled pair. In each operation, the
initial vectorffinal vectorg is drawn as an arrow with a whitesblackd
head.
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tem so as to feed back the indirect measurement results, as
proposed in Ref.f14g.

B. Geometric treatment

Again for the sake of simplicity and clarity, we consider a
two-level systemsN=2d. Physically, the system might be a
single Pauli spin 1/2 or a two-level atom, having energy
eigenstates denotedu0l and u1l.

The geometric description is based on the coherent-vector
sor Bloch-vectord picture of quantum dynamicsf15,16g. The
coherent vectorv can represent a pure state on the Bloch
sphere as well as a mixed state lying in the interior of the
sphere. Its magnitude, or length, is defined byivi=str r2

−1/2d1/2, and its Cartesian components byvx=2−1/2trsrsxd,
vy=2−1/2trsrsyd, andvz=2−1/2trsrszd. Whether it refers to an
entangled or nonentangled quantum system, the coherent
vectorv evolves with time according to the following rules.

sid The coherent vector may shrink in magnitude, i.e.,
contract to a shell of smaller radius, if and only if the system
becomes entangled. The tip of the vector traces a continuous
path, namely a line passing through the initial position and
perpendicular to the axis that connects the einselected states
f17g fsee Fig. 1sadg. Either premeasurementf17g or decoher-
ence will drive the coherent vector in this manner, because
both these processes imply entanglement.

sii d A unitary transformation leaves trr2 invariant and
hence does not change the magnitude of the coherent vector
v. Accordingly, a unitary transformation can only rotatev on
the shell of radius equal toivi fsee Fig. 1sbdg. The effect of
the rotation is independent of the magnitude of the vector.

siii d A mixed state may become pure if the entangled
state becomes disentangled and the bipartite system becomes
separable. This can occur through projective measurement on
one of the two systems. Both of the systems are purified, but
not in a deterministic manner. The possible final states de-
pend on the observable that is measured and on the entangled
state. Figure 1scd gives a simple example in which the pro-
jective measurement is made on an observable whose eigen-
states coincide with the Schmidt basis of the measured
system.

Probabilistic, indirect quantum control, as introduced in
Sec. II, involves all three of these operations. The geometric
description of this process is illustrated in Fig. 2 for theN

=2 caseswhich is actually the only nontrivial case that one
can draw.d Reiterating, the scheme is to

sid Entangle the target system with the control system.
This causes shrinkage of the coherent vectors of both sys-
temsfFig. 2sadg.

sii d Apply a unitary transformation to the control system.
The coherent vectorvscd of the control system rotates without
change of magnitude, while the coherent vectorvstd of the
target system is unaffected by the transformationfFig. 2sbdg.

siii d Make a projective measurement on the control sys-
tem. The final coherent vectors are not determined. One has
either v1

scd or v2
scd for the control system,v1

std or v2
std for the

targetfFig. 2scdg. The initial and final coherent vectors obey
a set of angle rules; in particular

/svscd,vstdd = /svscd,v1
scdd, /svscd,vstdd = p − /svscd,v2

scdd,

/sv1
scd,v1

stdd = /svstd,v1
stdd, /sv2

scd,v2
stdd = p − /svstd,v2

stdd.

s15d

Also, /sv1
scd ,v2

scdd=p, while /sv1
std ,v2

stdd depends on the ini-
tial state of the target system and the unitary transformation
applied to the control system. In the special case where the
two systems are maximally entangled,/sv1

std ,v2
stdd=p.

With exclusive use of unitary transformations to control a
system, the coherent vector is rigorously confined to the shell
of the Bloch sphere. Probabilistic remote quantum control
permits the coherent vector to move to the interior of the
sphere as well, thereby opening new pathways to the desired
final state.

IV. OPTIMIZED PROBABILISTIC CONTROL:
A SIMULATION

The benefitssand drawbacksd of the probabilistic remote-
control process are exemplified in a problem drawn from
nuclear magnetic resonance. If there is a constant magnetic
field of strengthB0 present along thez axis, the Hamiltonian
of a spin-1/2 particle isHo=vsz=vZ, and the time evolu-
tion operator for the system is given by

U0std = Se−ivt 0

0 eivt D . s16d

If a resonant magnetic fieldsBx,Byd is also applied in the
x-y plane, we have an additional time-dependent gate

U1std = S cossg td − i sinsg td
− i sinsg td cossg td

D . s17d

Suppose we wish to reach a particular final state at the exact
time T, by applyingU0sT/2d and thenU1sT/2d. The param-
eters available for adjustments“optimization”d are the field
strengthsB0, Bx, andBy, or more precisely the frequencyv
and the coupling constantg. Here we note the precedent set
by Ref. f16g in organizing pure-state control of a two-level
quantum system within the geometric intepretation on the
Bloch sphere.

Simulations were performed to test the efficacy of two
different control schemes, namely unitary control alone and

FIG. 2. sad Control and target system become entangled.sbd A
unitary transformation is applied to the control system.scd A pro-
jective measurement is performed on the control system.
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the probabilistic remote-control scenario. A hundred random
pairs of initial and final states were chosen and simulations
were performed for both control schemes. With the initial
time at 0, the numerical experiment was repeated for ten
different final timesT, keeping the adjustable parameters
within the ranges 0øgø2p and 0øvø2p. The two rel-
evant performance measures are the fraction of final states
successfully reached and the overall probability of reaching
the final state of a pair. The results of averaging over all
simulations are shown in Table I. As might be expected, the
fraction of target states successfully reached is significantly
larger smore than doubled when the indirect-measurement
protocol is implemented. However, this advantage is eroded
by the probabilistic nature of the remote-control process,
such that the overall success rates for the two methods are
similar.

V. ROLE OF DECOHERENCE

Suppose we entangle a pair of identicalssubdsystems such
that the combined system is described by the state vectorucl.
Now, arrange that the two subsystems become separated,
such that the target system, which is to be remotely con-
trolled, is kept isolated from the environment, while the con-
trol system remains exposed in the laboratory, where we can
perform unitary operations or measurements upon it. The
control system soon interacts with the laboratory environ-
ment and becomes entangled with it; schematically,

ucl = o
i=1

N

aiuei
stdluei

scdl ^ uenvl→
«

ucl = o
i=1

N

aiuei
stdluei

scdlueil,

s18d

whereueil is a basis for the environment.
The entanglement between the target and control system

is not affected by the presence of the environmentf18g, and
the statistical properties of the target system remain the
same, i.e.,

srstddi j = uaiu2uei
stdlkei

stdudi j . s19d

Following the remote-control scenario, we next apply a
unitary transformation on the control system, to obtain

uc8l = o
i,j=1

N

Ujiaiuei
stdluej

scdlueil. s20d

However, the environment is still present and becomes en-
tangled with the new state of the control system:

uc9l = o
i,j=1

N

Ujiaiuei
stdluej

scdlue jl. s21d

Finally, a projective measurement is performed on the con-
trol system, yielding

uc-l =
1

ÎPm
o

i

N

aiUimuei
stdluem

scdlueml

=
1

ÎPm
o

i

N

aiUimuei
stdl ^ uem

scdlueml. s22d

We observe that the same results are obtained for the target
system as in the case where the environment is absent,
whereas the control system feels the effects of decoherence.

VI. SUMMARY AND PROSPECTS: REMOTE CONTROL
ON ENTANGLED PAIRS

Taking inspiration from quantum teleportationf19g and
from prior work of Vilela-Mendes and Man’kof10g in which
unitary control is supplemented by projective measurement,
we have introduced a strategy for indirect controls“remote
control”d of a target system through projective measurement
on its entangled partner. We have thereby contributed to an
ongoing unification of concepts and mathematical techniques
developed in the fields of quantum controlf3,4g and quantum
information theoryf20g. The integration of these two thrusts
began in 1995 with Lloyd’s demonstrationf21g that “almost
any quantum logic gate is universal”—shorthand for the fact
that universality in quantum computation can be achieved by
repeated application of almost any two-level unitary gate and
a single-qubit gate. The proof of this statement rests on Lie-
algebraic arguments that have long been a staple of geomet-
ric control theory.

Reversing the flow of ideas, we have exploited entangle-
ment together with the option of projective measurement to
enlarge the scope of quantum control beyond what is attain-
able with unitary transformations on system states. Under the
remote-control protocol, some states that were unreachable
via simple unitary control now become reachable. However,
this advantage is tempered by the fact that the outcome of the
final measurement operation is necessarily probabilistic, i.e.,
the outcome of remote control is described by a probability
distribution over a set of quantum states.

Our attention here has been focused on the advantages
that probabilistic control via indirect measurement may offer
in the manipulation of a system occupying a single, initially
pure quantum state. As is evident, the idea may be extended
to initial states of subsystems of a larger system, which in
general are not pure and must be represented as density ma-
trices.

Let the target system be an entangled bipartite system
sta,tbd described by

ucstdl = o
i=1

N

aiuei
stadluei

stbdl. s23d

The degree of entanglement of the system in this state may
be quantified in terms of the von Neumann entropy of the

TABLE I. Comparison of probabilistic remote control with pure
unitary control, for a spin-1/2 system.

Control
protocol

Number of
pairs tested

Target final
states reached

Net probability
of success

Unitary 100 2.4±0.4 0.024±0.004

Remote 100 6.6±0.5 0.0345±0.0012
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subsystem, or more simply the Schmidt numberf20g. What-
ever appropriate measure is chosen, it cannot be changed by
applying a unitary transformation on either of the two sub-
systems. However, the same is not true for the transformation
accomplished by remote control, which, for example, is ca-
pable of changing the Schmidt number of the bipartite sys-
tem as we go from

uxl = o
i=1

N

aiuei
stadluei

stbdluei
scdl s24d

to

ux8l = o
i,j=1

N

aiUji uei
stadluei

stbdluej
scdl s25d

to

ux9l =
1

ÎPm
o

i

aiUmiuei
stadluei

stbdluem
scdl

=
1

ÎPm
o

i

aiUmiuei
stadluei

stbdl ^ uem
scdl. s26d

In future work, the scheme proposed here will be applied to
systems that are entangled with many degrees of freedom. In
pursuing such an investigation, one would like to determine
the extent to which nonunitary control operations can be
used to counteract undesirable effects arising from interac-
tions between the system and its environment.
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