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Diffraction of ultracold fermions by quantized light fields: Standing versus traveling waves
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We study the diffraction of quantum-degenerate fermionic atoms off of quantized light fields in an optical
cavity. We compare the case of a linear cavity with standing-wave modes to that of a ring cavity with two
counterpropagating traveling wave modes. It is found that the dynamics of the atoms strongly depends on the
guantization procedure for the cavity field. For standing waves, no correlations develop between the cavity
field and the atoms. Consequently, standing-wave Fock states yield the same results as a classical standing
wave field while coherent states give rise to a collapse and revivals in the scattering of the atoms. In contrast,
for traveling waves the scattering results in quantum entanglement of the radiation field and the atoms. This
leads to a collapse and revival of the scattering probability even for Fock states. The Pauli exclusion principle
manifests itself as an additional dephasing of the scattering probability.
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[. INTRODUCTION state, resulting in a center-of-mass momentum recoilgpf 2
Alternatively, one can view this process as diffraction the
The past few decades have witnessed considerablgioms off the intensity grating formed by the cavity field.
progress in the cooling of atomic vapors to extremely low The normal modes in terms of which the electromagnetic
temperatures, culminating in the achievement of Bosefield is quantized are determined by the boundary conditions
Einstein condensation in dilute alkali-metal gagds-3|. of the cavity. A linear cavity with perfectly reflecting mirrors
More recently, quantum-degenerate Fermi gases with tenis described in terms of standing-wave mode functions. In a
peratures as low as 0.0k, whereTg is the Fermi tempera- ring cavity, in contrast, the light field has to satisfy periodic
ture, have been achieved by several groi#pssg). Through-  boundary conditions and this results in running-wave mode
out these developments the interaction of light with atomdunctions. Two counterpropagating traveling-wave modes of
has been central to the cooling, trapping, and imaging ofqual frequency can be superposed to yield a stationary
atoms, as well as in the coherent manipulation of theistanding-wave field. o . .
center-of-mass motion. For example, the Bragg scattering of Under most circumstances it is a question of mathematical
atomic matter waves by off-resonant optical fields can bé&onvenience which m_ode functions are used for the descrip-
used to create linear atom optical elements for use in ator{fn of the field. Physically, however, the two cases are not
interferometer§7], and the interaction of atomic condensateste Same and for fields containing only a few photons, the

with light has led to the realization of matter-wave superra-tWO quantization procedures yield different results. In par-

: : o ticular, the difference in atomic scattering produced in these
diance[8] and O.f matter-wave parametric am_phﬂe{ﬂ;—l]]. two situations has been discussed for single atoms diffracted
In another application, the ability of optical fields to create

custom trapping potentials has permitted the study of conby a coherent light field17]. Diffraction was shown to de-

' pend critically on the quantization procedure, a difference
d_e_nsed matter problems such as, 9., the Mott-lnsulator.tra hat can be understood in terms of which-way information
sition [12-14. Although all experiments to date have in- f

; . ) . . . or the scattering process. For standing-wave modes, the
volved classical optical fields, there is considerable interesti ia of the light field contains no information about the mo-

in carrying out future work in higl® optical cavities, where o, ransfer to the atom. More specifically, the number
the quantum nature of the electromagnetic field becomes inbf photons is a constant of motion and as a re’sult the equa-
portant, Theoretical work anng these lines has so far beef,ng of motion for the atomic center of mass decouple from

resltrlcted to the case of bo;onlc ato(see, e.g., Ref15)), . that of the light field. In the case of two counterpropagating

while the diffraction of fermions by an optical field was dis- traveling-wave modes however, the number of photons in
cussed in Ref[16], but in an analysis restricted to the case Ofeach mode does change and t,he change in the number of
ﬁuanta is a direct measure of the momentum transfer to the
&toms. In this paper we extend those results to compare the

fields by qu_antized light fields. o diffraction of a quantum-degenerate Fermi gas by these
We consider a zero-temperature beam of fermionic tWO%q4s in both the Raman-Nath and Bragg regimes.

level atoms traversing an optical cavity supporting an off- |, the Raman-Nath regime, which is characteristic of situ-
resonant standing-wave light field of momentgmThe at- 4ions where the kinetic energy of the atoms can be ne-

oms undergo virtual transitions to their excited eIectronicg|ected, the individual atomic dynamics for a standing-wave
light field are formally identical to the case of a classical
light field [18]. The atoms scatter into successive diffraction
*Present address: Department of Physics and Engineering Physrders separated by twice the photon momentyinip to the
ics, Stevens Institute of Technology, Castle Point on Hudson, Hobopoint where energy-momentum conservation becomes im-
ken, NJ 07030, USA. portant and the Raman-Nath approximation ceases to hold.

the diffraction of quantum-degenerate fermionic matter-wav
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The formal equivalence of the scattering off a standing-wave
field to the scattering off a classical light field is due to the
fact that the equations of motion for the atoms effectively
decouple both from each other and from the light field. This
must be contrasted to the case of running waves, where the
number operators for the two modes are not constants of
motion. This leads to an infinite hierarchy of coupled equa-
tions for the atomic and optical field operators, with higher-
order correlation functions playing a crucial role in the dy-
namics of first-order atomic correlation functions. To
proceed analytically it is then necessary to introduce some
approximate truncation scheme, a procedure that we discuss -q k.0 k_q
in detail and compare with exact numerical results for small
atom numbers. (©)

In the Bragg regime, energy-momentum conservation re-
duces the single-atom diffraction problem to a two-mode N(p),T\
situation, the atoms undergoing Bragg oscillations between
their initial momentum statep; and final momentum state —kF-'q k. 0 q
p:=p;+24g. The character of these oscillations is the result of
three separate and independent effects that correspond toFIG. 1. (a) Schematic of a scattering of an atom of initial mo-
whether one uses standing-wave or traveling-wave modesjentump via two-photon transitions with photons of momenta
whether the cavity field is in a Fock state or in a coheren@nd -g. Initial momentum distributiorN(p) of the atoms for scat-
state, and the momentum spread of the incident atomic bearigring in(b) the Raman-Nath regime artd) the Bragg regime.

This paper is organized as follows. After formulating our
model in Sec. Il we discuss the case of traveling-wave light In the following we neglect atomic collisions—a good
quantization in Sec. lll. We develop approximate equationsapproximation well below the Fermi temperature, since the
for first- and second-order correlation functions appropriate-wave scattering length is zero for identical fermions—as
for the Raman-Nath regime, and a Bloch vector picture usewell as decay of the optical field in the cavity. We also as-
ful to discuss Bragg diffraction. That picture yields a semi-sume that the optical frequenay is sufficiently detuned
classical model that provides some intuitive understanding ofrom the atomic transition frequenay, that the upper elec-
the atomic dynamics. The case of standing-wave quantizaronic level can be adiabatically eliminated. Finally, we con-
tion is discussed in Sec. IV, and Sec. V gives a summary angdider a situation where that atomic momentum, trans-
conclusion. verse to the cavity field is large enough to be treated

classically. Timet can then be parametrized in terms of the
transverse distanceby t=x/v | .

- |

Il. MODEL

We consider an ultracold beam of identical two-level fer- lll. RUNNING WAVES
mionic atoms propagating across a higreptical cavity; see For running-wave quantization, the Hamiltonian describ-
Fig. 1. Their initial momentum distribution is a Fermi sea ating our system igh=1) '
T=0, but shifted in momentum space by the mean momen-
tum p and with Fermi momentunkz assumed to be much - t t t
less thang, the photon momentum. This is a realistic ap- H, Ek Bt @(agdq + agaq+ 1)
proximation, since for a degenerate Fermi gas of density
~ 10 m~3 the Fermi momentum ik-~ 10° m~! while for a +(gala_q C-oCurq* H-C), (2
photon of wavelengtih=500 nm one has a momentum of k
q~10"m™. Consistently with typical experimental condi- \yherec, andc] are the annihilation and creation operators
tions we also assume that the number of atdigsgiven in  ¢or 5 fermionic atom of momenturk, ay and ag are the

three dimensions by annihilation and creation operators for a photon of momen-
Vk,3: tum q, E,=k?/2M is the kinetic energy of an atom of mo-
Na=—, (1) mentumk, g=Q§/A is the coupling energy of the atoms and
6 the light field, Qg is the vacuum Rabi frequency, add- @

whereV is the quantization volume, is much less than the™ @ is the atom-light detuning. _

number of photonsl,. Note that as is typically the case with ~ The initial state of the atoms-field system is

fermions, the memory requirements of a numerical calcula-

tion scale as %, limiting the number of particles that can |A0)rw = |¢Q>|¢-Q> 11 CE|O>’ 3
typically be handled in practice to less than 20. In addition, K<k

the quantized nature of the light field can significantly furtherwhere the field statd&&iq> are taken to be either Fock states
reduce this number. IN.¢) or coherent statefgr.,).
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FIG. 2. Scattering probabiliti?,(t) for two atoms scattering off a running-wave light field in the Raman-Nath regianéc),(e) are for
a Fock state of the light field an@),(d),(f) for a coherent statéa),(b) Exact solutionj(c),(d) results of first-order equation&),(f) results
for the second-order equatiorts,,=g, ke=0.1, time in units ofy™!, momentum in units o#.

A. Raman-Nath regime Py(t) = <¢(t)|c;gcp|¢(t)) (4)
The Raman-Nath regime is characteristic of situations
where the kinetic energy of the atoms plays a negligible roldor an atom being scattered to a state of momengputiow-
in comparison with the interaction energy, i.eEy, ever, the dimensio® of the Hilbert space grows exponen-
<gVNgN_q, where the recoil energEzq:Zqle is a mea- tially as DRaman_Nam:(an+1)Na(Np+ 1) whereny is the num-
sure for the typical kinetic energies involved. In practice, thisber of diffraction orders considered. Hence, a direct
amounts to assuming that the atoms have an infinite masstegration of the Schrodinger equation is possible only for
and as such, neglects the effects of the quadratic dispersioather small atom and photon numbers.
relation of the atoms. Figure 2a) shows the result of an exact solution of the
The most straightforward way to solve this problem pro-Schrédinger equation fdd,=2 atoms and the light field ini-
ceeds by integrating the Schroédinger equation correspondintiplly in a Fock state with three photons per mode. In this
to Hamiltonian(2) for the initial conditions(3), from which  example, the recoil energy 5,,=g and the initial momen-
we can obtain the probability tum of the atoms ig;= £0.1g. Such a high recoil energy was
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chosen to limit the number of diffraction orders that are sig-atoms and the light field as well as higher-order atom-atom
nificantly populated before energy-momentum conservatioand field-field correlations. The result of the numerical inte-
inhibits further diffraction, i.e., before exiting the Raman- gration of these equations of motion is shown in Figg) 2
Nath regime. and 2d) for the cases of a Fock state and a coherent state of
The resulting dynamics resembles qualitatively the singlethe field, respectively.
atom case; see, €.418]. For short times the probability of  An obvious weakness of the simple truncation scheme is
finding an atom in themth-order mode is well described by that it predicts the absence of scattering for the case of Fock
~Jn(29t) where Jp, is the mth Bessel function. For longer giates, in stark contrast to the exact solution. This follows
interaction times, higher scattering orders are suppressed dg@m the absence of initial coherence in either the light field
to energy-momentum conservation, as expected. We notg: ihe atoms, leading to the scattering term in E5).being
that since the difference in kinetic energies of the two atomsyeniically zero. Stated differently, the reason for the absence
is small compared to f.l" other relevant energies, we do nokt diffraction is that the phase of a Fock state is completely
observe any eﬁect of mhomogengqqs broadening. ... undetermined, hence there is no established relative phase
For comparison, the results for initial coherent states W'ﬂbetvveen the two counterpropagating fields, and no light in-
mean photon numbers;=N_,=3 are shown in Fig.@) for  tensity grating. Since in this factorization scheme the atom is
the same atomic parameters. We now observe a decay of the tively assumed to probe only first-order moments of the
oscillations of the scattering probabilities after a time |y field. that is, its intensity pattern, diffraction is absent at
~(2m/g)(NJN_)~*2, which corresponds to a complete this level of approximation.
dephasing of the contributions of the different photon num-  The situation is different for a coherent state light field. In
bers to the diffraction pattern. this case, there is a well-established phase relationship be-
Experimentally, the most directly accessible quantity deyyeen the two modes. This results in an intensity grating
scribing the scattering dypamics of the atoms is the firsty,om which the atoms can be diffracted. As time goes on, this
order correlation functlomcklck2>. From the Hamiltoniarg2) results in the generation of atomic coherenﬁéi%)#o,

we find readily and the resulting density grating formed by the atoms acts

d _ " N N back on the light field. In some loose sense, the lowest-order
Id_t<cklck2> = (Bx, = By {0k Ciy) + 9@ 484(Ci Ciiy2 factorization scheme consists in treating the system classi-
: . . : cally sinpe it r_1eg|ects fall quantum fIL_Jctuations in the atomic
= Gy +2qCk,)) + 9@qAq(Cy Cicye2q ~ Cip-24Ck,)) and optical fields. It is not surprising that this approach

(5) should fail for a very nonclassical field state such as a Fock
state, and be much better for a quasiclassical field. Note,
however, that while for short enough times the scattering

.d o
|a<aglaq2> = gE <5q2,qa$15Lqu—qu+q + 5qzy_qaglaqcl+qck_q closely re§embles the exact results, this is no longer the case
k for long times, a consequence of the buildup of quantum
+5 T8, O Cug + O oA B ChecCie) correlations between the optical and matter-wave fields.
0,,-0%8,Ck—qCk+q T Oqy,08-¢8q,CkqCh-a/ »

We note that for our specific initial conditions, the fully
(6) factorized equations for the light field can be trivially inte-
where thes's are Kronecker delta functions. grated, showing that the first-order moments of the light field

Because the response of the atoms to the light field i@re constants of motion. Inserting these constants in the
nonlinear, the first-order correlations are coupled to secondatomic equations of motion shows that at this level, the scat-
order correlations, which in turn will be coupled to third- tering becomes formally equivalent to the scattering of atoms
order correlations, and so on. Thus, we end up with an infiby a classical standing-wave light field with intensity
nite hierarchy of equations of motions for the correIationg(a;a_q>. This is further discussed in the following section.
functions of all orders. This hierarchy of equations is remi- The equations of motio(5) and(6), suggest that an im-
niscent of the so-called Bogoliubov-Born-Green-Kirkwood- proved factorization scheme would retain the lowest-order
Yvon (BBGKY) hierarchy encountered in the theory of in- correlations between light field and atoms. In order to do so,
teracting gases; see, e.g., REf9], p. 65. In order to get a e supplement the equations of motion fmllck) and

closed set oft-number equations we need to invoke a fac-,_+ ) by equations of motion for the cross correlations
torization scheme that truncates this hierarchy. The resultin&aqlaqz Y €q

set of ordinary differential equations can then be solved bya;, aq,Ck C,) @nd the second-order correlations of the light
standard numerical techniques and the number of equatiorfigld and the atoms. This should remedy the major flaw of the
grows only polynomially with the number of atoms. first-order calculation, namely, its inability to predict atomic
The simplest and most naive factorization scheme conscattering for a light field in a Fock state.
sists in simply factorizing second-order correlation functions The equations for the lowest-order atom-field correlation
of the type(aglanCIlckz) that appear on the right-hand side of functions involve third-order correlations of the form
Eqs.(S) ar}d(6) into products of first-order correlation _func- (aalaqzag3aq4cllckz> and <a£laq2cllckzclsck4>. We truncate the
tions, for Instance{aglanCllckQ%(agla%)(ClleZ). In doing  resulting hierarchy of equations of motion by introducing the
so we neglect correlations that may build up between thdactorization scheme
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FIG. 3. Expectation value &’ ;agala oCy_c. from the numeri- FIG. 4. Expectation value afaqc} ci.Ci G, from the numeri-
cal solution of the Schrédinger equation for a Fock state and for &al solution of the Schrédinger equation for a Fock state and for a
coherent state; same parameters as in Fig) 2nd ¢, exact(un- ~ coherent state of the light field; same parameters as in Fig.ghd

factorized value for Fock state and coherent state respectively; bro-<, exact unfactorized value for Fock state and coherent state, re-
ken line (--) and solid line(—), corresponding values for the spectively; broken ling--) and solid line(—), results from the
Fock state and coherent state as obtained with the factorizatiol@ctorization schemé?) for the same two cases.

schemeg(7).

lower-order moments necessarily leads to such inconsisten-

(85,80,3,20,Ck Cy) = (84, 80,)(08, 80,0 Cr,) + (34 8,208,  CleS:

The results of the factorization scher® are shown in

X(cllckz) + <aglaqzcllck2)<agaaq4) Fig. 2(e) for a Fock state and in Fig( for a coherent state
T + + of the light field. While a Fock state now leads to atomic
~ (&g, aq,)(8g,8q,)(Cx, Ck,) (7)  diffraction, as should be the case, it is characterized by non-

physical negative probabilities already for short times. This
is clear evidence that higher-order correlations play an essen-
and similarly f0r<aglaqzcllck2c,130k4> with a,'s replaced by tial role. This is in contrast with the situation for a coherent
c¢s, and vice versd20]. The last term of this equation ac- State, where we achieve good agreement with the exact re-
counts for the case where all first-order correlation functionssults for times up t0~(277/g)(NqN_q)‘1/2, indicating that the
are uncorrelated. Background information on the motivatiorfirst- and second-order correlations are the most important.
for this kind of factorization scheme can be found in Chapter A quantitative measure of the degree of entanglement be-

4 of [21]. tween the atoms and the light field is given by the second-
We estimate the accuracy of the factorization scheme byrder cross correlation

calculating <a$1aq2a;3aq4cllckz> and (aglaqzcllckzclscM) as L . .

well as their respective factorized values K@) using the X(0) = 2> ((AagCl oCreq) — (AALNCl-(Cieg):  (8)

exact solution of the Schrédinger equation. As an example K

Fig. 3 shows the results fO(fafqaqaga—qCIFCkQ and Fig. 4 which is equal to zero in the absence of entanglement. Figure

shows the results fdlagaqchckFchckF) for the parameters of 5 showsy(t) for both a Fock state and a coherent state light

Fig. 2. This shows that the factorization scheme reproduce4€ld, for the parameters of Fig. 2. Because the light field and

at least qualitatively the main features of the third-order coratoms are initially uncorrelated we hayé&=0)=0 but cross

relation functions for both coherent states and Fock states.correlations then build up to become of the order of
Despite its partial success, this factorization scheme suf(-l\qu_q)l’zNa. The figure also shows the result of the factor-

fers from two major flaws. First, the small deviations of theization ansatz7), showing the good agreement with the ex-
factorized values from the exact values accumulate in timeact result for short enough times.

leading to increasing discrepancies between the approximate

and exact results. Even worse, this scheme violates important

relations that the exact operators have to obey. For example, B. Bragg regime

a;anlFCkFCIFCkF is a positive self-adjoint operator, with posi- | the Bragg regime, energy-momentum conservation re-
tive and real expectation values, but the factorized approxistricts the scattering of the atoms to two diffraction orders,
mation can take on negative values. These flaws eventuallyn initial mode of transverse momentuyy=—q and a final
result in the nonphysical behavior illustrated in Figée)2 mode of momentunp;=p;+2g=gq. Classically, the atoms
and 2f), where the probabilitieéc/c,) take on negative val- are known to undergo Pendelldsung oscillations between
ues. We have not found a factorization scheme that avoidthese two modes. As such, the atoms can be thought of as
nonphysical behavior of that kind for all times, and conjec-two-state systems that are conveniently described in terms of
ture that the factorization of higher-order moments intopseudospin operators
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FIG. 5. Cross correlation(t) between light field and atoms in
the Raman-Nath regime as obtained from the exact solution of the
Schrédinger equation for a Fock stéf@) and a coherent stated )
of the light field. Also shown are the values obtained from the
factorization schemé€7), (——) for a Fock state light field an¢—)
for a coherent state. Same parameters as in Fig. 2.

1
- t T
Si - E(Ck+qck+q - Ck—qck—q) )

S = (80" = ChugCic- 9 pla o 1 Vg™
Introducing further the Schwinger representation of the light ) - ] ] )
field by means of FIG. 6. Scattering probabiliti?(t) for five fermions scattering

off a running-wave light fielda) and a standing-wave light field)
o1y + in the Bragg regime. The light field is in a Fock state with
Jo= _(aqaq_a—qa—q)' =N_4=6 andN=12 photons, respectivel¥,,=50g, andkg=0.1q.
2 q q
Time in units ofg™ and momentum in units aj.
I =) =ag,, (10)

the Hamiltonian of the atoms-field system simplifies to

1. Fock state

Figure Ga) shows the probability,, (t) that an atom has a
H= > (S S +gT'S +9TS). (11) fina}I m'oment'umpf in the vicinity of +g. In this e>'(ample,
ke[—ke ke] which is for five atoms, the counterpropagating field modes
In this representation, the eigenvaluasf J* correspond to are i_nitially in_a Fock state witH\Iq:N_q:6 photons, the
the photon number differencen=(1/2)(N,—N_,) between r_e(c):(ilc; eFr;ergy IE5q=50g, and the Fermi momentum i
: ] =< =0.1g. Figure Ta) showsNg(t) for the same parameters.
the twozcogznterproea_ganP% modes and the eigenvalies o short times the atoms undergo Pendellosung oscilla-
+1) of J°=J%+1/2(J"J"+J7J") correspond to the total nUM-  tjons hetween initial and final momentum states, with an am-
ber of photons,j=1/2(Ng+N_g). Finally, o =Exq~Ex-q  plitude that decreases as the atomic momentum is further
=2kag/M is the frequency mismatch between the two mo-detuned from the Bragg resonance condition. For longer
mentum states accessible to the atom with initial momentunimes the oscillations of the individual atoms dephase, as
k-q. expected from their different kinetic energies. However, the
When compared to the Raman-Nath case, the dimensiofiephasing is not as strong as would be the case for a system
of the Hilbert space is now reduced By ,q5=(Np+1)2%,  of independent particles, such as in the standing-wave case

which allows us to consider larger numbers of atoms andjiscussed later on, a clear manifestation of the collective
photons. The initial state of the atoms is now a zero-nature of the system.

temperature Fermi sea shifted by in momentum, and we In addition, the individual atomic oscillations undergo a
evaluate the total number of atoms diffracted to states ofjecay that is intrinsically linked to the quantum correlations
momentum near & that build up between the light field and the atoms and is
B _ present even if we neglect dephasing., k-=0), as shown
Ns((t) = ) [Ek ) ]Pk+q(t) =§ Ppps (12 in Fig. 7(b). For zero dephasing, the amplitude of the oscil-
ELTKEKE f

lations eventually revives to its initial valuéThe fact that
for a light field initially in a Fock state and in a coherent the collapse of the oscillations and their subsequent revival
state. resemble a beat phenomenon in the figure is an artifact from

013404-6



DIFFRACTION OF ULTRACOLD FERMIONS BY.. PHYSICAL REVIEW A 71, 013404(2005

5 , , . . 01— : :
4 (@ 1
3
l‘ !
1
0 o_
afli © Y
= Al | )
%3 £0.05
z 2) 2
1 ¥
0
160 flii;. (¢)
120
ao
40 4
% 10 20 30 a0 50 " so a0 20 0 20 40 €0
vg™ o /9
FIG. 7. Mean number of scattered atorg=%P,;, for Fock FIG. 8. Projection of the initial conditions onto the spectrum of

states of the light field and for different recoil energigg)  the Hamiltonian(1l) for Ng=N_q=6 photons, five atoms, a recoil
Running-wave light field witiN,=N_,=6 photons in each of the energy ofE;,=50g, and a Fermi momentum é¢=0.19. Eigenfre-
two modes with recoil energi,,=50g. (b) Same light field as in  qUENCIES N units of.

(@) but without dephasing for the atonis,,=0. (¢) Standing-wave

light fielq With N:§ phot?ns with recoil energk,,=50g for 200 T ng—l

atoms. Time in units o§™. revival <j,1|J+|j,O> — (j,2|J+|j,1>

the comparatively small number of atoms and photons. _ 2mg™ (15)
Combined with the inhomogeneous dephasing due to the - Vi+Dji-V(i+2(G-1°

width of the Fermi sea, this decay results in the total oscil-

lation amplitudeNg(t) shown in Fig. 7a). which goes to infinity wher — . Note that this estimate is

We can gain a qualitative understanding of the collapseéiot limited to smallj values since it does not rest on the
and revival from an analysis of the matrix elements of theassumption of equal populations of ail states.
operatorsJ* andJ, which give an estimate of the transiton  The collapse and revival times can be analyzed more
frequencies for the atoms from to p;: although for an ini- quantitatively from the spectrum of the Hamiltonian. We nu-
tial Fock state the system starts in a state of defimitat merically determined the eigenvectdes,) and the eigenfre-
evolves over time into a linear superpositiomostates. The quenciesw,. Figure 8 shows the projectidt,|#(t=0))|? of
matrix elements of* andJ™ between differentn states yield the initial state|#(t=0)) onto the numerically determined
different Rabi frequencies and hence Bragg oscillation perieigenstatese,)
ods. Eigenstates of* with eigenvaluesm and m+1 are
coupled by the matrix element H|p) = wn| b,

G,m+ 1T, my =V +m+1)(j - m). (13)  of the Hamiltonian as a function of the corresponding eigen-

frequenciesw,. While the eigenfrequencies cover the whole

We can therefore estimate the collapse tilgg.., by calcu-  spectrum rather densely, the initial state of the system is well
lating the difference between the fastest and the slowest afescribed as a superposition of just a few groups of eigen-
these frequencies, the collapse time being roughly the timetates, and hence only a few narrow bands of frequencies,
after which this frequency difference has produced a phas@hich turn out to be almost equally spaced, significantly de-
difference of 2r. Under the assumption that afi states con-  termine the atomic dynamics. If these frequency bands were
tribute equally to the dynamics we find exactly evenly spaced the Pendelldsung oscillations would
be perfectly periodic. The variations in spacing and widths of
T _ 2mg _ 2mg the various frequency bands lead to the more complicated

decay™ . +]: T [ [ .
G, U375,0 = Gl = V(G +1)j - V2 dynamics. .

(14) The width of the frequency bands, which can be traced
back to the usual dephasing of the atoms due to their spread

This estimate gives satisfactory agreement with the actudh kinetic energies, gives the ordinary decay of the density
decay time for smalj (it is within ~10% of the numerical oscillations, while the variation in separations between bands
result for our parametexsbut breaks down for large We  is a measure of the inverse revival time. Figure 9 shows this
attribute this to the fact that the assumption thathaktates separation, obtained numerically for several photon numbers
are initially equally populated is unphysical for largje with and without dephasing. For comparison we also give
The revival time of the Pendellésung oscillations can bethe inverse revival time as determined from the matrix ele-

evaluated in a similar fashion: The revivals occur when thements ofJ" as well as by a direct inspection NfJ(t). While
Rabi frequencies for neighboring-states differ in phase by the agreement between the revival times determined from the
2. This gives spectrum of the Hamiltonian and frodMy(t) is good for all

-1 -1
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20T,y @)

10 20 25 30 pg M

1 N=N_eN vg-!
FIG. 9. Inverse revival time &/ Tva Of the oscillations as
determined from the spectrum of the Hamiltonian as a function of

the photon number fdE,,=50g andk:=0.1q (< ). For comparison
we also show the results without dephasikg=0 (O) and the
values obtained from comparing matrix elements Bf i.e.,
V(i+Dj-\(3+2)(j-1) (O). The inverse revival times as deter-
mined directly from simulations foNg{t) like the one shown in
Fig. 7(b) for no dephasing are also gi«&/). Frequencies are in
units ofg.

photon numbers, the agreement with the estimate based on N\ 2
the matrix elements of* improves for large photon num- pa 0 vg™
bers.
FIG. 10. Scattering probability for five atoms scattering(ajfa

2. Coherent state running wave andb) a standing wave in a coherent state. In both
The case of a coherent state is readily obtained by aveti—afzs theTrr]eCO" energy qu 5nghar:d the. f%ml_;m.)memum q °
aging the Fock state results over a Poissonian photon distri£ ™ 1q € _mea_n r\um 'er ° _'2 otons y=N-q= i n @ an
bution. The results foP, (t) and N(t) are given in Figs. N=12 in (b). Time is in units ofg™" and momentum in units df.
10(a) and 1Z%a), respectively. The oscillations of the mean
number of scattered atoms as well as the Pendelldsung oscil-
lations of the individual atoms decay in a timeg™. In
addition to the effects discussed in the previous section, we
now have an additional dephasing due to the photon statistics
of the coherent states. These independent dephasing pro-
cesses are normally associated with noncommensurate decay
rates and revival times; hence there are no revivals in this
case.

'B/(a)'

(b)

L (©

v
h @

C. Bloch vector model

We mentioned that since in the Bragg regime the atoms ]

undergo Pendellésung oscillations between two momentum

states, they can be thought of as two-level systems, albeit in fw JV\ Jm J]

momentum space rather than in energy. This two-level struc- , , ,

ture suggests that we recast the problem in the language of 118 szg_, 25 3 35

Bloch vectors well known from conventional quantum op-

tics. We proceed by introducing the pseudospin vector FIG. 11. Mean number of scattered atomig{(t) in coherent
5 =070 % R o o et s ot

q=N_g=6. +=0.1g and the
where X, ¥, and Z are unit vectors along thg, y, and z recoil energy isEy,=50g. (b) Light field as in(a), atoms without

N, (O
O=<NWHPO-NWVLO=-NWLO=NWLO

o

0.5 4

directions in the abstract Bloch vector space and dephasing, i.ekg=0. (c) Standing-wave light field with mean pho-
ton numbeN=12 and Fermi momentuikx=0.1q and recoil energy
32: }(SI +S), Eq=50g. (d) Light field as in(c), but without dephasing for the
2 atoms,ke=0. Time in units of Zrg™..
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approximate model for five atoms and a light field initially in

a coherent state with mean photon numkégsN_,=6.

The atomic Pendellésung oscillations do not decay as fast
as in the full quantum description of Fig. (). In the
present picture, it can be attributed to the degradation of the
intensity grating. The maximum oscillation amplitude occurs
whenJ lies in the equatoria%-y plane, but the scattering of
the atoms leads to a redistribution of the photons between the
counterpropagating modes and a decrease in the optical
fringe visibility.

\

N2

WA

IV. STANDING-WAVE QUANTIZATION

For a standing-wave quantization of the light field the

FIG. 12. Scattering probabilityPp(t) for five atoms in a Hamiltonian(2) is replaced by

running-wave light field as calculated within the Bloch vector pic-

ture. The Fermi momentum ik-=0.1q and the recoil energy is gN
E»q=50g. Time in units ofg™ and momentum in units af. He= >, Exclo + ?E Cﬂ:_quJ,q +H.c. (19
k k
1 S ot . .
Y==(S-S) (16) where N—a a, the number operator for the optical field
2i mode, is clearly a constant of motion, aadl and a are

bosonic creation and annihilation operators.
[see Eq(9)]. The operatorsc I=X,y,z, obey the usual an- P

gular momentum commutation relations _
A. Raman-Nath regime
[§1<’$] =l €mndicer Sk, 17 From Eg.(19) we now have

where g, is the Levi-Civita symbol. Using these commuta- N
tion relations we obtain the coupled equations of motion for  j—¢/ ¢, = (B, = Ekl)Cl Ci, * g—(cl’i Cip2q* c ck2+2q)
the light field and atomic operato¢$1): dt ™ ! 2 " !

dJ e gN
qt - 9E%+8Y) xJ, = 55 (Chpraqlio, * Chy2qCi)- (20)

Since Eq.(19) does not couple states with different photon

a5 =[S Z + g(FK + PY)] X S, (18) numbers, we can replad¢ by the corresponding eigenvalue
dt N for a particular number staftl). We can then calculate the

where we have introduced the total atomic spin operators €volution 0f<0l10k2> for a general state of the field by aver-
aging over the appropriate photon number distribution.
s=>s. The equations for the first-order moments of the indi-
k vidual atoms are identical to those describing the scattering

of a single atom by a classical light field, if one identifies
0g]NIZ with the classical Rabi frequency. This follows from
the absence of correlations between the light field and the
atoms, together with the conditian> kg, which implies the
absence of Pauli blocking.

Equations(18) are exact within the two-state picture of
Bragg scattering. We can then obtain a semiclassical versi
of these equations by factorizing expectation values of prod
ucts of atomic and field operators, e.gS"J") =(S™(J".

ha\I/:eO(rS%tOO)T:S—V;I/tg nggl»r:?;g(%?;i g?g:e;ﬁ?( asr(())L:rr]ua}I t\fﬁe The scattering of a single atom by a classical field is a
o Y , ’ well-studied problem. An analytical solution is known in the
individual atomic Bloch vectors point to the south pole. roman-Nath regime: see, e.f18,22,23. If the kinetic en-
Likewise, for a field in a Fock state we have tHaf(0))  grgy of the atoms is not negligible, on the other hand, one
=(J¥(0))=0, so that] points along the axis, too. From the pas to rely on a numerical solution.
Bloch equationg(18) it is then immediately apparent that  Figure 13 shows the results for two atoms in a Fock state
there is no atomic scattering in the semiclassical descriptiorwith N=6 photons. For short times the scattering clearly re-
consistently with the previous discussion. sembles the single-particle behavior, the probability of find-
For a coherent state, on the other haht not parallel to  ing an atom in themth side mode being proportional to
the z axis. For our choice of phase and f8§=N_, it points J2(gN1). Note that this result is identical to the approximate
instead along th& direction. The phase relationship betweenfirst-order calculation for the running-wave coherent state of
the two counterpropagating coherent states leads to an inteBec. lll.
sity grating and the atoms will scatter off it. Figure 12 shows The solution for a coherent state is obtained by averaging
the resulting scattering probabilii?pf(t) obtained from this over a Poissonian photon number distribution. The result is
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I ONR2? L
A g o P, (1) = —————sirf(\Véw? + (gNI2)%), (22
A S T o7 Gt g™k GNP, (22
08 .. o ....... : 2 as illustrated in Fig. @) for five atoms and the light field in
= oal N i a Fock state witiN=12 photons. As expected, the frequency

of the Pendelldsung oscillations increases and their ampli-
tude decreases with detunifgee Eq(22)]. In contrast to the

10 1 running-wave case, these oscillations remain perfectly sinu-
; soidal for all times.
0 ' The oscillations in the mean number of scattered atoms
S . 15 2 Nsdt) are shown in Fig. (€) for an atom number of 200. All
Pg -0, 05 other parameters are as bef¢gd]. Their decay due to the

v spread in detuningéw, resembles the dephasing of an inho-

FIG. 13. Scattering of two atoms off a standing-wave light field mogeneously broadened ensemble of independent two-level

in a Fock state wittN=6 photons; the recoil energy By,=g and ~ SYSt€mS, with a dephasing time given by/dw,..
the Fermi momentum ik==0.1q. Time in units ofg~t and momen- The scattering probability for a coherent state light field is
tum in units of photon momentum shown in Fig. 10b) and the mean number of scattered atoms
Ns(t) is shown in Fig. 1{c). The atomic parameters are the
same as for the Fock state calculations while the light field

shown in Fig. 14 for a mean photon numb§|=6, which ;
illustrates the dephasing due to the distribution of Rabi fre-has been replaced by a coherent state with the mean number

quencies for such a state. of photonsN=12. s
As in the running-wave case, the oscillations collapse due

to the spread in Rabi frequencies associated with the coher-
B. Bragg regime ent state. In contrast to that former case, though, they also

_ ) _undergo a revival after the tim&.y,,=27g %, as follows
As previously discussed, the atoms can now be describeglom the fact that the difference between the Rabi frequen-

in a two-state basis, leading to the effective Hamiltorigge  cjes forN and N+ 1 photons igy/2, independently oN. As
Eq. (1D)] in the two-photon Jaynes-Cumming model, all number states
rephase at the same instant and the revivals are perfect if the
gN dephasing due to the kinetic energy of the atoms can be
H= > S S+ (S +S) (- (21) neglected, as shown in Fig. (). With dephasing included,
ke[-Kg.kel 2 the revivals are only partial; see Fig.(tL
Another difference between the running-wave and
Evidently, the Hamiltonian decomposes into independengtanding-wave quantization schemes can be seen in the evo-
single-particle Hamiltonians for the individual atoms, lution of the scattering probability for the coherent state. In
=3,H so that the atomic equations of motion decouple andhe case of running waves the probability of finding an atom
can be readily solved analytically. If the cavity is in a Fock in the scattered states is about 1/2, independently of their
state, the atoms undergo Pendellésung oscillations indepefetuning, while in the standing-wave case this probability

dently of each other, with a detuning given By,. We then ~ decreases with increasing detuning. This difference under-
obtain lines the importance of the correlations between the light

field and the atoms. While the atoms move independently in
a standing-wave light field, the atoms and the field become
an inseparable quantum system in the running-wave case.

V. CONCLUSION AND OUTLOOK

0.64.

®

e | R A Bt B R In this paper we have compared the scattering of ultracold

02 . S N 1 fermions by quantized light fields composed of “true” stand-

o ' { ing waves and of superpositions of counterpropagating run-

10 f ning waves, both in the Raman-Nath and in the Bragg re-
T gimes. The central difference between the two quantization
0 \ schemes is that the entanglement between the light field and

p 15 the atoms plays a crucial role for a running-wave light case,

Pa 105 05 but not for standing-wave quantization.

—1
" In the Raman-Nath regime the scattering by a standing-

FIG. 14. Scattering of two atoms off a standing-wave light field Wave light field in a Fock state is similar to the scattering by
in a coherent state. The mean number of photons is six, the recodl classical field, and can be largely understood from the re-
energy isEx,=g, and the Fermi momentum ig-=0.1g. Time in  sults for a single atom. The only many-particle effect is a
units ofg~* and momentum in units of photon momentam dephasing of the atomic motion due to the finite width of the
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TABLE |. Time scales for the different processes that lead to a collapse and revival of the Bragg oscillations.

Present in

Fock state, Fock state, coherent state, coherent state,
standing running standing running
Decay mechanism  wave wave wave wave Collapse time Revival time

No revivals

Dephasing due to o q
kinetic energy 2keEyq
of atoms Yes Yes Yes Yes

Different Rabi

frequencies

due to

photon number —
uncertainty No No Yes Yes A V/N_g 27lg

Correlations Arr Arr

between f — 2N - -
light field g(V(N+2N=-2yN)  g(v(N+2N-V(N+4)(N-2))

and atoms No Yes No Yes

initial momentum distribution of the atoms. For running-  This paper has considered only fermionic atoms. Bosonic

wave quantization, on the other hand, the quantum correlaaperators commute rather than anticommute, resulting in dif-

tions that develop between the light field and atoms are ederent equations of motion for the second and higher corre-

sential, and their neglect leads to the absence of atomiation functions of atomic operators. Consequently, differ-

diffraction by a Fock state of the field. ences in the scattering result solely from the effect of these
In the Bragg regime and for a standing-wave light field, higher-order correlations on the dynamics.

atomic diffraction can be solved in terms of solutions for

single atoms, which undergo Pendellésung oscillations that

undergo a series of collapse and revivals in the case of a ACKNOWLEDGMENTS
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