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We study the diffraction of quantum-degenerate fermionic atoms off of quantized light fields in an optical
cavity. We compare the case of a linear cavity with standing-wave modes to that of a ring cavity with two
counterpropagating traveling wave modes. It is found that the dynamics of the atoms strongly depends on the
quantization procedure for the cavity field. For standing waves, no correlations develop between the cavity
field and the atoms. Consequently, standing-wave Fock states yield the same results as a classical standing
wave field while coherent states give rise to a collapse and revivals in the scattering of the atoms. In contrast,
for traveling waves the scattering results in quantum entanglement of the radiation field and the atoms. This
leads to a collapse and revival of the scattering probability even for Fock states. The Pauli exclusion principle
manifests itself as an additional dephasing of the scattering probability.
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I. INTRODUCTION

The past few decades have witnessed considerable
progress in the cooling of atomic vapors to extremely low
temperatures, culminating in the achievement of Bose-
Einstein condensation in dilute alkali-metal gases[1–3].
More recently, quantum-degenerate Fermi gases with tem-
peratures as low as 0.01TF, whereTF is the Fermi tempera-
ture, have been achieved by several groups[4–6]. Through-
out these developments the interaction of light with atoms
has been central to the cooling, trapping, and imaging of
atoms, as well as in the coherent manipulation of their
center-of-mass motion. For example, the Bragg scattering of
atomic matter waves by off-resonant optical fields can be
used to create linear atom optical elements for use in atom
interferometers[7], and the interaction of atomic condensates
with light has led to the realization of matter-wave superra-
diance[8] and of matter-wave parametric amplifiers[9–11].
In another application, the ability of optical fields to create
custom trapping potentials has permitted the study of con-
densed matter problems such as, e.g., the Mott-insulator tran-
sition [12–14]. Although all experiments to date have in-
volved classical optical fields, there is considerable interest
in carrying out future work in high-Q optical cavities, where
the quantum nature of the electromagnetic field becomes im-
portant. Theoretical work along these lines has so far been
restricted to the case of bosonic atoms(see, e.g., Ref.[15]),
while the diffraction of fermions by an optical field was dis-
cussed in Ref.[16], but in an analysis restricted to the case of
classical fields. In this paper we extend this work to discuss
the diffraction of quantum-degenerate fermionic matter-wave
fields by quantized light fields.

We consider a zero-temperature beam of fermionic two-
level atoms traversing an optical cavity supporting an off-
resonant standing-wave light field of momentumq. The at-
oms undergo virtual transitions to their excited electronic

state, resulting in a center-of-mass momentum recoil of 2q.
Alternatively, one can view this process as diffraction the
atoms off the intensity grating formed by the cavity field.

The normal modes in terms of which the electromagnetic
field is quantized are determined by the boundary conditions
of the cavity. A linear cavity with perfectly reflecting mirrors
is described in terms of standing-wave mode functions. In a
ring cavity, in contrast, the light field has to satisfy periodic
boundary conditions and this results in running-wave mode
functions. Two counterpropagating traveling-wave modes of
equal frequency can be superposed to yield a stationary
standing-wave field.

Under most circumstances it is a question of mathematical
convenience which mode functions are used for the descrip-
tion of the field. Physically, however, the two cases are not
the same and for fields containing only a few photons, the
two quantization procedures yield different results. In par-
ticular, the difference in atomic scattering produced in these
two situations has been discussed for single atoms diffracted
by a coherent light field[17]. Diffraction was shown to de-
pend critically on the quantization procedure, a difference
that can be understood in terms of which-way information
for the scattering process. For standing-wave modes, the
state of the light field contains no information about the mo-
mentum transfer to the atom. More specifically, the number
of photons is a constant of motion and as a result the equa-
tions of motion for the atomic center of mass decouple from
that of the light field. In the case of two counterpropagating
traveling-wave modes however, the number of photons in
each mode does change and the change in the number of
quanta is a direct measure of the momentum transfer to the
atoms. In this paper we extend those results to compare the
diffraction of a quantum-degenerate Fermi gas by these
fields, in both the Raman-Nath and Bragg regimes.

In the Raman-Nath regime, which is characteristic of situ-
ations where the kinetic energy of the atoms can be ne-
glected, the individual atomic dynamics for a standing-wave
light field are formally identical to the case of a classical
light field [18]. The atoms scatter into successive diffraction
orders separated by twice the photon momentumq, up to the
point where energy-momentum conservation becomes im-
portant and the Raman-Nath approximation ceases to hold.
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The formal equivalence of the scattering off a standing-wave
field to the scattering off a classical light field is due to the
fact that the equations of motion for the atoms effectively
decouple both from each other and from the light field. This
must be contrasted to the case of running waves, where the
number operators for the two modes are not constants of
motion. This leads to an infinite hierarchy of coupled equa-
tions for the atomic and optical field operators, with higher-
order correlation functions playing a crucial role in the dy-
namics of first-order atomic correlation functions. To
proceed analytically it is then necessary to introduce some
approximate truncation scheme, a procedure that we discuss
in detail and compare with exact numerical results for small
atom numbers.

In the Bragg regime, energy-momentum conservation re-
duces the single-atom diffraction problem to a two-mode
situation, the atoms undergoing Bragg oscillations between
their initial momentum statespi and final momentum state
pf =pi +2q. The character of these oscillations is the result of
three separate and independent effects that correspond to
whether one uses standing-wave or traveling-wave modes,
whether the cavity field is in a Fock state or in a coherent
state, and the momentum spread of the incident atomic beam.

This paper is organized as follows. After formulating our
model in Sec. II we discuss the case of traveling-wave light
quantization in Sec. III. We develop approximate equations
for first- and second-order correlation functions appropriate
for the Raman-Nath regime, and a Bloch vector picture use-
ful to discuss Bragg diffraction. That picture yields a semi-
classical model that provides some intuitive understanding of
the atomic dynamics. The case of standing-wave quantiza-
tion is discussed in Sec. IV, and Sec. V gives a summary and
conclusion.

II. MODEL

We consider an ultracold beam of identical two-level fer-
mionic atoms propagating across a high-Q optical cavity; see
Fig. 1. Their initial momentum distribution is a Fermi sea at
T=0, but shifted in momentum space by the mean momen-
tum p and with Fermi momentumkF assumed to be much
less thanq, the photon momentum. This is a realistic ap-
proximation, since for a degenerate Fermi gas of densityn
<1017 m−3 the Fermi momentum iskF<106 m−1 while for a
photon of wavelengthl=500 nm one has a momentum of
q<107 m−1. Consistently with typical experimental condi-
tions we also assume that the number of atomsNa, given in
three dimensions by

Na =
VkF

3

6p2 , s1d

whereV is the quantization volume, is much less than the
number of photonsNp. Note that as is typically the case with
fermions, the memory requirements of a numerical calcula-
tion scale as 2Na, limiting the number of particles that can
typically be handled in practice to less than 20. In addition,
the quantized nature of the light field can significantly further
reduce this number.

In the following we neglect atomic collisions—a good
approximation well below the Fermi temperature, since the
s-wave scattering length is zero for identical fermions—as
well as decay of the optical field in the cavity. We also as-
sume that the optical frequencyv is sufficiently detuned
from the atomic transition frequencyv0 that the upper elec-
tronic level can be adiabatically eliminated. Finally, we con-
sider a situation where that atomic momentummv' trans-
verse to the cavity field is large enough to be treated
classically. Timet can then be parametrized in terms of the
transverse distancex by t=x/v'.

III. RUNNING WAVES

For running-wave quantization, the Hamiltonian describ-
ing our system iss"=1d

Hr = o
k

Ekck
†ck + vsaq

†aq + a−q
† a−q + 1d

+ sgaq
†a−qo

k

ck−q
† ck+q + H.c.d, s2d

whereck and ck
† are the annihilation and creation operators

for a fermionic atom of momentumk, aq and aq
† are the

annihilation and creation operators for a photon of momen-
tum q, Ek=k2/2M is the kinetic energy of an atom of mo-
mentumk, g=VR

2 /D is the coupling energy of the atoms and
the light field,VR is the vacuum Rabi frequency, andD=v
−v0 is the atom-light detuning.

The initial state of the atoms-field system is

ucs0dlrw = ufqluf−ql p
uku,kF

ck
†u0l, s3d

where the field statesuf±ql are taken to be either Fock states
uN±ql or coherent statesua±ql.

FIG. 1. (a) Schematic of a scattering of an atom of initial mo-
mentump via two-photon transitions with photons of momentaq
and −q. Initial momentum distributionNspd of the atoms for scat-
tering in (b) the Raman-Nath regime and(c) the Bragg regime.
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A. Raman-Nath regime

The Raman-Nath regime is characteristic of situations
where the kinetic energy of the atoms plays a negligible role
in comparison with the interaction energy, i.e.,E2q

!gÎNqN−q, where the recoil energyE2q=2q2/M is a mea-
sure for the typical kinetic energies involved. In practice, this
amounts to assuming that the atoms have an infinite mass,
and as such, neglects the effects of the quadratic dispersion
relation of the atoms.

The most straightforward way to solve this problem pro-
ceeds by integrating the Schrödinger equation corresponding
to Hamiltonian(2) for the initial conditions(3), from which
we can obtain the probability

Ppstd = kcstducp
†cpucstdl s4d

for an atom being scattered to a state of momentump. How-
ever, the dimensionD of the Hilbert space grows exponen-
tially asDRaman-Nath=s2nd+1dNasNp+1d wherend is the num-
ber of diffraction orders considered. Hence, a direct
integration of the Schrödinger equation is possible only for
rather small atom and photon numbers.

Figure 2(a) shows the result of an exact solution of the
Schrödinger equation forNa=2 atoms and the light field ini-
tially in a Fock state with three photons per mode. In this
example, the recoil energy isE2q=g and the initial momen-
tum of the atoms ispi = ±0.1q. Such a high recoil energy was

FIG. 2. Scattering probabilityPpstd for two atoms scattering off a running-wave light field in the Raman-Nath regime.(a),(c),(e) are for
a Fock state of the light field and(b),(d),(f) for a coherent state.(a),(b) Exact solution;(c),(d) results of first-order equations;(e),(f) results
for the second-order equations.E2q=g, kF=0.1, time in units ofg−1, momentum in units ofq.
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chosen to limit the number of diffraction orders that are sig-
nificantly populated before energy-momentum conservation
inhibits further diffraction, i.e., before exiting the Raman-
Nath regime.

The resulting dynamics resembles qualitatively the single-
atom case; see, e.g.,[18]. For short times the probability of
finding an atom in themth-order mode is well described by
,Jm

2 s2gtd whereJm is the mth Bessel function. For longer
interaction times, higher scattering orders are suppressed due
to energy-momentum conservation, as expected. We note
that since the difference in kinetic energies of the two atoms
is small compared to all other relevant energies, we do not
observe any effect of “inhomogeneous broadening.”

For comparison, the results for initial coherent states with

mean photon numbersN̄q=N̄−q=3 are shown in Fig. 2(b) for
the same atomic parameters. We now observe a decay of the
oscillations of the scattering probabilities after a timet

,s2p /gdsN̄qN̄−qd−1/2, which corresponds to a complete
dephasing of the contributions of the different photon num-
bers to the diffraction pattern.

Experimentally, the most directly accessible quantity de-
scribing the scattering dynamics of the atoms is the first-
order correlation functionkck1

† ck2
l. From the Hamiltonian(2)

we find readily

i
d

dt
kck1

† ck2
l = sEk2

− Ek1
dkck1

† ck2
l + gka−q

† aqsck1

† ck2−2q

− ck1+2q
† ck2

dl + gkaq
†a−qsck1

† ck2+2q − ck1−2q
† ck2

dl,

s5d

i
d

dt
kaq1

† aq2
l = go

k

kdq2,qaq1

† a−qck−q
† ck+q + dq2,−qaq1

† aqck+q
† ck−q

+ dq1,−qaq
†aq2

ck−q
† ck+q + dq1,qa−q

† aq2
ck+q

† ck−ql,

s6d

where thed’s are Kronecker delta functions.
Because the response of the atoms to the light field is

nonlinear, the first-order correlations are coupled to second-
order correlations, which in turn will be coupled to third-
order correlations, and so on. Thus, we end up with an infi-
nite hierarchy of equations of motions for the correlation
functions of all orders. This hierarchy of equations is remi-
niscent of the so-called Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy encountered in the theory of in-
teracting gases; see, e.g., Ref.[19], p. 65. In order to get a
closed set ofc-number equations we need to invoke a fac-
torization scheme that truncates this hierarchy. The resulting
set of ordinary differential equations can then be solved by
standard numerical techniques and the number of equations
grows only polynomially with the number of atoms.

The simplest and most naive factorization scheme con-
sists in simply factorizing second-order correlation functions
of the typekaq1

† aq2
ck1

† ck2
l that appear on the right-hand side of

Eqs.(5) and(6) into products of first-order correlation func-
tions, for instance,kaq1

† aq2
ck1

† ck2
l<kaq1

† aq2
lkck1

† ck2
l. In doing

so we neglect correlations that may build up between the

atoms and the light field as well as higher-order atom-atom
and field-field correlations. The result of the numerical inte-
gration of these equations of motion is shown in Figs. 2(c)
and 2(d) for the cases of a Fock state and a coherent state of
the field, respectively.

An obvious weakness of the simple truncation scheme is
that it predicts the absence of scattering for the case of Fock
states, in stark contrast to the exact solution. This follows
from the absence of initial coherence in either the light field
or the atoms, leading to the scattering term in Eq.(5) being
identically zero. Stated differently, the reason for the absence
of diffraction is that the phase of a Fock state is completely
undetermined, hence there is no established relative phase
between the two counterpropagating fields, and no light in-
tensity grating. Since in this factorization scheme the atom is
effectively assumed to probe only first-order moments of the
light field, that is, its intensity pattern, diffraction is absent at
this level of approximation.

The situation is different for a coherent state light field. In
this case, there is a well-established phase relationship be-
tween the two modes. This results in an intensity grating
from which the atoms can be diffracted. As time goes on, this
results in the generation of atomic coherence,kck1

† ck2
lÞ0,

and the resulting density grating formed by the atoms acts
back on the light field. In some loose sense, the lowest-order
factorization scheme consists in treating the system classi-
cally since it neglects all quantum fluctuations in the atomic
and optical fields. It is not surprising that this approach
should fail for a very nonclassical field state such as a Fock
state, and be much better for a quasiclassical field. Note,
however, that while for short enough times the scattering
closely resembles the exact results, this is no longer the case
for long times, a consequence of the buildup of quantum
correlations between the optical and matter-wave fields.

We note that for our specific initial conditions, the fully
factorized equations for the light field can be trivially inte-
grated, showing that the first-order moments of the light field
are constants of motion. Inserting these constants in the
atomic equations of motion shows that at this level, the scat-
tering becomes formally equivalent to the scattering of atoms
by a classical standing-wave light field with intensity
gkaq

†a−ql. This is further discussed in the following section.
The equations of motion(5) and (6), suggest that an im-

proved factorization scheme would retain the lowest-order
correlations between light field and atoms. In order to do so,
we supplement the equations of motion forkck1

† ck2
l and

kaq1

† aq2
l by equations of motion for the cross correlations

kaq1

† aq2
ck1

† ck2
l and the second-order correlations of the light

field and the atoms. This should remedy the major flaw of the
first-order calculation, namely, its inability to predict atomic
scattering for a light field in a Fock state.

The equations for the lowest-order atom-field correlation
functions involve third-order correlations of the form
kaq1

† aq2
aq3

† aq4
ck1

† ck2
l and kaq1

† aq2
ck1

† ck2
ck3

† ck4
l. We truncate the

resulting hierarchy of equations of motion by introducing the
factorization scheme
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kaq1

† aq2
aq3

† aq4
ck1

† ck2
l . kaq1

† aq2
lkaq3

† aq4
ck1

† ck2
l + kaq1

† aq2
aq3

† aq4
l

3kck1

† ck2
l + kaq1

† aq2
ck1

† ck2
lkaq3

† aq4
l

− 2kaq1

† aq2
lkaq3

† aq4
lkck1

† ck2
l s7d

and similarly for kaq1

† aq2
ck1

† ck2
ck3

† ck4
l with aq’s replaced by

ck’s, and vice versa[20]. The last term of this equation ac-
counts for the case where all first-order correlation functions
are uncorrelated. Background information on the motivation
for this kind of factorization scheme can be found in Chapter
4 of [21].

We estimate the accuracy of the factorization scheme by
calculating kaq1

† aq2
aq3

† aq4
ck1

† ck2
l and kaq1

† aq2
ck1

† ck2
ck3

† ck4
l as

well as their respective factorized values Eq.(7) using the
exact solution of the Schrödinger equation. As an example
Fig. 3 shows the results forka−q

† aqaq
†a−qckF

† ckF
l and Fig. 4

shows the results forkaq
†aqckF

† ckF
ckF

† ckF
l for the parameters of

Fig. 2. This shows that the factorization scheme reproduces
at least qualitatively the main features of the third-order cor-
relation functions for both coherent states and Fock states.

Despite its partial success, this factorization scheme suf-
fers from two major flaws. First, the small deviations of the
factorized values from the exact values accumulate in time,
leading to increasing discrepancies between the approximate
and exact results. Even worse, this scheme violates important
relations that the exact operators have to obey. For example,
aq

†aqckF

† ckF
ckF

† ckF
is a positive self-adjoint operator, with posi-

tive and real expectation values, but the factorized approxi-
mation can take on negative values. These flaws eventually
result in the nonphysical behavior illustrated in Figs. 2(e)
and 2(f), where the probabilitieskck

†ckl take on negative val-
ues. We have not found a factorization scheme that avoids
nonphysical behavior of that kind for all times, and conjec-
ture that the factorization of higher-order moments into

lower-order moments necessarily leads to such inconsisten-
cies.

The results of the factorization scheme(7) are shown in
Fig. 2(e) for a Fock state and in Fig. 2(f) for a coherent state
of the light field. While a Fock state now leads to atomic
diffraction, as should be the case, it is characterized by non-
physical negative probabilities already for short times. This
is clear evidence that higher-order correlations play an essen-
tial role. This is in contrast with the situation for a coherent
state, where we achieve good agreement with the exact re-

sults for times up to,s2p /gdsN̄qN̄−qd−1/2, indicating that the
first- and second-order correlations are the most important.

A quantitative measure of the degree of entanglement be-
tween the atoms and the light field is given by the second-
order cross correlation

xstd = o
k

skaq
†a−qck−q

† ck+ql − kaq
†a−qlkck−q

† ck+qld, s8d

which is equal to zero in the absence of entanglement. Figure
5 showsxstd for both a Fock state and a coherent state light
field, for the parameters of Fig. 2. Because the light field and
atoms are initially uncorrelated we havexst=0d=0 but cross
correlations then build up to become of the order of

sN̄qN̄−qd1/2Na. The figure also shows the result of the factor-
ization ansatz(7), showing the good agreement with the ex-
act result for short enough times.

B. Bragg regime

In the Bragg regime, energy-momentum conservation re-
stricts the scattering of the atoms to two diffraction orders,
an initial mode of transverse momentumpi <−q and a final
mode of momentumpf =pi +2q<q. Classically, the atoms
are known to undergo Pendellösung oscillations between
these two modes. As such, the atoms can be thought of as
two-state systems that are conveniently described in terms of
pseudospin operators

FIG. 3. Expectation value ofa−q
† aqaq

†a−qckF

† ckF
from the numeri-

cal solution of the Schrödinger equation for a Fock state and for a
coherent state; same parameters as in Fig. 2.s andL, exact(un-
factorized) value for Fock state and coherent state respectively; bro-
ken line s−−d and solid line (—), corresponding values for the
Fock state and coherent state as obtained with the factorization
scheme(7).

FIG. 4. Expectation value ofaq
†aqckF

† ckF
ckF

† ckF
from the numeri-

cal solution of the Schrödinger equation for a Fock state and for a
coherent state of the light field; same parameters as in Fig. 2.s and
L, exact unfactorized value for Fock state and coherent state, re-
spectively; broken lines−−d and solid line(—), results from the
factorization scheme(7) for the same two cases.
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Sk
z =

1

2
sck+q

† ck+q − ck−q
† ck−qd,

Sk
+ = sSk

−d† = ck+q
† ck−q. s9d

Introducing further the Schwinger representation of the light
field by means of

Jz =
1

2
saq

†aq − a−q
† a−qd,

J+ = sJ−d† = aq
†a−q, s10d

the Hamiltonian of the atoms-field system simplifies to

H = o
kPf−kF,kFg

sdvkSk
z + gJ+Sk

− + gJ−Sk
+d. s11d

In this representation, the eigenvaluesm of Jz correspond to
the photon number differencem=s1/2dsNq−N−qd between
the two counterpropagating modes and the eigenvaluesjs j
+1d of J2=Jz2+1/2sJ+J−+J−J+d correspond to the total num-
ber of photons,j =1/2sNq+N−qd. Finally, dvk=Ek+q−Ek−q

=2kq/M is the frequency mismatch between the two mo-
mentum states accessible to the atom with initial momentum
k−q.

When compared to the Raman-Nath case, the dimension
of the Hilbert space is now reduced toDBragg=sNp+1d2Na,
which allows us to consider larger numbers of atoms and
photons. The initial state of the atoms is now a zero-
temperature Fermi sea shifted by −q in momentum, and we
evaluate the total number of atoms diffracted to states of
momentum near +q,

Nscstd = o
kPf−kF,kFg

Pk+qstd ; o
pf

Ppf
, s12d

for a light field initially in a Fock state and in a coherent
state.

1. Fock state

Figure 6(a) shows the probabilityPpf
std that an atom has a

final momentumpf in the vicinity of +q. In this example,
which is for five atoms, the counterpropagating field modes
are initially in a Fock state withNq=N−q=6 photons, the
recoil energy isE2q=50g, and the Fermi momentum iskF
=0.1q. Figure 7(a) showsNscstd for the same parameters.

For short times the atoms undergo Pendellösung oscilla-
tions between initial and final momentum states, with an am-
plitude that decreases as the atomic momentum is further
detuned from the Bragg resonance condition. For longer
times the oscillations of the individual atoms dephase, as
expected from their different kinetic energies. However, the
dephasing is not as strong as would be the case for a system
of independent particles, such as in the standing-wave case
discussed later on, a clear manifestation of the collective
nature of the system.

In addition, the individual atomic oscillations undergo a
decay that is intrinsically linked to the quantum correlations
that build up between the light field and the atoms and is
present even if we neglect dephasing(i.e., kF=0), as shown
in Fig. 7(b). For zero dephasing, the amplitude of the oscil-
lations eventually revives to its initial value.(The fact that
the collapse of the oscillations and their subsequent revival
resemble a beat phenomenon in the figure is an artifact from

FIG. 5. Cross correlationxstd between light field and atoms in
the Raman-Nath regime as obtained from the exact solution of the
Schrödinger equation for a Fock statessd and a coherent statesLd
of the light field. Also shown are the values obtained from the
factorization scheme(7), s−−d for a Fock state light field and(—)
for a coherent state. Same parameters as in Fig. 2.

FIG. 6. Scattering probabilityPpfstd for five fermions scattering
off a running-wave light field(a) and a standing-wave light field(b)
in the Bragg regime. The light field is in a Fock state withNq

=N−q=6 andN=12 photons, respectively,E2q=50g, andkF=0.1q.
Time in units ofg−1 and momentum in units ofq.
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the comparatively small number of atoms and photons.)
Combined with the inhomogeneous dephasing due to the
width of the Fermi sea, this decay results in the total oscil-
lation amplitudeNscstd shown in Fig. 7(a).

We can gain a qualitative understanding of the collapse
and revival from an analysis of the matrix elements of the
operatorsJ+ andJ−, which give an estimate of the transition
frequencies for the atoms frompi to pf: although for an ini-
tial Fock state the system starts in a state of definitem, it
evolves over time into a linear superposition ofm states. The
matrix elements ofJ+ andJ− between differentm states yield
different Rabi frequencies and hence Bragg oscillation peri-
ods. Eigenstates ofJz with eigenvaluesm and m+1 are
coupled by the matrix element

k j ,m+ 1uJ+u j ,ml = Îs j + m+ 1ds j − md. s13d

We can therefore estimate the collapse timeTdecayby calcu-
lating the difference between the fastest and the slowest of
these frequencies, the collapse time being roughly the time
after which this frequency difference has produced a phase
difference of 2p. Under the assumption that allm states con-
tribute equally to the dynamics we find

Tdecay=
2pg−1

k j ,1uJ+u j ,0l − k j , j uJ+u j , j − 1l
=

2pg−1

Îs j + 1d j − Î2j
.

s14d

This estimate gives satisfactory agreement with the actual
decay time for smallj (it is within ,10% of the numerical
result for our parameters), but breaks down for largej . We
attribute this to the fact that the assumption that allm states
are initially equally populated is unphysical for largej .

The revival time of the Pendellösung oscillations can be
evaluated in a similar fashion: The revivals occur when the
Rabi frequencies for neighboringm-states differ in phase by
2p. This gives

Trevival =
2pg−1

k j ,1uJ+u j ,0l − k j ,2uJ+u j ,1l

=
2pg−1

Îs j + 1d j − Îs j + 2ds j − 1d
, s15d

which goes to infinity whenj →`. Note that this estimate is
not limited to small j values since it does not rest on the
assumption of equal populations of allm states.

The collapse and revival times can be analyzed more
quantitatively from the spectrum of the Hamiltonian. We nu-
merically determined the eigenvectorsufnl and the eigenfre-
quenciesvn. Figure 8 shows the projectionzkfnucst=0dlz2 of
the initial stateucst=0dl onto the numerically determined
eigenstatesufnl

Hufl = vnufnl,

of the Hamiltonian as a function of the corresponding eigen-
frequenciesvn. While the eigenfrequencies cover the whole
spectrum rather densely, the initial state of the system is well
described as a superposition of just a few groups of eigen-
states, and hence only a few narrow bands of frequencies,
which turn out to be almost equally spaced, significantly de-
termine the atomic dynamics. If these frequency bands were
exactly evenly spaced the Pendellösung oscillations would
be perfectly periodic. The variations in spacing and widths of
the various frequency bands lead to the more complicated
dynamics.

The width of the frequency bands, which can be traced
back to the usual dephasing of the atoms due to their spread
in kinetic energies, gives the ordinary decay of the density
oscillations, while the variation in separations between bands
is a measure of the inverse revival time. Figure 9 shows this
separation, obtained numerically for several photon numbers
with and without dephasing. For comparison we also give
the inverse revival time as determined from the matrix ele-
ments ofJ+ as well as by a direct inspection ofNscstd. While
the agreement between the revival times determined from the
spectrum of the Hamiltonian and fromNscstd is good for all

FIG. 7. Mean number of scattered atoms,Nsc=oPpf, for Fock
states of the light field and for different recoil energies.(a)
Running-wave light field withNq=N−q=6 photons in each of the
two modes with recoil energyE2q=50g. (b) Same light field as in
(a) but without dephasing for the atoms,E2q=0. (c) Standing-wave
light field with N=6 photons with recoil energyE2q=50g for 200
atoms. Time in units ofg−1.

FIG. 8. Projection of the initial conditions onto the spectrum of
the Hamiltonian(11) for Nq=N−q=6 photons, five atoms, a recoil
energy ofE2q=50g, and a Fermi momentum ofkF=0.1q. Eigenfre-
quencies in units ofg.
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photon numbers, the agreement with the estimate based on
the matrix elements ofJ+ improves for large photon num-
bers.

2. Coherent state

The case of a coherent state is readily obtained by aver-
aging the Fock state results over a Poissonian photon distri-
bution. The results forPpf

std and Nscstd are given in Figs.
10(a) and 11(a), respectively. The oscillations of the mean
number of scattered atoms as well as the Pendellösung oscil-
lations of the individual atoms decay in a time&g−1. In
addition to the effects discussed in the previous section, we
now have an additional dephasing due to the photon statistics
of the coherent states. These independent dephasing pro-
cesses are normally associated with noncommensurate decay
rates and revival times; hence there are no revivals in this
case.

C. Bloch vector model

We mentioned that since in the Bragg regime the atoms
undergo Pendellösung oscillations between two momentum
states, they can be thought of as two-level systems, albeit in
momentum space rather than in energy. This two-level struc-
ture suggests that we recast the problem in the language of
Bloch vectors well known from conventional quantum op-
tics. We proceed by introducing the pseudospin vector

Sk = Sk
xx̂ + Sk

yŷ + Sk
zẑ,

where x̂, ŷ, and ẑ are unit vectors along thex, y, and z
directions in the abstract Bloch vector space and

Sk
x =

1

2
sSk

+ + Sk
−d,

FIG. 9. Inverse revival time 2p /Trevival of the oscillations as
determined from the spectrum of the Hamiltonian as a function of
the photon number forE2q=50g andkF=0.1q sLd. For comparison
we also show the results without dephasing,kF=0 ssd and the
values obtained from comparing matrix elements ofJ+, i.e.,
Îs j +1d j −ÎsJ+2ds j −1d shd. The inverse revival times as deter-
mined directly from simulations forNscstd like the one shown in
Fig. 7(b) for no dephasing are also gives,d. Frequencies are in
units of g.

FIG. 10. Scattering probability for five atoms scattering off(a) a
running wave and(b) a standing wave in a coherent state. In both
cases the recoil energy isE2q=50g and the Fermi momentum is

kF=0.1q. The mean number of photons isN̄q=N̄−q=6 in (a) and

N̄=12 in (b). Time is in units ofg−1 and momentum in units ofq.

FIG. 11. Mean number of scattered atomsNscstd in coherent
state light fields.(a) Running-wave light field with mean photon

numbersN̄q=N̄−q=6. The Fermi momentum iskF=0.1q and the
recoil energy isE2q=50g. (b) Light field as in (a), atoms without
dephasing, i.e.,kF=0. (c) Standing-wave light field with mean pho-

ton numberN̄=12 and Fermi momentumkF=0.1q and recoil energy
E2q=50g. (d) Light field as in (c), but without dephasing for the
atoms,kF=0. Time in units of 2pg−1.
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Sk
y =

1

2i
sSk

+ − Sk
−d s16d

[see Eq.(9)]. The operatorsSk
l , l =x,y,z, obey the usual an-

gular momentum commutation relations

fSk
l ,Sk8

mg = ielmndk,k8Sk
n, s17d

whereelmn is the Levi-Cività symbol. Using these commuta-
tion relations we obtain the coupled equations of motion for
the light field and atomic operators(11):

dJ

dt
= gsSxx̂ + Syŷd 3 J,

dSk

dt
= fdvkẑ + gsJxx̂ + Jyŷdg 3 Sk, s18d

where we have introduced the total atomic spin operators

Sl = o
k

Sk
l .

Equations (18) are exact within the two-state picture of
Bragg scattering. We can then obtain a semiclassical version
of these equations by factorizing expectation values of prod-
ucts of atomic and field operators, e.g.,kSmJnl=kSmlkJnl.

For atoms with initial momenta centered around −q we
havekSk

zs0dl=−1/2, kSk
xs0dl=kSk

ys0dl=0 for all k, so that the
individual atomic Bloch vectors point to the south pole.
Likewise, for a field in a Fock state we have thatkJxs0dl
=kJys0dl=0, so thatJ points along theẑ axis, too. From the
Bloch equations(18) it is then immediately apparent that
there is no atomic scattering in the semiclassical description,
consistently with the previous discussion.

For a coherent state, on the other hand,J is not parallel to

thez axis. For our choice of phase and forN̄q=N̄−q, it points
instead along thex direction. The phase relationship between
the two counterpropagating coherent states leads to an inten-
sity grating and the atoms will scatter off it. Figure 12 shows
the resulting scattering probabilityPpf

std obtained from this

approximate model for five atoms and a light field initially in

a coherent state with mean photon numbersN̄q=N̄−q=6.
The atomic Pendellösung oscillations do not decay as fast

as in the full quantum description of Fig. 10(a). In the
present picture, it can be attributed to the degradation of the
intensity grating. The maximum oscillation amplitude occurs
whenJ lies in the equatorialx̂-ŷ plane, but the scattering of
the atoms leads to a redistribution of the photons between the
counterpropagating modes and a decrease in the optical
fringe visibility.

IV. STANDING-WAVE QUANTIZATION

For a standing-wave quantization of the light field the
Hamiltonian(2) is replaced by

Hs = o
k

Ekck
†ck +

gN̂

2 o
k

ck−q
† ck+q + H.c. s19d

where N̂=a†a, the number operator for the optical field
mode, is clearly a constant of motion, anda† and a are
bosonic creation and annihilation operators.

A. Raman-Nath regime

From Eq.(19) we now have

i
d

dt
ck1

† ck2
= sEk2

− Ek1
dck1

† ck2
+

gN̂

2
sck1

† ck2−2q + ck1

† ck2+2qd

−
gN̂

2
sck1+2q

† ck2
+ ck1−2q

† ck2
d. s20d

Since Eq.(19) does not couple states with different photon

numbers, we can replaceN̂ by the corresponding eigenvalue
N for a particular number stateuNl. We can then calculate the
evolution of kck1

† ck2
l for a general state of the field by aver-

aging over the appropriate photon number distribution.
The equations for the first-order moments of the indi-

vidual atoms are identical to those describing the scattering
of a single atom by a classical light field, if one identifies
gN/2 with the classical Rabi frequency. This follows from
the absence of correlations between the light field and the
atoms, together with the conditionq.kF, which implies the
absence of Pauli blocking.

The scattering of a single atom by a classical field is a
well-studied problem. An analytical solution is known in the
Raman-Nath regime; see, e.g.,[18,22,23]. If the kinetic en-
ergy of the atoms is not negligible, on the other hand, one
has to rely on a numerical solution.

Figure 13 shows the results for two atoms in a Fock state
with N=6 photons. For short times the scattering clearly re-
sembles the single-particle behavior, the probability of find-
ing an atom in themth side mode being proportional to
Jm

2 sgNtd. Note that this result is identical to the approximate
first-order calculation for the running-wave coherent state of
Sec. III.

The solution for a coherent state is obtained by averaging
over a Poissonian photon number distribution. The result is

FIG. 12. Scattering probabilityPpfstd for five atoms in a
running-wave light field as calculated within the Bloch vector pic-
ture. The Fermi momentum iskF=0.1q and the recoil energy is
E2q=50g. Time in units ofg−1 and momentum in units ofq.
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shown in Fig. 14 for a mean photon numberN̄=6, which
illustrates the dephasing due to the distribution of Rabi fre-
quencies for such a state.

B. Bragg regime

As previously discussed, the atoms can now be described
in a two-state basis, leading to the effective Hamiltonian[see
Eq. (11)]

H = o
kPf−kF,kFg

HdvkSk
z +

gN̂

2
sSk

− + Sk
+dJ . s21d

Evidently, the Hamiltonian decomposes into independent
single-particle Hamiltonians for the individual atoms,H
=okHk, so that the atomic equations of motion decouple and
can be readily solved analytically. If the cavity is in a Fock
state, the atoms undergo Pendellösung oscillations indepen-
dently of each other, with a detuning given bydvk. We then
obtain

Ppf
std =

sgN/2d2

dvk
2 + sgN/2d2sin2sÎdvk

2 + sgN/2d2td, s22d

as illustrated in Fig. 6(b) for five atoms and the light field in
a Fock state withN=12 photons. As expected, the frequency
of the Pendellösung oscillations increases and their ampli-
tude decreases with detuning[see Eq.(22)]. In contrast to the
running-wave case, these oscillations remain perfectly sinu-
soidal for all times.

The oscillations in the mean number of scattered atoms
Nscstd are shown in Fig. 7(c) for an atom number of 200. All
other parameters are as before[24]. Their decay due to the
spread in detuningsdvk resembles the dephasing of an inho-
mogeneously broadened ensemble of independent two-level
systems, with a dephasing time given by 2p /dvkF

.
The scattering probability for a coherent state light field is

shown in Fig. 10(b) and the mean number of scattered atoms
Nscstd is shown in Fig. 11(c). The atomic parameters are the
same as for the Fock state calculations while the light field
has been replaced by a coherent state with the mean number

of photonsN̄=12.
As in the running-wave case, the oscillations collapse due

to the spread in Rabi frequencies associated with the coher-
ent state. In contrast to that former case, though, they also
undergo a revival after the timeTrevival=2pg−1, as follows
from the fact that the difference between the Rabi frequen-
cies forN andN+1 photons isg/2, independently ofN. As
in the two-photon Jaynes-Cumming model, all number states
rephase at the same instant and the revivals are perfect if the
dephasing due to the kinetic energy of the atoms can be
neglected, as shown in Fig. 11(d). With dephasing included,
the revivals are only partial; see Fig. 11(c).

Another difference between the running-wave and
standing-wave quantization schemes can be seen in the evo-
lution of the scattering probability for the coherent state. In
the case of running waves the probability of finding an atom
in the scattered states is about 1/2, independently of their
detuning, while in the standing-wave case this probability
decreases with increasing detuning. This difference under-
lines the importance of the correlations between the light
field and the atoms. While the atoms move independently in
a standing-wave light field, the atoms and the field become
an inseparable quantum system in the running-wave case.

V. CONCLUSION AND OUTLOOK

In this paper we have compared the scattering of ultracold
fermions by quantized light fields composed of “true” stand-
ing waves and of superpositions of counterpropagating run-
ning waves, both in the Raman-Nath and in the Bragg re-
gimes. The central difference between the two quantization
schemes is that the entanglement between the light field and
the atoms plays a crucial role for a running-wave light case,
but not for standing-wave quantization.

In the Raman-Nath regime the scattering by a standing-
wave light field in a Fock state is similar to the scattering by
a classical field, and can be largely understood from the re-
sults for a single atom. The only many-particle effect is a
dephasing of the atomic motion due to the finite width of the

FIG. 13. Scattering of two atoms off a standing-wave light field
in a Fock state withN=6 photons; the recoil energy isE2q=g and
the Fermi momentum iskF=0.1q. Time in units ofg−1 and momen-
tum in units of photon momentumq.

FIG. 14. Scattering of two atoms off a standing-wave light field
in a coherent state. The mean number of photons is six, the recoil
energy isE2q=g, and the Fermi momentum iskF=0.1q. Time in
units of g−1 and momentum in units of photon momentumq.
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initial momentum distribution of the atoms. For running-
wave quantization, on the other hand, the quantum correla-
tions that develop between the light field and atoms are es-
sential, and their neglect leads to the absence of atomic
diffraction by a Fock state of the field.

In the Bragg regime and for a standing-wave light field,
atomic diffraction can be solved in terms of solutions for
single atoms, which undergo Pendellösung oscillations that
undergo a series of collapse and revivals in the case of a
coherent light field. For the case of running-wave quantiza-
tion, these oscillations decay even for a Fock state, a conse-
quence of the correlations that develop between the light
field and the atoms. A coherent state merely leads to a faster
collapse.

Table I gives a summary of the mechanisms that lead to
collapses and possibly revivals in the various cases that we
have discussed, as well as the associated time scales.

This paper has considered only fermionic atoms. Bosonic
operators commute rather than anticommute, resulting in dif-
ferent equations of motion for the second and higher corre-
lation functions of atomic operators. Consequently, differ-
ences in the scattering result solely from the effect of these
higher-order correlations on the dynamics.
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