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We report calculations of the stopping cross sections of hydrogen atoms for protons and antiprotons at low
to intermediate energies and take the difference explicitly to determine the Barkas correction for this system.
The calculational method used is the electron-nuclear dynamics formalism which involves the coupled direct
dynamics of all nuclei and electrons and thus includes all terms in the Born expansion. The formalism is a
nonperturbational,ab initio approach to solve the time-dependent Schrödinger equation, applicable to all the
projectile energies under consideration. This is in contrast to the use of different velocity-dependent models for
different energy ranges used in other approaches. We find that at high projectile energies, target excitation and
ionization are responsible for the projectile energy loss. However, at low projectile energies, the repulsion of
the negatively charged projectile and the target electronic structure and its coupling to the target nuclei produce
a billiard ball effect which combined with the large ionization and excitation induced by the antiproton is
responsible for the large nuclear stopping power, contrary to near-adiabatic dynamics predicted by other
models.
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I. INTRODUCTION

There has been interest in the physics of the interaction of
swift ions with matter since the earliest part of the 20th cen-
tury when the physics of ion-matter interactions first began
to be exploredf1,2g. The earliest atomic-level explanation of
energy deposition, or stopping, was the harmonically bound
electron model of Bohrf3,4g. This was followed by the quan-
tum mechanical formulation of stopping of Bethef5–7g,
which is still the basis of much of the present day under-
standing of stopping power.

In Bethe’s model, the stopping −dE/dx or energy loss of
an incident particle with velocityv per unit path length, can
be written

−
dE

dx
= nSsvd = n

4pe4Z1
2Z2

mv2 Lsvd, s1d

whereSsvd is the stopping cross section, related to the stop-
ping power by the density of target scattering centersn, and
where Lsvd is the stopping number. HereZ2 is the target
atomic number. Generally, the projectile is assumed to be
stripped with a fixed chargeZ1—that is, no charge exchange
is consideredf8g.

The Bethe theory is developed in the first Born approxi-
mation, and thus is limited to terms in the stopping that are
proportional toZ1

2. However, the full Born expansion will, in
principle, contain terms in all powers ofZ1. Following
Lindhard f9g, the stopping number may be expanded in a
Born series in the projectile charge as

Lsvd = o
i=0

Z1
i Lisvd s2d

whereL0 is the Bethe termsS~Z1
2d which includes the shell

corrections that arise from violation of Bethe’s assumption

that the projectile speed is much greater than that of the
target electrons.

The second termsS~Z1
3d is the first odd term in the Born

series, and reflects the asymmetry in energy deposition be-
tween charge conjugated particles. The term is referred to as
the Barkas correctionas it was first experimentally demon-
strated for muons by Barkaset al. in 1963 f10g. It is the
determination of this quantity for the hydrogen atom that is
the subject of this paper.

II. INTRODUCTION TO THE BARKAS CORRECTION

There have been several attempts to derive an expression
for the Barkas correctionsfor discussions of earlier work,
see, e.g.,f11,12gd. The earlier Barkas correction formulations
were made by Jackson and McCarthyf13g, and by Ashley,
Ritchie, and BrandtsARBd f14–17g, based on the Bohr har-
monic model of stoppingf3g. More recent studies have been
reported by Schiwietzet al. f18,19g for He and H2 targets, by
Arista and Lifschitzf20g, by Bichself21g, and by Sigmund
and Schinnerf22g.

Although there have been muon-based experiments on the
Barkas effectf10,23g, it is the availability of the source at
CERN that made antiproton experiments possiblef24–26g,
and made the experimental investigation of the Barkas cor-
rection feasible.

From Eqs.s1d and s2d, it is apparent that higher terms in
Z1 will be present in an exact calculation of the stopping
cross section. In order to accentuate the Barkas effect and
higher orders in the stopping cross section,S, it is customary
to calculate the relative value of the stopping cross section
for the antiparticle with respect to the positive particle, i.e.,
DS/S. Thus, one obtains
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DS

S
=

o
i=0

2Z1
2i+1L2i+1

o
i

Z1
i Li

=
2Z1L1 + ¯

L0 + Z1L1 + ¯

. s3d

From Eq.s3d, when high-order terms are insignificantsi.e.,
L2i+1!1, i .0d, the Barkas term predominates. Furthermore,
analysis of Eq.s3d emphasizes the Barkas correction termL1
at low projectile energies, while the ratio of the stopping
cross section between a negative and positive projectile
shows only the magnitude of the total contribution. Thus, we
require a nonperturbative approach to determine the relative
difference in the stopping cross section for a particle and
antiparticle colliding with the same target. The approach we
use is the electron-nuclear dynamicssENDd theory, which is
described in the next section.

Of the previous studies, the most complete analysis of the
antiproton-hydrogen system to study the Barkas effect has
been carried out by Schiwietzet al. f19g where they apply
three different models depending on the projectile velocity.
At low projectile velocities they use the adiabatic-ionization
sAI d model based on adiabatic potential curves for the elec-
tronic states in the presence of the quasidipole formed by the
antiproton and hydrogen nucleus. At higher energies, the
distorted-wavesDWd approximation and the atomic-orbital
sAOd method are employed around the maximum of the
stopping cross section. Thus, although the results shed light
on the process of energy loss, the treatment is not consistent
for all the projectile energies.

In the next section, we describe the END model which is
valid for all the projectile energies below and around the
maximum of the stopping cross section.

III. ELECTRON-NUCLEAR DYNAMICS

Our approach to analyzing the energy loss and Barkas
effect is based on the application of the time-dependent
variational principlesTDVPd to the Schrödinger equation
f27g, where the wave function is described in a coherent state
representation. As the details of the END method have been
reported elsewheref28–30g, we present here only a brief
description of the fundamental features of the theory.

The TDVP requires that the quantum action

A =E kjui]/]t − Hujl
kjujl

dt s4d

should be stationary. The use of the variational theory yields
the time-dependent Schrödinger equation when variations of
the wave functionujl over the entire state space are per-
formed. Variation over a subspace yields the TDVP approxi-
mation for the time evolution over that subspace of the
Schrödinger equation. We use a parametrization of the wave
function in a coherent state manifold, which leads to a sys-
tem of Hamilton’s equations of motionf28g. The variational
wave functionujl, is a molecular coherent state

ujl = uz,R,PluR,Pl = uzlufl, s5d

where uzl and ufl are the coupled electronic and nuclear
wave functions, respectively.

The simplest level of the END approach employs a single
spin-unrestricted electronic determinant

uzl = dethwisxjdj s6d

written in terms of the nonorthogonal spin orbitals,wi

wi = ui + o
j=N+1

K

ujzji , i = 1,2, . . . ,N s7d

expressed in terms of a basishujj of atomic Gaussian-type
orbitals of rankK with complex coefficientshzjij. For the
Gaussian-type orbital we use

ui = o
k

cksx − Rxdlsy − Rydmsz− Rzdnexpf− aksx − Rd2

− iP · sx − Rdg, s8d

centered on the average positionsR of the participating
atomic nuclei and moving with a momentumP. Here,ck are
the contraction coefficients andak are the exponents of the
Gaussian basis set. This representation takes into account the
momentum of the electron explicitly through the use electron
translation factorssETF’sd f31g. The particular form of pa-
rametrization of uzl with complex, time-dependent coeffi-
cientszji is due to Thoulessf32g and is an example of a so
called generalized coherent statef33g.

The nuclear part of the wave function is represented by
localized Gaussians

ufl = p
k

expF− SXk − Rk

w
D2

+ iPk · sXk − RkdG s9d

or, in the narrow wave-packet limitsw→0d, by classical tra-
jectoriessRk,Pkd.

Application of the TDVP then yields the dynamical equa-
tions f28g

1
iC 0 iCR iCP

0 − iC* − iCR
* − iCP

*

iCR
† − iCR

T CRR − I + CRP

iCP
† − iCP

T I + CRP CPP

21
ż

ż*

Ṙ

Ṗ
2 =1

]E/]z*

]E/]z

]E/]R

]E/]P
2

s10d

where the overdot represents differentiation with respect to
the time parameter andE=okPk

2/2Mk+kzuHeluzl / kzuzl is the
total energy of the system. Here,Hel is the electronic Hamil-
tonian which contains the nuclear-nuclear repulsion potential
energy. The nonadiabatic coupling terms between the elec-
tron and nuclear dynamics are given by

C = U ]2 ln Ssz * , R,P,z,R8,P8d
]z * ]z

U
R8=R,P=P8

, s11d

CR = U ]2 ln Ssz * , R,P,z,R8,P8d
]z * ]R8

U
R8=R,P=P8

, s12d
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CRR = − 2 ImU ]2 ln Ssz * , R,P,z,R8,P8d
]R]R8

U
R8=R,P=P8

,

s13d

and similar definitions for CRP, CP, and CPP. Here,
Ssz* , R ,P,z,R8 ,P8d=kz,R8 ,P8 uz,R ,Pl is the overlap of
determinantal states.

From Eq. s10d it is evident that if there is no electron-
nuclear coupling, that is, if theC’s are zero, then the equa-
tion of the third row becomes just the classical trajectory for
a particle in the presence of a static screened potential. Thus,
the effects of considering the electron-nuclear coupling are
described by the full solution of Eq.s10d. Furthermore, the
use of coherent states avoids the description of the dynamics
in terms of partial waves.

Solving the set of equations forhz,R ,Pj as a function of
the timet yields the evolving molecular state that describes
the processes that take place during the collision. For the
purpose of discussing charge exchange, we make use of the
Mulliken population analysisf34g. From Eqs.s6d ands7d, the
number of electrons in the system is given by

N = o
n,m

PmnDnm = o
m

sPDdmm = TrsPDd s14d

where Pnm=oi
Nzinzim, and Dmn is the atomic orbital overlap

matrix. It is possible to interpretsPDdmm as the number of
electrons to be associated with the basis functionum. From
this, nA=onPAsPDdnn is the number of electrons associated
with atomA. Thus, at any given time, we can calculate the
electron population and probability of electron capture for
the system or an atomic center.

Calculations are carried out using theENDYNE program
packagef35g.

IV. CALCULATIONS

For each projectile trajectory, the target was placed at the
origin of a Cartesian laboratory coordinate system with the
initial projectile velocity parallel to thez axis, and directed
toward the target with an impact parameterb, measured
along thex axis.

The atomic target is initially in its electronic ground state
as computed in the given basis. The basis functions used for
the atomic orbital expansion are derived from those opti-
mized by Dunningf36g. For each of the nuclei, the electronic
structure is described using a basis set consisting of
f5s5p2d/5s5p2dg Gaussian orbitals, supplemented with dif-
fuse s and p orbitals for a better description of the longer
range interaction. This produces a basis set with rankK
=36 per atomic center, which, combined with the ETF and
the supermolecular description of the electronic structure,
makes a good description of the electronic excitation and
low-ionization region of the interacting system. This basis
set provides converged results for all the surveyed projectile
energies. The impact parametersb range from
0.0 to 15.0 a.u., which we separate into three regions. For
close collisions, from 0.0 to 6.0 a.u., we use steps of 0.1 a.u.
For the intermediate region, from 6.0 to 10.0 a.u., we use

steps of 0.5 a.u., and forb.10.0, we use steps of 1.0. This
gives us 74 fully dynamical trajectories for each initial en-
ergy and molecular orientation. The projectile energies stud-
ied here range from 10 eV up to 300 keV.

The projectile is started 30 a.u. from the target, and the
trajectory is evolved under the dynamical equations until the
projectile is 30 a.u. past the target, or until there are no
longer changes in the energy, velocity, or charge of the pro-
jectile. Thus, after the dynamics is finished for each trajec-
tory, one obtains the total wave function, the nuclear posi-
tions, and momenta, and, therefore, one is able to calculate
the deflection functionQ and the system’s electronic proper-
ties, e.g., charge transfer and energy loss.

V. THE STOPPING CROSS SECTION

Our main goal in this work is to understand the process of
energy loss suffered by protons and antiprotons when they
collide with a hydrogen atom, and by which modes energy is
transferred to the target. The stopping power, or energy loss
per unit length for a projectile of energyEp, can be written in
terms of a differential scattering cross sectionds /dV as

SsEpd = −
1

n

dE

dx
= −E DEsEp,Vd

ds

dV
dV

= −E bDEsEp,bddb dw s15d

wheren is the density of target scattering centers, andDE is
the kinetic energy loss of the projectile. Here, we have used
the deflection functionQsbd to transform the angular integral
to the impact parameter representation.

Calculation of many trajectories at different impact pa-
rameters for each given incident energy yields the energy-
dependent deflection function and energy loss, which can
then, through Eq.s15d, be used to calculate the stopping
cross section and its electronic and nuclear contributions.

A. Deflection function

Figure 1 shows the deflection functionQsbd as a function
of impact parameterb for protons and antiprotons at two
typical projectile energies 0.5 and 5.0 keV/amu. There is a
well behaved deflection function for proton scattering, which
exhibits a glory angle near 4 a.u. and a shallow rainbow near
b=6.0 a.u. forEp=5.0 keV. ForEp=0.5 keV, the glory angle
occurs atb,5 a.u. and the rainbow angle atb,6.2. In the
case of the antiproton, there is always an attraction with a
maximum which could be considered a rainbow. At largeb,
the attraction is small, but at intermediateb, the screening of
the electron is reduced when the antiproton penetrates the H
electron cloud and thus the attraction strengthens. This is a
result of the nonclassical trajectories resulting from the
electron-nuclear coupling during the dynamics, particularly
at close distances.

B. Electron transfer cross section

Much of the analysis of stopping power, and especially of
Eqs.s1d ands2d, assumes a fully stripped, or at least constant
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charge, projectile. However, due to quantum mechanical in-
teraction between the projectile and the target, one expects
electron exchange among the collision partners. From the
evolving molecular-state wave function, one can calculate
the probability for electron capture or loss. From the prob-
ability for charge exchange, the charge exchange cross sec-
tion can be obtained from

sexchsEpd = 2pE
0

`

Pexchsb,Epdb db. s16d

The charge exchange cross section for H+→H has been re-
ported in Ref.f37g, and it is clear that an antiproton will not
pick up an electron during the collisionf38g, which is veri-
fied by our calculations. The resonant charge transfer be-
tween a H+ and a hydrogen atom ensures a large charge
transfer cross section as the velocity of the projectile slows
down. A good description of the electron transfer and the
dynamics of the collision is thus required for a proper ac-
count of the projectile energy loss at low projectile energies.
As reported in Ref.f37g, END provides an excellent descrip-
tion of the dynamics of resonant charge exchange for protons
colliding on hydrogen in a consistent manner through all the
projectile energies under consideration, contrary to other
studies where several velocity-dependent methods have been
usedf19g. Animations of H+→H and p̄→H for collisions at
Ep=10 keV and atb=1 a.u. can be seen inf39g where both a
contour map and its two-dimensional projection are shown.
The polarization of the charge cloud as the projectile ap-
proaches is evident, and there is some charge loss to the
proton, as expected.

VI. THE BARKAS „Z1
3
… CORRECTION

In Fig. 2, we present the stopping cross sections calcu-
lated for antiprotons colliding with hydrogen atoms. The
solid thick line is our total antiproton stopping, the long
dashed line is its electronic component, and the short dashed
line is its nuclear component. As the calculations we present
do not contain relativistic effects, the annihilation expected
to occur at lower energies is not seen. The results are com-
pared to the H2 molecular experiments of Adamoet al. f24g
which are represented by the dot-dashed line. The error bars
are represented by the shaded area. We note an overestima-
tion when comparing our data to the experimental results,
but within the experimental error bars. An explanation might
be that the experimental data are for a molecular target, when
our results are for atomic hydrogen, thus neglecting the ef-
fect of the molecular bonding, particularly at low projectile
energies. This is also concluded in Ref.f19g. At higher pro-
jectile energies our agreement is better, as expected. In the
same figure, we compare our results with those of Schiwietz
et al. f19g. We note that at high energies, the AO and END
methods compare relatively well, with the END results
closer to the experimental data. The DW method agrees well
at high energies, but fall short in the intermediate region. At
low projectile energies, the AI method has a trend similar to
END; however, it breaks at higher energies. Finally, the
nuclear stopping cross sections follow the same trend in all
methods although quantitatively they are different. The rea-
son seems to be the approach used for accounting for the

FIG. 1. Calculated deflection functions for protons and antipro-
tons on hydrogen at 5.0 and 0.5 keV/amu. Note that the proton
deflection functions have been scaled by a factor of 10 to emphasize
the rainbow and glory anglesattractive and repulsive regions of the
interactiond.

FIG. 2. Calculated total stopping cross sections for antiprotons
on atomic hydrogen targets. The solid line is the total stopping cross
section according to END. The long dashed line is the electronic
contribution and the short dashed line is the nuclear contribution.
The dashed area with the best fit represented by the dot-dashed line
shows the experimental data from Adamoet al. f24g. The symbols
are the different models employed by Schiwietzet al. f18g. The
solid boxes are the AI results; the open circles are the AO results;
the full circles are the DW model; the open squares are the AI for
molecular hydrogen; and the open triangles are the nuclear stopping
cross section.
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coupling of the electronic and nuclear degrees of freedom. In
particular, we note that at low projectile energies, impact
parameters lower than the Fermi-Teller radiusf40g RFT
=0.639 a.u. produce ionization, as expectedf19,38g. How-
ever, for larger impact parameterssb.RFTd the electron re-
mains bound and repels the incoming projectile in a billiard-
ball-like collision when coupled to the hydrogen nuclei.
These impact parameters are largely responsible for the large
nuclear stopping cross section.

As mentioned previously, the relative difference of the
stopping cross sections between the proton and antiproton
projectiles shows the leading contribution to be the Barkas
term at high energies if the higher contributions are assumed
small. In Fig. 3, we present the relative difference between
the proton and antiproton stopping cross section for colli-
sions with atomic hydrogen, as obtained from our data from
Fig. 2, and those reported in Ref.f37g for H+ colliding on
atomic hydrogen. Here the solid line is the total Barkas cor-
rection and the dashed line is its electronic component from
our calculations. In addition, we have included the Barkas
results calculated by Ashley, Ritchie, and Brandtf14–17g for
atomic hydrogen targets for the three different values of the
empirical parameterb of their theorysb=1.6, 1.8, and 2.0d.
In the ARB approach, the stopping cross section is given by

Ssxd = S0sxdf1 + Z1Bsxdg, s17d

wherex=v2/v0
2Z2, v being the projectile velocity andv0 the

Bohr velocity. HereS0 is the first Born term, andBsxd
=ksb,xd /Z2

1/2x is the Barkas term. The functionksb,xd is
tabulated in Ref.f15g. This approach assumes that higher
orders inZ1 are insignificant. Thus, the relative value of the
stopping cross section is given by

DS

S
=

2Z1Bsxd
1 + Z1Bsxd

, s18d

which depends only on the Barkas termBsxd. Figure 3 shows
that the END and the ARB results agree with the expected
high-velocity behavior of the Barkas correction. However,
for low projectile energies, other effects start to overwhelm
the pure Barkas term. Of these, charge exchangeselectron
captured is the most predominant for the case of protons.
This is reported in Ref.f37g at low projectile energies, where
the charge exchange cross section is largest for protons but is
absent in the antiproton case. We also note that there may be
effects due toL2i+1, i .1, terms contributing at low energies
which are taken into account in the END approach. This is
observed in Fig. 3 for projectile energies below 10 keV
where there is a change in sign ofDS/S contrary to the
predictions of the ARB model. To the best of our knowledge,
there have been no systematic studies of terms of order
higher thanL2 in the Born series. We hope our results foster
more work in that direction. Also, in the same figure, we
show the results of the DW and AO models, as reported by
Schiwietzet al. f19g. We note that the AO and END results
agree relatively well for all the reported projectile energies.
Also, we note that the AO model shows the same change in
sign of DS/S, thus incorporating higher orders in the stop-
ping cross section.

In Fig. 4, we show the stopping power ratio, where we
note a good agreement between END and AO results. How-
ever, from these results is hard to observe a change of sign of
the Barkas term.

VII. SUMMARY

We have calculated the stopping cross sections of atomic
hydrogen for antiprotons at low to intermediate projectile
energies by means of a nonperturbative, nonadiabatic ap-
proach. The explicit difference between the proton and anti-

FIG. 3. Relative stopping cross section for antiprotons and pro-
tons colliding with hydrogen atoms as obtained by END. Also, we
show the results from the ARB theorysBarkas correctiond fEq. s3dg,
and those reported in Ref.f19g for the AO and DW models.

FIG. 4. The same as Fig. 3, but for the stopping cross section
ratio of antiprotons and protons colliding with hydrogen atoms.
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proton stopping cross sections gives the Barkas effect at high
energies and higher contributions at lower projectile ener-
gies, which we report and compare to direct calculations of
the effect by Ashley, Ritchie, and Brandt, as well as those
reported by Schiwietzet al. through the AI, DW, and AO
models. The agreement between the AO, ARB, and our re-
sults is fairly good for energiesEp.30 keV. For the lower-
energy region, electron capture effects start to become im-
portant. We find that at low projectile energies, ionization,

combined with a repulsive billiard-ball-like collision, is re-
sponsible for most of the stopping cross section.
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