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A refined theoretical approach has been developed to study the double-differential cross sectionssDDCS’sd
in proton-helium collisions as a function of the ratio of ionized electron velocity to the incident proton velocity.
The refinement is done in the present coupled-channel calculation by introducing a continuum distorted wave
in the final state coupled with discrete states including direct as well as charge transfer channels. It is confirmed
that the electron-capture-to-the-continuumsECCd peak is slightly shifted to a lower electron velocity than the
equivelocity position. Comparing measurements and classical trajectory Monte CarlosCTMCd calculations at
10 and 20 keV proton energies, excellent agreement of the ECC peak heights is achieved at both energies.
However, a minor disagreement in the peak positions between the present calculation and the CTMC results is
noted. A smooth behavior of the DDCS is found in the present calculation on both sides of the peak whereas
the CTMC results show some oscillatory behavior particularly to the left of the peak, associated with the
statistical nature of CTMC calculations.
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I. INTRODUCTION

In an ion-atom ionizing collision, one of the most inter-
esting features is the so-called electron capture to the con-
tinuun sECCd by the projectile ion. This essentially means
that the electron after being ionized from the target atom
moves like a continuum electron with respect to the projec-
tile ion. Clearly, the electron velocitysved will have to be
very close to the projectile velocitysvpd to enable them to
move away together in convoy from the residual target ion.
Theoretically, it can be shown that the velocity distribution
of the outgoing electron contains a singular termuvp−veu−1

and is solely responsible for producing a cusp in the double
differential cross sectionsDDCSd. The existence of such a
cusp in the forward directionsu,0od in the ion-atom colli-
sion has been observed both theoretically and experimen-
tally. The early predictions of cusp electrons were made
nearly three decades back by Macekf1g and Salinf2g and
were subsequently confirmed by Crooks and Ruddf3g.

For some time the ECC cusp was known to be a high
energy svp@1 a.u.d phenomenon in an ion-atom collision.
Theoretical and experimental investigations of ECC cuspol-
ogy at intermediate and high incident energies have been
reported since the pioneering work by Crooks and Ruddf3g.
An excellent review was presented by Schultzet al. f4g con-
taining all important work on ECC prior to the mid-1990s.
All these found the ECC peak at the equivelocity position
ve=vp and asymmetry of the curve on the two sides of the
peak was also noticed, particularly for the lower projectile
velocities. Here we shall discuss only a few theoretical
f5–11g and experimentalf12–16g works. Chan and Eichler
f5g suggested that the asymmetry could be derived by accu-
rate evaluation of the first Born amplitude, which was ruled

out by Breiniget al. f12g. Shakeshaft and Spruchf6g showed
that the second Born calculation, which includes the distor-
tion of the electronic state by the electron–residual-ion inter-
action, can reproduce the asymmetry desired. This was fur-
ther supported by theoreticalf7,8g and experimentalf13g
investigations. The classical trajectory Monte CarlosCTMCd
theory of Olson and co-workersf9,10g sand references
thereind successfully reproduced both the peak position and
the asymmetry. Measurements on ECC by highly charged
ions were also reportedf14,15g. Later Weberet al. f16g ob-
served an abrupt rise in the longitudinal momentum distribu-
tion of recoil ions inp+He collisions, which was shown to
be related to the ECC phenomenon. Very recently a com-
bined measurement and CTMC calculation reported by Shah
et al. f17g observed for in collisions of low-energy protons
on the hydrogen molecule that the ECC peaks are slightly
shifted toward lower electron velocity. A similar combined
study was reported by McGrathet al. f18g for the same tar-
gets but at 100 keV projectile energy. No signature of any
shifting of peak position is noticed in this workf18g while
theory and measurement agreed extremely well. However,
Illescaset al. f19g found a shifting in a CTMC calculation of
the asymptotic longitudinal momentum distribution for 20,
100, and 400 keV protons colliding with He. The relative
measurement of Shahet al. f17g was normalized with their
CTMC calculation and good agreement was found in terms
of the peak position and the asymmetry of the two halves of
the curve. However, the CTMC double-differential cross sec-
tions for both targetssH2 and Hed and at both energiess10
and 20 keVd show some irregular behavior, particularly to
the left of the peak. This motivated us to study the system
using an independent theoretical model of validity in the
low-energy region.
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II. THEORETICAL METHOD

Proton impact ionization of an helium atom in its ground
state is studied in the impact parameter formalism. The in-
ternuclear motion is treated classically and the vector dis-

tance between the nuclei is taken to beRW =bW +vWt, wherebW is
the impact parameter,vW is the velocity of the projectile rela-
tive to the target, andt is the time measured from the instant
of the closest approach of the two nuclei. The Hamiltonian
for the electron moving in the field of the projectile and the
residual target nucleus is given bysatomic units are used
throughoutd

He = −
¹r

2

2
−

ZT

rT
−

ZP

rP
. s1d

HererW, rWP, andrWT denote the position vectors of the electron
relative to the originsassumed to be the midpoint of the two
nucleid, projectile, and target, respectively. The initial state
wave function used in the present calculation is of the form

C1 = FisrTdexpS−
i

2
vW · rWDexpSieHe −

i

8
v2Dt, s2d

where FisrTd, the ground state helium wave function, is
taken to be the Roothan-Hartree-Fock function expressed as

FisrTd = o
l=1

5
Zl

3/2bl

Îp
exps− ZlrTd, s3d

with binding energyeHe.
The development in timet of the electron wave function

C is given by the time-dependent Schrödinger equation

SHe − i
]

]t
DC = 0, s4d

together with the initial condition that the electron is attached
to the target in its ground state at timet=−`. We can then
write

C =E Ck8ckC8
− dkC8

W + o
i

aicPi
+ o

j

bjcTj
, s5d

where the first term represents the integral over the con-
tinuum states followed by the summation over the discrete
states in the direct and charge transfer channels. The coeffi-
cientsCk8, ai, andbj are functions of time. SubstitutingC in
Eq. s4d, we get

iE Ck8
˙ ckC8

− dkC8
W = SHe − i

]

]t
DFo

i

aicPi
+ o

j

bjcTjG
+E Ck8SHe − i

]

]t
DckC8

− dkC8
W . s6d

SinceckC8
− is an asymptotic solution of

SHe − i
]

]t
DckC8

− = 0, s7d

andCk8 is small, we can neglect the last term in Eq.s6d. Then
multiplying both sides of Eq.s6d by ckC8

−* and integrating over

rW space we arrive at

]

]t
sCkd = − iE ckC

−*SHe − i
]

]t
DFo

i,j
saicPi

+ bjcTj
dGdrW. s8d

The ionization amplitudeCkst= +`d is obtained by time in-
tegration utilizing the initial conditionCk=0 at t=−`. The
continuum state wave function occurring in the final channel
is represented by the product of two Coulomb wave func-
tions, which takes into account the distortion due to the Cou-
lomb fields of the target and projectile nuclei:

ckC

− = N1N2e
ikW·rW

1F1„iaP,1;− iskPrP + kP
W · rP

W d…

31F1„iaT,1;− iskTrT + kT
W · rT

W d…e−ik2t/2, s9d

kW being the momentum of the ejected electron,aP=−ZP/kP,
aT=−ZT/kT, kWP=kW −vW /2, kWT=kW +vW /2, N1=e−paP/2Gs1+iaPd,
andN2=e−paT/2Gs1+iaTd.

The discrete part of the wave function in Eq.s8d is ob-
tained by solving the time-dependent Schrödinger equation

HeCd = i
]Cd

]t
s10d

using the variational technique developed by Silf20g. For
this purpose we consider the integral

I =
1

2
E FCd

*Si
]

]t
− HeDCd + CdS− i

]

]t
− HeDCd

*GdrW dt

s11d

to be stationary with respect to small arbitrary variation of
Cd and its complex conjugateCd

* . The trial wave function
Cd here is a linear combination of two ground state wave
functions 1 on the target and 2 on the projectile nucleus:

Cd = AstdC1 + BstdC2, s12d

whereA andB are functions of time only, with

C1 = fisrTdeieHet−si/8dv2t, C2 =
1

Îp
e−rpeieHt−si/8dv2t.

s13d

As aboveeHe andeH are the binding energies of the helium
and hydrogen atoms. The electron translational factoreivW·rW

has been neglected here as we are interested in low-
projectile-velocity impact.C1 and C2 are the normalized
ground state wave functions of the helium and hydrogen at-
oms, respectively. Substituting the trial functionCd=AC1
+BC2 in Eq. s8d we get
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CKst = + `d =E
−`

+`

dtE Ckc

−*SH − i
]

]t
DsAC1 + BC2ddrW

= −E
−`

+`

dtE Ckc

−*FA
ZP

rP
C1 + B

ZT

rT
C2

+ isȦC1 + ḂC2dGdrW, s14d

and rearranging the terms we finally get

Ckst = + `d = −E
−`

+`

dtfZPAT1 + ZTBT2 + isȦS1 + ḂS2dg

s15d

where

T1 =E Ckc

−*C1

rP
drW, T2 =E Ckc

−*C2

rT
drW,

S1 =E Ckc

−*C1drW, S2 =E Ckc

−*C2drW,

which are functions of time. The evaluation ofT1, T2, S1, and
S2 is not straightforward and needs special attention. We
shall describe their evaluation in the next section. In order to
calculate the amplitudesAstd,Bstd and their time derivatives
we first evaluate the space integration in Eq.s11d and write

I =E L dt, s16d

where

L =
1

2
fihg11sA*Ȧ − AȦ*d + g12sA*Ḃ − BȦ*d + g21sB*Ȧ − AḂ*d

+ g22sB*Ḃ − BḂ*dj − 2A*AF11
B − A*BsF12

A + F12
B d

− AB*sF12
B* + F12

A*d − 2BB*F22
A g s17d

and

F11
P =E C1

*VPC1drW, F12
T =E C1

*VTC2drW,

F12
P =E C1

*VPC2drW, F22
T =E C2

*VTC2drW,

g12 =E C1
*C2drW, g21 = g12

* , g11 = g22 = 1,

whereVP=−ZP/ rP andVT=−ZT/ rT.
Making the integralI =eL dt stationary with respect to

small arbitrary variations ofA* andB* , we get coupled dif-
ferential equations as follows:

2AF11
P + BsF12

T + F12
P − iġ12d = 2isȦ + Ḃg12d, s18d

AsF12
P* + F12

T* − iġ12
* d + 2BF22

T = 2isȦg12
* + Ḃd. s19d

These coupled differential equations are then solved numeri-
cally using the Runge–Kutta method to obtainAstd,Bstd and
their time derivatives as a function of time and the time
integration in Eq.s15d is then performed to obtainCKst
= +`d. In solving the differential equations numerically, we
ensure unitarity of the integraleCT

* CTdrW throughout the time
interval and we make use of the initial condition that att
=−`, A=1, andB=0. Finally the double-differential cross
section is given by

d2s

dEedVe
=E dbW uCKst = + `du2. s20d

III. EVALUATION OF T1, T2, S1, AND S2

The integralsT1, T2, S1, andS2 can be generated from a
parent integral

J =E Ckc

−* e−lrT−mrP

rPrT
drW s21d

by noting that

T1 = lim
m→0

S ]J

]l
D , T2 = lim

l→0
S ]J

]m
D ,

S1 = lim
m→0

S ]2J

]l ] m
D , S2 = lim

l→0
S ]2J

]l ] m
D .

s22d

UsingCkc

−* from Eq.s9d we can recast the integral in Eq.s16d
as

J =
2

p
E eiQW ·RWsEd−1−iaPsE − FdiaPsGd−1−iaTsG − HdiaTdQW ,

s23d

where

E = sQW − kW/2d2 + m2, F = 2f− kWP · sQW − kW/2d + imkpg,

s24d

G = sQW + kW/2d2 + l2, H = 2fkWT · sQW + kW/2d + ilkTg.

s25d

At this stage we perform the derivatives shown in Eq.s22d
with respect tol andm to getT1, T2, S1, andS2. On intro-
ducing the limits some of these integrals can be performed

numerically. Others behave assQW ±kW /2d−4 and possess seri-
ous numerical difficulty. Having realized that the dominating

contributions to theQW integrand for these integrals come

from the neighborhood ofQW = ±kW /2, we use the substitution

QW ±kW /2=erW. This makes the angular integration easy to per-
form. The remaining radial part is then done analytically by
choosing a suitable contour around the real axis.

IV. RESULTS AND DISCUSSION

Using the above theoretical method we have calculated
the double-differential cross sections for ionization of He by
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proton impact. The present model takes into account the
charge transfer channel, the effect of which is very important
particularly at lower impact energies. In the ionization of
helium atom by proton impact, the electron ejected from the
target is carried along by the projectile for a short period.
This indicates that an electron capture event, forming atomic
hydrogen, has taken place before the electron is actually ion-
ized and moves into the projectile continuum. We have in-
corporated this effect in our calculation. The results of 10
and 20 keV impact energies are presented in Figs. 1 and 2,
respectively. The present results are compared with the com-
bined theoreticalsCTMCd and experimental work of Shahet
al. f17g. In their work the relative measurement was normal-
ized with the CTMC calculation. We are grateful to Shah and
Illescas f21g for these data. The irregular behavior of the
CTMC curve may be partly due to the statistical nature of
CTMC calculations.

It is clear from Fig. 1 that the general behavior of our
DDCS curve is very similar to the experimental data except
that the position of the peak is slightly shifted toward a
higher electron velocity in our case, but well below theve
=vp position. Another important feature reproduced is the
asymmetry about the peak. In Fig. 2, however, both the peak
position and the asymmetry are in excellent agreement with
the measurement. We note that the peak position moves
slowly towardve=vp as the projectile velocity increases and
the asymmetry about the peak is stronger at 10 than at 20
keV. This asymmetry was also notedf22g even for 191 keV
protons on He. These are well-understood features: as the
projectile velocity decreases, the effect of the residual target
ion on the outgoing electron becomes even more prominent.
It is of some concern that the peak position in our calculation

at 10 keV sFig. 1d does not quite agree with the CTMC
calculation and the relative measurementf17g. The present
calculation should be working at this energy wherevp
,0.63 a.u. The convergence of the different numerical inte-
grations was checked by increasing the number of Gaussian
points. The reason for any disagreement of the peak position
at 10 keV incident energy is not very clear. We may presume
that the influence of excited states of the hydrogen atom in
the capture channel may improve the situation. An absolute
measurement and further calculations at this energy are
needed to draw a conclusion.

Finally, we have also used theCDW-EIS codef23g to cal-
culate the double-differential cross sections for the same sys-
tem and included these results in both Figs. 1 and 2. Clearly,
at these low energies theCDW-EIS results give poor agree-
ment both qualitatively and quantitatively. This is not sur-
prising. TheCDW-EIScode is a very successful approximation
for ionization calculations but it is not expected to be valid
when ZP/vP,1 which is precisely the case in the present
calculations at 10 and 20 keV. Besides, for such low projec-
tile energiessZP/vP,1d the inclussion of an explicit capture
channel is very important. Unfortunately, theCDW-EIS ap-
proximation does not account for such an explicit capture
channel.

It is imperative that the present theoretical method be
used in many ionization, charge transfer, and transfer ioniza-
tion problems. In principle, it would be more useful for low-
energy ionization of atoms by ionic projectiles of charge
ZP.1 when capture into the excited states of the projectile
followed by ionization would be important.
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FIG. 2. Same as in Fig. 1 but for 20 keV protons on He.FIG. 1. Double-differential cross sections as a function ofve/vp

for 10 keV protons colliding with He. Filled squares and dotted line
are the results of Shahet al. f17g and solid line is the present result.
Dash-dot-dotted line is theCDW-EIS result calculated using the com-
puter code of McSherryet al. f23g.
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