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I. INTRODUCTION

Electronic motion in the valence shell of atoms and mol-
ecules is becoming directly observable through newly devel-
oped radiation sources. These sources unite high intensities
with short pulse durations and cover the wavelength range
from the near infrared to the x-ray regime. Pulse durations
extend from the picosecond range at modern synchrotron
sources, over a few femtoseconds in few-cycle laser pulses,
and similar time scales of radiation bunches in free electron
lasers all the way to attosecond pulses of high-harmonic ra-
diation generated by lasers. With time resolutions well below
1 fs, one may observe the rapid rearrangement of electron
distributions in atomic relaxation processesf1g, it may be
possible to follow the transfer of charge along a larger mol-
ecule or to time-resolve the process of tunnel ionization in a
strong electric field. It was shown that one may not only
observe electronic motion, but also control it by the strong
and well-defined electrical field of few-cycle laser pulses
f2,3g, which can be exploited, e.g., for imaging molecular
structure by “microbunches” of coherent electronsf4g or for
the selective excitation of atoms or molecules.

Theory must yet catch up with the new experimental pos-
sibilities. Much of our present understanding of valence elec-
tron motion is phrased in terms of a limited number of sta-
tionary states of the system and transitions between them.
This approach makes reference to a large body of theory,
which was primarily developed for traditional, time-
independent spectroscopy and which relies to a great extent
on numerical calculations of electronic structure. When a
large number of states is involved, such a description be-
comes increasingly complex. Time-dependent “quantum in-
terferences” between the states, which produce the dynamic
behavior of the total wave function, become difficult to in-
terprete and provide little insight into the physical processes.
When continuum states become involved beyond lowest-
order perturbative transitions, the stationary-state picture
usually breaks down. In these cases an explicitly time-

dependent approach may provide a more adequate or even
the only viable theoretical description of electronic dynam-
ics. This has long been recognized in strong laser-matter in-
teractions, where external fields are comparable to the bind-
ing electric fields of the system and continuum states
contribute dominantly. A similar situation arises when we
calculate electronic motion in larger molecules, where the
level spacing is small compared to the interaction energies
involved. The situation is somewhat analogous to molecular
wave packet dynamics, where a large number of involved
statessbound or continuumd favors a time-dependent de-
scription over a picture of complex, time-dependent interfer-
ences between time-independent statesf5g.

Solving the time-dependent Schrödinger equationsTDSEd
for a single electron in three spatial dimensions now has
become a routine task that for most purposes can be solved
easily. The interaction of multielectron systems with strong
fields has been successfully modeled by the “single-active-
electron”sSAEd approximation, where only a single electron
is assumed to participate in the dynamics. This model pro-
vides our basic understanding of processes like high-
harmonic generation in noble gases orssingled photoioniza-
tion. When applied to molecules, however, the model turned
out to be unreliablef6–9g.

When two electrons are involved in the dynamics, a direct
discretization of the TDSE becomes a formidable computa-
tional task requiring a maximum of available computer re-
sources. Such computations were performed mostly to study
the process of nonsequential double ionization of helium
f10–13g. An extension of this approach to more than two
electrons seems to be out of question and even in the two-
electron case no definite results on nonsequential ionization
could be provided so far. Similarly, multielectron calcula-
tions of molecules in strong fields have remained limited to
H2 f14–16g.

An alternative method, which, in principle, could give
exact results at low computational cost, is time-dependent
density functional theorysTDDFTd. Density functional
theory has been most successfully applied to stationary
many-electron states in solids. In its time-dependent, few-
electron version it has encountered severe fundamentalf17g*Electronic address: scrinzi@tuwien.ac.at
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and practical problemsf18g. One problem is that TDDFT
provides only the electron density, not the wave function, of
the system, which makes it difficult to define observables,
even such seemingly simple ones like photoelectron spectra.
Possibly the most severe drawback of TDDFT is that it is
difficult to systematically construct the all-important
exchange-correlation potentialVxc or to estimate the accu-
racy of a givenVxc. Proposed methods for the construction of
Vxc se.g., f19,20gd seem to become as complex as more tra-
ditional ways of solving the TDSE.

Another popular method with low computational cost is
the time-dependent Hartree-FocksTDHFd approach. Early
attempts to apply it to laser-matter interactions soon turned
out to be futile as the very nature of laser excitation and
ionization is incompatible with the TDHF ansatzf21g. This is
easy to see by the following argument: In its simplest form
the spatial HF wave function for a singlet two-electron sys-
tem in its ground state is the product of two identical orbit-
als:

C0srW1,rW2;td = fsrW1;tdfsrW2;td. s1d

When the system is ionized, one needs two different, or-
thogonal orbitals describing the ionic core and the detached
electron, respectively:

C1srW1,rW2;td = f1srW1;tdf2srW2;td + f2srW1;tdf1srW2;td. s2d

In the ionization process, the TDHF wave function must un-
dergo a transition fromC0 to C1, which cannot happen in a
continuous way during time evolution. This fundamental
limitation may be overcome by going from “restricted”
TDHF, where orbitals must be either identical or orthogonal,
to “unrestricted” TDHF without constraints onf1 and f2
f22g. Although qualitative improvements using unrestricted
TDHF were reported, satisfactory accuracies could not be
reachedf23g.

There is evidence that inclusion of correlation by using a
linear combination of several productsf j1

f j2
can produce

rapidly convergent results. In Ref.f24g it was found that
adding the field-free initial statec0srW1,rW2d to the ansatzs2d,

CsrW1,rW2;td = c0srW1,rW2d + f1srW1;tdf2srW2;td + f2srW1;tdf1srW2;td,

s3d

provides field ionization yields for helium with accuracies on
the level of a few percent for all relevant electric field
strengths.

The multiconfiguration time-dependent Hartree-Fock
sMCTDHFd method introduced in this work is a systematic
extension of thesrestricted or unrestrictedd TDHF method. It
is designed to close the gap between the in principle accu-
rate, but computationally extremely demanding direct dis-
cretization of the time-dependent Schrödinger equation and
methods like SAE, TDHF, or TDDFT, which do not provide
satisfactory results for correlated multielectron systems and
which cannot be improved systematically. We will show that
not only in principle, but also in practice, converged single-
electron spectra and ionization yields with up to six active
electrons can be obtained with moderate computational ef-
fort.

The present development of the MCTDHF method is
based on the multiconfiguration time-dependent Hartree
sMCTDHd method for the propagation of wave packets. The
MCTDH method was first introduced in 1990f25,26g and
has been applied to such diverse phenomena as absorption
and photodissociation of small moleculesf26–28g, reactive
scattering of hydrogen moleculesf29g, or the spin-boson
model f30g ssee Ref.f31g for a more complete list of appli-
cationsd. MCTDHF formally differs from MCTDH only by
the exact exchange symmetry of the time-dependent Hamil-
tonian and the restriction on the subspace of totally antisym-
metric solutions as well as by the two-particle nature of the
electron-electron interaction. The resulting important techni-
cal differences between the methods will be pointed out be-
low.

The paper is organized as follows: We define the method
and summarize the derivation of the main equations. The
most important aspects of an efficient computational imple-
mentation are discussed. Several technical issues are treated
in appendixes. The method is applied to demonstrate the im-
portant role of electron correlation even in the simplest mul-
tielectron molecules, leading not only to quantitative, but
even to qualitative differences in the ionization behavior.

II. THEORY

A. MCTDHF ansatz

In Hartree-Fock methods the fullf-electron wave function
Csq1, . . . ,qfd is approximated in terms of products of single-
electron orbitalsf jsqid. For the ease of discussion of anti-
symmetry we use generalized coordinatesqi =ssi ,rWid consist-
ing of spin si = ±1/2 andspatial coordinatesrWi PR3 of the
ith electron. Antisymmetry ofCsq1, . . . ,qfd with respect to
interchange of any two of its arguments requires thatf! such
products of single-electron orbitals be linearly combined in a
Slater determinant:

Fsq1, . . . ,qfd =
1

Îf!
o
j1=1

f

¯ o
j f=1

f

e j1¯ j f
f j1

sq1d ¯ f j f
sqfd,

s4d

wheree j1¯ j f
is fully antisymmetric—i.e., it changes sign un-

der exchange of any two of its indices—and it is normalized
by e1¯f =1. The usual Hartree-Fock ansatz employs only a
single Slater determinant or “configuration.” Themulticon-
figuration Hartree-Fock ansatz used here consists of the lin-
ear combination of all Slater determinants that can be formed
from N linearly independent orbitalsf j:

CMCHFsq1, . . . ,qfd =
1

Îf!
o
j1=1

N

¯ o
j f=1

N

Bj1¯ j f
f j1

sq1d ¯ f j f
sqfd.

s5d

The coefficientsBj1¯ j f
are assumed to be antisymmetric with

respect to their indices, which leaves onlys N
f

d independent
B’s. All other coefficients are either zero or differ only by a
sign. In electronic structure calculations optimalB’s andf’s
are determined by minimizing the expectation value of the
f-electron HamiltonianH:
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EMCHF = minskCMCHFuHuCMCHFld. s6d

A Galerkin condition is valid at the variational optimum,

kdCMCHFuHuCMCHFl = 0, s7d

wheredCMCHF runs through all vectors in the tangent space

at CMCHF—i.e., all functionsC̃MCHF−CMCHF whereC̃MCHF
is obtained fromCMCHF by small variationsBj1¯ j f

+dBj1¯ j f
andf j i

+df j i
. “Small” here means that only the lowest order

in d is retained. Conditions7d leads to the well-known mul-
ticonfiguration Hartree-Fock equationsf32g.

In MCTDHF the linear coefficientsBj1¯ j f
std and the or-

bitalsf j i
sqi ; td are all assumed to be time dependent. Instead

of the variational principles7d one uses

KdCMCHFstdUi
d

dt
− HstdUCMCHFstdL = 0 ∀ t, s8d

which ensures that the approximation is optimal in theshort-
time limit. Note that this does not mean that we obtain the
best approximation to the exact solution at every single time
t, but only that at any timet the derivative of the MCTDHF
wave function,id /dtCMCHFsq1, . . . ,qf ; td is closest to its cor-
rect valueHstdCMCHFsq1, . . . ,qf ; td within the ansatzs5d f33g.

For the further discussion we drop the label MCHF and
denote the time-dependent MCHF wave function asC.

B. Equations of motion

The derivation of equations of motion for theB’s andf j’s
is greatly simplified by observing that we do not need to
explicitly enforce antisymmetry during propagation. The fact
that the Hamiltonian is fully symmetric under exchange of
any two of the particles ensures that an initially antisymmet-
ric stateCsq1, . . . ,qf ;0d remains antisymmetric during time
propagation. Therefore, the equations of motion for the
MCTDHF method are identical to those for thesnonsymmet-
ricd MCTDH method developed for the propagation of
nuclear wave packetsf31g. The only difference is that in the
exchange-symmetric case the equations become highly re-
dundant, which must be taken into account for an efficient
implementation. In the following we only briefly summarize
the derivation of the equations of motion. For details we
refer the reader to the review article on MCTDHf31g.

Before starting the derivation it is important to note that
the ansatzs5d is not unique, asC is invariant under transfor-
mations of the form

f j → f̃ j = o
k=1

N

Sjkfk, s9d

Bj1¯ j f
→ B̃j1¯ j f

= o
k1=1

N

¯ o
kf=1

N

Sj1k1

−1
¯ Sj fkf

−1 Bk1¯kf
, s10d

where Sstd can be any invertible, possibly time-dependent
N3N matrix. We introduce a first restriction onS by de-
manding that the orbitals be orthonormalized:

kf jufkl = d jk, s11d

which limits the choice ofSstd to unitary matrices. The re-
maining freedom inSstd can be exploited to choose a conve-
nient relation between the orbitals and their time derivatives
in the form

− iKUdf j

dt
UfkL = kf jugstdufkl, s12d

wheregstd is any self-adjoint, possibly time-dependent op-
erator, which also includes the choiceg;0. Self-adjointness
of gstd in condition s12d ensures that the orthonormalization
s11d remains valid through all times. It is easy to see that
changing the constraint operatorgstd→gstd+ fstd generates
the transformationss9d and s10d with matricesSstd that sat-
isfy the differential equationidSjk /dt=olkf jufstdufllSlk.

The explicit form of admissible variations in Eq.s8d is

dC = o
j1¯ j f

Cj1¯ j f

]C

]Bj1¯ j f

+ o
i=1

f

o
j i=1

N

x j i

dC

df j i

, s13d

whereCj1¯ j f
are arbitrary complex numbers andx jsqid are

arbitrary functions from the same Hilbert space as thef j i
.

The functional derivative of any particular product off’s
with respect to the orbitalf j i

is defined as

dsfk1
¯ fkf

d

df j i

=Hfk1
¯ fki−1

fki+1
¯ fkf

for ki = j i ,

0 otherwise.
J
s14d

Inserting Eq.s13d into Eq. s8d and using the constraintss11d
and s12d one obtains the following set of “working equa-
tions” for the time derivatives:

iḂj1¯ j f
= o

k1¯kf

kf j1
¯ f j f

uHufk1
¯ fkf

lBk1¯kf

− o
i=1

f

o
k=1

N

kf j i
ugufklBj1¯ j i−1kji+1¯ j f

, s15d

iḟ j = gf j + s1 − PdFo
k

o
l

sr−1d jl H̄lkfk − gf jG . s16d

Herer jl denotes the density matrix,

r jl = o
j2=1

N

¯ o
j f=1

N

Bjj 2¯ j f
* Blj 2¯ j f

, s17d

and H̄lk is the matrix of mean-field operators:

H̄l1k1
=K dC

dfl1

UHU dC

dfk1

L . s18d

P is the projector onto the space spanned by the time-
dependent orbitalsf jsq; td:
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P = o
j=1

N

uf jlkf ju. s19d

The propagation equations also depend on the choice of the
constraint operatorg, which may be used to obtain different
decompositions of the MCTDHF wave functionC ssee Ap-
pendix Ad.

In Ref. f31g almost identical equations were derived ex-
cept that in absence of antisymmetrization a different set of
orbitals f j

sidsqid may be used for each coordinateqi. In the
present case, whereH is invariant under exchange of any two
coordinatesqi andqj and where also the initial state is anti-
symmetric, the orbitals and propagation equations are iden-
tical for all i.

The form of the equations of motion given here was used
for the calculations presented in Refs.f34,35g. Recently a
different derivation of the equations of motion was given in
Ref. f36g, where the method was applied to the hydrogen
molecule in bound states.

C. Correlation

The single-configuration Hartree-Fock wave function is
usually taken as the definition of an uncorrelated wave func-
tion. Improving the approximation by additional configura-
tions therefore systematically introduces correlation into the
ansatz until, in the limit ofN→`, the exact wave function is
recovered. It is easy to see that the working equations turn
into the ordinary Schrödinger equation when the orbitalsf j
form a complete set in the single-particle Hilbert space. In
that case the projector 1−P is ;0. With the particular choice
g;0 the time derivatives of the orbitalss16d vanish and Eq.
s15d turns into the exact TDSE represented in a basis of
products off j’s.

Figure 1 illustrates how a correlated two-particle wave
function Csx,y; t=0d is approximated by a sum of products
of uncorrelated functions. For simplicity, antisymmetrization
is disregarded. Uncorrelated functions then have the product
form f jsx; t=0dfksy; t=0d. Correlation manifests itself by
the fact that the wave functionC is not aligned with the
coordinate axes, while the product functionsf jfk are always

aligned with the axes. Approximating the nonalignedC re-
quires adding productsf jfk until C is covered. During time
evolutionCsx,y; td will change its location and shape in the
sx,yd plane, as is easy to see in the case of laser ionization.
The time-dependent orbitalsfstd evolve such as to optimally
cover Cstd. Provided that the degree of correlation in
Csx,y; td does not increase, roughly the same number of
time-adjusted orbitalsf jsx; td suffices at all times. This be-
havior must be compared with a straightforward discretiza-
tion of the sx,yd plane, where a sufficiently fine mesh must
be laid over the whole plane covering any place where the
solution might ever move to. An adaptive multidimensional
grid mitigates that problem but still does not provide any
means to take advantage of the fact that the two-particle
solution may be well approximated by a short sum of prod-
ucts of single-particle orbitals. This picture also shows the
limitations of the MCTDHF method. When strongly corre-
lated structures appear during time evolution, a large number
N of orbitals is needed, which will lead to a very large ex-
pansion sizeN

f . Such a situation may arise in the case of
nonsequential double ionization. Numerical studies in 1+1
dimensions exhibit characteristic, rather narrow jets of two
electron emission in directions that are not aligned with the
independent particle coordinatesf37g. Clearly, patching up
such structures requires a large number of uncorrelated prod-
ucts.

For clarity, in Fig. 1 we show only three out of nine pos-
sible products of thef j as the remaining six “configurations”
have nearly no overlap withC and remain “unoccupied.”
Some efficiency may be gained by only propagating “occu-
pied” configurations, although in the present implementation
we always use all configurations that can be constructed
from a given set off j’s.

Sometimes highly correlated systems can be well de-
scribed by changing to more appropriate coordinatesf38g.
However, this approach is excluded within the MCTDHF
method, as the orbitals must be strictly associated with the
individual particles to maintain antisymmetry.

Turning the argument around, the lack of convergence of
a given observable with increasing number of MCTDHF or-
bitals indicates that a strongly correlated wave function is
needed as the MCTDHF representation is optimal in the
sense of the variational principles8d.

From a mathematical point of view, the working equations
s15d ands16d differ qualitatively from the TDSE, which they
approximate, because they are nonlinear. This is a direct and
inevitable consequence of using self-adaptive orbitals. Such
nonlinearities arise whenever the discretization is dynami-
cally adapted to a specific solution. As a consequence, the
working equations violate the quantum mechanical superpo-
sition principle and ground and excited states may exhibit
spurious interactions. These problems can be overcome by
choosing a sufficient number ofN orbitals to keep artifacts
small and by enforcing mutual orthogonality of ground and
excited states during propagation to avoid accumulation of
errorsssee belowd. An initial state can be obtained from Eqs.
s15d and s16d by propagating in imaginary time. With the
additional orthogonality constraint, imaginary time propaga-
tion can also be used to obtain low-lying excited states. Non-

FIG. 1. Approximating a correlated wave functionCsx,yd by a
sum of productsf jsxdflsyd. The rectangles on the axes symbolize
the individualf’s, and the dashed rectangles indicate the support of
a single product. Several products are needed to cover the non-
aligned support ofC.
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linearity also poses technical problems, because the most ef-
ficient numerical time-propagation algorithmsse.g., split-
step or Lanczos-Arnoldi propagatorsd in their usual
implementation are only applicable to linear equations. One
way of dealing with this problem is the so-called “variational
splitting” f39g discussed in Appendix A.

D. Implementation of the working equations

The Hamiltonian of a system withf electrons in an exter-
nal electric field has the form

Hstd = o
l=1

f
1

2
F1

i
¹W l − eAW stdG2

+ VnsrWld + o
k=l+1

f

VeesurWl − rWkud,

s20d

where the interaction of the electrons with the field is written

in velocity gauge and in dipole approximation.AW std and e
denote vector potential and electron charge, respectively. We
use atomic units unless indicated otherwise. The nuclei in the
system are fixed in space and generate the potentialVnsrWid on
the ith electron. The Coulomb repulsion of the electrons is
VeesurWi −rWkud=e2/ urWi −rWku in full three dimensions and some
smoothed version of this for lower-dimensional modelsssee
belowd.

The important differences between nuclear dynamics
sMCTDH f31gd and electronic dynamicssMCTDHFd arise
from symmetry on the one hand and from the fact that the
electronic Hamiltonians20d contains only single- and two-
particle operators, whereas potentials in nuclear dynamics
typically depend on several coordinates. Because of antisym-
metry vector sizes for theB’s remain small and propagation
of Eq. s15d for fixed f’s is a routine numerical task. As at
most two-particle operators are involved, calculation of the
matrix elements is simplified.

We start with rewriting Eq.s15d, taking into account the
antisymmetry of theB’s. For simplicity we consider the case
with constraint operatorg;0. We restrict the indices to in-
creasingf-tuples j1. ¯ , j f,

iḂj1,¯, j f
= o

k1,¯,kf
Fo

p

epsk1¯kfd
kf j1

¯ f j f
uHufk1

¯ fkf
lG

3Bk1,¯,kf
, s21d

wherep runs through all permutations ofk1, ¯ ,kf. The
sum overp can be expressed as the matrix element between
two Slater determinants by observing that because of the
exchange symmetry ofH,

o
p

epsk1¯kfd
kf j1

¯ f j f
uHufk1

¯ fkf
l

=
1

f! op

epsk1¯kfdo
q

eqs j1¯ j fd
kf j1

¯ f j f
uHufk1

¯ fkf
l,

s22d

with q running through all permutations ofj1, ¯ , j f. We
now can apply the well-known Slater rulesf32g to evaluate
the matrix elements. In particular, only those matrix elements

are nonzero where at most two indices in the setsj1¯ j f and
k1¯kf are different.

The single-particle contribution to the mean-field opera-

torsH̄lk can easily be evaluated. We collect all single-particle
operators in

Hs1d = o
m=1

f

H0srWm;td, s23d

with

H0srW;td =
1

2
F1

i
¹W − eAW stdG2

+ VnsrWd. s24d

InsertingHs1d into Eq. s18d and using the definition of the
functional derivatives14d one sees that two different kinds of

contributions toH̄lk arise. The first one is due to the term
m=1 in the sums23d and has the form

H̄lk
s1d = o

j2=1

N

¯ o
j f=1

N

Blj 2¯ j f
* Bkj2¯ j f

HsrW1d = rlkH0srW1;td,

s25d

with the density matrix elementsrlk fEq. s17dg. The remain-
ing contributions are scalar terms of the form

Blj 2j3¯ j f
* Bkk2j3¯ j f

kf j2
uH0srW2;tdufk2

l s26d

and similar terms where the subscripts ofB* and B are si-
multaneously permuted, which add up to a matrix of scalars

Qlk. This contribution toH̄lk has no effect on the working
equations, as the linear combination of orbitalsokQlkfk is
annihilated by 1−P, which projects onto the orthogonal
complement of allfk’s.

The computationally most demanding terms arise from
the two-particle operators:

Hs2d = o
m,n

VeesrWm − rWnd. s27d

The terms withm=1 are

H̄lk
s2d = sf − 1d o

k2=1

N

o
j2=1

N

¯ o
j f=1

N

Blj 2j3¯ j f
* Bkk2j3¯ j f

kf j2
uVeesurW1

− rW2udufk2
l, s28d

where the scalar product is taken over coordinateq2. Because
of antisymmetry of theB’s the contributions from alln
=2, . . . ,f are identical and summation overn results in the
factor f −1. All terms withm.1 only generate a scalar ma-
trix that does not contribute to the working equations as in

the case of the single-electron partH̄lk
s1d.

Exact evaluation of the orbital mean-field potentials

V̄j2k2
srW1;td = kf j2

uVeesurW1 − rW2udufk2
l s29d

requires integration overrW2 for every single pointrW1 at each
time t. In order to perform these integrals efficiently, we
approximateVee in the form
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VeesurW1 − rW2ud < o
m=1

M

UmsrW1dUmsrW2d, s30d

with typical expansion lengthM ,100. The accuracy of the
approximation in different spatial domains can be controlled
by a weight function on the coordinatesrW1 and rW2 ssee Ap-
pendix Bd. Approximating the electron-electron repulsion by
a sum of products of single-electron potentials is consistent
with the product structure of the MCTDHF wave function.

Note that on a discrete spacerWk, k=1, . . . ,Q, Vee can be
exactly represented by aQ3Q matrix and Eq.s30d becomes
exact forM =Q. For largeurW1−rW2u the expansion rapidly con-
verges withM, much like a multipole approximation. Most
of the terms are needed to improve accuracy at small inter-
electronic distances. Further details on the expansion and a
discussion of its accuracy are given in Appendix B.

When H does not contain spin-dependent operators, the
initial spin state remains conserved throughout propagation
and spin symmetry does not need to be imposed on the basis.

E. Absorption of outgoing flux

The wave function strongly expands during interaction
with the field because of ionization. As the remote parts of
the wave function are not needed to determine typical ob-
servables such as ionization yield or dipole response, the
spatial domain where the wave function is calculated can be
limited to some inner part. Doing that one must ensure that
no unphysical reflections occur at the boundary of that do-
main. Nonreflecting boundary conditions depend on the ki-
netic energy of the particle and therefore each spectral com-
ponent of the wave function requires a separate condition.
Strictly speaking, such nonreflecting boundary conditions de-
pend on the complete wave function and cannot be imple-
mented locally. In practice, it has been demonstratedf40–42g
that the addition of a “complex absorbing potential”sCAPd
−iWsrWd to the single-particle operatorH0 can provide nearly
reflectionless absorption. The functionW is zero in some
sufficiently large inner domain and smoothly grows toWa at
the boundary of the range where the orbitalsf are calcu-
lated. The strengthWa and the extensionLa are adjusted
empirically to ensure sufficient absorption and to avoid re-
flections for a given physical situation. We have chosen

WsrWd =
Wa

2
F1 − cosSp

urWu − Ra

La
DG for urWu . Ra. s31d

A different approach to removing outgoing flux is to mul-
tiply C by a mask functionpm=1

f MtsrWmd at time intervalst,
whereMtsrWmd is ;1 in the inner domain and becomes small
at the boundary. To make overall absorption independent
from the choice oft, the mask function must depend ont.
When one chooses thet dependence in the formMtsrWd
=expf−tWsrWdg, absorption with maskMt and application of
the CAP −iWsrWd are equivalent in the limitt→0. We use
CAP’s, as the method is straightforward to implement.

F. Electron spectra

One important observable thatdoesdepend on the wave
function at large distances is the electron energy spectrum.

Provided that electronic motion beyond a certain distance
can be considered as free motion of independent electrons in
the laser field, electron spectraafter time propagation can be
calculated by recording the flux through a surface at finite
distanceduring time propagation, which allows the calcula-
tion of electron spectra, when outgoing flux is absorbed out-
side that surface.

The energy spectrum of detached electrons is the sum
over contributions from all possible ionization channelsc:

sskWd = lim
T→`

o
c

ubcskW,Tdu2. s32d

In Appendix C it is shown that the channel amplitudes
bcskW ,Td at large timeT can be written as

bcskW,Td = iE
−`

T

dtkc,kW ;tuWuCstdl s33d

if the time evolution ofCstd is calculated with the CAP −iW.
The time-dependent channel wave function has the product
form

uc,kW ;tl = FcstdxkWsqf,td, s34d

where for larget the functionFcstd evolves into the ionic
bound-state function of the given channel andxkWsqf ,td tends
to the single-electron scattering state for electron momentum
kW. The channel wave function does not need to be antisym-
metrized, as only its antisymmetric parts contribute to the
matrix element in Eq.s33d.

Equations33d has an intuitive interpretation: the absorp-
tion zone plays the role of a fuzzy surface over which the
wave function is depleted proportional toW. The part of the
wave function that is absorbed is analyzed in terms of mo-
mentum and channel and is added to the corresponding spec-
tral amplitude. As contributions from all times can interfere
in each channel, they must be added tobcskW ,td with a relative
phase that reflects the time evolution of the channel function.

The procedure is related to similar methodsf43–45g,
where the spectrumubcskW ,t=`du2 is given by the Fourier
transform of an autocorrelation function ofCstd. The impor-
tant difference is that for a time-independent Hamiltonian the
time evolution ofuc,kW ; tl is given by a multiplication by the
phase expf−itsEc+k2/2dg, whereas it is nontrivial in the time-
dependent case. Therefore in the presence of a field integra-
tion overt does not lead to a Fourier transform, but to a more
general integral transformssee Appendix Cd. In practice,
Fcstd andxkWsqf ,td can be calculated in parallel with the cal-
culation ofCstd and the integralbcskW ,Td can be accumulated
as the propagation proceeds.

It must be mentioned that the validity of Eq.s33d is lim-
ited to situations where double ionization remains small. A
generalization to multiple ionization is not considered here.

G. Propagation of excited states

Because of the nonlinearity of the equations, it is difficult
to obtain MCTDHF approximations to excited states that
have the same symmetry as the ground state. Similarly, when
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propagating two initially orthogonalsground and excitedd
statesC0 and C1, they may not remain orthogonal. Both
problems can be solved by adding an orthogonality con-
straint during propagation.

The variational principles8d can be generalized for two
orthogonal statesC0 andC1 in the form

kdC0uid/dt − HuC0l + kdC1uid/dt − HuC1l − ldkC0uC1l = 0,

s35d

where the Lagrange parameterl is determined with the help
of the explicit constraintkC0uC1l=0. For two orthogonal
states

C0 = o
j1¯ j f

Bj1¯ j f
f j1

¯ f j f
, s36d

C1 = o
k1¯kf

Ck1¯kf
xk1

¯ xkf
, s37d

one obtains from Eq.s35d the equations of motion

iḂj1¯ j f;l
= iḂj1¯ j f

− lXj1¯ j f
, s38d

iḟ j ;l = iḟ j − l o
l,k=1

N

sr−1d jldlkxk, s39d

and analogously forC and x. Here Ḃj1¯ j f
and ḟl are the

derivativeswithout orthogonality constraint given by Eqs.
s15d ands16d, respectively. The quantitiesX and the matrixd
are given by

Xj1¯ j f
=

1

f
o
k1

o
k2,¯,kf

kw j1
uxk1

lCk1¯kf
Ds j2 ¯ j f,k2 ¯ kfd,

s40d

dj1k1
= o

j2,¯, j f

o
k2,¯,kf

Bj1¯ j f
* Ck1¯kf

Ds j2 ¯ j f,k2 ¯ kfd,

s41d

with Ds j2¯ j f ,k2¯kfdªdetsMd and Mmn=kw jm
uxkn

l ,m,n
=2, . . . ,f. For determining the Lagrange multiplierl one
writes the orthogonality constraint in the differential form

0 = d/dtkC0uC1l = kĊ1uC0l + kC0uĊ1l s42d

and substitutes Eqs.s36d ands37d, as well as the derivatives
s38d and s39d. The scheme can be readily generalized to
more than two mutually orthogonal states.

Field-free excited states can be obtained by imaginary
time propagation, starting from a set of mutually orthogonal
guess states. In this particular case, where the solutions are
time independent, one does not need to propagateC0 andC1
simultaneously, but one can first obtain a good ground state
C0 and then propagateC1 orthogonal to thatC0.

H. Computer resource requirements

The main technical advantage of the MCTDHF method is
the compactness of the multielectron wave function. Forf

particles,N orbitals, and a given representation of the orbital
function byQ numbers, a total ofs N

f
d+N3Q complex num-

bers are needed to store the complete MCTDHF wave func-
tion. In one dimension storage questions are unimportant, but
even in three dimensions with, say,Q<105 andN=10, wave
function storage remains on the scale of 10 MB. In the anti-
symmetric case the largest part of storage is for the orbitals,
while the number ofB’s remains small. This is another im-
portant difference to the Hartree method, where the number
of B’s grows likeNf.

CPU time is dominated by the computation of the mean-

field operatorsH̄kl and here mostly by the two-electron
terms. WhenVee is approximated by anM-term expansion of
the form s30d, calculation of the two-electron matrix ele-
ments forN orbitals scales asQ3M 3N2. Typical computa-
tion times for our present one-dimensional models withQ
,1000,N,10, andM ,50 are a few hours on a 2-GHz PC,
depending on accuracy and laser pulse parameters. A
straightforward extension to higher dimensions would in-
crease computation times by factors of,100, depending on
the actual increase inQ, resulting in weeks of computation
time on a PC. Note that for linearly polarized lasers the wave
function expands mostly in the polarization direction, where
one needs a large number of discretization points, while
fewer points are expected to suffice in the transverse direc-
tions.

To achieve computation times on the scale of hours also
in the three-dimensional case, both more powerful hardware
and improved time-propagation algorithms are needed. The
method can be implemented on parallel computers as the
major part of the operations—differentiation, multiplication,
and calculation of the integrals—can be performed locally on
separate spatial regions. The nonlocality caused by the mean-
field potential remains manageable as the action of the mean
fields on remote parts of the wave function requires only few
terms of the expansions30d. This is easy to understand by the
analogy with a multipole expansion, where the range of mul-
tipole fields rapidly decreases with multipole order. Improve-
ments of the present time-propagation scheme may be
achieved by taking advantage of the different time scales on
which mean-field potentials and single orbitals evolve with
the aim of reducing the number of expensive recalculations
of the mean-field potentials.

III. APPLICATIONS

A. Correlation effects in ionization

The ionization behavior of atoms and small molecules in
strong laser fields has successfully been described in the
SAE approximation. With larger molecules both experimen-
tal and numerical findings indicate that the SAE approxima-
tion fails f6,46,47g. In Ref. f46g it was argued on the basis of
a mean-field model of the multielectron effects that polariza-
tion of the molecule may be responsible for the discrepancy
between SAE and observed rates. Here we show that corre-
lation plays a key role in the ionization of molecules.

In our calculations we use one-dimensional
f-atomic-model molecules with the potentials
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Vnsxd = − o
k=1

f
1

ÎsXk − xd2 + af
2
, Veesux − yud =

1
Îsx − yd2 + 1

.

s43d

The atoms are assumed to be located atXk=1.4fk−sf
−1d /2g a.u. To facilitate comparison, the smoothing param-
eteraf was adjusted for eachf andN such that the ionization
potential was the same for all molecules with a value ofIp
=0.30 a.u.

Figure 2 shows the correlation dependence of the ioniza-
tion probability for the casef =4 going from single configu-
ration sN=4d to 1001 configurationssN=14d. A laser pulse
with a central wavelength of 800 nmsphoton energy
0.057 a.u.d, duration of two cyclessFWHM of intensityd, and
peak intensityI =431013 W/cm2 was used. The smoothing
parameteraf was slightly adjusted for eachN to correct for
the different correlation energies of the ion and neutral and
keep the ionization potentialIp=0.30 with two-digit accu-
racy. The total ionization probability gradually increases
from 30% in single configuration to a converged value of
89%. We see that correlation plays an important role during
ionization. No meaningful result can be obtained with a
single configuration. Although with 15 configurationssN
=6d a big improvement towards the correct yield is made,

satisfactory accuracys,5%d is only reached with 210 con-
figurationssN=10d.

It was observed inf46g that moleculesizeis a key param-
eter for multielectron effects in ionization. Figure 3 illus-
trates that not only the absolute ionization yield, but also its
change with molecule size is dependent on correlation. In
Fig. 3sad one sees the size dependence of ionization of mol-
ecules with between two and six active electrons obtained in
Hartree-Fock approximation for a range of intensities. The
result seems to confirm a naive expectation that larger mol-
ecules with correspondingly better polarizability should be
easier to ionize. A similar result was published inf34g. This
result is at variance with the conjecture that polarization
should suppressstunnelingd ionization. However, when we
improve our approximation by including correlation, the be-
havior reversesfFig. 3sbdg: the molecules becomeharder to
ionize with increasing size. It should be emphasized that this
is a nontrivial effect of correlation, as the ionization potential
was carefully kept constant at 0.30 a.u. for all molecules.
Unfortunately, direct comparison of our results with Ref.
f46g is difficult due to the very intuitive, but not systematic
nature of the model used there. E.g., the electrons are not
treated as identical particles with an antisymmetrized wave
function and their mutual interactions are modeled only
through the change of the overall electron density. In view of
the high sensitivity of results to correlation, the qualitative
agreement of the present result with the conclusions in Ref.
f46g may be coincidental.

Recently, a one-dimensionals1Dd single-configuration
Hartree-Fock calculation of laser ionization of a model mol-
ecule with eight active electrons was reportedf48g, where a
similar frequency dependence as inf46g was found. While
seemingly this again confirms experimental findings, our re-
sult indicates that calculations on larger molecules cannot be
trusted without a careful investigation of the importance of
correlation.

B. Correlation in photoelectron spectra

Photoelectron spectra may be the single most important
observable in laser-matter interactions, as they provide rich
information about the dynamics of the whole system during
ionization. The majority of attosecond physics experiments
to date rely on the analysis of photoelectron and “above-
threshold-ionization”sATI d spectra. Exactly because spectra

FIG. 2. Correlation dependence of the ionization yield for a
four-atomic molecule with four active electrons exposed to a two-
cycle laser pulse. The pulse parameters are wavelength 800 nm,
pulse duration two optical cycle full width at half maximum
sFWHMd, trapezoidal pulse envelope, and peak intensity 4
31013 W/cm2.

FIG. 3. Ionization probability for model molecules with twoscirclesd, four ssquaresd, and sixsdiamondsd active electrons calculatedsad
in single configuration andsbd in multiconfiguration Hartree-Fock representation. Laser parameters as in Fig. 2, except for intensity.
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depend in great detail on the dynamics leading to ionization,
they constitute the most sensitive test for the accuracy of any
calculation. Here we present electron spectra obtained from
the MCTDHF method fors1+1d-dimensional He at short
s15 nmd and longs800 nmd wavelengths and we investigate
the importance of correlation for the spectral shape.

Figure 4sad shows the photoelectron spectrum, when the
ion remains in its ground state, for an increasing number of
configurations. The electron-nucleus potential of our model
atom is

Vnsxd = −
2

Îx2 + a2
, s44d

with a=Î2/2 a.u., which gives an ionization potentialIp
=1.21 a.u. The vector potential of the pulse was assumed to
be

Astd = A0e
−t2/t2

sinsvtd, s45d

with v=3.04 a.u.sl=15 nmd and t=17.57 a.u., which cor-
responds to ten optical cycles FWHM. A high intensity of
531017 W/cm2 was chosen to obtain significant ionization.
One sees that the peak obtained in single-configuration
Hartree-Fock calculations is broadened towards lower ener-
gies. Qualitatively correct results start with a minimum of 15
configurationssN=6d and less than 2% accuracy of the first 2
ATI peak heights is reached with 45 configurationssN=10d.
This is consistent with the convergence behavior of the total
yield reported earlierf35g.

A similar unphysical broadening of the photoelectron
peaks towards lower energies as in the single-configuration
TDHF calculations was observed in TDDFT calculations.

The tentative explanation for this observation given in Ref.
f18g was that the superposition nature of a partially ionized
state was not correctly reproduced by the calculation, but
rather the action of the ionic core was screened by a fraction
of the electron density remaining at the nucleus. Our results
support this explanation.

Convergence is more difficult to obtain for excited ionic
channels. Figure 4sbd shows the first peak of the first excited
ionic channel at intensityI =1016 W/cm2 with all other pa-
rameters as above. Again a broadening of the peak is ob-
served, when too few configurations are used. Moreover, the
TDHF methodsN=2, 1 configuration, not visible on the plotd
fails to reproduce any ionization-excitation process. The first
peak with a satisfactory shape is produced with 28 configu-
rationssN=8d and accuracy of the peak height reaches better
than 10% with 45 configurationssN=10d.

A second set of calculations was performed atv
=0.057 a.u.sl=800 nmd, I =331015 W/cm2. Here a pulse
duration of two optical cycle FWHM of intensity was cho-
sen. The photoelectron spectra become very extended and no
well-defined peak structure can be identified. Yet the electron
spectra converge wellsFig. 5d with a convergence pattern
similar as above, for the overall shapesad as well as for the
detailed structuresbd. In this case we could not achieve sat-
isfactory convergence for the excited ionic channel.

IV. CONCLUSIONS

At present the MCTDHF method is the only practical
method to systematically study the dynamics of multielec-
tron systems beyond simple essential state models. Its main
advantages are the compact representation of the time-

FIG. 4. Photoelectron peaks for ionization by
a ten-cycle pulse at wavelength 15 nm for in-
creasing number of configurations.sad Channel
where the ion remains in its ground state. Pulse
peak intensity isI =531017 W/cm2; the first and
second ATI peak are shown.sbd Ion in the first
excited state,I =1016 W/cm2.

FIG. 5. Photoelectron spectrum for the ionic
ground-state channel at wavelength 800 nm with
increasing number of configurations:sad whole
energy rangesthe curves are smoothened for bet-
ter visibilityd and sbd details over a short energy
rangeswithout smoothingd. Converged results are
obtained from 28 configurationssNù8d.
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dependent multielectron wave function on the one hand and
the full inclusion of correlation on the other hand. Alterna-
tive, in principle equally accurate methods using fixed basis
sets slike CId or meshes in the multiparticle configuration
space require prohibitive computer storage and CPU times.
Other methods are in principlesTDHFd or in present realiza-
tions sTDDFTd not capable to adequately describe excited
states, superposition states, or correlations.

We have discussed the most important elements of the
MCTDHF method: the basic ansatz, the equations of motion,
the treatment of antisymmetry, the inclusion of spin, the cal-
culation of excited initial states and their propagation in
time, the calculation of electron spectra in presence of the
electric field and absorbing potentials, and a systematic way
of approximating the electron-electron potential. It was
shown that in the limit of large expansion the method con-
verges to the exact solution of the time-dependent
Schrödinger equation. Convergence was demonstrated for
ionization yields of 1D many-electron molecules and for
electron spectra from a 1D two-electron atom.

The MCTDHF method is the method of choice to study
the effects of correlation. Its limiting case of a single con-
figuration is TDHF, which is usually taken as a definition of
what is an uncorrelated method. By adding more configura-
tions, correlation specific effects can be isolated. In our ex-
amples, we have shown that correlation plays an important
role in the interaction of multielectron systems with strong
laser fields. By comparing MCTDHF calculations with
TDHF calculations we found that correlation is crucial for
electron spectra and even robust observables such as the total
ionization yield from molecules may change not only quan-
titatively, but even qualitatively when correlation is included.

The purpose of this work was to present the method and
to demonstrate its feasibility using one-dimensional multi-
electron models. Certain questions of laser-matter interac-
tions may depend on the three dimensionality of space. A
well-known example, where this may apply, is the “rescat-
tering” of a detached electron with the parent ion under the
influence of a strong laser field: in one dimension rescatter-
ing is nearly inevitable, whereas in three dimensions due to
transverse wave packet spreading only a small fraction of
electrons will return to the nucleus. The MCTDHF method
may be extended to three dimensions, as the computational
effort grows with dimension like for a single-particle
Schrödinger equation. However, at present it is difficult to
predict how correlation—i.e., the number of Slater determi-
nants required for convergence—scales with dimension. To
clarify this question, a three-dimensional version of the pre-
sented code is currently being developed.

ACKNOWLEDGMENTS

We are indebted to H.-D. Meyer for introducing us to the
MCTDH method and to Christian Lubich for several fruitful
discussions. This work was supported by the Austrian Re-
search Fund special research programs ADLISsF016d and
AURORA sF011d.

APPENDIX A: TIME PROPAGATION

For the spatial discretization of our one-dimensional
model systems we used an equidistant grid ofQ pointsxm on

the intervalf−L ,Lg. The derivatives were approximated in
pseudospectral form as

]C

]x
sxjd =

1

Q
o

l,m=1

Q

sikldeiklxje−iklxmCsxmd, kl ª
pl

L
,

sA1d

and analogously for]2/]x2. The discrete Fourier transforms
were performed using standard fast Fourier transformsFFTd
routines.

We tested two different forms of solving the working
equationss15d ands16d. As a first method we chose the con-
straint operatorg;0 and united the complex values ofBj1¯ j f
and f j into a single vector, which was propagated using a
variable order self-adaptive Runge-Kutta scheme. The error
was controlled by the comparison of two steps with a single
step of double size. The method showed no instabilities, and
accuracy loss due to roundoff errors did not exceed three or
four digits.

As a second method we implemented the “variational
splitting” proposed in Ref.f39g. In that method one chooses
the single-particle Hamiltonians23d as the constraint opera-
tor gstd=H0std, which leads to the working equations

iḂj1¯ j f
= o

k1¯kf

kf j1
¯ f j f

uHs2dufk1
¯ fkf

lBk1¯kf
, sA2d

iḟ j = H0stdf j + s1 − PdFo
k

o
l

r jl
−1H̄lk

s2dfkG . sA3d

The mean-field operator is defined analogous to Eq.s18d
with the full Hamiltonian H replaced by the two-particle
Hamiltonian Hs2d defined in Eq.s27d. A split-step strategy
was applied to solve this set of equations as follows:

sid Computef j
s1d by solving

i
d

dt
f jstd = H0stdf jstd sA4d

for the intervalft0,t0+Dt /2g with initial valuesf jst0d.
sii d ComputeBj1¯ j f

st0+Dtd andf j
s2d by solving Eqs.sA2d

and sA3d for the intervalft0,t0+Dtg, where the termH0 is
omitted.

siii d Computef jst0+Dtd by integrating Eq.sA4d in the
interval ft0+Dt /2 ,t0+Dtg with the initial valuesf j

s2d.
The algorithm is of second order in the time stepDt as the

“constant mean-field” method used in the MCTDH method
f49g. Here the procedure is used to separate integration of the
single-particle orbitals from the complete set of equations,
while in the MCTDH method is serves to separate the inte-
gration of thesvery larged vector ofB’s.

The motivation for variational splitting is thatH0 contains
the unbounded derivative operators, for which schemes like
the explicit Runge-Kutta method are known to perform
poorly. As unbounded terms are now isolated in the linear
equationsA4d, more efficient integrators can be employed.
The operators of the remaining nonlinear equations were all
bounded in our examples and may be efficiently integrated
by explicit schemes.

CAILLAT et al. PHYSICAL REVIEW A 71, 012712s2005d

012712-10



The deeper physical reason for separating the single-
electron Hamiltonian from the interaction is the fact that
there are two rather different regimes of electronic motion:
interaction between electrons, which is more important at
lower velocities, and very rapid motion of the nearly free
electron in the external field, during which electrons can be
accelerated to very high momenta where large eigenvalues of
the momentum and energy operators become involved.

An extensive comparison of the two methodsf50g has
shown that at the accuracies required for observables like
ionization or electron energy spectra, a fourth-order Runge-
Kutta outperforms the variational splitting method, with up
to an order of magnitude fewer evaluations of the mean-field

operatorsH̄ in the Runge-Kutta scheme than evaluations of

the analogousH̄s2d in the variational splitting. A further
analysis must show whether this is a fundamental limitation
of the splitting method or whether it applies only for the
present implementation and/or range of parameters.

APPENDIX B: APPROXIMATION OF Vee

The approximation ofVee in the forms30d is made in two
steps:sad discretization ofVee andsbd lower-rank approxima-
tion of the resulting matrix.

We approximateVee using a set of local basis functions
huil , i =1, . . . ,Lj in the form

Vee< Vapp= RVR= o
i,i8=1

L

o
j ,j8=1

L

uilsQ−1di j Ṽj j 8sQ
−1d j8i8ki8u,

sB1d

where the projectorsR are given by

R= o
i,j=1

L

uilsQ−1di jk j u, Qij = ki u jl. sB2d

The discrete approximation matrix is

Ṽij =E drWE drW8hisrWdVeesurW − rW8udhjsrW8d, sB3d

where we chose real functionshisrWd as the basis functionsuil.
In general, a rather small number of basis functionsL
,100 is used and the functions are denser inside the atom or
molecule, where most electron-electron interactions are ex-
pected to take place. Typically,L is one or two orders of
magnitude less than the number of discretization points for
F.

For the second step we make a Schmidt decomposition of

the matrixṼij , which gives the optimal approximation by a
lower-rank matrix in theL2 sensef51g. In order to control
local distribution of the error, we use a weighted overlap
matrix

Sij =E drWgsrWdhisrWdhjsrWd, sB4d

where the weight functiong.0 may emphasize certain re-
gions. Let the columns of the matrixU denote the eigenvec-
tors associated with eigenvaluesum:

o
j=1

L

ṼijUjm = o
j=1

L

SijUjmum. sB5d

With the definitionŨªSU the matrixṼ now can be written
as

Ṽ = ŨuŨT, sB6d

where u denotes the diagonal matrix of eigenvalues. The
eigenvectors are orthogonal and normalized with respect to
S:UTSU=1. For simplicity we assume that allum are posi-
tive and that they are sorted in descending order. A lower-

rank approximation ofṼ is obtained by settingum=0 for all
m.M. Our final approximation is now

VappsrW − rW8d = o
i,j=1

N

hisrWdo
m=1

L

fQ−1Ũgim umfŨTQ−1gmj hjsrW8d.

sB7d

Because of the weight functiong, the Vapp is more accurate
wheregsrWd is large, usually near the atom or molecule. With
the definition

UmsrWd ª Îumo
i=1

L

hisrWdfQ−1Ũgim, sB8d

we obtain Eq.s30d. The present method can be considered a
special case for two-particle potentials of the more general
procedure used in the MCTDH methodf52g once the first
step of mapping onto a coarser grid was made.

Figure 6 shows the relative accuracy of the approximation
of the softened Coulomb potentials43d. Here the grid for the
f jsxd has 1000 points in the rangexP f−100,100g, a number
of L=83 unevenly spaced basis functionsuil were used, and
the final rank of the approximation isM =55. The weight
function was set togsxd=1 for x,6 and decreased stepwise
to gsxd=0.1 atx=100. In the inner cross-shaped regionrela-
tive errors of the approximation remain below 1%.

FIG. 6. Approximation ofVee on a grid of 100031000 points
by an operator of rank 55. The gray scale indicates the relative error
uVapp−Veeu / uVeeu in the sx,yd plane.
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APPENDIX C: ELECTRON SPECTRA

Here we derive Eq.s33d for the ionization channel ampli-
tude. For simplicity we disregard the exchange symmetry of
the wave functionC and the Hamiltonian.

Let us assume we havef electrons, of which thefth elec-
tron is detached by the field. We split the Hamiltonian with-
out the CAP as follows:

H̃ = H0 + Vf, H0 ª Hion + Tf, Vf ª Vn
f + Vee

f , sC1d

whereHion is the ionic Hamiltonian forf −1 electrons includ-

ing the field,Tf =f−i¹W f −eAstdg2/2 is the detached electron’s
kinetic energy including the quiver energy in the electric
field, Vn

f is the nuclear potential for thefth electron, and

Vee
f
ª o

m=1

f−1

VeesurWm − rW fud sC2d

is the interaction of the core with thefth electron.
For timesT when the laser pulse is over, the ionization

amplitude into channelc is

bcskW,Td = kc,kW ;TuC̃sTdl. sC3d

HereC̃sTd is the complete wave functionspropagated with-
out CAPd at timeT. The scattering wave function for a given
ionization channelc has the product form

uc,kW ;Tl = FcsTdxkWsqf,Td, sC4d

where we choose the time evolution

i
d

dt
Fcstd = HionstdFcstd, sC5d

with the boundary condition

HionstdFcstd = EcFcstd for t . T, sC6d

and

i
d

dt
xkWsqf,td = TfstdxkWsqf,td, sC7d

with the boundary condition

TfstdxkWsqf,td =
k2

2
xkWsqf,td for t . T. sC8d

We now demonstrate thatbc only depends on the time
evolution of the wave function on some surfaceurW fu=R. We
write

kc,kW ;TuC̃sTdl < kc,kW ;TuusurW fu − RduC̃sTdl, sC9d

where the step function isusxd=0 for x,0 and =1 forx
.0. R must be chosen large enough that any bound-state
contribution to the channelc can be neglected andT must be
large enough that all detached electrons with momentumkW
have moved beyondR. We write the right-hand side ofsC9d
as an integral over time:

E
−`

T F d

dt
kc,kW ;tuusurW fu − RduC̃stdlGdt =E

−`

T

ikc,kW ;tuH0usurW fu

− Rd − usurW fu − RdH̃uC̃stdl. sC10d

When we assume thatVf ,0 for urW fu.R, only the commuta-
tor fTfstd ,usurW fu−Rdg contributes to the integral, which only

depends onC̃*std¹C̃std on the surfaceurW fu=R.
Let us now introduce a CAP −iW and replace in Eq.sC3d

the exact solutionC̃ with the solutionC where the outgoing
flux is absorbed by the CAP. At timeT, when all detached
electrons have moved beyondR and have been absorbed, we
have

0 = kc,kW ;TuCsTdl sC11d

=E
−`

T

ikc,kW ;tufTf,usurW fu − Rdg − iWuCstdl. sC12d

When the CAP is chosen such as not to alter the time evo-
lution on the surfaceurW fu=R, the first term in the integral is
the channel amplitudesC3d. It exactly cancels with the sec-
ond term, which gives Eq.s33d.

Furthermore, for time-independent Hamiltonians, the time
evolution of the channel functions is given by

uc,kW ;tl = e−itsEc+k2/2duc,kW ;0l. sC13d

Substituting Eq.sC13d into Eq. sC3d and taking the modulus
squared one obtains a twofold integral over time for the
spectrum in channelc:

scskWd =E
−`

`

dtE
−`

`

dt8kCstduWuc,kW ;0l

3kc,kW ;0uWuCst8dle−ist−t8dsEc+k2/2d, sC14d

where we have set the upper time limit toT=`. This expres-
sion can be rewritten as the Fourier transform of an autocor-
relation function ofCstd. A similar equation for the reactive
scattering amplitude is given in Refs.f31,53g. When the
Hamiltonian is time dependent, time evolution of the channel
function becomes a general unitary transform and writing
Eq. sC14d as a Fourier transform is no longer possible.
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