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The multiconfiguration time-dependent Hartree-Fock approach for the description of correlated few-electron
dynamics in the presence of strong laser fields is introduced and a comprehensive description of the method is
given. Total ionization and electron spectra for the ground and first excited ionic channels are calculated for
one-dimensional model systems with up to six active electrons. Strong correlation effects are found in the
shape of photoelectron peaks and the dependence of ionization on molecule size.
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[. INTRODUCTION dependent approach may provide a more adequate or even
the only viable theoretical description of electronic dynam-

les is b ina directlv ob ble th h v d Iics. This has long been recognized in strong laser-matter in-
ecuies 1S becoming directly observable through newly Gevelge o tions where external fields are comparable to the bind-

oped radiation sources. These sources unite high intensiti(?ﬁg electric fields of the system and continuum states
with short pulse durations and cover the wavelength raN98ontribute dominantly. A similar situation arises when we

from the near infrared to the x-ray regime. Pulse durationg . jate electronic motion in larger molecules, where the
extend from the picosecond range at modern Synchrotrop e gnacing is small compared to the interaction energies
sources, over a few femtosecpn_ds n few-cyqle laser IOUISef’nvolved. The situation is somewhat analogous to molecular
and similar time scales of radiation bunches in free eIectronave packet dynamics, where a large number of involved
lasers all the way to attosecond pulses of high-harmonic M3tates(bound or contin’uumfavors a time-dependent de-

diation generated by lasers. With time resolutions well belo"%cription over a picture of complex, time-dependent interfer-
1 fs, one may observe the rapid rearrangement of electro

T - . _ . Bnces between time-independent stafgs
distributions in atomic relaxation procesddd, it may be Solving the time-dependent Schrédinger equattRSE)
possible to follow the transfer of charge along a larger mo"for

. e a single electron in three spatial dimensions now has
ecule or to time-resolve the process of tunnel ionization in 3ecome a routine task that for most purposes can be solved
strong electric field. It was shown that one may not only

; . _ easily. The interaction of multielectron systems with strong
observe electronic motion, but also control it by the Strongge|4q has heen successfully modeled by the “single-active-
and well-defined electrical field of few-cycle laser pulseseIectron"(SAE) approximation, where only a single electron

[2,3], which ‘(‘:a_n be exploniad, e.g., for imaging molecularis »ssymed to participate in the dynamics. This model pro-
structure by “microbunches” of coherent electrga$or for vides our basic understanding of processes like high-

the selective excitation of atO”.‘S or molecules. . harmonic generation in noble gases(single photoioniza-
Theory must yet catch up with the new experimental pos;

I . tion. When applied to molecules, however, the model turned
sibilities. Much of our present understanding of valence elecbut to be unreliablé6—9].

tron motion is phrased in terms of a limited number of sta-
tionary states of the system and transitions between then&i
This approach makes reference to a large body of theor)ﬁ

which was primarily developed for traditional, time-

Electronic motion in the valence shell of atoms and mol-

When two electrons are involved in the dynamics, a direct
scretization of the TDSE becomes a formidable computa-
onal task requiring a maximum of available computer re-

. . . sources. Such computations were performed mostly to study
independent spectroscopy and which relies to a great exteffy nqcess of nonsequential double ionization of helium

on numerical calculations of electronic structure. When 3[10_13 An extension of this approach to more than two
large number of states is involved, such a description be; i

; ) : P -~electrons seems to be out of question and even in the two-
comes increasingly complex. Time-dependent “quantum in

¢ "b h hich prod he d electron case no definite results on nonsequential ionization
terferences” between the states, which produce the dynamig, ;4 pe provided so far. Similarly, multielectron calcula-
behavior of the total wave function, become difficult to in-

S ) tions of molecules in strong fields have remained limited to
terprete and provide little insight into the physical processes'._|2 [14-16

When continuum states become involved beyond lowest-
order perturbative transitions, the stationary-state pictur%x
usually breaks down. In these cases an explicitly time

An alternative method, which, in principle, could give
act results at low computational cost, is time-dependent
density functional theory(TDDFT). Density functional
theory has been most successfully applied to stationary
many-electron states in solids. In its time-dependent, few-
*Electronic address: scrinzi@tuwien.ac.at electron version it has encountered severe fundamghfal
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and practical problem§l8]. One problem is that TDDFT The present development of the MCTDHF method is
provides only the electron density, not the wave function, obased on the multiconfiguration time-dependent Hartree
the system, which makes it difficult to define observables(MCTDH) method for the propagation of wave packets. The
even such seemingly simple ones like photoelectron spectrdédCTDH method was first introduced in 199@5,2€6 and
Possibly the most severe drawback of TDDFT is that it ishas been applied to such diverse phenomena as absorption
difficult to systematically construct the all-important and photodissociation of small moleculgZ—-28, reactive
exchange-correlation potenti&l. or to estimate the accu- scattering of hydrogen moleculd®9], or the spin-boson
racy of a giverV,.. Proposed methods for the construction of model[30] (see Ref[31] for a more complete list of appli-
V.. (e.9.,[19,20)) seem to become as complex as more tra-cations. MCTDHF formally differs from MCTDH only by
ditional ways of solving the TDSE. the exact exchange symmetry of the time-dependent Hamil-
Another popular method with low computational cost istonian and the restriction on the subspace of totally antisym-
the time-dependent Hartree-Fo€KDHF) approach. Early metric solutions as well as by the two-particle nature of the
attempts to apply it to laser-matter interactions soon turneelectron-electron interaction. The resulting important techni-
out to be futile as the very nature of laser excitation andcal differences between the methods will be pointed out be-
ionization is incompatible with the TDHF ansdl]. Thisis  low.
easy to see by the following argument: In its simplest form The paper is organized as follows: We define the method
the spatial HF wave function for a singlet two-electron sys-and summarize the derivation of the main equations. The
tem in its ground state is the product of two identical orbit-most important aspects of an efficient computational imple-
als: mentation are discussed. Several technical issues are treated
. R . in appendixes. The method is applied to demonstrate the im-
Wo(ry, roit) = dr;H h(ra;t). (1) portant role of electron correlation even in the simplest mul-
When the System is ionized, one needs two diﬁerent, orIieleCtron molecules, Ieading not Only to quantitative, but
thogonal orbitals describing the ionic core and the detache@ven to qualitative differences in the ionization behavior.
electron, respectively: Il THEORY

W1(F1, ;1) = dr(F1;t) dafost) + (P10 e (Mst).  (2) A. MCTDHF ansatz

In the ionization process, the TDHF wave function must un- |In Hartree-Fock methods the fiuflelectron wave function
dergo a transition from¥, to ¥,, which cannot happen ina Ww(q,,...,q;) is approximated in terms of products of single-
continuous way during time evolution. This fundamentalelectron orbitalsg;(q;). For the ease of discussion of anti-
limitation may be overcome by going from “restricted” symmetry we use genera“zed Coordina[‘gs(si,ﬁ) consist-
TDHF, where orbitals must be either identical or orthogonal,ing of spins=+1/2 andspatial coordinates; € R3 of the

to “unrestricted” TDHF without constraints o#; and ¢,  jth electron. Antisymmetry of¥(qy, ... ,q;) with respect to
[22]. Although qualitative improvements using unrestrictedimerchange of any two of its arguments requires fhatch
TDHF were reported, satisfactory accuracies could not bgyoducts of single-electron orbitals be linearly combined in a

reached23]. . . _ _ Slater determinant:
There is evidence that inclusion of correlation by using a

linear combination of several producd;§l¢>j2 can produce 1
rapidly convergent results. In Ref24] it was found that d(ay, - ar) ~
adding the field-free initial statey,(;,1,) to the ansatz2), '

W(Fs Fort) = Fors) + o 7o) + Zo =
(rlyrZ,t) wo(rl,rz) ¢l(r11t)¢2(r21t) ¢2(rl,t)¢l(r21t)1 Wherefjl...jf is fu”y antisymmEtric—i-e-, it ChangeS Sign un-

3) der exchange of any two of its indices—and it is normalized

provides field ionization yields for helium with accuracies onPY €1....=1. The usual Hartree-Fock ansatz employs only a

the level of a few percent for all relevant electric field Single Slater determinant or “configuration.” Theulticon-
strengths. figuration Hartree-Fock ansatz used here consists of the lin-

The multiconfiguration time-dependent Hartree-Fockear combination of all Slater determinants that can be formed
(MCTDHF) method introduced in this work is a systematic from N linearly independent orbitalg;:
extension of thérestricted or unrestricted DHF method. It

f f
2 264,00 by (),

=1 =1

(4)

N N
. , : . 1
is designed to clos_e the gap between the in _pr|nc_|ple aCCUW (@, - 0) = __|E 2 Bi,..., %1, (0) - & (ap).
rate, but computationally extremely demanding direct dis- Vilj=1 =1
cretization of the time-dependent Schrodinger equation and (5)

methods like SAE, TDHF, or TDDFT, which do not provide

satisfactory results for correlated multielectron systems andhe coefficientss; .., are assumed to be antisymmetric with
which cannot be improved systematically. We will show thatrespect to their indices, which leaves orﬁl\g‘) independent
not only in principle, but also in practice, converged single-B's. All other coefficients are either zero or differ only by a
electron spectra and ionization yields with up to six activesign. In electronic structure calculations optingd and ¢'s
electrons can be obtained with moderate computational efare determined by minimizing the expectation value of the
fort. f-electron HamiltoniarH:
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Emcrr = MinWycne HWvche) - (6) (il = ik (11

A Galerkin condition is valid at the variational optimum,  which limits the choice ofS(t) to unitary matrices. The re-
B maining freedom ir§(t) can be exploited to choose a conve-
(8WnchelH[Wiene) = 0, () nient relation between the orbitals and their time derivatives

where §Wcyr runs through all vectors in the tangent spaceIn the form

at Vycue—i.e., all functionsﬁfMCHF—\PMCHF whereﬁfMCHF dg;
is obtained from¥ycye by small variationss; . + 8B ..., - at # ) = {(BjlaO)] b0, (12
and ¢ji+5¢ji' “Small” here means that only the lowest order
in & is retained. Conditiort7) leads to the well-known mul-  whereg(t) is any self-adjoint, possibly time-dependent op-
ticonfiguration Hartree-Fock equatiof2]. erator, which also includes the choige= 0. Self-adjointness
In MCTDHF the linear coefficients; ..., (t) and the or-  of g(t) in condition(12) ensures that the orthonormalization

bitals ¢; (q;;t) are all assumed to be time dependent. Instead11) remains valid through all times. It is easy to see that
of the variational principlg€7) one uses changing the constraint operatgtt) — g(t)+f(t) generates

the transformation$9) and (10) with matricesS(t) that sat-
‘I’MCHF(U> -0 0t (8 isfy the diﬁgrgntial equatioﬁlld%k/dtzz!(qs.j|f(t)|_¢|>3k. .

The explicit form of admissible variations in E€B) is

< MW ycnr(t) |, —H(b)

which ensures that the approximation is optimal inshert- Sv

time limit. Npte t.hat this does not mean that we o_btaln 'ghe sTr=> le i E E Xi—— (13)

best approximation to the exact solution at every single time iy it 0le i isije=1 O ¢J|

t, but only that at any timé the derivative of the MCTDHF

wave functionjd/dt¥y,cue(dy, . .. ,0;;t) is closest to its cor-  where le...jf are arbitrary complex numbers ang(q;) are

rect valueH(t)Vycue(ds, - - - 05 t) within the ansat#5) [33]. arbitrary functions from the same Hilbert space as mie
For the further discussion we drop the label MCHF andThe functional derivative of any particular product ¢fs

denote the time-dependent MCHF wave functiorifas with respect to the orbitadbji is defined as
B. Equations of motion 5(¢k1'" ¢kf) _ {¢k1"' ¢ki_1¢ki+1"' ¢kf for ki =i,
The derivation of equations of motion for tBés and 4;'s 2 0 otherwise.
is greatly simplified by observing that we do not need to (14)

explicitly enforce antisymmetry during propagation. The fact

that the Hamiltonian is fully symmetric under exchange ofinserting Eq.(13) into Eq.(8) and using the constrain{41)
any two of the particles ensures that an initially antisymmet-and (12) one obtains the following set of “working equa-
ric stateW(qy, ...,0¢;0) remains antisymmetric during time tions” for the time derivatives:

propagation. Therefore, the equations of motion for the

MCTDHF method are identical to those for thwnsymr_net— iBj,..j, = > <¢il"'¢if|H|¢kl'” bi)Bi -k

ric) MCTDH method developed for the propagation of Ky -k

nuclear wave packef81]. The only difference is that in the fON

exchange-symmetric case the equations become highly re- _ B. 15
dundant, which must be taken into account for an efficient 212_11@51 |9l i1 dioaKiier i (19

implementation. In the following we only briefly summarize

the derivation of the equations of motion. For details we . _

refer the reader to the review article on MCTI)BtL]. ig=g¢+(1-P)| 2 X (0 HHud—9¢; |- (16)
Before starting the derivation it is important to note that ko1

the ansat%5) is not unique, a® is invariant under transfor-

mations of the form Here p; denotes the density matrix,

N
H’;ﬁjzzsjk(bk, (9) Py = E EBJJZ § |]2 Qi (17)
k=1 =1 i1
and ﬁ,k is the matrix of mean-field operators:
— 1
Bjyjs = Bip-ie = E_ 2§1k1 "SkBiy 4 (10) _ SV S0
=t Ho, =\ = |H| =) (19
DARES

where S(t) can be any invertible, possibly time-dependent
NX N matrix. We introduce a first restriction o by de- P is the projector onto the space spanned by the time-
manding that the orbitals be orthonormalized: dependent orbitalg;(q;1):
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y aligned with the axes. Approximating the nonaligri&dre-
quires adding product; ¢, until ¥ is covered. During time
S (evol)uticl)nllf(x,y;t) will change its Iﬁcation ar:‘dI shape in the
----------------- AR X,Y) plane, as is easy to see in the case of laser ionization.
ng,; o TTA__. The time-dependent orbitais(t) evolve such as to optimally
$4(y) _: : cover W(t). Provided that the degree of correlation in
N\ N W(x,y;t) does not increase, roughly the same number of
: S time-adjusted orbitalgs;(x;t) suffices at all times. This be-
,—W_‘ havior must be compared with a straightforward discretiza-

X tion of the (x,y) plane, where a sufficiently fine mesh must
$(x) ¢,(x) dyfx) be laid over the whole plane covering any place where the

solution might ever move to. An adaptive multidimensional

FIG. 1. Approximating a correlated wave functitif(x,y) by a  grid mitigates that problem but still does not provide any
sum of productsp;(x)¢(y). The rectangles on the axes symbolize means to take advantage of the fact that the two-particle
the individual¢'s, and the dashed rectangles indicate the support oolution may be well approximated by a short sum of prod-
a single product. Several products are needed to cover the nojrts of single-particle orbitals. This picture also shows the

aligned support of?". limitations of the MCTDHF method. When strongly corre-
lated structures appear during time evolution, a large number

N N of orbitals is needed, which will lead to a very large ex-

P=2[¢). (19  pansion size}. Such a situation may arise in the case of

=1 nonsequential double ionization. Numerical studies in 1+1

The propagation equations also depend on the choice of tfimensions exhibit characteristic, rather narrow jets of two
constraint operatag, which may be used to obtain different electron emission in directions that are not aligned with the

decompositions of the MCTDHF wave functioh (see Ap- independent particle. coordinat€37]. Clearly, patching up
pendix A). such structures requires a large number of uncorrelated prod-

In Ref. [31] almost identical equations were derived ex- UCtS- o _
cept that in absence of antisymmetrization a different set of FOr clarity, in Fig. 1 we show only three out of nine pos-
orbitals ¢(i)(q_) may be used for each coordinae In the sible products of thep; as the remaining six “configurations”
j I

present case, whekeis invariant under exchange of any two gave nef?rly no overl:?)p W't?‘" gnbd ren|1a|n unoctqupltfd.
coordinateg); andq; and where also the initial state is anti- ome €efliciency may beé ganed by only propagating “occu-

symmetric, the orbitals and propagation equations are iderpied" configurations, alth_ough _in the present implementation
tical for all’i we always use all configurations that can be constructed

The form of the equations of motion given here was useérog1 a g[{\_/en Ser:.ogl’i S lated ‘ b I d
for the calculations presented in Ref84,35. Recently a _bon;eblmeﬁ '9 ytcorreae SYS e_mts can d'e well de-
different derivation of the equations of motion was given jn SCrbed by changing to more appropriaté coor in4ess.

: However, this approach is excluded within the MCTDHF
ﬁiﬁéﬁ% i\évgirfn;hgt;]:;h()d was applied to the hydrogenmethod, as the orbitals must be strictly associated with the

individual particles to maintain antisymmetry.

Turning the argument around, the lack of convergence of
a given observable with increasing number of MCTDHF or-

The single-configuration Hartree-Fock wave function ispitals indicates that a strongly correlated wave function is
usually taken as the definition of an uncorrelated wave funcneeded as the MCTDHF representation is optimal in the
tion. Improving the approximation by additional configura- sense of the variational princip(8).
tions therefore systematically introduces correlation into the From a mathematical point of view, the working equations
ansatz until, in the limit oN— o, the exact wave function is (15) and(16) differ qualitatively from the TDSE, which they
recovered. It is easy to see that the working equations turapproximate, because they are nonlinear. This is a direct and
into the ordinary Schrodinger equation when the orbitgls inevitable consequence of using self-adaptive orbitals. Such
form a complete set in the single-particle Hilbert space. Imonlinearities arise whenever the discretization is dynami-
that case the projector 1P-is =0. With the particular choice cally adapted to a specific solution. As a consequence, the
g=0 the time derivatives of the orbita(46) vanish and Eq. working equations violate the quantum mechanical superpo-
(19 turns into the exact TDSE represented in a basis ofition principle and ground and excited states may exhibit
products of¢;’s. spurious interactions. These problems can be overcome by

Figure 1 illustrates how a correlated two-particle wavechoosing a sufficient number of orbitals to keep artifacts
function W(x,y;t=0) is approximated by a sum of products small and by enforcing mutual orthogonality of ground and
of uncorrelated functions. For simplicity, antisymmetrization excited states during propagation to avoid accumulation of
is disregarded. Uncorrelated functions then have the produ@rrors(see below. An initial state can be obtained from Egs.
form ¢;(x;t=0)¢y(y;t=0). Correlation manifests itself by (15 and (16) by propagating in imaginary time. With the
the fact that the wave functio® is not aligned with the additional orthogonality constraint, imaginary time propaga-
coordinate axes, while the product functiafgh, are always tion can also be used to obtain low-lying excited states. Non-

C. Correlation
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linearity also poses technical problems, because the most edre nonzero where at most two indices in the $etsj; and
ficient numerical time-propagation algorithnis.g., split-  k;---k; are different.

step or Lanczos-Arnoldi propagatorsin their usual The single-particle contribution to the mean-field opera-
implementation are only applicable to linear equations. OngorsH,, can easily be evaluated. We collect all single-particle
way of dealing with this problem is the so-called “variational gperators in

splitting” [39] discussed in Appendix A.

f
H® = X Ho(Fmit), (23
D. Implementation of the working equations m=1
The Hamiltonian of a system withelectrons in an exter- with
nal electric field has the form i1 )
Ho(F;1) = 5[—6 - e/im] + V(). (24)

f f
1. = |7 . - i

Hb =2 E[i—m - eA(t)} +Vo(7) + 20 Ved | =),
I=1 k=l+l InsertingH® into Eq. (18) and using the definition of the
(200 functional derivativeg14) one sees that two different kinds of

contributions toﬁ,k arise. The first one is due to the term

where the interaction of the electrons with the field is written .
m=1 in the sum(23) and has the form

in velocity gauge and in dipole approximatioﬁ(t) and e
denote vector potential and electron charge, respectively. We — _ N N

use atomic units unless indicated otherwise. The nucleiinthe  H@P= >, -+ > BGZ~~~jkaj2~~-ij(Fl) = pHo(r1;1),
system are fixed in space and generate the potantig) on 7l il

the ith electron. The Coulomb repulsion of the electrons is (25)

Ved|fi=1)=€*/|F;=r}/ in full three dimensions and some . . . .
sﬁnoolthekd versioln ol;‘ this for lower-dimensional modeslse W'th the Qen§|ty matrix elements [Eq. (17)]. The remain-
below ing contributions are scalar terms of the form

The important differences between nuclear dynamics Bl Bucin.i (b [Ho(F2;t)| i) (26)
(MCTDH [31]) and electronic dynamic€MCTDHF) arise Vol liela e 2
from symmetry on the one hand and from the fact that theand similar terms where the subscriptsRBf and B are si-
electronic Hamiltoniar(20) contains only single- and two- multaneously permuted, which add up to a matrix of scalars
particle operators, whereas potentials in nuclear dynami(:@lk_ This contribution toglk has no effect on the working
typically depend on several coordinates. Because of antisymsqyations, as the linear combination of orbitaigy s is
metry vector sizes for thB's remain small and propagation gnpihilated by 1+, which projects onto the orthogonal
of Eq. (15) for fixed ¢'s is a routine numerical task. As at complement of alkh,s.

most two-particle operators are involved, calculation of the 114 computationally most demanding terms arise from

matrix elements is simplified. the two-particle operators:

We start with rewriting Eq(15), taking into account the
antisymmetry of thd8’'s. For simplicity we consider the case HO = > Vodf= ). (27)
with constraint operatog=0. We restrict the indices to in- m<n

creasingf-tuplesj,;>--- <js, .
gr-tupiesly i The terms withm=1 are

Bipeoay ™ 2| 2 oty byl ¢kf>] . NN
' - HP=(f-1> > - Bijis i Brioiy i (Bl Ved |1
XBkl<~~-<kfv (21 ko=1 =1 =1

wherep runs through all permutations & <--- <k;. The = P2l i) (28)

sum overp can be expressed as the matrix element betwee\r/]vhere the scalar product is taken over coordimptdBecause

two Slater determinants by observing that because of tth antisymmetry of theB's the contributions from alin

exchange symmetry d, =2,...,f are identical and summation ovarresults in the
factor f—1. All terms withm>1 only generate a scalar ma-
% Criky kf)<¢‘1 ¢Jf| |¢k1 ¢kf> trix that does not contribute to the working equations as in
1 the case of the single-electron pb:l{ﬁ).
= FE fp(kl---kf)z €aiy il ¢if|H|¢k1"' Pi)s Exact evaluation of the orbital mean-field potentials
P q

22) Vi (F1it) = (&) Ved|F1 = Fo) ) (29

with g running through all permutations ¢f<---<j;. We  requires integration ovaf, for every single poinf; at each
now can apply the well-known Slater rul€32] to evaluate time t. In order to perform these integrals efficiently, we
the matrix elements. In particular, only those matrix elementspproximateVe, in the form
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M Provided that electronic motion beyond a certain distance
Ved|F1 = o)) = 2 Un(F)Um(Fo), (300  can be considered as free motion of independent electrons in
m=1 the laser field, electron spectafter time propagation can be

with typical expansion lengtM ~ 100. The accuracy of the calculated by recording the flux through a surface at finite

approximation in different spatial domains can be controlleddiStanceduring time propagation, which allows the calcula-
by a weight function on the coordinatés andF, (see Ap- tion of electron spectra, when outgoing flux is absorbed out-

pendix B. Approximating the electron-electron repulsion by Side that surface. .
a sum of products of single-electron potentials is consistent 1€ €nergy spectrum of detached electrons is the sum
with the product structure of the MCTDHF wave function. ©Ver contributions from all possible ionization channels
Note that on a discrete spacg k=1,...,Q, V.. can be S - 10
exactly represented by@Xx Q matrix and Eq(30) becomes oK) _TITL ; Ibe(k T (32
exact forM=Q. For large|r;—r>| the expansion rapidly con-
verges withM, much like a multipole approximation. Most In Appendix C it is shown that the channel amplitudes
of the terms are needed to improve accuracy at small intefs;(k,T) at large timeT can be written as
electronic distances. Further details on the expansion and a -
discussion of its accuracy are given in Appendix B. be(K,T) = if di(c, K; WP () (33)
When H does not contain spin-dependent operators, the o
initial spin state remains conserved throughout propagation

and spin symmetry does not need to be imposed on the basisthe time evolution of¥'(t) is calculated with the CAP V.
The time-dependent channel wave function has the product
E. Absorption of outgoing flux form

The wave function strongly expands during interaction -
with the field because of ior?izyatior?. As the rengwote parts of le.kit) = De(t)xi(ant), (34)
the wave function are not needed to determine typical obwhere for larget the function®.(t) evolves into the ionic
servables such as ionization yield or dipole response, thgound-state function of the given channel ayty;,t) tends
spatial domain where the wave function is calculated can bg, the single-electron scattering state for electron momentum

limited to some inner part. Doing that one must ensure thaE_ The channel wave function does not need to be antisym-

no unphysical reflections occur at the boundary of that oy eqiseq, as only its antisymmetric parts contribute to the
main. Nonreflecting boundary conditions depend on the ki-

. t th | d theref h | matrix element in Eq(33).
hetic energy of the partlcg and therefore each spectral com- Equation(33) has an intuitive interpretation: the absorp-

. . | - lorh'on zone plays the role of a fuzzy surface over which the
Strictly speaking, such nonreflecting boundary conditions de\'/vave function is depleted proportional ¥, The part of the
pend on the complete wave function and cannot be impl

d locall ice it has b d €Wwave function that is absorbed is analyzed in terms of mo-
mented locally. In pracflce, It has been .emonstr&_né)d 42 mentum and channel and is added to the corresponding spec-
that the addition of a “complex absorbing potenti@CAP)

~IW(P) to the sing| el bt id | tral amplitude. As contributions from all times can interfere
1WIr) 1o the single-particle operalbl, can provide nearly ;, o, -, channel, they must be added(k, t) with a relative
reflectionless absorption. The functioN is zero in some . . .

e ) : phase that reflects the time evolution of the channel function.
sufficiently large inner domain and smoothly growsif at

the boundary of the range where the orbitédlsare calcu- hThe Erocedure 'S relzlat_ed '[20. swmlar zethﬁﬁ%—ﬁ,
lated. The strengtiW, and the extensior, are adjusted where the spectrunfb( 't_?°)| IS given by the rourier
empirically to ensure sufficient absorption and to avoid re-ransform of an autocorrelation function #f(t). The impor-
flections for a given physical situation. We have chosen tant difference is that for a time-independent Hamiltonian the
time evolution of|c,lZ;t) is given by a multiplication by the
W(P) = V\_/a|:l B Co{ﬂm - Ra)} for [fl > R,. (31) phase exp-it(E.+k?/2)], whereas it is nontrivial in the time-
2 L, & dependent case. Therefore in the presence of a field integra-
tion overt does not lead to a Fourier transform, but to a more
. g >, L2 general integral transfornisee Appendix € In practice,
tiply ¥ by a mask functiorl,.,M.(riy) at ime intervalsr, d(t) and xi(g;,t) can be calculated in parallel with the cal-

whereM () is =1 in the inner domain and becomes smalll . . -
at the bounr;dary. To make overall absorption independen?UIatlon of¥(t) and the integraby(k, T) can be accumulated

: : as the propagation proceeds.
from the choice ofr, the mask function must depend an . - -
When one chooses the dependence in the f(?rrM ) It must be mentioned that the validity of E@3) is lim-
—exff—"W()], absorption with mash_ and a IicatioTn of ited to situations where double ionization remains small. A
t_he CAP —W(’F) are F;quivalent in theT Iimitr—p>8 We use generalization to multiple ionization is not considered here.

CAP’s, as the method is straightforward to implement.

A different approach to removing outgoing flux is to mul-

G. Propagation of excited states

F. Electron spectra Because of the nonlinearity of the equations, it is difficult

One important observable thdbesdepend on the wave to obtain MCTDHF approximations to excited states that
function at large distances is the electron energy spectrunhave the same symmetry as the ground state. Similarly, when
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propagating two initially orthogonalground and excited

PHYSICAL REVIEW A 71, 012712(2005

particles,N orbitals, and a given representation of the orbital

states¥, and ¥,, they may not remain orthogonal. Both function byQ numbers, a total oﬁ‘?‘)+N><Q complex num-
problems can be solved by adding an orthogonality conbers are needed to store the complete MCTDHF wave func-

straint during propagation.

The variational principlg8) can be generalized for two

orthogonal state¥, andV, in the form
<§\Ifo||d/dt_ H|\I}0> + <5\Pl||d/dt_ H|\If1> - )\5<1P0|\I,1> = O,
(35)

where the Lagrange paramereis determined with the help
of the explicit constrain¥,|¥;)=0. For two orthogonal
states

Vo= 2 Bj b, by, (36)

ERSL
1= 2 CipoigXig ' Xigs (37)

Ky ks

one obtains from Eq(35) the equations of motion
ile"'jf;}\:ile"'jf_)\le"'jf’ (38)
N
igin=id =N 2 (p7Hjdwxic (39
k=1

and analogously foC and y. Here le. and ¢, are the

derivativeswithout orthogonality constraint given by Eqgs.

(15) and(16), respectively. The quantities and the matrixd
are given by

1 . .
lel..jfZ—E E <¢11|Xk1>ck1'~~ka(Jz'"]f,kz"'kf),

f ky ko<t+-<kg

(40)

djlklz 2 E B;l"'jfckj_"‘ka(jZ'”jkaz'"kf),

jo<r o <jg ko<r--<kg
(41)
with D(jo"-jt, ko - kp):=det(M) and Mp,=(e; [x),m.n

=2,....f. For determining the Lagrange multiplier one
writes the orthogonality constraint in the differential form

0 = d/c(Wo| W) = (W[ W) + (W) (42)

and substitutes Eq$36) and(37), as well as the derivatives
(38) and (39). The scheme can be readily generalized to

more than two mutually orthogonal states.

tion. In one dimension storage questions are unimportant, but
even in three dimensions with, s&y~ 10° andN=10, wave
function storage remains on the scale of 10 MB. In the anti-
symmetric case the largest part of storage is for the orbitals,
while the number oB'’s remains small. This is another im-
portant difference to the Hartree method, where the number
of B's grows likeN'.

CPU time is dominated by the computation of the mean-

field operatorsH,, and here mostly by the two-electron
terms. WherVis approximated by aM-term expansion of
the form (30), calculation of the two-electron matrix ele-
ments forN orbitals scales a® x M X N2. Typical computa-
tion times for our present one-dimensional models vith
~1000,N~ 10, andM ~50 are a few hours on a 2-GHz PC,
depending on accuracy and laser pulse parameters. A
straightforward extension to higher dimensions would in-
crease computation times by factors-e100, depending on
the actual increase i@, resulting in weeks of computation
time on a PC. Note that for linearly polarized lasers the wave
function expands mostly in the polarization direction, where
one needs a large number of discretization points, while
fewer points are expected to suffice in the transverse direc-
tions.

To achieve computation times on the scale of hours also
in the three-dimensional case, both more powerful hardware
and improved time-propagation algorithms are needed. The
method can be implemented on parallel computers as the
major part of the operations—differentiation, multiplication,
and calculation of the integrals—can be performed locally on
separate spatial regions. The nonlocality caused by the mean-
field potential remains manageable as the action of the mean
fields on remote parts of the wave function requires only few
terms of the expansiof80). This is easy to understand by the
analogy with a multipole expansion, where the range of mul-
tipole fields rapidly decreases with multipole order. Improve-
ments of the present time-propagation scheme may be
achieved by taking advantage of the different time scales on
which mean-field potentials and single orbitals evolve with
the aim of reducing the number of expensive recalculations
of the mean-field potentials.

I1l. APPLICATIONS
A. Correlation effects in ionization

The ionization behavior of atoms and small molecules in

~ Field-free excited states can be obtained by imaginargtrong laser fields has successfully been described in the
time propagation, starting from a set of mutually orthogonalSAE approximation. With larger molecules both experimen-
guess states. In this particular case, where the solutions af&l and numerical findings indicate that the SAE approxima-

time independent, one does not need to propatfagtend¥,

tion fails[6,46,47. In Ref.[46] it was argued on the basis of

simultaneously, but one can first obtain a good ground statg mean-field model of the multielectron effects that polariza-

V¥, and then propagat®, orthogonal to thatV,

H. Computer resource requirements

The main technical advantage of the MCTDHF method is In

tion of the molecule may be responsible for the discrepancy
between SAE and observed rates. Here we show that corre-
lation plays a key role in the ionization of molecules.

our calculations we use one-dimensional

the compactness of the multielectron wave function. for f-atomic-model molecules with the potentials

012712-7



CAILLAT et al. PHYSICAL REVIEW A 71, 012712(2005

Number of orbitals, N satisfactory accuracf~5%) is only reached with 210 con-
46 8 10 12 14 . .
— , . figurations(N=10).
—4 It was observed ifi46] that moleculesizeis a key param-

—_

oy
2 08 eter for multielectron effects in ionization. Figure 3 illus-
§ 06 trates that not only the absolute ionization yield, but also its
§~ change with molecule size is dependent on correlation. In
% 041 Fig. 3(a) one sees the size dependence of ionization of mol-
2 .l ecules with between two and six active electrons obtained in
= Hartree-Fock approximation for a range of intensities. The
u—s . . result seems to confirm a naive expectation that larger mol-
115 70 210 495 1001 . . . -
Number of configurations ecules with correspondingly better polarizability should be

easier to ionize. A similar result was published 84]. This
FIG. 2. Correlation dependence of the ionization yield for aresult is at variance with the conjecture that polarization
four-atomic molecule with four active electrons exposed to a two-should suppresgtunneling ionization. However, when we
cycle laser pulse. The pulse parameters are wavelength 800 niinprove our approximation by including correlation, the be-
pulse duration two optical cycle full width at half maximum havior reverse$Fig. 3(b)]: the molecules becomearder to
(FWHM), trapezoidal pulse envelope, and peak intensity 4ionize with increasing size. It should be emphasized that this

X 108 wW/cn?. is a nontrivial effect of correlation, as the ionization potential
was carefully kept constant at 0.30 a.u. for all molecules.
f 1 Unfortunately, direct comparison of our results with Ref.
Vi(X) == =, Ved[x-y|) = ———. [46] is difficult due to the very intuitive, but not systematic
kel V(X = X)2 + afz Vix-y)?+1 nature of the model used there. E.g., the electrons are not

(43) treated as identical particles with an antisymmetrized wave

function and their mutual interactions are modeled only

The atoms are assumed to be located Xat1.4k—(f  through the change of the overall electron density. In view of
~1)/2] a.u. To facilitate comparison, the smoothing param-the high sensitivity of results to cprrelatlon, the _quallftatlve

etera, was adjusted for eachandN such that the ionization agreement of the present result with the conclusions in Ref.

potential was the same for all molecules with a valud of [46] may be coinciden_tal. . . ' .
~0.30 a.u. Recently, a one-dimensiondllD) single-configuration

Figure 2 shows the correlation dependence of the ionizalartree-Fock calculation of laser ionization of a model mol-
tion probability for the casé=4 going from single configu- e_cu_le with eight active electrons was reportés, where_a
ration (N=4) to 1001 configuration§N=14). A laser pulse S|m|lqr frequgncy c_iependgnce as["'?] was fqun_d. While
with a central wavelength of 800 nnfphoton energy seer_nmgly this again conﬂlrms experimental findings, our re-
0.057 a.u, duration of two cycle§FWHM of intensity, and sult |nd|ca}tes that calculat_lons on Iqrger molequles cannot be
peak intensityl =4 x 108 W/cn? was used. The smoothing trusted ywthout a careful investigation of the importance of
parametela; was slightly adjusted for eadN to correct for correlation.
the different correlation energies of the ion and neutral and o
keep the ionization potentidl,=0.30 with two-digit accu- B. Correlation in photoeleciron spectra
racy. The total ionization probability gradually increases Photoelectron spectra may be the single most important
from 30% in single configuration to a converged value ofobservable in laser-matter interactions, as they provide rich
89%. We see that correlation plays an important role duringnformation about the dynamics of the whole system during
ionization. No meaningful result can be obtained with aionization. The majority of attosecond physics experiments
single configuration. Although with 15 configuratiotsl  to date rely on the analysis of photoelectron and “above-
=6) a big improvement towards the correct yield is made threshold-ionization{ATI) spectra. Exactly because spectra

. 1
= (b) MCTDHF )
g08r 1 0.8
:
© 0.6 0.6
&
gosl 4t T 0.4
s 11 "N
N 3
502 P - 1 02
- 0 ! ,_4 ”””” . 0
1 2 3 4
Laser peak intensity [1013 W/cmz] Laser peak intensity [1013 W/cmz]

FIG. 3. lonization probability for model molecules with tweircles, four (squares and six(diamond$ active electrons calculatgd)
in single configuration an¢b) in multiconfiguration Hartree-Fock representation. Laser parameters as in Fig. 2, except for intensity.
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/
d

(@) (b)

L5 115

Configurations: 110

P x30 x 300 FIG. 4. Photoelectron peaks for ionization by

1o a ten-cycle pulse at wavelength 15 nm for in-
i creasing number of configuration&@) Channel
‘ii where the ion remains in its ground state. Pulse
\ los peak intensity i3 =5x 10" W/cn¥; the first and

1.0 11.0

0.5 105

second ATI peak are showib) lon in the first
excited state] =10 W/cm?.

Electron spectrum [arb. units]

/'\~L‘_ ’}' ..
0 N L 0.0 ‘-j[ 0.0
10 1.2 14 16 1.8 20 22 4.0 42 44 46 48 50 52 0204 0608101214
Energy [a.u.] Energy [a.n.]

depend in great detail on the dynamics leading to ionizationThe tentative explanation for this observation given in Ref.
they constitute the most sensitive test for the accuracy of anj18] was that the superposition nature of a partially ionized
calculation. Here we present electron spectra obtained frorstate was not correctly reproduced by the calculation, but
the MCTDHF method for(1+1)-dimensional He at short rather the action of the ionic core was screened by a fraction
(15 nm and long(800 nm wavelengths and we investigate of the electron density remaining at the nucleus. Our results
the importance of correlation for the spectral shape. support this explanation.

Figure 4a) shows the photoelectron spectrum, when the Convergence is more difficult to obtain for excited ionic
ion remains in its ground state, for an increasing number othannels. Figure(®) shows the first peak of the first excited
configurations. The electron-nucleus potential of our modeionic channel at intensity=10' W/cn? with all other pa-

atom is rameters as above. Again a broadening of the peak is ob-
served, when too few configurations are used. Moreover, the

V() = — 2 (44) TDHF method(N=2, 1 configuration, not visible on the pjot
" V2 + a2’ fails to reproduce any ionization-excitation process. The first

_ — _ _ o _ peak with a satisfactory shape is produced with 28 configu-
with a=v2/2 a.u., which gives an ionization potentiyj rations(N=8) and accuracy of the peak height reaches better
=1.21 a.u. The vector potential of the pulse was assumed t®an 10% with 45 configurationd\=10).
be A second set of calculations was performed at

22 =0.057 a.u.(A=800 nm, 1=3x 10" W/cn?. Here a pulse
At) = Ae sin(wt), (45) duration of two optical cycle FWHM of intensity was cho-
with ©=3.04 a.u.(\=15 nm and 7=17.57 a.u., which cor- S€n- The photoelectron spectra become very extended and no
responds to ten optical cycles FWHM. A high intensity of well-defined peak structure can be identified. Yet the electron

5% 107 W/cr? was chosen to obtain significant ionization. SPeCtra converge wellFig. 5 with a convergence pattern

One sees that the peak obtained in single-configuratiogmilar as above, for the overall sha@@ as well as for the
Hartree-Fock calculations is broadened towards lower enef€t@iled structureb). In this case we could not achieve sat-
gies. Qualitatively correct results start with a minimum of 15/Sfactory convergence for the excited ionic channel.
configuration§N=6) and less than 2% accuracy of the first 2
ATI peak heights is reached with 45 configuratigis=10).
This is consistent with the convergence behavior of the total
yield reported earlief35]. At present the MCTDHF method is the only practical
A similar unphysical broadening of the photoelectronmethod to systematically study the dynamics of multielec-
peaks towards lower energies as in the single-configuratiotron systems beyond simple essential state models. Its main
TDHF calculations was observed in TDDFT calculations.advantages are the compact representation of the time-

IV. CONCLUSIONS

25

®)

FIG. 5. Photoelectron spectrum for the ionic
ground-state channel at wavelength 800 nm with
increasing number of configuration&) whole
energy rangédthe curves are smoothened for bet-
ter visibility) and (b) details over a short energy
range(without smoothing Converged results are
obtained from 28 configuration®N=8).

Electron spectrum [arb. units]

Energy [au.] Energy [a.u.]
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dependent multielectron wave function on the one hand anthe interval[-L,L]. The derivatives were approximated in
the full inclusion of correlation on the other hand. Alterna- pseudospectral form as

tive, in principle equally accurate methods using fixed basis

sets (like Cl) or meshes in the multiparticle configuration o 12 O ki ek 7l
space require prohibitive computer storage and CPU times. g(xi) = 0 > (i) e ™ mb(xy), K = T
Other methods are in principl@DHF) or in present realiza- =L

tions (TDDFT) not capable to adequately describe excited (A1)

states, superposition states, or correlations. 9 . .
We have discussed the most important elements of thénd analogously fo#?/ 9x?. The discrete Fourier transforms

MCTDHF method: the basic ansatz, the equations of motionere performed using standard fast Fourier transfeFfr)

the treatment of antisymmetry, the inclusion of spin, the calfoutines. _ _ _
culation of excited initial states and their propagation in We tested two different forms of solving the working
time, the calculation of electron spectra in presence of th@quationg15) and(16). As a first method we chose the con-
electric field and absorbing potentials, and a systematic wagtraint operatog=0 and united the complex valuesBf..

of approximating the electron-electron potential. It wasand ¢; into a single vector, which was propagated using a
shown that in the limit of large expansion the method con-variable order self-adaptive Runge-Kutta scheme. The error
verges to the exact solution of the time-dependentvas controlled by the comparison of two steps with a single
Schrédinger equation. Convergence was demonstrated fefep of double size. The method showed no instabilities, and

ionization yields of 1D many-electron molecules and foraccuracy loss due to roundoff errors did not exceed three or
electron spectra from a 1D two-electron atom. four digits.

The MCTDHF method is the method of choice to study  As 3 second method we implemented the “variational

the effects of correlation. Its limiting case of a single CON-gpjitting” proposed in Ref[39]. In that method one chooses

figuration is TDHF, which is usually taken as a definition of e single-particle Hamiltoniat23) as the constraint opera-
what is an uncorrelated method. By adding more configurag,, g(t)=Hy(t), which leads to the working equations
tions, correlation specific effects can be isolated. In our ex-

amples, we have shown that correlation plays an important R = e 1D .
role in the interaction of multielectron systems with strong By kE (iy - & H b di)Bi e (A2)
laser fields. By comparing MCTDHF calculations with
TDHF calculations we found that correlation is crucial for o -1
electron spectra and even robust observables such as the total iy = Ho(t) ¢y + (1 - P)[E > Rl ¢k] ' (A3)
ionization yield from molecules may change not only quan- kol
titatively, but even qualitatively when correlation is included. The mean-field operator is defined analogous to @®)
The purpose of this work was to present the method anevith the full HamiltonianH replaced by the two-particle
to demonstrate its feasibility using one-dimensional multi-Hamiltonian H® defined in Eq.(27). A split-step strategy
electron models. Certain questions of laser-matter interacwas applied to solve this set of equations as follows:
tions may depend on the three dimensionality of space. A (j) Computeq')}l) by solving
well-known example, where this may apply, is the “rescat-
tering” of a detached electron with the parent ion under the
influence of a strong laser field: in one dimension rescatter-
ing is nearly inevitable, whereas in three dimensions due to ) o
transverse wave packet spreading only a small fraction ofor the interval[ty, to+At/2] with |n|t2|al values ¢(to).
electrons will return to the nucleus. The MCTDHF method (i) ComputeB; ., (to+At) and ¢” by solving Eqs(A2)
may be extended to three dimensions, as the computationahd (A3) for the interval[ty,ty+At], where the ternH, is
effort grows with dimension like for a single-particle omitted.
Schrodinger equation. However, at present it is difficult to (i) Compute ¢;(ty+At) by integrating Eq.(A4) in the
predict how correlation—i.e., the number of Slater determi-interval[t,+At/2,t,+At] with the initial values¢§2).
nants required for convergence—scales with dimension. To The algorithm is of second order in the time stiepas the
clarify this question, a three-dimensional version of the pre«constant mean-field” method used in the MCTDH method
sented code is currently being developed. [49]. Here the procedure is used to separate integration of the
single-particle orbitals from the complete set of equations,
ACKNOWLEDGMENTS while in the MCTDH method is serves to separate the inte-
We are indebted to H.-D. Meyer for introducing us to thegration of the(very large vector ofB's.
MCTDH method and to Christian Lubich for several fruitful ~ The motivation for variational splitting is th&t, contains
discussions. This work was supported by the Austrian Rethe unbounded derivative operators, for which schemes like
search Fund special research programs AD(#816 and  the explicit Runge-Kutta method are known to perform
AURORA (F011. poorly. As unbounded terms are now isolated in the linear
equation(A4), more efficient integrators can be employed.
The operators of the remaining nonlinear equations were all
For the spatial discretization of our one-dimensionalbounded in our examples and may be efficiently integrated
model systems we used an equidistant griQqfointsx,,on by explicit schemes.

d
1 410 =Ho(0) () (A4)

APPENDIX A: TIME PROPAGATION
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The deeper physical reason for separating the single-
electron Hamiltonian from the interaction is the fact that
there are two rather different regimes of electronic motion:
interaction between electrons, which is more important at
lower velocities, and very rapid motion of the nearly free
electron in the external field, during which electrons can be
accelerated to very high momenta where large eigenvalues of
the momentum and energy operators become involved.

An extensive comparison of the two methdds)] has
shown that at the accuracies required for observables like
ionization or electron energy spectra, a fourth-order Runge-
Kutta outperforms the variational splitting method, with up
to an order of magnitude fewer evaluations of the mean-field
operatorsH in the Runge-Kutta scheme than evaluations of
the analogousH® in the variational splitting. A further FIG. 6. Approximation ofVe on a grid of 1000 1000 points
analysis must show whether this is a fundamental limitatiorby an operator of rank 55. The gray scale indicates the relative error
of the splitting method or whether it applies only for the [Vaps~Ved/|Ved in the (x,y) plane.
present implementation and/or range of parameters.

50
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0.03

-50

~100
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APPENDIX B: APPROXIMATION OF Ve 2 VijUjm - 2 SjUjmum- (B5)
The approximation o¥,.in the form(30) is made in two =1 =1
steps:(a) discretization ofV,. and(b) lower-rank approxima- . L~ o~ )
tion of the resulting matrix. With the definitionU := SU the matrixVV now can be written
We approximateV,, using a set of local basis functions @S
{liy,i=1,... L} in the form

o V=U0ulT, (B6)
Vee= Vapp=RVR= 2 2 [IMQ7H;;V;;(Q7H;i'], where u denotes the diagonal matrix of eigenvalues. The
hi'=1jj'=1 eigenvectors are orthogonal and normalized with respect to

(B1) S:UTSU=1. For simplicity we assume that all,, are posi-
tive and that they are sorted in descending order. A lower-

where the projector® are given by rank approximation oV is obtained by setting,,,=0 for all

L m> M. Our final approximation is now
R=2> QYL Qy=(ili). (B2) " )
ij=1 - ~
> — ! -1 TA-17 . (F
The discrete approximation matrix is Vapdl =) = ”2:1 h'(F)mE:l [Q7 U im Um[UTQ Jimj ().
(B7)

U= | o [ arnovedr-rine,  ©3
Because of the weight functiogy the V,,, is more accurate
where we chose real functiohgr) as the basis functio®.  whereg(r) is large, usually near the atom or molecule. With
In general, a rather small number of basis functidns the definition
~100 is used and the functions are denser inside the atom or

molecule, where most electron-electron interactions are ex- _ e

pected to take place. Typically, is one or two orders of Un(F) = V'Umz hi(N[Q™*Ulim, (B8)
magnitude less than the number of discretization points for i=1

)

.For the second step we make a Schmidt decomposition of® o_btain Eq(30). The present method can be considered a
o~ i , , o Special case for two-particle potentials of the more general
the matrixV;;, which gives the optimal approximation by a procedure used in the MCTDH meth§B2] once the first
Iower-rank_ mz_itnx in theL“ senseg[51]. In orde_r to control step of mapping onto a coarser grid was made.
Iocall distribution of the error, we use a weighted overlap Figure 6 shows the relative accuracy of the approximation
matrix of the softened Coulomb potenti@3). Here the grid for the
¢;(x) has 1000 points in the range= [-100, 100, a number
S;= f drg(Nh;(Nhy(r), (B4)  of L=83 unevenly spaced basis functidijswere used, and
the final rank of the approximation i®1=55. The weight
where the weight functiog>0 may emphasize certain re- function was set t@(x)=1 for x<6 and decreased stepwise
gions. Let the columns of the matri denote the eigenvec- to g(x)=0.1 atx=100. In the inner cross-shaped regreia-
tors associated with eigenvalueg: tive errors of the approximation remain below 1%.
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APPENDIX C: ELECTRON SPECTRA <C,|Z;T|‘If(T)> - <C,|Z;T| 0(|Ff| _ R)|‘I’(T)>, (C9)
}ghere the step function ig(x)=0 for x<0 and =1 forx

0. R must be chosen large enough that any bound-state
contribution to the channel can be neglected andmust be
large enough that all detached electrons with momerikum
have moved beyonB. We write the right-hand side ¢fC9)
as an integral over time:

Here we derive Eq(393) for the ionization channel ampli-
tude. For simplicity we disregard the exchange symmetry o
the wave function?’ and the Hamiltonian.

Let us assume we haveelectrons, of which théth elec-
tron is detached by the field. We split the Hamiltonian with-
out the CAP as follows:

H=Ho+ Vi, Hoi=Hon+Tr, Vii=Vi+V, (C1)

ee’

T T
d . ~ o .
[ Seekatri-riio o= [ e komonte
whereH;,, is the ionic Hamiltonian fof -1 electrons includ- - ‘°°
ing the field, T;=[-iV;—eA(t)]%/2 is the detached electron’s ~R) - 6(F¢| = RH[W(t). (C10
kinetic energy including the quiver energy in the electric

field, V! is the nuclear potential for thtth electron, and When we assume that ~ 0 for |F{| >R, only the commuta-

tor [T;(t), 8(|r;|—~R)] contributes to the integral, which only

: 1 L depends onP” (t) VW (t) on the surfacéf|=R.
Veei= E_ Ved|Fm=Ti)) (C2 Let us now introduce a CAP W and replace in E((C3)
=t the exact solutionW with the solution¥ where the outgoing
is the interaction of the core with thigh electron. flux is absorbed by the CAP. At tim&, when all detached
For timesT when the laser pulse is over, the ionization €lectrons have moved beyoftand have been absorbed, we
amplitude into channet is have
by(K.T) = (¢, K T[T (T). (cy OFCKTVM) (C1y
~ T
Here W (T) is_the complete wave functio@prop_agated wi?h— :f i(c,K:t[ T, ;| - R = iW[W(t). (C12
out CAP at timeT. The scattering wave function for a given —o0

ionization channet has the product form . .
P When the CAP is chosen such as not to alter the time evo-

l6,K:TY = &(T) xiar, T, (c4y lution on the surfacér|=R, the first term in the integral is
the channel amplitudéC3). It exactly cancels with the sec-
where we choose the time evolution ond term, which gives E(33).
g Furthermore, for time-independent Hamiltonians, the time
id_tq)c(t) = Hig () D(1), (C5) evolution of the channel fgnctlgns is given by
|c,k;t) = et EctkT2)|c K: 0). (C13
with the boundary condition Substituting Eq(C13) into Eq.(C3) and taking the modulus
Hion(D®o(t) = ELD(1) fort>T, (Ce)  squared one obtains a twofold integral over time for the

spectrum in channed:

and - w

4 oK) =f dtf dt’ (W (t)|Wlc,k; 0)
X = TOxan ), (€7 R 2
X{(c,K; OWW (t'))e I ESKTD - (Cc14)

with the boundary condition where we have set the upper time limitTe«. This expres-
k2 sion can be rewritten as the Fourier transform of an autocor-

Ti(Ox(ar,t) = EXIZ(qf-t) fort>T. (C8)  relation function of¥(t). A similar equation for the reactive

scattering amplitude is given in Reff31,53. When the
We now demonstrate thdd, only depends on the time Hamiltonian is time dependent, time evolution of the channel
evolution of the wave function on some surfgcg=R. We  function becomes a general unitary transform and writing

write Eq. (C14) as a Fourier transform is no longer possible.
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