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We consider weakly bound diatomic moleculessdimersd formed in a two-component atomic Fermi gas with
a large positive scattering length for the interspecies interaction. We develop a theoretical approach for calcu-
lating atom-dimer and dimer-dimer elastic scattering and for analyzing the inelastic collisional relaxation of the
molecules into deep bound states. This approach is based on the single-channel zero-range approximation, and
we find that it is applicable in the vicinity of a wide two-body Feshbach resonance. Our results draw prospects
for various interesting manipulations of weakly bound dimers of fermionic atoms.
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I. INTRODUCTION

The studies of degenerate atomic Fermi gases attract a
great deal of interest as they are directed to reveal novel
macroscopic quantum states and provide links between quan-
tum gases and condensed matter systems. Experiments with
ultracold two-component clouds of fermionic atoms widely
use Feshbach resonances for the intercomponent interaction
sscattering lengthad. This allows one to switch the sign and
tune the absolute value ofa which at resonance changes
from 1` to 2`. On the positive side of the resonancesa
.0d, one expects the formation of weakly bound diatomic
molecules, which represent composite bosons and can form a
Bose-Einstein condensatesBECd. On the negative sidesa
,0d, the interaction between atoms of different components
is attractive and they should undergo the well-known
Bardeen-Cooper-SchrieffersBCSd superfluid pairing at suffi-
ciently low temperatures. The BCS transition temperature is
much lower than the Fermi energy, which makes it difficult
to achieve this transition.

Molecular BEC fora.0 and atomic BCS pairing fora
,0 describe the system sufficiently far from the resonance.
In the vicinity of the resonance, where the density and the
scattering length satisfy the inequalitynuau3*1, the gas en-
ters a strongly interacting regime. This BCS-BEC crossover
regime has been discussed in the literature in the context of
superconductivity f1–4g and for superfluidity in two-
dimensional 3He films f5,6g. Atomic Fermi gases in the
strongly interacting regime are expected to have a compara-
tively high superfluid transition temperaturef7–11g and are
characterized by a universal behavior of interactionsf12–15g
and a universal thermodynamicsf16g. They are now actively
being studied in relation to the nature of superfluid pairing
f17–24g.

Recent investigations of two-component40K and 6Li
atomic Fermi gases are marked by remarkable achievements.
Those include the formationf25–28g and Bose-Einstein con-

densationf29–33g of long-lived weakly bound diatomic mol-
eculessdimersd on the positive side of a Feshbach resonance
sa.0d, and a BEC-type behavior of fermionic atom pairs in
the strongly interacting regimef34,35g. An anomalous de-
pendence of frequencies and damping rates of quadrupole
excitations on the interaction strength, observed in experi-
ments f36,37g, may be a signature for a transition from a
superfluid to collisionless regime. Strong evidence for the
superfluid regime was obtained in the Innsbruck experiment
f38g through the radio-frequency measurement of the pairing
gap for a strongly interacting Fermi gas of6Li.

The studies of the strongly interacting regime for the
BCS-BEC crossover require knowledge of many-body corre-
lations. In particular, one should reproduce a correct equation
of state in the limit of BEC of a weakly interacting gas of
dimers fora.0 sseef23gd.

Hence, one should know the interaction between these
dimers. For a largea, they are weakly bound and have a
large sizes,ad which greatly exceeds the characteristic ra-
dius of interaction between the atoms. In our previous work
f39g, we have outlined a method for studying the elastic in-
teraction between such molecules and their collisional relax-
ation to deep bound states. This method is based on the zero-
range approximation, and the dimer-dimer scattering length
is found to be 0.6a. The imaginary part of the scattering
amplitude, originating from the collisional relaxation, is ex-
tremely small. Being in the highest rovibrational state, these
diatomic molecules are characterized by a remarkable colli-
sional stability. The physical reason is the Pauli principle in
combination with a large size of the molecular statessmall
momenta of bound fermionic atomsd: collisional relaxation is
suppressed as it requires at least two identical fermions with
small momenta to approach each other to a short distance
f39g.

In this paper, we present a detailed analysis of elastic and
inelastic atom-dimer and dimer-dimer interactions in the
zero-range approximation. The paper is organized as follows.
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In Sec. II we introduce the zero-range approximation in a
way it has been done for the two-body problemssee, for
example,f40,41gd. Section III contains a general description
of the zero-range approximation for the case of three par-
ticles. In Sec. IV, we review the problem of atom-dimer elas-
tic scattering in the zero-range approximation, and in Sec. V,
we present a derivation for the relaxation of the dimers to
deep bound states in atom-dimer collisions. Sections VI and
VII contain a generalization of the zero-range approximation
to the case of four particles. In these sections, we present a
detailed derivation of the results for the elastic dimer-dimer
interaction and for the relaxation of the dimers to deep bound
states in dimer-dimer collisions. In Sec. VIII, we show that
our results can be used for weakly bound diatomic molecules
obtained in two-component atomic Fermi gases by using
wide Feshbach resonances, and in Sec. IX we conclude.

II. ZERO-RANGE APPROXIMATION
FOR THE TWO-BODY PROBLEM

We first follow well known results and introduce the zero-
range approximation as this has been done for the two-body
problemsseef40,41gd. We consider elastic pair collisions be-
tween cold distinguishable atoms interacting with each other
via a spherically symmetric potential and assume that their
de Broglie wavelength is much larger than the characteristic
radius of this potential,Re. In other words, we have the con-
dition kRe!1, wherek is the relative wave vector of the
atoms. In this case, the scattering is dominated by thes-wave
contribution. The behavior of the wave function at inter-
atomic distancesr @Re is governed by the scattering lengtha
which is related to the scattering phase shift as
d=−arctanskad. Given the scattering length, the details of the
interatomic potential at distancesr &Re are practically irrel-
evant for scattering parameters and give rise to corrections of
the order ofkRe or smaller for the scattering amplitudef42g.

The key idea of the zero-range approximation is to solve
the equation for the free relative motion of two atoms plac-
ing the Bethe-Peierls boundary condition on the wave func-
tion at a vanishingr,

srcd8
rc

= −
1

a
, r → 0, s1d

which can also be rewritten as

c ~ s1/r − 1/ad, r → 0. s2d

One then gets a correct expression for the wave function at
distancesr @Re.

For the free relative motion of two colliding atoms, the
Schrödinger equation takes the form

− s¹r
2 + k2dc = 0. s3d

A general solution of this equation for our scattering prob-
lem, which is valid at any finiter, is given by

c = expsik · r d + hGsr ,0d, s4d

where Gsr ,r 8d=s1/4pur −r u8dexpsikur −r 8ud is the Green
function representing the solution of Eq.s3d with the right-

hand side equal todsr −r 8d. Thes-wave part of the incident
wave given by the first term on the right-hand side of Eq.s4d
is equal to sinkr /kr. As the wave functionc should satisfy
the boundary conditions1d at r →0, for the coefficienth we
immediately obtain

h = −
a

1 + ika
=

exps2idd − 1

2ik
. s5d

Then Eq. s4d reproduces the well-known result for the
s-wave part of the wave function atr @Re,

c ~
sinskr + dd

kr
. s6d

The use of the zero-range approximation is especially impor-
tant for the case of resonance scattering characterized by the
scattering lengthuau@Re. Then, for interparticle distances in
the intervalRe! r !1/k, from Eq. s6d one finds that Eq.s2d
gives a correct result forc at distances of the order of or
even much smaller thanuau.

For a large positive scattering lengtha@Re, there is a
weakly bound state of two atoms. The binding energy«0 and
wave functionf0 of this state at distancesr @Re can also be
found in the zero-range approximation.

The free relative motion of atoms in the bound state is
described by the Schrödinger equation,

s− ¹r
2 + m«0/"

2df0 = 0, s7d

wherem is the atom mass, and thesnegatived energy of the
molecular state isE=−«0. A general solution of Eq.s7d at
any finite r can be written as

f0srd = c0sr d + h0G«0
sr ,0d, s8d

where G«0
sr ,r 8d=s1/4pur −r 8udexps−Îm«0/"2ur −r 8ud is the

Green function of Eq.s7d, and c0 is the solution of this
equation that is finite and regular at any distance including
r =0. For r →0, the wave functions8d should satisfy the
boundary conditions1d.

One can easily see that any nontrivial solution of Eq.s7d,
finite at r →`, behaves as 1/r for r →0. Therefore, we have
c0=0. Then, using the boundary conditions1d for f0srd at
vanishingr, one finds that the binding energy of the weakly
bound state is

«0 = "2/ma2, s9d

and the wave functionf0 normalized to unity is given by

f0srd = s1/Î2pardexps− r/ad. s10d

Note that under the conditionuau@Re, the main contribution
to the normalization integral comes from distancesr @Re,
where Eq.s10d is valid. Relative corrections to the binding
energy«0 are of the order ofsRe/ad.

III. GENERAL FORMALISM FOR THREE FERMIONS

Theoretical studies of the three-body problem have a long
prehistorysseef43g for a reviewd. In this section, we con-
sider a three-body system consisting of two identical fermi-
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ons interacting with a third one, which is not identical to the
first two, via a short-range pair isotropic potentialUsrd. The
fermions have the same mass and we will denote the identi-
cal ones by the symbol↑ and the third one by the symbol↓.
In the center-of-mass reference frame, the state of the system
with total energyE is described by the Schrödinger equation

F− ¹x
2 − ¹y

2 + o
±

USÎ3x ± y

2
D − EGC = 0, s11d

wherey is the distance between the identical fermions, and
Î3x /2 is the distance between their center of mass and the
third atom. Hereinafter, we use notations in which"=m=1.

The wave functionC is antisymmetric with respect to the
permutation of identical fermions, i.e., it changes sign under
the transformationy→−y.

We will discuss the case of resonant two-body interaction,
that is, we assume that the two-body problem for the inter-
action potentialUsrd is characterized by a large scattering
length

uau @ Re. s12d

As has been shown by Efimovf44g, in this case short-range
physics is not important and the three-body problem is uni-
versal in the sense that it can be described in terms of the
two-body scattering length. One can then use the zero-range
approximation for the interatomic potential. This was first
done even earlier by Skorniakov and Ter-Martirosianf45g in
relation to the neutron-deutron scattering, which is similar to
elastic scattering of atoms by weakly bound dimers. The
work of Ref. f45g was followed by related discussionsf46g.
In this section, we present the form of the zero-range ap-
proximation for three-body systems that was outlined in
Refs. f39,47g for the three-body recombination and atom-
dimer scattering.

Under the conditions12d, the zero-range approximation is
applicable even at interparticle distances much smaller than
uau, as long as these distances greatly exceedRe. Also, this
approximation properly describes weakly bound states of
two particles ata.0. According to the zero-range approxi-
mation, Eq.s11d is equivalent to the Poisson equation

− f¹x
2 + ¹y

2 + EgC = 0, s13d

with the boundary conditions2d set for a vanishing distance
between any of the two distinguishable fermions, i.e., for
r ±=sÎ3x±yd /2→0. Taking into account the symmetry, we
can write the boundary conditions at the two boundaries as

C < ±
1

4p
fsr dS 1

r±
−

1

a
D, r± → 0, s14d

wherer = 72y /Î3 for r±→0. The functionf contains infor-
mation about the relative motion of a↑-fermion with respect
to the two other atoms when they are on top of each other. In
the case of atom-dimer scattering, the functionf plays a role
of the wave function of the atom-dimer relative motion.

The Green function of Eq.s13d, which is the solution of
this equation with the right-hand side equal todsx−x8ddsy
−y8d, is given by

GEsXd =H− s8p3X2d−1EK2sÎ− EXd, E , 0,

is16p2X2d−1EH2sÎEXd, E . 0.
s15d

Here X=Îsx−x8d2+sy−y8d2, K2 is an exponentially decay-
ing Bessel function, andH2 is a Hankel function representing
an outgoing wave. ForÎuEuX!1, we have

G0 = s4p3X4d−1. s16d

As in the two-body case described by Eqs.s4d and s8d, a
general solution of Eq.s13d at finite distances between↑ and
↓ fermions can be expressed through the Green functionGE
s15d, with coordinatesx8, y8 corresponding to a vanishing
distance between distinguishable fermions, that is, forr +8
→0 and for r −8→0. We thus have

Csx,yd = C0sx,yd

+E GEfÎsx − r 8/2d2 + sy + Î3r 8/2d2ghsr 8dd3r8

−E GEfÎsx − r 8/2d2 + sy − Î3r 8/2d2ghsr 8dd3r8,

s17d

where C0 is a properly symmetrized and finite solution of
Eq. s13d, regular at vanishing distances between↑ and ↓
fermions. For a negative total energyE, nontrivial solutions
of this type do not exist and we have to putC0=0. The
function hsr d has to be determined relying on the boundary
conditionss14d.

For this purpose, we consider the limitr +→0 and analyze
the leading behavior of the terms on the right-hand side of
Eq. s17d. The argument of the Green function in the third
term can be written asÎr2+r82+r ·r 8−Î3r +·r 8+r+

2, where
r =sx−Î3yd /2, and this term is finite forr+→0. It can be
written as

E GEsÎr2 + r82 + r · r 8dhsr 8dd3r8. s18d

In the second term, the argument of the Green function takes
the formÎsr −r 8d2+r+

2. We then subtract from this term and
add to it an auxiliary quantity

hsr dE GEfÎsr − r 8d2 + r+
2gd3r8 = s1/4pr+dhsr dexps− Î− Er+d.

s19d

The result of the subtraction gives a quantityI
=eGEfÎsr −r 8d2+r+

2gfhsr 8d−hsr dgd3r8. For r+→0, this quan-
tity remains finite and can be written as

I = PE GEsur − r 8udfhsr 8d − hsr dgd3r8, s20d

where the symbol P denotes the principal value for the inte-
gration overdr8. The derivation of Eq.s20d and the proof of
the convergence of the integral on the right-hand side of this
equation are given in the Appendix.
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Neglecting terms that are vanishing forr+→0, the two
last lines of Eq.s17d are given by the sum of Eqs.s18d, s19d,
and s20d. Thus, in the limitr+→0 we can write Eq.s17d in
the form containing a singular term proportional tor+

−1, and
regular terms independent ofr+,

C <
r+

−1 − Î− E

4p
hsr d +E hGEsur − r 8udfhsr 8d − hsr dg

− GEsÎr2 + r82 + r · r 8dhsr 8djd3r8 + Dsr d/4p, s21d

whereDsr d=4pC0s+r /2 ,−Î3r /2d, andÎ−E=−iÎE for posi-
tive energiesE. Hereafter we omit the principal value sym-
bol P for the first term of the integrand of Eq.s21d.

As Eq.s21d should coincide with Eq.s14d at r+→0, com-
paring the singular terms of these equations we immediately
find that hsr d= fsr d. Matching the regular terms yields the
equation for the functionf,

sL̂E − a−1 + Î− Edfsr d = Dsr d, s22d

where the integral operatorL̂E is given by

L̂Efsr d = 4pE hGEsur − r 8udffsr d − fsr 8dg

+ GEsÎr2 + r82 + r · r 8dfsr 8djd3r8. s23d

The operator on the left-hand side of Eq.s22d conserves
angular momentum. Therefore, one can expandf and D in
spherical harmonics and work only with a set of uncoupled
equations for functions of a single variabler. The knowledge
of the function fsr d allows one to calculate all scattering
parameters. In the next section, we demonstrate this by cal-
culating the atom-dimer scattering length in the ultracold
limit.

IV. ATOM-DIMER ELASTIC SCATTERING

According to the discussion in Sec. II, for a large positive
scattering lengtha@Re one has a weakly bound molecular
state of two distinguishable fermionss↑ and ↓d, with the
binding energy«0=1/a2 and the wave functionf0 described
by Eq. s10d. We now consider elastic collisions of these
bosonic dimers with↑ sor ↓d fermionic atoms at collision
energies«,«0. Then the total energy of the three-body
atom-dimer system isE=s«−«0d,0 and collisions do not
lead to dissociation of the dimers.

From Eq.s10d, one finds that the size of the weakly bound
molecular state is,a. For a large separation between the
atom and the dimer, the three-body wave function factorizes
into a product,

Csx,yd < f0sr+dxsr d, r @ a. s24d

A characteristic value of the distancer+ between atoms in the
dimer is,a, and in the limitr @a the atom-dimer separation
is equal toÎ3r /2. The wave functionxsr d describes the rela-
tive atom-dimer motion and can be represented as a super-
position of an incident and scattered wave. Forr →`, we
have

xsr d < expsikzd +
2Fsk,ud

Î3

expsikrd
r

, s25d

where z is the direction of incidence,u is the scattering
angle, the relative wave vector is defined as 2k/Î3, and
Fsk,ud is the scattering amplitude.

For r+→0, we have

f0sr+d → 1
Î2pa

S 1

r+
−

1

a
D .

Then, comparingC s24d with Eq. s14d, we obtain a relation
between the functionsx and f,

xsr d = Îa/8pfsr d. s26d

As we commented in Sec. III, forE,0 we have to put
C0=0 in Eq. s17d. This leads toDsr d=0, and Eq.s22d takes
the form

sL̂E − a−1 + Î− Edfsr d = 0. s27d

The links of our approach to the method of Skorniakov and
Ter-Martirosian f45g are seen from the fact that Eq.s27d
leads to the same equation for the Fourier transform of the
function fsr d as in Ref.f45g.

We first demonstrate a general approach for solving Eq.
s27d and finding the scattering amplitude. Forr @a, the sec-
ond term on the right-hand side of Eq.s23d is exponentially
small and can be omitted. Performing the integration in the
first term, we reduce Eq.s23d to the form

L̂Efsr d =E d3qhÎ− E + q2 − Î− Ej fsqdexpsiq · r d, r @ a,

s28d

wherefsqd is the Fourier transform of the functionfsr d. Act-

ing twice with the operatorsL̂E+Î−Ed on the functionfsr d
and using Eq.s27d, we then obtain

sL̂E + Î− Ed2fsr d =E d3qsq2 − Edfsqdeiq·r =
fsr d
a2 . s29d

The total energy is given by

E = − 1/a2 + k2, s30d

and Eq.s29d immediately transforms into the equation for
the free relative atom-dimer motion,

s− ¹r
2 − k2dfsr d = 0, r @ a. s31d

The expansion of the functionfsr d and the amplitude
Fsk,ud in Legendre polynomials readsssee the Appendixd

fsr d = o
l=0

`

i ls2l + 1dPlscosudf lsrd, s32d

Fsk,ud = o
l=0

`

s2l + 1dPlscosudFlskd. s33d

For the functionf lsrd, which describes the scattering with
orbital angular momentuml, the superposition of incident
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and scattered waves satisfying Eq.s31d can be written as

Îa/8pf lsrd = Îp/2krhJl+1/2skrd + is2k/Î3dFlskdHl+1/2skrdj,

r @ a, s34d

whereHl+1/2 is a Hankel function representing an outgoing
wave, andJl+1/2 is a Bessel function. Forkr→`, the Hankel
function is Hl+1/2.s−idl+1Î2/kr expsikrd. Then, multiplying
both sides of Eq.s34d by i ls2l +1dPlscosud, making a sum-
mation overl, and taking into account Eqs.s32d, s33d, and
s26d, we arrive at Eq.s25d.

Using Eq.s32d, one reduces Eq.s27d to a set of uncoupled
integral equations for the functionsf lsrd,

sL̂E
l − a−1 + Î− Edf lsrd = 0, l = 0,1,2,…, s35d

where the integral operatorL̂E
l for a given l is obtained by

integratingL̂E over dOr /4p with the weightPlscosud. Par-
tial scattering amplitudesFlskd are then found by solving Eq.
s35d and fitting the obtainedf lsrd with the asymptotic expres-
sions34d. Then, Eqs.s32d ands33d give the functionfsr d and
the total scattering amplitudeFsk,ud.

In the ultracold limit, where the condition

ka! 1 s36d

is satisfied, the scattering is dominated by thes-wave contri-
bution and can be analyzed settingk=0 and writing the total
energy asE=−1/a2. This is clearly seen from Eq.s34d with
l =0, which fork→0 reads

f0srd < Î8p/as1 − 2aad/Î3rd, r @ a, s37d

whereaad=−F0s0d is the atom-dimer scattering length.
Thus, for findingaad one should solve Eq.s35d with l

=0, assuming the limitk→0. This equation then reduces to

L̂E
0 f0srd = 0. s38d

Using Eq.s15d and integrating overdOr /4p in Eq. s23d, we
represent Eq.s38d in the form

L̂E
0 f0srd =

1

par
E

0

` Fff0srd − f0sr8dgHK1sur8 − r u/ad
ur8 − r u

−
K1fsr + r8d/ag

r + r8
J + 2f0sr8dHK1sÎr2 + r82 − rr 8/ad

Îr2 + r82 − rr 8

−
K1sÎr2 + r82 + rr 8/ad

Îr2 + r82 + rr 8
JGr8dr8 = 0, s39d

whereK1 is an exponentially decaying Bessel function. It is
easily seen that the principal value of the integral in the first
line of Eq.s39d is finite. Forr8→ r, the integrand behaves as
1/sr −r8d.

We numerically solved Eq.s39d and found the function
f0srd at all distancesr. Fitting the obtainedf0srd at r @a with
the asymptotic expressions37d, we arrived at the atom-dimer
scattering lengthaad=1.2a, which reproduces the result of
Ref. f45g. Our calculations also show that the behavior off0
suggests a soft-core atom-dimer repulsion, with a range of
the order ofa.

V. RELAXATION IN ATOM-DIMER COLLISIONS

Weakly bound dimers that we are considering are di-
atomic molecules in the highest rovibrational state. Hence,
they can undergo relaxation into deep bound states in their
collisions with each other or with unbound atoms. The re-
leased binding energy of a deep state is,"2/mRe

2. It is trans-
formed into the kinetic energy of particles in the outgoing
collisional channel and they escape from the trapped sample.
Therefore, the process of collisional relaxation of weakly
bound dimers determines the lifetime of a gas of these mol-
ecules and, in particular, possibilities to Bose-condense such
a gas.

In our previous workf39g we have shown that this pro-
cess is suppressed due to Fermi statistics for the atoms in
combination with a large size of the dimer. The binding en-
ergy of the dimers is«0="2/ma2 and their size is,a@Re.
The size of deep bound states is of the order ofRe. Hence,
the relaxation requires the presence of at least three fermions
at distances,Re from each other. As two of them are nec-
essarily identical, due to the Pauli exclusion principle the
relaxation probability acquires a small factor proportional to
a power ofsqRed, whereq,1/a is a characteristic momen-
tum of the atoms in the weakly bound molecular state.

In this section, we discuss relaxation of weakly bound
dimers into deep bound states in ultracold atom-dimer colli-
sions satisfying the conditions36d. Relying on the inequality
a@Re, we develop a method that allows us to establish a
dependence of the relaxation rate on the scattering lengtha,
without going into a detailed analysis of the short-range be-
havior of the system of three atoms. It is assumed that the
amplitude of the inelastic process of relaxation is much
smaller than the amplitude of elastic scattering. Then the
dependence of the relaxation rate ona is related only to the
a-dependence of the initial-state three-body wave function
C.

The relaxation occurs when all of the three atoms ap-
proach each other to distances of the order ofRe. At these
interatomic distances, as well as at all distancesx, y!a, the
wave functionC in the ultracold limit is determined by the
Schrödinger equations11d with E=0. Therefore, it depends
on the scattering lengtha only through a normalization co-
efficient,

C = Asadc, x,y ! a, s40d

where the functionc is independent ofa. The probability of
relaxation and, hence, the relaxation rate constantaad are
proportional touCu2 at distancesx, y,Re. We thus have

aad ~ uAsadu2. s41d

The goal then is to find the coefficientAsad, which deter-
mines the dependence of the relaxation rate ona.

In the region whereRe! hx,yj!a, the a-independent
function c can be found in the zero-range approximation.
Then, matching the wave functionC given by Eq.s40d with
the result of the zero-range approximation at interparticle
distances larger thana gives the coefficientAsad.
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We start with analyzing the behavior of the three-body
wave function in the zero-range approximation at distances
x, y!a. In this region of distances,C is reconstructed
through the functionfsr d from Eq. s17d with hsr d= fsr d and
C0=0, settingE→0. Accordingly, one should use the Green
function G0 s16d in this equation, which then reads

Csx,yd =E HG0fÎsx − r 8/2d2 + sy + Î3r 8/2d2g

−E G0fÎsx − r 8/2d2 + sy − Î3r 8/2d2gJ
3 fsr 8dd3r8, x,y ! a. s42d

The main contribution to the integral in Eq.s42d comes from
distancesr8!a and, hence, we have to find the functionf at
these distances. In the ultracold limit where the condition
s36d is satisfied, the inelastic process of relaxation is domi-
nated by the contribution of thes-wave channel. As we found
in Sec. IV, thes-wave partf0 of the functionf is determined
by Eqs.s38d ands39d. For r !a, the distancesr8 in Eq. s39d
are also much smaller thana. This is equivalent to setting the

limit E→0 sa−1→0d for the integral operatorL̂E
0 in Eq. s39d,

and this operator then reduces to

L̂0
0f0srd =

1

pr
E

0

` Fff0srd − f0sr8dgH 1

sr8 − rd2 −
1

sr + r8d2J
+ 2f0sr8dH 1

r2 + r82 − rr 8
−

1

r2 + r82 + rr 8
JGr8dr8,

s43d

where the integration of the term containingsr −r8d2 assumes
a principal value of the integral.

Thus, the functionf0srd at r !a is a solution of the inte-
gral equation

L̂0
0f0srd = 0. s44d

The operatorL̂0
0 has a property thatL̂0

0rn=lsndrn−1 for
−5,Resnd,3, and the integral in Eq.s43d diverges outside
this interval. The functionlsnd is given by

lsnd = sn + 1dtan
pn

2
+

4
Î3

sinfpsn + 1d/6g
cosspn/2d

. s45d

In the specified interval ofn the functionl has two roots,
n+=1.166 andn−=−3.166. Accordingly, the solution of Eq.
s44d is a linear superposition,

f0srd < C+rn+ + C−rn−, r ! a. s46d

The determination of the ratioC+/C− involves short-range
physics and is beyond the scope of this paper. However, in
the absence of a three-body resonance, the matching proce-
dure implies that at distancesr ,Re both terms in Eq.s46d
are of the same order of magnitude. SoC+/C−~Re

−4.332, and
at distancesr @Re one hasf0srd<C+rn+. Substituting this
result into Eq.s42d, we find that at distancesx, y!a the
three-body wave function takes the form

C < F0sVdfsrd/r = C+F0sVdrn+−1, x,y ! a, s47d

where r=Îx2+y2 is the hyperradius, and the set of hyper-
anglesV denotes all the other coordinates. Although one can
explicitly write down the functionF0sVd, for us it is only
important that this function isa-independent.

Comparing Eq.s47d with Eq. s40d, we see that one may
set c=F0sVdrn+−1 in the interval of distances whereRe

! hx,yj!a. We then haveC+=Asad, i.e., the functionf0 can
be written as

f0srd < Asadrn+, r ! a. s48d

Numerical integration of Eq.s39d shows thatf0 smoothly
interpolates between the asymptotic expressions given by
Eq. s48d for r !a, and by Eq.s37d for r @a. This procedure
provides matching of the two asymptotes atr ,a and gives
the coefficient

Asad ~ a−1/2−n+. s49d

In fact, the result of Eq.s49d can be obtained in a more
elegant way, using only Eqs.s37d ands48d. In the zero-range
approximation, the only distance scale is the two-body scat-
tering lengtha. Hence, we may rescale the coordinate and
represent the functionf0 in the form

f0srd = Bsad f̃0sr/ad, s50d

where f̃0 depends ona only through the rescaled coordinate
r /a. The coefficientBsad is independent of the coordinate
and can be obtained by comparing Eq.s50d with asymptotic
expressionss37d and s48d. Using Eq. s37d, we see thatB
~a−1/2, whereas the comparison of Eq.s50d with Eq. s48d
givesB~Asadan+. This immediately leads to Eq.s49d for the
coefficientAsad.

As the dependence of the relaxation rate constantaad on
the two-body scattering length is governed by Eq.s41d, using
Eq. s49d we obtain aad~a−s, where s=1+2n+.3.33. The
absolute value of the relaxation rate is determined by the
contribution of interparticle distances,Re, where the zero-
range approximation is not valid. This approximation only
gives a correct dependence of the relaxation rate ona.

Assuming that the short-range physics is characterized by
the length scaleRe and by the energy scale"2/mRe

2, we can
restore the dimensions and write the following expression for
the rate constant of relaxation of weakly bound dimers into
deep bound states in atom-dimer ultracold collisions:

aad = Cs"Re/mdsRe/ads, s= 3.33. s51d

One clearly sees that the relaxation rate rapidly decreases
with increasing the two-body scattering length. However, the
coefficientC depends on a particular system.

The relaxation due to atom-dimer scattering with nonzero
orbital angular momenta is very small. Since the atom-dimer
effective interaction has a characteristic range,a ssee Sec.
IV d, the p-wave part of the three-body wave functionC at
short interparticle distances is proportional toka. Hence, the
p-wave contribution to the relaxation rate is~skad2 and can
be omitted for ultracold collisions satisfying the condition
s36d.
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VI. ELASTIC DIMER-DIMER SCATTERING

As we already mentioned in the Introduction, elastic in-
teraction between weakly bound bosonic molecules of↑ and
↓ fermionic atoms is important for understanding the physics
of their Bose-Einstein condensation and for studying the
BCS-BEC crossover in two-component atomic Fermi gases.
The dimer-dimer elastic scattering is a four-body problem
described by the Schrödinger equation,

H− ¹r 1

2 − ¹r 2

2 − ¹R
2 + Usr1d + Usr2d + o

±
Ufsr 1 + r 2 ± Î2Rd/2g

− EJC = 0. s52d

Here we again use units in which"=m=1. The distance
between two given↑ and ↓ fermions is r 1, and r 2 is the
distance between the other two. The distance between the
centers of mass of these pairs isR /Î2, and sr 1

+r 2±Î2Rd /2 are the separations between↑ and↓ fermions
in the other two possible↑↓ pairs. The total energy is
E=−2«0+«, with « being the collision energy and«0
=−1/a2 the binding energy of a dimer.

The wave functionC is symmetric with respect to the
permutation of bosonic↑↓ pairs and antisymmetric with re-
spect to permutations of identical fermions,

Csr 1,r 2,Rd

= Csr 2,r 1,− Rd

= − CS r 1 + r 2 ± Î2R

2
,
r 1 + r 2 7 Î2R

2
, ±

r 1 − r 2

Î2
D . s53d

The weak binding of atoms in the dimer assumes that the
two-body spositived scattering length isa@Re, and we em-
ploy the zero-range approximation in our analysis of the
molecule-molecule scattering. This is done relying on the
formulation of this approximation given in Sec. III for the
three-body problem. Thus, the four-body system is described
by the free-particle Schrödinger equation

− f¹r 1

2 + ¹r 2

2 + ¹R
2 + EgC = 0, s54d

and the four-body wave functionC should satisfy the Bethe-
Peierls boundary condition for a vanishing distance in any
pair of ↑ and ↓ fermions, i.e., forr 1→0, r 2→0, and r 1
+r 2±Î2R→0. Due to the symmetry, it is necessary to re-
quire a proper behavior ofC only at one of these boundaries.
For r 1→0, the boundary condition reads

Csr 1,r 2,Rd → fsr 2,Rds1/4pr1 − 1/4pad. s55d

The functionfsr 2,Rd is analogous to that defined in Sec. III
and it contains the information about the second pair of par-
ticles when the first two are sitting on top of each other.

In the ultracold limit, where the conditions36d is satisfied,
the scattering is dominated by the contribution of thes-wave
channel. The inequalitys36d is equivalent to«!«0 and,
hence, thes-wave scattering can be analyzed from the solu-
tion of Eq. s54d with E=−2«0,0. For largeR, the corre-
sponding wave function is given by

C < f0sr1df0sr2ds1 −Î2add/Rd, R@ a, s56d

whereadd is the dimer-dimer scattering length, and the wave
function of the weakly bound dimer is given by Eq.s10d.
Combining Eqs.s55d ands56d, we obtain the asymptotic ex-
pression forf at large distancesR,

fsr 2,Rd < s2/r2adexps− r2/ads1 −Î2add/Rd, R@ a.

s57d

In the case of thes-wave scattering, the functionf de-
pends only on three variables: the absolute values ofr 2 and
R, and the angle between them. We now derive and solve the
equation for f. The value ofadd is then deduced from the
behavior off at largeR governed by Eq.s57d.

We first establish a general form of the wave functionC
satisfying Eq.s54d, with the boundary conditions55d and
symmetry relationss53d. In our case, the total energy
E=−2/a2,0, and the Green function of Eq.s54d reads

GsXd = s2pd−9/2sXa/Î2d−7/2K7/2sÎ2X/ad, s58d

where X= uS−S8u, and S=hr 1,r 2,Rj is a nine-compo-
nent vector. Accordingly, one has uS−S8u
=Îsr 1−r 18d

2+sr 2−r 28d
2+sR−R8d2. In analogy with the three-

body case, the four-body wave functionC can be expressed
through GsuS−S8ud with coordinatesS8 corresponding to a
vanishing distance between↑ and ↓ fermions, i.e., forr 18
→0, r 18→0, andsr 18+r 28±Î2R8d /2→0. Thus, for the wave
function satisfying the symmetry relationss53d, we have

CsSd = C0 +E d3r8d3R8fGsuS− S1ud + GsuS− S2ud

− GsuS− S+ud − GsuS− S−udghsr 8,R8d, s59d

where S1=h0,r 8 ,R8j, S2=hr 8 ,0 ,−R8j, and S±

=hr 8 /2±R8 /Î2,r 8 /27R8 /Î2,7 r 8Î2j. The functionC0 is
a properly symmetrized finite solution of Eq.s54d, regular at
vanishing distances between↑ and ↓ fermions. ForE,0,
nontrivial solutions of this type do not exist and we have to
put C0=0. The functionhsr 2,Rd has to be determined by
comparingC s59d at r 1→0, with the boundary condition
s55d.

This procedure is similar to that developed in Sec. III for
the three-body case. Considering the limitr 1→0, we extract
the leading terms on the right-hand side of Eq.s59d. These
are the terms that behave as 1/r1 or remain finite in this
limit. The last three terms in the square brackets in Eq.s59d
provide a finite contribution

E d3r8d3R8hsr 8,R8dfGsuS2 − S2ud

− GsuS2 − S+ud − GsuS2 − S−udg , s60d

whereS2=h0,r 2,Rj. For finding the contribution of the first
term in the square brackets, we subtract from this term and
add to it an auxiliary quantity,
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hsr 2,RdE GsuS− S1udd3r8d3R8 =
hsr 2,Rd

4pr1
exps− Î2r1/ad.

s61d

The result of the subtraction yields a finite contribution
which for r1→0 can be written as

E d3r8d3R8fhsr 8,R8d − hsr 2,RdgGsuS− S1ud

= PE d3r8d3R8fhsr 8,R8d − hsr 2,RdgGsuS2 − S1ud,

s62d

with the symbol P standing for the principal value of the
integral overdr8 sor dR8d. Equations62d is derived in the
Appendix and it is proven that the integral in the second line
of this equation is convergent.

In the limit r1→0, the right-hand side of Eq.s61d is equal
to

hsr 2,Rds1/4pr1 − Î2/4pad. s63d

We thus find that forr 1→0, the wave functionC of Eq. s59d
takes the form

Csr 1,r 2,Rd =
hsr 2,Rd

4pr1
+ R, r 1 → 0, s64d

whereR is the sum of regularr1-independent terms given by
Eqs.s60d ands62d, and by the second term on the right-hand
side of Eq. s63d. Equation s64d should coincide with Eq.
s55d, and comparing the singular terms of these equations we
find hsr 2,Rd= fsr 2,Rd. As the quantityR should coincide
with the regular term of Eq.s55d, equal to −fsr 2,Rd /4pa, we
obtain the following equation for the functionf:

E d3r8d3R8HGsuS− S1udffsr 8,R8d − fsr ,Rdg + fGsuS− S2ud

− o
±

GsuS− S±udgfsr 8,R8dJ = sÎ2 − 1dfsr ,Rd/4pa.

s65d

Here S=h0,r ,Rj, and we omitted the symbol of principal
value for the integral in the first line of Eq.s65d.

As we already mentioned above, for thes-wave scattering
the functionfsr ,Rd depends only on the absolute values ofr
andR and on the angle between them. Thus, Eq.s65d is an
integral equation for the function of three variables. We have
solved this equation numerically for all distancesR and r,
and all angles between the vectorsR and r . Fitting the
asymptotic expressions57d at R@a with the functionfsr ,Rd
obtained numerically from Eq.s65d, we find with 2% accu-
racy that the dimer-dimer scattering length is

add = 0.6a . 0. s66d

Our calculations show the absence of four-body weakly
bound states, and the behavior off at small R suggests a
soft-core repulsion between dimers, with a range,a.

The result of Eq.s66d is exact, and its derivation was
outlined in our previous workf39g. Equations66d indicates
the stability of molecular BEC with respect to collapse.
Compared to earlier studies which assumedadd=2a f4g, Eq.
s66d gives almost twice as small a sound velocity of the
molecular condensate and a rate of elastic collisions smaller
by an order of magnitude. We should mention here that the
result of earlier studiesf4g was reconsidered in Ref.f48g by
using a diagrammatic approach which leads toadd=0.75a.
However, this approach misses a number of diagrams which
give a contribution of the same order of magnitude as those
taken into account.

VII. RELAXATION IN DIMER-DIMER COLLISIONS

In this section, we generalize the results obtained in Sec.
V to the relaxation of weakly bound dimers into deep bound
states in dimer-dimer collisions. We again consider the ultra-
cold limit described by the conditions36d, where the relax-
ation process is dominated by the contribution of thes-wave
dimer-dimer scattering. The key point of our discussion is
that the dimer-dimer relaxation collisions are to a large ex-
tent similar to the atom-dimer ones.

Indeed, the relaxation process requires only three atoms to
approach each other to short distances of the order ofRe. The
fourth particle can be at a large distance from these three
and, in this respect, does not participate in the relaxation
process. This distance is of the order of the size of a dimer,
which is ,a@Re. As well as in the case of atom-dimer col-
lisions, the dependence of the relaxation rate on the two-
body scattering lengtha is determined by thea-dependence
of the initial-state wave functionC. We thus see that the
configuration space contributing to the relaxation probability
can be viewed as a system of three atoms at short distances
,Re from each other and a fourth atom separated from this
system by a large distance,a. In this case, the four-body
wave function decomposes into a product,

C = hszdCs3dsr,Vd, s67d

whereCs3d is the wave function of the three-fermion system,
r and V are the hyperradius and the set of hyperangles for
these fermions,z is the distance between their center of mass
and the fourth atom, and the functionhszd describes the mo-
tion of this atom. Note that Eq.s67d remains valid for any
hyperradiusr! uzu,a.

The transition to a deep bound two-body state occurs in
the system of three atoms and does not change the wave
function of the fourth atom,hszd. Therefore, averaging the
transition probability over the motion of the fourth particle,
the rate constant of relaxation in dimer-dimer collisions can
be written as

add = as3dE uhszdu2d3z= as3d, s68d

where as3d is the rate constant of relaxation for the three-
atom system.

We thus obtain that the problem is reduced to the relax-
ation in atom-dimer collisions. The difference from the case
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discussed in Sec. V is that now the relative momentum of the
collision is ,1/a. This is seen by consideringCs3d at large
distances between the dimer and the fermionic atom, hereaf-
ter referred to as the third fermion. This fermion is in the
bound molecular state with the fourth atom. As the size of
this state is,a, the expansion of the wave function of the
third fermion in plane waves shows that its momentumq is
of the order of 1/a.

Keeping in mind the discussion in Sec. V, we see that the
result for the relaxation rate following from Eq.s51d remains
valid for the dimer-dimer collisions. The fact that the relative
momentum isq,1/a can only change the numerical coeffi-
cient, not the dependence of the relaxation rate constant on
the two-body scattering lengtha. However, the result of Eq.
s51d accounts only for thes-wave scattering of the third fer-
mionic atom on the dimer, which provides the leading relax-
ation channel for ultracold atom-dimer collisions. In the case
of dimer-dimer collisions, there is a relaxation channel that is
more important in the limit of largea ssee belowd. For the
s-wave dimer-dimer scattering, both the fourth and the third
fermions sbound to each other in the molecular stated can
undergo thep-wave scattering on the other dimer in such a
way that their total orbital angular momentum is equal to
zero. We thus should consider the relaxation for thep-wave
collisions between the third fermionic atom and the dimer.
These collisions are not suppressed as their relative momen-
tum is q,1/a.

As we discussed in Sec. V, for the hyperradiusr!a the
wave function of the three-fermion system,Cs3d, depends on
the scattering lengtha only through a normalization coeffi-
cient and can be written in the forms40d. We thus have
Cs3d=Asadc, with a-independent functionc, and the relax-
ation rate constant depends ona as add~ uAsadu2. This re-
quires us to find the coefficientAsad for the case of the
p-wave scattering of the third fermionic atom on the mol-
ecule. We will do this in the zero-range approximation, along
the lines of our discussion of thes-wave atom-dimer scatter-
ing in Sec. V.

We first consider the region of interparticle distances
whereRe!r!a. Then the functionfsr d for the three-body
problem is determined by Eq.s27d in which we have to set
the limit E→0 anda−1→0. Therefore, the integral equation
s35d for the p-component of the functionf takes the form

L̂0
1f1srd = 0, s69d

where the operatorL̂0
1 is obtained substituting the expansion

s32d into Eq.s23d with the Green functionG0 s16d, multiply-
ing by cosu, and integrating over the angles. This yields

L̂0
1f1srd =

1

p
E

0

`

dr8S r8

r
Fff1srd − f1sr8dgH 1

sr8 − rd2

−
1

sr + r8d2J + 2f1sr8dH 1

r2 + r82 − rr 8

+
1

r2 + r82 + rr 8
−

1

sr + r8d2JG +
2f1sr8d

r2

3 ln
Îsr + r8dsr2 + r82 − rr 8d
Îur − r8usr2 + r82 + rr 8d

D , s70d

where one should take a principal value for the integral of
the term containingsr −r8d2.

Like the operatorL0
0, the operatorL0

1 has a propertyL̂0
1rn

=lsndrn−1 for −4,Resnd,2. The function lsnd is now
given by

lsnd =
4
Î3

n cosfpsn + 1d/6g − 2 sinspn/6d
sn + 1dsinspn/2d

+
nsn + 2d

n + 1
cot

pn

2

s71d

and has two roots:n+=0.773 andn−=−2.773. Then, with the
same arguments as in between Eqs.s45d and s48d in Sec. V,
we obtain short-distance expressions for the functionf1 and
for the part of the three-body wave functionCs3d correspond-
ing to thep-wave scattering of the third fermion on the mol-
ecule,

f1srd < Asadan+sr/adn+, r ! a; s72d

Cs3d = AsadF1sVdrn+−1, r ! a, s73d

where the functionF1 is independent ofa.
For relative momentak,1/a, the two-body scattering

length remains the only distance scale of the zero-range ap-
proximation. In particular, thep-wave scattering amplitude
in Eq. s34d will be F1,a. We therefore can write the func-

tion f1 in the form s50d: f1srd=Bsad f̃1sr /ad, where f̃1 de-
pends ona only through the rescaled coordinater /a. In order
to be consistent with Eq.s34d for k,1/a, we have to put
Bsad~a−1/2. Then the comparison of the resultingf1 with Eq.
s72d gives the coefficientAsad~a−1/2−n+ and the relaxation
rate constant isadd~ uAusadu2~a−s, with s=1+2n+.2.55.
Restoring the dimensions, we have

add = Cs"Re/mdsRe/ads, s= 2.55. s74d

One can think of the relaxation mechanism, where the
scattering of the third fermion on the dimer occurs with
higher orbital angular momental. In this case, the fourth
atom scatters on the dimer with the samel, and the total
angular momentum of the dimer-dimer scattering should be
equal to zero. Our analysis shows that these scattering
mechanisms lead to a power-law dependenceadd~a−s, with
larger values ofs than in Eq.s74d. Hence, for largea they
can be neglected.

Equations74d shows a slower decrease of the relaxation
rate with increasinga than in the case of atom-dimer colli-
sions. Obviously, in the limitRe/a→0 the dimer-dimer re-
laxation should dominate over the atom-dimer one. The com-
petition between these two relaxation processes can be
present if the ratioRe/a is not too small and the densities of
dimers and atoms in the gas are comparable with each other.

VIII. WIDE AND NARROW FESHBACH RESONANCES

In experiments with alkali-metal atom gases, large values
of the two-body scattering length are achieved by using
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Feshbach resonances. In the vicinity of the resonance, the
two-body problem is characterized by a strong coupling be-
tween the continuum states of colliding atoms and a bound
molecular state of another hyperfine domain of these atoms.
The resulting scattering length depends on the detuning from
the resonance, i.e., on the energy differenceD between the
border of the continuum of colliding atoms and the bound
molecular state. The splitting between the two hyperfine do-
mains and, hence, the detuningD depend on the magnetic
field, which makes the scattering length tunable by varying
the field.

One thus has a two-channel problem which can be de-
scribed in terms of Breit-Wigner scatteringf42,49g, the open
channel being the states of colliding atoms and the closed
channel the bound molecular state of the other hyperfine do-
main. Various aspects of this type of problem have been
discussed by Feshbachf50g and Fanof51g. In cold atom
physics, the idea of Feshbach resonances was introduced in
Ref. f52g, and optically induced resonances have been dis-
cussed in Refs.f53,54g.

We now analyze to which extent our results for three-
atom and four-atom systems of fermions with a positive two-
body scattering lengtha@Re describe the situation of Fesh-
bach resonances. For low collision energies«, omitting the
ssmalld background scattering length, the scattering ampli-
tude is given byf42g

Fs«d = −
"g/Îm

« + D + igÎ«
, s75d

where the quantity"g /Îm;W characterizes the coupling
between the two hyperfine domains. In Eq.s75d, the detuning
D is positive if the bound molecular state is below the con-
tinuum of colliding atoms. Then forD.0 we have a positive
scattering length near the resonance,a=−Fs0d=W/D. Intro-
ducing a characteristic length

R* = "2/mW s76d

and expressing the scattering amplitude through the relative
momentum of particlesk=Îm« /", Eq. s75d takes the form

Fskd = −
1

a−1 + R*k2 + ik
. s77d

The validity of Eq.s77d does not require the inequalitykR*

!1. At the same time, Eq.s77d formally coincides with the
amplitude of scattering of slow particles by a potential with
the same scattering lengtha and an effective range
R=−2R* , valid under the conditionkR!1.

The lengthR* is an intrinsic parameter of the Feshbach
resonance problem. It characterizes the width of the reso-
nance. From Eqs.s75d and s76d we see that largeW and,
hence, smallR* correspond to a wide resonance, whereas
small W and largeR* lead to a narrow resonance. The issue
of wide and narrow resonances is now actively being dis-
cussed in the literaturef17,19,55–59g. We would like to point
out here that the use of the terms “wide” and “narrow” de-
pends on the problem under consideration. For example, in
the unitarity limit wherea→ ±`, Eq. s77d shows that the
lengthR* drops out of the problem under the conditionkR*

!1. In a quantum degenerate Fermi gas, the characteristic
momentum of particles is the Fermi momentumkF
=s3p2nd1/3, wheren is the gas density. Thus, the inequality
kFR* !1, referred to as the condition of a wide resonance,
ensures universality of the problemf19,55,57–59g. The only
length and energy scales in the gas will be the mean inter-
particle separation n−1/3 and the Fermi energyEF
=s3p2nd2/3"2/2m, and the system acquires universal thermo-
dynamicsf16g.

In our case, the situation is different. We are considering
weakly bound diatomic molecules in the open channel with a
binding energys9d, and our discussion of atom-dimer and
dimer-dimer collisions assumes that there is a weakly inter-
acting gas of these dimers and atoms. The most important
limitation is related to the binding energy and the wave func-
tion of the dimers. The energy of the weakly bound molecu-
lar state is determined by the pole of the scattering amplitude
s77d. One then finds that this state exists only fora.0 and
the universal expressions9d used in our calculations,«0
="2/ma2, requires the inequalityf56g

R* ! a. s78d

Under this condition, the wave function of the weakly bound
molecular state has only a small admixture of the closed
channelf56g.

Our calculations for the atom-dimer and dimer-dimer col-
lisions were done in the ultracold limit whereka!1. In a
thermal gas of atoms and dimers, the characteristic momen-
tum is the thermal momentumkT=s2mT/"2d1/2, whereas for
a degenerate, in particular Bose-condensed gas of the dimers,
the characteristic momentum is the inverse healing length,
snad1/2. In both cases, the inequalityka!1 assumes the
weakly interacting regime, wherena3!1. One can also see
that in the limit ka!1, the inequality Eq.s78d makes the
scattering amplitudeFskd s77d momentum independent and
equal to −a. This justifies the use of our single-channel zero-
range approximation for calculating atom-dimer and dimer-
dimer interactions and collisional properties. We thus obtain
that for our problem the condition of a wide Feshbach reso-
nance is given by Eq.s78d. Under this condition, the problem
is universal in the sense that the size of weakly bound
dimers, and atom-dimer and dimer-dimer scattering proper-
ties, are characterized by a single parameter, the two-body
scattering lengtha.

Note that the interaction between the two channels of the
Feshbach problem is efficient at interparticle distances which
are of the order ofRe. Therefore, the Feshbach character of
scattering does not influence the conditiona@Re that allows
us to use the zero-range approximation for the entire region
of interparticle distances.

IX. CONCLUDING REMARKS

In most experiments with weakly bound diatomic mol-
ecules produced by using Feshbach resonances in a degener-
ate two-component atomic Fermi gas, the wide resonance
condition s78d was satisfied. This was the case with40K2
molecules at JILAf28,29,34g, and with 6Li2 at Innsbruck
f26,30,37,38g, MIT f31,35g, Duke f14,36g, ENS f15,25,32g,
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and Ricef33g. In these experimental studies, the lengthR* is
of the order of or smaller than 20 Å, and for the achieved
values of the scattering lengtha from 500 to 2000 Å, the
ratio R* /a is smaller than 0.1. The only exception is the
experiment at Rice with6Li near a narrow Feshbach reso-
nance at 543 Gf27g. For this resonance, the lengthR* is
large and at obtained values ofa the conditions78d is not
fulfilled. Therefore, the Rice experimentf27g cannot be de-
scribed by our theory.

Experimental studies of dimers produced in a Fermi gas
by using wide Feshbach resonances at JILA, Innsbruck, MIT,
and ENS are well described within our theoretical approach.
It should be mentioned that fora.0 and equal concentra-
tions of the two atomic components of the gas, at tempera-
tures well belowEF practically all atoms should be converted
into dimers if the gas density satisfies the inequalityna3

!1 f60g. In ongoing experiments, the imbalance between the
atomic components is fairly small, and at sufficiently low
temperatures there can only be a small fraction of unpaired
fermionic atoms.

The results at JILAf28,29,34g, Innsbruckf26,30,37g, MIT
f31,35g, ENS f25,32g, and Ricef33g show a remarkable col-
lisional stability of weakly bound diatomic molecules40K2
and 6Li2. At molecular densitiesn,1013 cm−3, the lifetime
of the gas ranges from tens of milliseconds to tens of sec-
onds, depending on the value of the scattering lengtha. A
strong decrease of the relaxation rate with increasinga, fol-
lowing from Eq. s74d, is consistent with experimental data.
The potassium experiment at JILAf28g and the lithium ex-
periment at ENSf32g give the relaxation rate constantadd
~a−s, wheres<2.3 with 15% accuracy for K2, ands<2.0
with 40% accuracy for Li2. The absolute value of the rate
constant for a thermal gas of Li2 is add<231013 cm3/s for
the scattering lengtha<800 Å f25g. For K2 it is by an order
of magnitude higher at the same value ofa f28g, which can
be a consequence of a larger value of the characteristic radius
of interactionRe.

At realistic temperatures, the relaxation rate constantadd
is much smaller than the rate constant of elastic collisions
8padd

2 vT, wherevT is the thermal velocity. For example, for
the Li2 weakly bound dimers at a temperatureT,3 mK and
a,800 Å, the corresponding ratio is of the order of 10−4 or
10−5. This opens wide possibilities for reaching BEC of the
dimers and cooling the Bose-condensed gas to temperatures
of the order of its chemical potential. Long-lived BEC of
weakly bound dimers has been recently observed for40K2 at
JILA f29,34g and for6Li2 at Innsbruckf30,37g, MIT f31,35g,
ENS f32g, and Ricef33g. Measurements of the dimer-dimer
scattering length in these experiments confirm our result
add=0.6a f39g with accuracy up to 30%. This result is also
confirmed by recent Monte Carlo calculationsf61g of the
ground-state energy in the molecular BEC regimessee also
f62gd.

In conclusion, we have developed a theory of elastic and
inelastic collisions of weakly bound molecules formed in a
two-component atomic Fermi gas. We emphasize that the
remarkable collisional stability of these molecules ata@Re
is due to Fermi statistics. This effect is not present for
weakly bound molecules of bosonic atoms, even if they have
the same large size. Indeed, identical fermionic atoms par-

ticipating in the relaxation process at short interparticle dis-
tances have very small relative momentak,1/a and, hence,
the process is suppressed compared to the case of molecules
of bosonic atoms.

The long lifetime of weakly bound diatomic molecules of
fermionic atoms allows interesting manipulations with these
dimers. It seems realistic to arrange a deep evaporative cool-
ing of their Bose-condensed gas to temperatures of the order
of the chemical potential. Then, converting the molecular
BEC into fermionic atoms by adiabatically changing the
scattering length to negative values, one provides an addi-
tional cooling. The obtained atomic Fermi gas will have ex-
tremely low temperaturesT,10−2EF and can be already in
the BCS regimef63g. At these temperatures, one has a very
strong Pauli blocking of elastic collisions and expects the
collisionless regime for the thermal cloud, which is promis-
ing for identifying the BCS-paired state through the observa-
tion of collective oscillations or free expansionf64g.

Another idea is related to transferring weakly bound mol-
ecules of fermionic atoms to their ground rovibrational state
by using two-photon spectroscopy, as proposed in Ref.f65g
for molecules of bosonic atoms. Long lifetime of weakly
bound dimers of fermionic atoms at densities,1013 cm−3

should provide a much more efficient production of ground-
state molecules compared to the case of dimers of bosonic
atoms, where one has severe limitations on achievable den-
sities and lifetimes.
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APPENDIX

We first prove that in the limitr+→0 we have Eq.s20d
and the integral on the right-hand side of this equation is
convergent. So, we consider the integral

I =E GEfÎsr − r 8d2 + r+
2gfhsr 8d − hsr dgd3r8 sA1d

and analyze the limiting case ofr+→0. For this purpose, we
use the expansion of the functionshsr 8d andhsr d in spherical
harmonics. This type of expansion can be made for any func-
tion of the components of a three-dimensional vector, and it
reads
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hsr d = o
l=0

`

o
m=−l

l

hlmsrdYlmsur ,frd, sA2d

with ur and fr being the polar and azimuthal angles of the
vectorr with respect to a quantization axis. Note that in the
analysis of the atom-dimer elastic scattering in Sec. IV, we
used an expansion in Legendre polynomials for the function
fsr d. The reason is that the bound molecular state has zero
orbital angular momentum and there is a cylindrical symme-
try in the system. For a general three-body problem one
should, in principle, use Eq.sA2d.

For spherical harmonicsYlmsur8 ,fr8d in the expansion
sA2d for the functionhsr 8d, we use the relationsseef42gd

Ylmsur8,fr8d = o
m8

Dm8m
sld sfr ,ur ,0dYlm8su8,f8d, sA3d

whereD
m8m
sld is the matrix of finite rotations, andu8, f8 are

the polar and azimuthal angles of the vectorr 8 with respect
to the quantization axis parallel to the vectorr . Integrating
over the anglef8 in Eq. sA1d, we find that all terms with
m8Þ0 vanish. This is because the argument of the Green
functionGE in Eq. sA1d depends only on the angleu8. Using
the relations Yl0su8 ,0d= i lÎs2l +1d /4pPlscosu8d and
D0m

sld sfr ,ur ,0d= i−lÎ4p / s2l +1dYlmsur ,frd, we then reduce
Eq. sA1d to the form

I = o
l=0

`

o
m=−l

l

I lmYlmsur ,frd, sA4d

I lm = 2pE
−1

1

d cosu8E
0

`

r82dr8fhlmsr8dPlscosu8d

− hlmsrdgGEsÎr2 + r82 + r+
2 − 2rr 8 cosu8d . sA5d

With Eq. s15d for the Green functionGE, integration in parts
over d cosu8 transforms Eq.sA5d into

I lm = Alm +E
0

` Î− E

4p2

r8dr8

r
fhlmsr8d − hlmsrdg

3
K1„

Î− EÎsr − r8d2 + r±
2
…

Îsr − r8d2 + r+
2

. sA6d

The quantitiesAlm represent the sum of integrals in which
for r+=0 and r8→ r the integrand either remains finite or
contains a logarithmic integrable singularity. Settingr+=0,
one obtains finite values of these quantities,

Alm =E
0

` r8

r
dr8

fhlmsrd + s− 1dl+1hlmsr8dgÎ− E

4p2sr + r8d

3K1„
Î− Esr + r8d… +E

0

` hlmsr8d
4p2

dr8

r2 S lsl + 1d
2

3fK0sÎ− Eur − r8ud + s− 1dlK0„
Î− Esr + r8d…g

−E
−1

1

dxPl9sxdK0sÎ− EÎr2 + r82 − 2rr 8xdD . sA7d

EquationssA6d and sA7d are written for the caseE,0. For
E.0, one should put in these equationsE instead of −E and
replace the decaying Bessel functionsK1 andK0 by the Han-
kel functions 2iH1 and 2iH0, respectively.

For calculating the integral in Eq.sA6d, we divide the
region of integration into two parts: inside a small intervalL,
whereur8−r u!1/ÎuEu, and outside this interval. In addition,
we require that the functionhlmsr8d does not significantly
change inside the intervalL. The integral outside the interval
L remains finite and independent ofr+ in the limit r+→0.
Inside the intervalL, the argument of the Besselsor Hankeld
function is small and the integral in Eq.sA6d reduces to

1

4p2E
r8[L

fhlmsr8d − hlmsrdg
sr8 − rd2 + r+

2

r8

r
dr8.

We then expand the quantityfhlmsr8d−hlmsrdg in powers of
sr8−rd. Quadratic and higher-order terms of the expansion
give contributions to the integrand, which remain finite for
r+→0. The contribution of the linear term is given by

1

4p2

dhlmsrd
dr

E
r8[L

r8 − r

sr8 − rd2 + r+
2

r8

r
dr8. sA8d

For r+→0, the integral in Eq.sA8d remains finite and can be
written as

E
r8[L

dr8

r
+ PE

r8[L

dr8

sr8 − rd
,

where the symbol P denotes the principal value of the inte-
gral. We thus see that in the limitr+→0 the whole integralI
given by Eq.sA1d is finite. Settingr+=0 in the initial expres-
sion sA1d and keeping the symbol P for the integration over
dr8, one then writes the integralI in the form of Eq.s20d,

I = PE GEsur − r 8udfhsr 8d − hsr dgd3r8.

We now derive Eq.s62d for the four-body problem of the
dimer-dimer scattering and prove that the integral in the sec-
ond line of this equation is convergent. So, changing the
notation fromr 2 to r , we start with the integral

J =E d3r8d3R8fhsr 8,R8d − hsr ,RdgGsuS− S1ud, sA9d

where the argument of the Green function in Eq.sA9d is

uS− S1u = Îr1
2 + sr − r 8d2 + sR − R8d2,

and consider the limitr1→0. As in the three-body case, we
expand the functionhsr ,Rd in spherical harmonics. The ex-
pansion now reads

hsr ,Rd = o
l=0,l8=0

`

o
m=−l

l

o
m8=−l8

l8

hlm
l8m8sr,Rd

3 Ylmsur ,frdYl8m8suR,fRd, sA10d

whereur , fr anduR, fR are the polar and azimuthal angles
of the vectorsr andR. Then, using Eq.sA3d for each of the
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spherical harmonics in the expansion of the function
hsr 8 ,R8d, we transform Eq.sA9d to the form

J = o
l=0,l8=0

`

o
m=−l

l

o
m8=−l8

l8

Jlm
l8m8Ylmsur ,frdYl8m8suR,fRd,

sA11d

Jlm
l8m8 = 4p2E

−1

1

d cosur8E
−1

1

d cosuR8E
0

`

r82dr8E
0

`

R82dR8

3 fhlm
l8m8sr8,R8dPlscosur8dPl8scosuR8 d

− hlm
l8m8sr,RdgGsXd, sA12d

with the angle between the vectorsr 8 and r denoted asur8,
the angle betweenR8 andR asuR8 , and the argument of the
Green function written as

X = Îr1
2 + r2 + r82 − 2rr 8 cosur8 + R2 + R82 − 2RR8 cosuR8 .

We then separate out the region of integrationṼ, where
the anglesur8 and uR8 are small,r8 is close tor, and R8 is

close toR. The regionṼ is determined by the relations

ur8 − r u ø r0 ! r8,r,a, sA13d

uR8 − Ru ø r0 ! R8,R,a, sA14d

ur8 ø hr ! minh1,a/Îrr 8j, sA15d

uR8 ø hR ! minh1,a/ÎRR8j, sA16d

and the quantitieshr ,hR are selected such that they satisfy
the inequalities

hr
Îrr 8 @ ur8 − r u, sA17d

hR
ÎRR8 @ uR8 − Ru. sA18d

Outside the regionṼ, one can directly putr1=0 in the argu-

ment of the Green function and see that the quantitiesJlm
l8m8

remain finite. These contributions are denoted below asJlm
l8m8.

In the regionṼ, the argumentX of the Green function can
become equal tor1 and, in principle, this region can be
thought of as the one leading to a singular behavior of the
integralJ in the limit r1→0. We will show that this is not the
case.

The Green functionG is given by Eq.s58d, and in the

region Ṽ the argument of the decaying Bessel function,
Î2X/a, is small. Then, for small anglesur anduR, from Eq.
s58d we obtain

G =
15

32p4fr1
2 + sr8 − rd2 + sR8 − Rd2 + ur8

2
rr 8 + uR8

2
RR8g−7/2.

sA19d

Inside the regionṼ, the inequalitiessA15d and sA16d allow
us to put Plscosur8d=Pl8scosuR8 d=1 in Eq. sA12d. On the

other hand, owing to the inequalitiessA17d and sA18d, we
can put infinity for the upper limits of integration overur8 and

uR8 . Then, integrating over the angles inside the regionṼ and

taking into account the contributionJlm
l8m8 from the configu-

ration space outside this region, we reduce Eq.sA12d to

Jlm
l8m8 = Jlm

l8m8 +
1

8p2E
r8,R8[Ṽ

r8R8

rR
dr8dR8

3
fhlm

l8m8sr8,R8d − hlm
l8m8sr,Rdg

fr1
2 + sr8 − rd2 + sR8 − Rd2g3/2. sA20d

For calculating the integral in Eq.sA20d, we expand the
function hsr8 ,R8d in powers of sr8−rd and sR8−Rd. Qua-
dratic and higher-order terms of the expansion lead to the
integrand which remains finite forr1→0, at least after a
straightforward integration over one of the variables,r8 or
R8. For example, settingr1=0, quadratic terms yield

]2hlm
l8m8sr,Rd

8p2 ] r2 E
r8[Ṽ

r0dr8

fr0
2 + sr8 − rd2g1/2 +

]2hlm
l8m8sr,Rd

8p2 ] R2

3E
R8[Ṽ

r0dR8

fr0
2 + sR8 − Rd2g1/2 +

]2hlm
l8m8sr,Rd

4p2 ] r ] R
E

r8[Ṽ

dr8sr8 − rd2

rR

3FlnS r0 + Îr0
2 + sr8 − rd2

ur8 − r u
D −

r0

fr0
2 + sr8 − rd2g1/2G .

The contribution of the linear terms of the expansion, af-
ter integrating overR8, can be written as

] hlm
l8m8sr,Rd

4p2r ] r
E

r8[Ṽ

sr8 − rd
r1

2 + sr8 − rd2

r0r8dr8

fr0
2 + sr8 − rd2g1/2

+
] hlm

l8m8sr,Rd
4p2R] R

E
r8[Ṽ

r8dr8

r
FlnS r0 + Îr0

2 + sr8 − rd2

ur8 − r u
D

−
r0

fr0
2 + sr8 − rd2g1/2G , sA21d

where we putr1=0 in the second integral as it then contains
only an integrable logarithmic singularity forr8→ r. The first
integral on the right-hand side of Eq.sA21d also remains
finite in the limit of r1→0. It can be written in the form

E
r8[Ṽ

r0dr8

fr0
2 + sr8 − rd2g1/2 + PE

r8[Ṽ

rdr8

sr8 − rd
r0

fr0
2 + sr8 − rd2g1/2,

with the symbol P denoting the principal value of the inte-
gral. This means that settingr1=0, each of the quantities

Jlm
l8m8 is equal to the principal value of the integral in Eq.
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sA12d, taken with respect to the integration overdr8. Note
that we could first make the integration overdr8 and reduce
the result to the principal value for the integration overdR8.
One thus sees that forr1→0, the initial integralJ sA9d can
be represented in the form of Eq.s62d,

J = PE d3r8d3R8fhsr 8,R8d − hsr ,RdgGsuS− S1ud,

where the symbol P denotes the principal value for the inte-
gration overdr8 sor dR8d, and uS−S1u=Îsr −r 8d2+sR−R8d2.
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