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We consider weakly bound diatomic moleculdémers formed in a two-component atomic Fermi gas with
a large positive scattering length for the interspecies interaction. We develop a theoretical approach for calcu-
lating atom-dimer and dimer-dimer elastic scattering and for analyzing the inelastic collisional relaxation of the
molecules into deep bound states. This approach is based on the single-channel zero-range approximation, and
we find that it is applicable in the vicinity of a wide two-body Feshbach resonance. Our results draw prospects
for various interesting manipulations of weakly bound dimers of fermionic atoms.

DOI: 10.1103/PhysRevA.71.012708 PACS nuntber34.50-s, 03.75.Ss

I. INTRODUCTION densatiorj29-33 of long-lived weakly bound diatomic mol-
ecules(dimerg on the positive side of a Feshbach resonance
The studies of degenerate atomic Fermi gases attract @>0), and a BEC-type behavior of fermionic atom pairs in
great deal of interest as they are directed to reveal novehe strongly interacting regimgs4,35. An anomalous de-
macroscopic quantum states and provide links between quagendence of frequencies and damping rates of quadrupole
tum gases and condensed matter systems. Experiments Wikcitations on the interaction strength, observed in experi-
ultracold two-component clouds of fermionic atoms widely ments[36,37, may be a signature for a transition from a
use Feshbach resonances for the intercomponent interactigfiperfluid to collisionless regime. Strong evidence for the
(scattering lengtk). This allows one to switch the sign and syperfluid regime was obtained in the Innsbruck experiment
tune the absolute value af which at resonance changes [3g] through the radio-frequency measurement of the pairing
from +o0 to —cc. On the positive side of the resonan@e gap for a strongly interacting Fermi gas .
>0), one expects the formation of weakly bound diatomic  The studies of the strongly interacting regime for the
molecules, which represent composite bosons and can formgCS-BEC crossover require knowledge of many-body corre-
Bose-Einstein condensat8EC). On the negative sidéa |ations. In particular, one should reproduce a correct equation
<0), the interaction between atoms of different componentsf state in the limit of BEC of a weakly interacting gas of
is attractive and they should undergo the well-knowndimers fora>0 (see[23]).
Bardeen-Cooper-SchrieffédBCS) superfluid pairing at suffi- Hence, one should know the interaction between these
ciently low temperatures. The BCS transition temperature iglimers. For a large, they are weakly bound and have a
much lower than the Fermi energy, which makes it difficultlarge size(~a) which greatly exceeds the characteristic ra-
to achieve this transition. dius of interaction between the atoms. In our previous work
Molecular BEC fora>0 and atomic BCS pairing foa ~ [39], we have outlined a method for studying the elastic in-
<0 describe the system sufficiently far from the resonanceteraction between such molecules and their collisional relax-
In the vicinity of the resonance, where the density and theation to deep bound states. This method is based on the zero-
scattering length satisfy the inequalitya|®=1, the gas en- range approximation, and the dimer-dimer scattering length
ters a strongly interacting regime. This BCS-BEC crossoveis found to be 0.6 The imaginary part of the scattering
regime has been discussed in the literature in the context efmplitude, originating from the collisional relaxation, is ex-
superconductivity [1-4] and for superfluidity in two- tremely small. Being in the highest rovibrational state, these
dimensional®He films [5,6]. Atomic Fermi gases in the diatomic molecules are characterized by a remarkable colli-
strongly interacting regime are expected to have a comparaional stability. The physical reason is the Pauli principle in
tively high superfluid transition temperatufé-11] and are  combination with a large size of the molecular stémall
characterized by a universal behavior of interactidi®-159  momenta of bound fermionic atomgollisional relaxation is
and a universal thermodynamifck6]. They are now actively suppressed as it requires at least two identical fermions with
being studied in relation to the nature of superfluid pairingsmall momenta to approach each other to a short distance
[17-24. [39].
Recent investigations of two-componeffik and °Li In this paper, we present a detailed analysis of elastic and
atomic Fermi gases are marked by remarkable achievemeniaelastic atom-dimer and dimer-dimer interactions in the
Those include the formatiof25-28 and Bose-Einstein con- zero-range approximation. The paper is organized as follows.
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In Sec. Il we introduce the zero-range approximation in ahand side equal t&(r —r’). The s-wave part of the incident
way it has been done for the two-body problésee, for  wave given by the first term on the right-hand side of &j.
example[40,41)). Section Il contains a general description is equal to sirkr/kr. As the wave functiony should satisfy
of the zero-range approximation for the case of three parthe boundary conditiofil) atr — 0, for the coefficienh we
ticles. In Sec. IV, we review the problem of atom-dimer elas-immediately obtain

tic scattering in the zero-range approximation, and in Sec. V, .

we present a derivation for the relaxation of the dimers to ___a _exp2iy-1
deep bound states in atom-dimer collisions. Sections VI and 1 +ika 2ik '

VII contain a generalization of the zero-range approximatio
to the case of four particles. In these sections, we presenﬁ’:\hen Eq. (4) reproduces the well-known result for the

detailed derivation of the results for the elastic dimer-dimer® " 2V€ part of the wave function a&-R.,

interaction and for the relaxation of the dimers to deep bound sin(kr + )

states in dimer-dimer collisions. In Sec. VIII, we show that o« T (6)

our results can be used for weakly bound diatomic molecules

obtained in two-component atomic Fermi gases by usinghe use of the zero-range approximation is especially impor-
wide Feshbach resonances, and in Sec. IX we conclude. tant for the case of resonance scattering characterized by the
scattering lengthal > R.. Then, for interparticle distances in
the intervalR,<r <1/k, from Eq.(6) one finds that Eq(2)

gives a correct result fog at distances of the order of or
even much smaller thaa).

We first follow well known results and introduce the zero-  For a large positive scattering leng® R, there is a
range approximation as this has been done for the two-bodyeakly bound state of two atoms. The binding enesgand
problem(see[40,41]). We consider elastic pair collisions be- wave functioneg, of this state at distances> R, can also be
tween cold distinguishable atoms interacting with each othefound in the zero-range approximation.
via a spherically symmetric potential and assume that their The free relative motion of atoms in the bound state is
de Broglie wavelength is much larger than the characteristidescribed by the Schrodinger equation,
radius of this potentialR.. In other words, we have the con- 2 o,
dition kR,<1, wherek is the relative wave vector of the (= Vi +megi) =0, 7
atoms. In this case, the scattering is dominated bysvave  wherem is the atom mass, and tiieegativé energy of the
contribution. The behavior of the wave function at inter- molecular state i€=-s,. A general solution of Eq(7) at
atomic distances> R, is governed by the scattering length  any finiter can be written as
which is related to the scattering phase shift as
s=-arctarika). Given the scattering length, the details of the $o(r) = tho(r) + oG (r,0), (8)
interatomic potential at distancess R, are practically irrel- N , 77 N
evant for scgttering parameters an(?egive r?se to cor{ections gyhere Gso(r ! )=(L1 4mr = DeXp(__VmSO/ﬁZ“ - ) is th?
the order ofkR, or smaller for the scattering amplitugé2]. ~ ©reen function of Eq(7), and ¢y is the solution of this

The key idea of the zero-range approximation is to solveeduation that is finite and regular at any distance including

the equation for the free relative motion of two atoms placf =0- Forr—0, the wave function(8) should satisfy the
ing the Bethe-Peierls boundary condition on the wave funcPoundary conditiort1). o ,
One can easily see that any nontrivial solution of &,

tion at a vanishing, .
g finite atr — o, behaves as t/for r — 0. Therefore, we have

©)

Il. ZERO-RANGE APPROXIMATION
FOR THE TWO-BODY PROBLEM

(rg)” 1 #=0. Then, using the boundary conditigh) for ¢q(r) at

r T a r—0, @) vanishingr, one finds that the binding energy of the weakly
bound state is
which can also be rewritten as
go=h4ma, 9
o (Lr—1/), r—0. 2 . . L
) ~and the wave functiop, normalized to unity is given by
One then gets a correct expression for the wave function at
distances >R.. do(r) = (1L/N2mar)exp(—r/a). (10

For the free relative motion of two colliding atoms, the

Schrodinger equation takes the form Note that under the conditioja > R,, the main contribution

to the normalization integral comes from distancesR,,
- (Vr2+ K?)y=0. (3) where Eq.(10) is valid. Relative corrections to the binding

. . . ) energye, are of the order ofR./a).
A general solution of this equation for our scattering prob-

lem, which is valid at any finite, is given by

= ik -r)+hG(r,0), 4 . .
= exptik-) .0 “@ Theoretical studies of the three-body problem have a long
where G(r,r’)=(1/4mx|r —r| )expik|r—r’|) is the Green prehistory(see[43] for a review. In this section, we con-
function representing the solution of E@) with the right-  sider a three-body system consisting of two identical fermi-

IIl. GENERAL FORMALISM FOR THREE FERMIONS
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ons interacting with a third one, which is not identical to the - (873X)IEK,(\-EX), E<O,

first two, via a short-range pair isotropic potenti#lr). The Ge(X) =9 . - = (15)
fermions have the same mass and we will denote the identi- 1(167°X%) "EH,(VEX),  E>0.

cal ones by the symbdl and the third one by the symbol  Here X= Jx=x")2+(y-y’)?, K, is an exponentially decay-
In the center-of-mass reference frame, the state of the systemg Bessel function, anH, is a Hankel function representing
with total energyE is described by the Schrodinger equation 5, outgoing wave. ’Fov|E|X<1 we have

* As in the two-body case described by E@. and (8), a
wherey is the distance between the identical fermions, andyeneral solution of Eq13) at finite distances betweenand
V3x/2 is the distance between their center of mass and thé fermions can be expressed through the Green fundsen
third atom. Hereinafter, we use notations in whichm=1.  (15), with coordinates’, y’ corresponding to a vanishing

The wave function¥ is antisymmetric with respect to the distance between distinguishable fermions, that is, rfor
permutation of identical fermions, i.e., it changes sign under—0 and forr.—0. We thus have
the transformatiory — -y. _

We will discuss the case of resonant two-body interaction, Pxy) =Wo(x,y)

that is, we assume that the two-body problem for the inter- ] — ey PRI
action potentialU(r) is characterized by a large scattering + | Gl \(x=r'12)2+ (y + \3r'12)?]n(r ) dr
length

la| > R.. (12) - f Gel VX =122+ (y = \3r'122]n(r ),
As has been shown by Efim@44], in this case short-range (17)

physics is not important and the three-body problem is uni-

versal in the sense that it can be described in terms of thehere W, is a properly symmetrized and finite solution of

two-body scattering length. One can then use the zero-randed. (13), regular at vanishing distances betwegrand |

approximation for the interatomic potential. This was firstfermions. For a negative total enery nontrivial solutions

done even earlier by Skorniakov and Ter-Martirodidf] in ~ Of this type do not exist and we have to plf,=0. The

relation to the neutron-deutron scattering, which is similar tfunction h(r) has to be determined relying on the boundary

elastic scattering of atoms by weakly bound dimers. Theconditions(14).

work of Ref.[45] was followed by related discussiof#6]. For this purpose, we consider the limit— 0 and analyze

In this section, we present the form of the zero-range apthe leading behavior of the terms on the right-hand side of

proximation for three-body systems that was outlined inEq. (17). The argument of the Green function in the third

Refs. [39,47 for the three-body recombination and atom-term can be written a§r2+r’2+r -r’—\"§r+-r’+rf, where

dimer scattering. r=(x—3y)/2, and this term is finite for,—0. It can be
Under the conditior{12), the zero-range approximation is ritten as

applicable even at interparticle distances much smaller than

|aj, as long as these distances greatly exdeedAlso, this

approximation properly describes weakly bound states of

two particles ala>0. According to the zero-range approxi-

mation, Eq.(11) is equivalent to the Poisson equation In the second term, the argument of the Green function takes

5 o the form \/(r —r’)2+rf. We then subtract from this term and
—[Vi+Vy+E]¥ =0, (13 add to it an auxiliary quantity

with the boundary conditioi2) set for a vanishing distance -

between any of the two distinguishable fermions, i.e., forn(r) GE[\'(r —r’)2+r3]d3r' = (1/4ar,)h(r)exp(— V- Er,).

r.=(Jy3xxy)/2—0. Taking into account the symmetry, we

JGE(\”r2+r’2+r rh(r")d%r’. (18)

can write the boundary conditions at the two boundaries as (19
.1 1 1 The result of the subtraction gives a quantity
V= 47-,f(r)( r, ) r:—0, (14) =[Ge[\/(r=r")2+r2][h(r")=h(r)]d%’. Forr,—0, this quan-

— ) o tity remains finite and can be written as
wherer = ¥ 2y/y3 for r,— 0. The functionf contains infor-

mation about the relative motion offafermion with respect , ) 3,

to the two other atoms when they are on top of each other. In I= Pf Ge(lr =r'D[h(r") = h(r)Jd*", (20

the case of atom-dimer scattering, the functigolays a role

of the wave function of the atom-dimer relative motion. where the symbol P denotes the principal value for the inte-
The Green function of Eq(13), which is the solution of gration overdr’. The derivation of Eq(20) and the proof of

this equation with the right-hand side equal &x—x")(y the convergence of the integral on the right-hand side of this

-y’), is given by equation are given in the Appendix.
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Neglecting terms that are vanishing foy— 0, the two
last lines of Eq(17) are given by the sum of Eq&L8), (19),
and(20). Thus, in the limitr,—0 we can write Eq(17) in
the form containing a singular term proportionalrfd, and
regular terms independent of,

PHYSICAL REVIEW A71, 012708(2005

X(r) ~ exglikz) + 200 exptikn)
V3 r

(25)

where z is the direction of incidenceg is the scattering
angle, the relative wave vector is defined a3, and

F(k, 0) is the scattering amplitude.

-1_ |—
r+ =V Eh Forr,—0, we have

P=—
47

= Ge(Nr?+r"2+r -r)h(r")}d*’ +D(r)/4m, (21)

whereD(r)=4mWo(+r/2,~\3r/2), andy-E=~i\Efor posi-  tpep, comparingl (24) with Eq. (14), we obtain a relation
tive energiesE. Hereafter we omit the principal value sym- petween the functiong andf,

bol P for the first term of the integrand of E@Q1).

As Eq.(21) should coincide with Eq14) atr,— 0, com-
paring the singular terms of these equations we immediately
find that h(r)=f(r). Matching the regular terms yields the
equation for the functior,

(r)+ f {Ge(Ir =r"Dh(r") = h(r)]

1 1 1
do(ry) — h(— - —> :
V2ma\ry a

x(r) = Va/8af(r). (26)

As we commented in Sec. lll, fdE<O0 we have to put
W,=0 in Eq.(17). This leads td(r)=0, and Eq(22) takes

the form
(Le-a+\=B)f(r) =D(r), (22 (Ce-at+\B)(r) =0, 27
where the integral operatd;rE is given by The links of our approach to the method of Skorniakov and
Ter-Martirosian[45] are seen from the fact that ER7)
[Ef(r) :47Tf {Ge(|r = r"DIf(r) = f(r")] leads to the same equation for the Fourier transform of the
function f(r) as in Ref.[45].
>  ,> 1 1
+Ge(Nr2+ 17241 1) f(r))dr. (23) We first demonstrate a general approach for solving Eq.

(27) and finding the scattering amplitude. For a, the sec-
The operator on the left-hand side of E2) conserves ond term on the right-hand side of E@3) is exponentially
angular momentum. Therefore, one can expérathd D in small and can be omitted. Performing the integration in the

spherical harmonics and work only with a set of uncoupledirst term, we reduce E423) to the form

equations for functions of a single variableThe knowledge

of the functionf(r) allows one to calculate all scattering [Ef(r):Jd3q{\'_E+q2_ V’TE}f(q)eXF(iq 1), r>a,
parameters. In the next section, we demonstrate this by cal-

culating the atom-dimer scattering length in the ultracold
limit.

(28)

wheref(q) is the Fourier transform of the functidiir). Act-
ing twice with the operato(LE+v“——E) on the functionf(r)

IV. ATOM-DIMER ELASTIC SCATTERING and using Eq(27), we then obtain

According to the discussion in Sec. Il, for a large positive ~ =2 _ 3 9 iqq _ m
scattering lengtta> R, one has a weakly bound molecular (Le+\-F) f(r)-j d*a(a” - E)f(q)et” = aZ’ (29
state of two distinguishable fermiong and |), with the o

binding energy,=1/a2 and the wave functior, described ' N€ total energy is given by

by Eg. (10). We now consider elastic collisions of these E=-1/a2+K?, (30)

bosonic dimers with] (or |) fermionic atoms at collision ) ] ) )
energiese <g,. Then the total energy of the three-body and Eq.(29) _|mmed|ate[y transfqrms into the equation for
atom-dimer system i€=(e—s0) <0 and collisions do not the free relative atom-dimer motion,

lead to dissociation of the dimers. (- Vf— k)f(r)=0, r>a. (31

From Eq.(10), one finds that the size of the weakly bound ) ) ]

molecular state is-a. For a large separation between the The expansion of the functiof(r) and the amplitude
atom and the dimer, the three-body wave function factorize§ (k. 6) in Legendre polynomials readsee the Appendix
into a product,

f(r)=>,i'(2l + 1)P,(cosO)f,(r),

32
V(xY) = dolr)x(r), r>a. (24) 2 (32
A characteristic value of the distancebetween atoms in the .
dimer is~a, and in the limitr > a the atom-dimer separation B
is equal toy3r/2. The wave functiory(r) describes the rela- F(k,6) =2 (21 + 1)P(cos)F (k). (33

. . . 1=0
tive atom-dimer motion and can be represented as a super-

position of an incident and scattered wave. Fesx©, we
have

For the functionf|(r), which describes the scattering with
orbital angular momentunh, the superposition of incident

012708-4
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and scattered waves satisfying E§1) can be written as
Vasgaty(r) =\l 2kr{3y,12(kn) +i(2KNI)F (0 Hy.g2kn)},
r> a, (34

PHYSICAL REVIEW A 71, 012708(2005

V. RELAXATION IN ATOM-DIMER COLLISIONS

Weakly bound dimers that we are considering are di-
atomic molecules in the highest rovibrational state. Hence,
they can undergo relaxation into deep bound states in their

whereH,,,, is a Hankel function representing an outgoing collisions with each other or with unbound atoms. The re-

wave, and)j,1/; is a Bessel function. Fdir— o, the Hankel
function is Hy,1,=(-i)"*1\2/kr exp(ikr). Then, multiplying
both sides of Eq(34) by i'(21+1)P,(cos#), making a sum-
mation overl, and taking into account Eq$32), (33), and
(26), we arrive at Eq(25).

Using Eq.(32), one reduces E@27) to a set of uncoupled
integral equations for the functiorfgr),

(l:lE_a-1+ \;’_—E)fl(r):o, I=0,1,2..., (35

where the integral operatcﬁ’E for a givenl is obtained by
integratingLg over dO,/4# with the weightP,(cos6). Par-
tial scattering amplitudes,(k) are then found by solving Eq.
(35) and fitting the obtainedl(r) with the asymptotic expres-
sion(34). Then, Egs(32) and(33) give the functionf(r) and
the total scattering amplitude(k, 6).

In the ultracold limit, where the condition

ka< 1 (36)

is satisfied, the scattering is dominated by sheave contri-
bution and can be analyzed settikg0 and writing the total
energy asE=-1/a% This is clearly seen from Eq34) with
=0, which fork— 0 reads

fo(r) = \V8rla(l - 2a,4\3r), r>a, (37)

wherea,q=-Fq(0) is the atom-dimer scattering length.
Thus, for findinga,y one should solve Eq(35) with |
=0, assuming the limik— 0. This equation then reduces to

Lofo(r)=0. (39)

Using Eq.(15) and integrating ovedQ, /4 in Eq. (23), we
represent Eq(38) in the form

L2t = - f ! [[fo(r) - fo(r’)]{w
0

mar Ir’ =r|

CKy[(r + r’)/a]} 4o (r’){ K,(\Vr2+r'2=rr'la)
0

r+r/ Vr'r2+r12_rr/
Kiy(Nr2+r"2+rr'/a)
- r'dr' =0, (39)
Nre+r’s+rr’

leased binding energy of a deep stateVszlmI{. Itis trans-
formed into the kinetic energy of particles in the outgoing
collisional channel and they escape from the trapped sample.
Therefore, the process of collisional relaxation of weakly
bound dimers determines the lifetime of a gas of these mol-
ecules and, in particular, possibilities to Bose-condense such
a gas.

In our previous work39] we have shown that this pro-
cess is suppressed due to Fermi statistics for the atoms in
combination with a large size of the dimer. The binding en-
ergy of the dimers igy=#%/m& and their size is~a>R..

The size of deep bound states is of the ordeRgofHence,

the relaxation requires the presence of at least three fermions
at distances-R, from each other. As two of them are nec-
essarily identical, due to the Pauli exclusion principle the
relaxation probability acquires a small factor proportional to
a power of(qR.), whereq~1/a is a characteristic momen-
tum of the atoms in the weakly bound molecular state.

In this section, we discuss relaxation of weakly bound
dimers into deep bound states in ultracold atom-dimer colli-
sions satisfying the conditiof86). Relying on the inequality
a>R,, we develop a method that allows us to establish a
dependence of the relaxation rate on the scattering lemgth
without going into a detailed analysis of the short-range be-
havior of the system of three atoms. It is assumed that the
amplitude of the inelastic process of relaxation is much
smaller than the amplitude of elastic scattering. Then the
dependence of the relaxation rate ais related only to the
a-dependence of the initial-state three-body wave function
N

The relaxation occurs when all of the three atoms ap-
proach each other to distances of the ordeRgfAt these
interatomic distances, as well as at all distanceg<a, the
wave functionW in the ultracold limit is determined by the
Schrodinger equatiofill) with E=0. Therefore, it depends
on the scattering lengta only through a normalization co-
efficient,

vT=A@y, Xxy<a, (40)

where the function/ is independent o&. The probability of
relaxation and, hence, the relaxation rate constagtare

_ _ _ _ _ ) 5 . N
whereK, is an exponentially decaying Bessel function. It is Proportional to|¥|* at distances, y~ R.. We thus have
easily seen that the principal value of the integral in the first

line of Eq.(39) is finite. Forr’ —r, the integrand behaves as

1/(r=r’).

We numerically solved Eq(39) and found the function
fo(r) at all distances. Fitting the obtained,(r) atr >a with
the asymptotic expressidB7), we arrived at the atom-dimer
scattering lengthe,q=1.2a, which reproduces the result of
Ref.[45]. Our calculations also show that the behavioif pf

aq > |A@)[%. (41)

The goal then is to find the coefficied(a), which deter-
mines the dependence of the relaxation rateon

In the region whereR,<{x,y}<a, the a-independent
function ¢ can be found in the zero-range approximation.
Then, matching the wave functioh given by Eq.(40) with

suggests a soft-core atom-dimer repulsion, with a range dhe result of the zero-range approximation at interparticle

the order ofa.

distances larger thaa gives the coefficienf\(a).
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We start with analyzing the behavior of the three-body
wave function in the zero-range approximation at distances

X, Y<<a. In this region of distances¥ is reconstructed
through the functiorf(r) from Eq. (17) with h(r)=f(r) and

¥,=0, settingE— 0. Accordingly, one should use the Green

function G, (16) in this equation, which then reads

‘I’(x,y):j {Go[\/(x—r’/2)2+(y+ V’§r’/2)2J

- f Go[\/(x—r’/2)2+ (y- \§r’/2)2j}

x f(r")d’, (42)

The main contribution to the integral in E@Ll2) comes from
distances’ <a and, hence, we have to find the functibat

X,y < a.

PHYSICAL REVIEW A71, 012708(2005

¥ = ®%Q)f(p)lp = C,PUQ)p* 7L, (47)

where p=\x?+y? is the hyperradius, and the set of hyper-
angles() denotes all the other coordinates. Although one can
explicitly write down the functiond®®((), for us it is only
important that this function is-independent.

Comparing Eq(47) with Eq. (40), we see that one may
set y=d%0)p"~ ! in the interval of distances wherB,
<{x,y}<a. We then haveC,=A(a), i.e., the functiorf, can
be written as

Xy <a,

fo(r) = A(@r™, r<a. (48)

Numerical integration of Eq(39) shows thatf, smoothly
interpolates between the asymptotic expressions given by
Eq. (48) for r<a, and by Eq.37) for r>a. This procedure
provides matching of the two asymptotesrata and gives

these distances. In the ultracold limit where the conditionthe coefficient

(36) is satisfied, the inelastic process of relaxation is domi-

nated by the contribution of trewave channel. As we found
in Sec. IV, thes-wave partf, of the functionf is determined
by Egs.(38) and(39). Forr <a, the distances’ in Eq. (39
are also much smaller than This is equivalent to setting the
limit E— 0 (a*— 0) for the integral operatdr in Eq. (39),
and this operator then reduces to

~0 _i * ~ , 1 B 1
Lofo(r) = - fo [[fo(r) fo(r )]{ ' —1)2 (r+r’)2}

1
+2fo(r’){ r2+r,2_ -

rr’
(43

where the integration of the term containifrg-r’)? assumes
a principal value of the integral.

Thus, the functiorfy(r) atr<a is a solution of the inte-
gral equation

L9fo(r) = 0. (44)

The operatorLl has a property thaldr*=A(»)r** for
-5<Re(v) <3, and the integral in Eq43) diverges outside
this interval. The functior\(») is given by

4 si (v + 1)/6]

ANp)=(v+ Dtan— + Po—"

= (45
2 43 )

In the specified interval of’ the function\ has two roots,
v,=1.166 andv_=-3.166. Accordingly, the solution of Eq.
(44) is a linear superposition,

fo(r) = Cir*+Cr*-, r<a. (46)

The determination of the rati€,/C_ involves short-range

A(a) o a2+, (49

In fact, the result of Eq(49) can be obtained in a more
elegant way, using only Eqé37) and(48). In the zero-range
approximation, the only distance scale is the two-body scat-
tering lengtha. Hence, we may rescale the coordinate and
represent the functiofy in the form

fo(r) = B@fo(r/a), (50)

wheref, depends ora only through the rescaled coordinate
r/a. The coefficientB(a) is independent of the coordinate
and can be obtained by comparing E50) with asymptotic
expressiong37) and (48). Using Eg.(37), we see thaB
«a Y2 whereas the comparison of E0) with Eq. (48)
givesBxA(a)a™. This immediately leads to E§49) for the
coefficientA(a).

As the dependence of the relaxation rate constgpion
the two-body scattering length is governed by &), using
Eq. (49 we obtain aygxas, wheres=1+2v,=3.33. The
absolute value of the relaxation rate is determined by the
contribution of interparticle distancesR,, where the zero-
range approximation is not valid. This approximation only
gives a correct dependence of the relaxation rate.on

Assuming that the short-range physics is characterized by
the length scal&®, and by the energy scaer/mF%, we can
restore the dimensions and write the following expression for
the rate constant of relaxation of weakly bound dimers into
deep bound states in atom-dimer ultracold collisions:

azq=C(hRJM)(RJa)®, s=3.33. (51

One clearly sees that the relaxation rate rapidly decreases
with increasing the two-body scattering length. However, the
coefficientC depends on a particular system.

The relaxation due to atom-dimer scattering with nonzero

physics and is beyond the scope of this paper. However, iprbital angular momenta is very small. Since the atom-dimer
the absence of a three-body resonance, the matching proceffective interaction has a characteristic range (see Sec.

dure implies that at distances- R, both terms in Eq(46)
are of the same order of magnitude. So/C_=R;*3%2 and
at distances >R, one hasfy(r) = C,r*. Substituting this
result into Eqg.(42), we find that at distances, y<a the

three-body wave function takes the form

IV), the p-wave part of the three-body wave functidn at
short interparticle distances is proportionaki@ Hence, the
p-wave contribution to the relaxation ratedgka)? and can
be omitted for ultracold collisions satisfying the condition
(36).
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VI. ELASTIC DIMER-DIMER SCATTERING W = ¢ho(ry) do(ro)(1 - \"Eadd/R) R> a (56)

As we already mentioned in the Introduction, elastic in- . . . .
teraction between weakly bound bosonic molecules ahd whereayq is the dimer-dimer scattering length, and the wave

| fermionic atoms is important for understanding the physicsfuncnqn. of the weakly bound d|mer'|s given by Eq.O).
of their Bose-Einstein condensation and for studying theComb_lnlng Eas(59 anql(56), we obtain the asymptotic ex-
BCS-BEC crossover in two-component atomic Fermi gased?'€ssion forf at large distanceR,

The dimer-dimer elastic scattering is a four-body problem =

described by the Schradinger equation, f(ra,R) = (2Ir;2)exp(- ro/a)(1 - v2a43dR), R>a.

(57)

In the case of thesswave scattering, the functioh de-
pends only on three variables: the absolute values, aind
- E}‘I’ =0. (52 R, and the angle between them. We now derive and solve the
equation forf. The value ofayy is then deduced from the
Here we again use units in which=m=1. The distance behavior off at largeR governed by Eq(57). _
between two giver] and | fermions isr,, andr, is the We first establish a general form of the wave functibn
distance between the other two. The distance between tH@tisfying Eq.(54), with the boundary conditiort55) and
centers of mass of these pairs iR/\2, and (r, Symmetry relations(53). In our case, the total energy
+1,4\2R)/2 are the separations betweerand | fermions E=—2/a*<0, and the Green function of E¢54) reads
in the other two possiblel| pairs. The total energy is o — =
E=-2e,+e, With ¢ being the collision energy and, G(X) = (2m) " (XalN2)™ " Ky(V2X/a), (58)
=-1/a? the binding energy of a dimer. , ) i
The wave function¥ is symmetric with respect to the Where X=[s-8/|, and S={ry,r,,R} is a nine-compo-
permutation of bosoni¢ | pairs and antisymmetric with re- Nent__ vector.  Accordingly, ~ one  has S-S

{— V2 = V2 = VE+U(r) +U(ry) + 2 UL(ry + 12 \2R)/2]

spect to permutations of identical fermions, =\(ry=r)2+(r-rp?+(R-R"2 In analogy with the three-

body case, the four-body wave functidhcan be expressed

W(r,raR) through G(|S-S'|) with coordinatesS' corresponding to a
=W(ryry,~-R) vanishing distance betweeh and | fermions, i.e., forr}

— _ —0, r;—0, and(rj+rj=\2R")/2—0. Thus, for the wave
_ —\P( ri+r;2 V2R ry+r, ¥ V2R L rz) (53) function satisfying the symmetry relatiois3), we have
2 ' 2 T2 )

The weak binding of atoms in the dimer assumes that the ~ ¥(9 =‘1’o+fd3f’d3R'[G(|S- Sil) +G(IS-S,|)
two-body (positive scattering length i&s>R,, and we em-
ploy the zero-range approximation in our analysis of the -G(s-Ss)-G(s-s)nr’,R"), (59
molecule-molecule scattering. This is done relying on the
formulation of this approximation given in Sec. Ill for the where §,={0,r’,R'}, $={r’',0,R’}, and &
three-body problem. Thus, the four-body system is described{r'/2+R'/\2,r' /2% R'/\2,Fr'\2}. The functionW is
by the free-particle Schrodinger equation a properly symmetrized finite solution of EG4), regular at

2 w2 w2 vanishing distances betwegnand | fermions. ForE<O,

B [Vr1+ Vr2+ VR +EIV=0, (54) nontrivial solutions of this type do not exist and we have to

and the four-body wave functioff should satisfy the Bethe- put lI'O:.O‘ \;I;h(esé;J n(itlonh((r)z,R_ihh?hs t% be éjetermmg_?_ by
Peierls boundary condition for a vanishing distance in amfomparlng atry—0, wi € boundary condition

: . . 55).
pair of 1 and | fermions, i.e., forr;—0, r,—0, andr, ( . L .
1 2R 0. Due I the symmetn, it s necessary 0 re- Tie e s sl o et develope 1 Sec. 1 o
quire a proper behavior oF only at one of these boundaries. the leadin t%m ﬁth riaht hgnd i(;q fl’Eﬁp) Th
Forr,—0, the boundary condition reads € leading terms on the right-hand side ot kop). these
are the terms that behave asrilbr remain finite in this

W(r,rpR) — f(ro,R)(1/4mr, — 1/47a). (55) limit. The last three terms in the square brackets in (56)
provide a finite contribution
The functionf(r,,R) is analogous to that defined in Sec. IlI

and it contains the information about the second pair of par- _
ticles when the first two are sitting on top of each other. fd3r’d3R’h(r’,R’)[G(|%— Sil)
In the ultracold limit, where the conditiof36) is satisfied, _ _
the scattering is dominated by the contribution of $heave -G(S,-S.) -G(S,-s))], (60)

channel. The inequality36) is equivalent toe<gq and, _

hence, thes-wave scattering can be analyzed from the solu-whereS,;={0,r,,R}. For finding the contribution of the first
tion of Eq. (54) with E=-2¢;,<0. For largeR, the corre- term in the square brackets, we subtract from this term and
sponding wave function is given by add to it an auxiliary quantity,
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— The result of Eq.(66) is exact, and its derivation was
exp(— v2ry/a). outlined in our previous work39]. Equation(66) indicates
the stability of molecular BEC with respect to collapse.
(61)  Compared to earlier studies which assunaggt2a [4], Eq.
The result of the subtraction yields a finite contribution (66) gives almost twice as small a sound velocity of the
which forr,—0 can be written as molecular condensate and a rate of elastic collisions smaller
by an order of magnitude. We should mention here that the
3 B L result of earlier studiep4] was reconsidered in Rdf48] by
d’r'd°R'[h(r’",R") = h(r,R)]G(|S- S/)) using a diagrammatic approach which leadsajg=0.7%.
However, this approach misses a number of diagrams which

h(rz,R)
4

’7Tr1

h(r,, R)f G(|S-S)d¥r 'R’ =

_ 31 B F o S give a contribution of the same order of magnitude as those
- PJ Fr'dRTN(r,RY) ~h(r2 R)IG(S, - Si), taken into account.
(62
with the symbol P standing for the principal value of the  VIl. RELAXATION IN DIMER-DIMER COLLISIONS
integral overdr’ (or dR'). Equation(62) is derived in the In this section, we generalize the results obtained in Sec.
Appendix and it is proven that the integral in the second [iney 5 the relaxation of weakly bound dimers into deep bound
of this equation is convergent. _ _ states in dimer-dimer collisions. We again consider the ultra-
In the limitr,— 0, the right-hand side of E¢61) is equal  ¢qq jimit described by the conditiof86), where the relax-
to ation process is dominated by the contribution of sheave
_ 5 dimer-dimer scattering. The key point of our discussion is
h(rz,R)(1/4mr, = \2/4ma). (63 that the dimer-dimer relaxation collisions are to a large ex-
We thus find that for , — 0, the wave function? of Eq.(59)  tent similar to the atom-dimer ones.
takes the form Indeed, the relaxation process requires only three atoms to
bt R) approach each other to short distances of the ordBg.dfhe
ro, i i
W(ry,rpR) = 27 4R, r,—0, (64) fourth particle can be at a large distance from these three

A7rq and, in this respect, does not participate in the relaxation

. ) ) process. This distance is of the order of the size of a dimer,
whereR is the sum of regular;-independent terms given by \hich is ~a> R.. As well as in the case of atom-dimer col-

Egs.(60) and(62), and by the second term on the right-hand|igjons, the dependence of the relaxation rate on the two-
side of Eq.(63). .Equat|0|_1(64) should coincide with Ea. body scattering length is determined by the-dependence
(55), and comparing the singular terms of these equations Wgg the injtial-state wave functiot?. We thus see that the
find h(rz,R)=f(r3,R). As the quantityR should coincide  .,nfiguration space contributing to the relaxation probability
with the regular term of E(55), equal to 4(r5,R)/4ma, W ¢an pe viewed as a system of three atoms at short distances
obtain the following equation for the functidn ~R, from each other and a fourth atom separated from this
system by a large distancea. In this case, the four-body

fd3r’d3R’{G(§— SIF(r',R") = f(r,R)]+[G(S-S)) wave function decomposes into a product,
V=92 ¥®(p,Q), (67)

where¥® s the wave function of the three-fermion system,
p and Q) are the hyperradius and the set of hyperangles for
(65) these fermionsz is the distance between their center of mass
Here S={0,r,R}, and we omitted the symbol of principal and the fourth atom, and the functiosiz) describes the mo-
value for the integral in the first line of EG65). tion of this atom. Note that Eq67) remains valid for any
As we already mentioned above, for thevave scattering hyperradiusp <|[z|~a.
the functionf(r ,R) depends only on the absolute values of ~ The transition to a deep bound two-body state occurs in
andR and on the angle between them. Thus, &f) is an  the system of three atoms and does not change. the wave
integral equation for the function of three variables. We havdunction of the fourth atomy(z). Therefore, averaging the
solved this equation numerically for all distand@sandr, transition probability over the motion of the fourth particle,
and all angles between the vectd®s and r. Fitting the the rate constant of relaxation in dimer-dimer collisions can

asymptotic expressiof57) at R>a with the functionf(r ,R) ~ be written as

-3 6(5- stmf(r’,R’)} = (V2= Df(r.R)/4ma.

obtained numerically from Eq65), we find with 2% accu-
racy that the dimer-dimer scattering length is agg= a<3>f |7(2)?d%z= a'®, (68)
agg=0.6a>0. (66)

where «'® is the rate constant of relaxation for the three-
Our calculations show the absence of four-body weaklyatom system.

bound states, and the behavior fofat smallR suggests a We thus obtain that the problem is reduced to the relax-
soft-core repulsion between dimers, with a ranga ation in atom-dimer collisions. The difference from the case
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collision is ~1/a. This is seen by considering® at large (70)

distances between the dimer and the fermionic atom, hereaf-
ter referred to as the third fermion. This fermion is in thewhere one should take a principa| value for the integra] of
bound molecular state with the fourth atom. As the size ofthe term containingr-r’)2.

this state is~a, the expansion of the wave function of the
third fermion in plane waves shows that its momentyris

of the order of 14.

discussed in Sec. V is that now the relative momentum of the N(r 1) (2412 =y r))

V,r|r _ r.l|(r2+ r12+ rrl)

Like the operatolLd, the operatot} has a property.ir”
=\(»)r"! for —4<Re(v)<2. The function\(v) is now

Keeping in mind the discussion in Sec. V, we see that thd'ven by
result for the relaxation rate following from E@1) remains 4 vcogm(v+1)/6]-2sinwv/6) v(v+2) TV
valid for the dimer-dimer collisions. The fact that the relative M») = _5 (v+ D)sin(v/2) 1 t?
momentum igy~ 1/a can only change the numerical coeffi- v
cient, not the dependence of the relaxation rate constant on (71)

the two-body scattering lengtlh However, the result of Eq. and has two rootsz. =0.773 andv.=—2.773. Then. with the
+— V. - . . y

(5.1) accctJunts 02:}11 fgf the—wi\_/ehscatte_(rjlng tﬂf tlhe g."rd felr " same arguments as in between Eg%$) and(48) in Sec. V,
mionic atom on the dimer, which provides e leading relax., o 4pain short-distance expressions for the funcfipand
ation channel for ultracold atom-dimer collisions. In the cas

Sor th f the three- functigr® -
of dimer-dimer collisions, there is a relaxation channel that i or the part of the three-body wave unctidrl correspond

|§ K . .
. ) - ng to thep-wave scattering of the third fermion on the mol-
more important in the limit of large (see below. For the 9 P g

X : . . ecule,
s-wave dimer-dimer scattering, both the fourth and the third !

fermions (bound to each other in the molecular sfatan fi(r) = A(@a™(r/la)*+, r<a; (72
undergo thep-wave scattering on the other dimer in such a
way that their total orbital angular momentum is equal to v =A@DQ)p*L, p<a, (73

zero. We thus should consider the relaxation for ph&ave
collisions between the third fermionic atom and the dimerwhere the functionb! is independent oé.

These collisions are not suppressed as their relative momen- For relative moment&k~1/a, the two-body scattering
tum isq~1/a. length remains the only distance scale of the zero-range ap-
As we discussed in Sec. V, for the hyperradiuga the proximation. In particular, the-wave scattering amplitude
wave function of the three-fermion systet®, depends on in Eq. (34) will be F,~a. We therefore can write the func-

the scattering length only through a normalization coeffi- tion f; in the form (50): f,(r)=B(a)f.(r/a), where f; de-

cient and can be written in the for#0). We thus have pends ora only through the rescaled coordinate. In order
W@ =A(a)y, with a-independent functions, and the relax- to be consistent with Eq(34) for k~1/a, we have to put
ation rate constant depends anas ayq|A(a)|%. This re-  B(a)<a Y2 Then the comparison of the resultifigwith Eq.

quires us to find the coefficienA(a) for the case of the (72) gives the coefficienA(a) <a *?™+ and the relaxation
p-wave scattering of the third fermionic atom on the mol-rate constant isayq|Al(a)|><as, with s=1+2v,=255.

ecule. We will do this in the zero-range approximation, alongrRestoring the dimensions, we have

the lines of our discussion of treewave atom-dimer scatter-

ing in Sec. V. agq= C(hR/M)(RJa)%, s=2.55. (74)

We first consider the regior_1 of interparticle distances (one can think of the relaxation mechanism, where the
whereR,<p<a. Then the functiorf(r) for the three-body  gcattering of the third fermion on the dimer occurs with
problem is determined by E¢27) in which we have to set higher orbital angular momenta In this case, the fourth
the limit E— 0 anda™*—0. Therefore, the integral equation atom scatters on the dimer with the saieand the total
(35) for the p-component of the functiofi takes the form  angular momentum of the dimer-dimer scattering should be

equal to zero. Our analysis shows that these scattering
E(l)fl(r) =0, (69) mechanisms lead to a power-law dependedmgg:a™s, with
larger values of than in Eq.(74). Hence, for largea they
can be neglected.

Equation(74) shows a slower decrease of the relaxation
rate with increasin@ than in the case of atom-dimer colli-
sions. Obviously, in the limiR.,/a— 0 the dimer-dimer re-

. laxation should dominate over the atom-dimer one. The com-
L(l)fl(r) - 7_1Tf dr’(%’[[fl(r) _ fl(f')]{ G f . petition between these two relaxation processes can be
0

where the operatdié is obtained substituting the expansion
(32 into Eq.(23) with the Green functiors, (16), multiply-
ing by cosé, and integrating over the angles. This yields

present if the ratid?./a is not too small and the densities of

dimers and atoms in the gas are comparable with each other.
- ’ 2}+2f1(r’){ 2 12 ’
(r+r’) re+re—rr VIIl. WIDE AND NARROW FESHBACH RESONANCES
1 1 + 2f4(r’) In experiments with alkali-metal atom gases, large values
r2+r' 24’ (r+r')? r? of the two-body scattering length are achieved by using
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Feshbach resonances. In the vicinity of the resonance, th&l. In a quantum degenerate Fermi gas, the characteristic
two-body problem is characterized by a strong coupling bemomentum of particles is the Fermi momentukg
tween the continuum states of colliding atoms and a boune (372n)Y/3, wheren is the gas density. Thus, the inequality
molecular state of another hyperfine domain of these atom&-R" <1, referred to as the condition of a wide resonance,
The resulting scattering length depends on the detuning froransures universality of the problgr9,55,57-59 The only
the resonance, i.e., on the energy differenceetween the length and energy scales in the gas will be the mean inter-
border of the continuum of colliding atoms and the boundparticle separationn™® and the Fermi energyEg
molecular state. The splitting between the two hyperfine do=(372n)?342/2m, and the system acquires universal thermo-
mains and, hence, the detunidgdepend on the magnetic dynamics[16].
field, which makes the scattering length tunable by varying In our case, the situation is different. We are considering
the field. weakly bound diatomic molecules in the open channel with a
One thus has a two-channel problem which can be debinding energy(9), and our discussion of atom-dimer and
scribed in terms of Breit-Wigner scatterifg2,49, the open  dimer-dimer collisions assumes that there is a weakly inter-
channel being the states of colliding atoms and the closedcting gas of these dimers and atoms. The most important
channel the bound molecular state of the other hyperfine ddimitation is related to the binding energy and the wave func-
main. Various aspects of this type of problem have beenion of the dimers. The energy of the weakly bound molecu-
discussed by Feshbadb0] and Fano[51]. In cold atom |ar state is determined by the pole of the scattering amplitude
physics, the idea of Feshbach resonances was introduced (in7). One then finds that this state exists only éor 0 and
Ref. [52], and optically induced resonances have been disthe universal expressiof®) used in our calculationss,

cussed in Refd.53,54. =h2/m&?, requires the inequalitj56]
We now analyze to which extent our results for three- .\
atom and four-atom systems of fermions with a positive two- R <a. (78

body scattering lengta> R describe the situation of Fesh- nqer this condition, the wave function of the weakly bound

bach resonances. For low collision energiemitting the  mgjecular state has only a small admixture of the closed
(small) background scattering length, the scattering amp“'channel[56].

tude is given by 42] Our calculations for the atom-dimer and dimer-dimer col-

lisions were done in the ultracold limit whei@<1. In a
EEE— (75  thermal gas of atoms and dimers, the characteristic momen-
e+A+iyve tum is the thermal momentuia=(2mT/#2)Y2, whereas for

where the quantityiy/\m=W characterizes the coupling & degenerate, in particular Bose-condensed gas of the dimers,

between the two hyperfine domains. In EZg), the detuning the characteristic momentum is the inverse healing length,
. e ' ) 1/2 i it o

A is positive if the bound molecular state is below the con-("&™* In both cases, the |nequ3al|t}5(a<1 assumes the

tinuum of colliding atoms. Then fak >0 we have a positive Weakly interacting regime, wherea”<1. One can also see

scattering length near the resonange~F(0)=W/A. Intro- that in the limitka<1, the inequality Eq(78) makes the

hiylNm
F(e)=-———

ducing a characteristic length scattering amplitudé(k) (77) momentum independent and
. equal to -a. This justifies the use of our single-channel zero-
R =#mW (76)  range approximation for calculating atom-dimer and dimer-

and expressing the scattering amplitude through the relativ imer interactions and collisional properties. We thus obtain
momentum of particlek=me/#, Eq. (75) takes the form that for our problem the condition of a wide Feshbach reso-

nance is given by Eq78). Under this condition, the problem

1 is universal in the sense that the size of weakly bound
al+RIK2+ik’ (77) dimers, and atom-dimer and dimer-dimer scattering proper-

ties, are characterized by a single parameter, the two-body

The validity of Eq.(77) does not require the inequaligR’ scattering lengtfa.
<1. At the same time, Eq77) formally coincides with the Note that the interaction between the two channels of the
amplitude of scattering of slow particles by a potential with Feshbach problem is efficient at interparticle distances which
the same scattering lengtlh and an effective range are of the order oR.. Therefore, the Feshbach character of
R=-2R’, valid under the conditiokR<1. scattering does not influence the condit@mn R, that allows

The lengthR’ is an intrinsic parameter of the Feshbachys to use the zero-range approximation for the entire region
resonance problem. It characterizes the width of the resayf interparticle distances.

nance. From Eqgs(75) and (76) we see that larg&V and,
hence, smalR" correspond to a wide resonance, whereas
smallW and largeR" lead to a narrow resonance. The issue
of wide and narrow resonances is now actively being dis- In most experiments with weakly bound diatomic mol-
cussed in the literatufd 7,19,55-59 We would like to point  ecules produced by using Feshbach resonances in a degener-
out here that the use of the terms “wide” and “narrow” de-ate two-component atomic Fermi gas, the wide resonance
pends on the problem under consideration. For example, inondition (78) was satisfied. This was the case wiff,

the unitarity limit wherea— %, Eq. (77) shows that the molecules at JILA|28,29,34, and with °Li, at Innsbruck
lengthR" drops out of the problem under the conditikR’ [26,30,37,38 MIT [31,35, Duke[14,36, ENS[15,25,33,

F(k) = -

IX. CONCLUDING REMARKS
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and Rice[33]. In these experimental studies, the lenBthis ticipating in the relaxation process at short interparticle dis-
of the order of or smaller than 20 A, and for the achievedtances have very small relative momektal/a and, hence,
values of the scattering length from 500 to 2000 A, the the process is suppressed compared to the case of molecules
ratio R /a is smaller than 0.1. The only exception is the of bosonic atoms.

experiment at Rice witlfLi near a narrow Feshbach reso-  The long lifetime of weakly bound diatomic molecules of
nance at 543 G27]. For this resonance, the lengRi is  fermionic atoms allows interesting manipulations with these
large and at obtained values afthe condition(78) is not  gimers. It seems realistic to arrange a deep evaporative cool-
fufilled. Therefore, the Rice experime[@7] cannot be de-  jng of their Bose-condensed gas to temperatures of the order
scribed by our theory. of the chemical potential. Then, converting the molecular

Experimental studies of dimers produced in a Fermi ga EC into fermionic atoms b ; ; ;
! . y adiabatically changing the
by using wide Feshbach resonances at JILA, Innsbruck, M scattering length to negative values, one provides an addi-

and ENS are well described within our theoretical approach . : : ; : )
It should be mentioned that fa>0 and equal concentra- tional cooling. The obtained atomic Fermi gas will have ex

~1072 i
tions of the two atomic components of the gas, at tempera:-remeIy low temperature -~ 10°E and can be already in

tures well belowEg practically all atoms should be converted he BCS reglme{63;|. At these t_emperla.tures, one has a very
into dimers if the gas density satisfies the inequatis? strong Pauli bIo_ckmg of elastic collisions an_d expects t_he
<1[60]. In ongoing experiments, the imbalance between théolllsm_nless_ regime for the thermal cloud, which is promis-
atomic components is fairly small, and at sufficiently low ing for identifying the BCS-paired state through the observa-
temperatures there can only be a small fraction of unpaire§ion of collective oscillations or free expansigd].
fermionic atoms. Another idea is related to transferring weakly bound mol-
The results at JILA28,29,34, Innsbruck 26,30,37, MIT ecules of fermionic atoms to their ground rovibrational state
[31,35, ENS[25,32, and Rice[33] show a remarkable col- by using two-photon spectroscopy, as proposed in Fo&i
lisional stability of weakly bound diatomic moleculé%, for molecules of bosonic atoms. Long lifetime of weakly
and ®Li,. At molecular densities~ 1013 cni™3, the lifetime ~ bound dimers of fermionic atoms at densities0"* cm™
of the gas ranges from tens of milliseconds to tens of secShould provide a much more efficient production of ground-
onds, depending on the value of the scattering lemgth ~ State molecules compared to the case of dimers of bosonic
strong decrease of the relaxation rate with increasinfpl- ~ atoms, where one has severe limitations on achievable den-

lowing from Eq.(74), is consistent with experimental data. Sities and lifetimes.
The potassium experiment at JIUR&8] and the lithium ex-
periment at ENJ32] give the relaxation rate constany ACKNOWLEDGMENTS
«a s, wheres=2.3 with 15% accuracy for §§ ands=2.0
with 40% accuracy for L. The absolute value of the rate
constant for a thermal gas of Lis ayq~2 X 10* cm®/s for
the scattering length~ 800 A[25]. For K, it is by an order
of magnitude higher at the same valueaof28], which can
be a consequence of a larger value of the characteristic radit?
of interactionRe.

At realistic temperatures, the relaxation rate constagt
is much smaller than the rate constant of elastic collision
8maj 1, Wherevr is the thermal velocity. For example, for
the Li, weakly bound dimers at a temperatdre-3 uK and
a~800 A, the corresponding ratio is of the order of 46r
1075, This opens wide possibilities for reaching BEC of the
dimers and cooling the Bose-condensed gas to temperatur
of the order of its chemical potential. Long-lived BEC of
weakly bound dimers has been recently observed%g at
JILA [29,34 and for®Li, at Innsbruck30,37], MIT [31,35,
ENS[32], and Rice[33]. Measurements of the dimer-dimer APPENDIX
scattering length in these experiments confirm our result
a4q=0.6a [39] with accuracy up to 30%. This result is also
confirmed by recent Monte Carlo calculatiof&l] of the
ground-state energy in the molecular BEC regifsee also
[62]). I —

In conclusion, we have developed a theory of elastic and | :f Ge[\(r —=r")?+rZ]lh(r') = h(n1d*" (A1)
inelastic collisions of weakly bound molecules formed in a
two-component atomic Fermi gas. We emphasize that th@nd analyze the limiting case of— 0. For this purpose, we
remarkable collisional stability of these moleculesaatR,  use the expansion of the functioh§ ') andh(r) in spherical
is due to Fermi statistics This effect is not present for harmonics. This type of expansion can be made for any func-
weakly bound molecules of bosonic atoms, even if they havéion of the components of a three-dimensional vector, and it
the same large size. Indeed, identical fermionic atoms pareads

We acknowledge fruitful discussions with C. Lobo. This
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We first prove that in the limit,—0 we have Eq(20)
and the integral on the right-hand side of this equation is
convergent. So, we consider the integral
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| Equations(A6) and (A7) are written for the cas&< 0. For
h(r)=2> > him()Yim(6:, ), (A2)  E>0, one should put in these equatidhinstead of € and
1=0 m=-I

replace the decaying Bessel functidhsandK, by the Han-

with 6, and ¢, being the polar and azimuthal angles of the k€l functions 24, and 2H,, respectively. o

vectorr with respect to a quantization axis. Note that in the  FOr calculating the integral in EGAG), we divide the
analysis of the atom-dimer elastic scattering in Sec. IV, wd€9ion of integration into two parts: inside a small intenZal
used an expansion in Legendre polynomials for the functioif/herelr’ ~r[<1/v|E|, and _OUtS'dP; this interval. In addition,
f(r). The reason is that the bound molecular state has zei§€ require that the functio,(r’) does not significantly
orbital angular momentum and there is a cylindrical Symme_change inside the intervdl. The integral outside the interval

try in the system. For a general three-body problem oné remains finite and independent of in the limit r,—0.

should, in principle, use EqA2). Inside the intervalZ, the argument of the Bess@r Hanke)
For spherical harmonic¥,(6,,¢,,) in the expansion function is small and the integral in EGA6) reduces to
(A2) for the functionh(r’), we use the relatiosee[42]) 1 () = (D11
’ 2
Yin 0,60 = 2 DY, (1,6,0 i (6,6, (A3) amloee (1 -rPerlo
I’T‘II

We then expand the quantifyn,(r')—h,(r)] in powers of
WhereD:q),m is the matrix of finite rotations, and’, ¢’ are (r’'=r). Quadratic and higher-order terms of the expansion
the polar and azimuthal angles of the veatbmith respect give contributions to the integrand, which remain finite for
to the quantization axis parallel to the vectorintegrating "+~ 0- The contribution of the linear term is given by
over the a_ngleq&’ i_n Eg. (Al), we find that all terms with 1 dhy(r)
m’ #0 vanish. This is because the argument of the Green —
function Gg in Eq. (A1) depends only on the angt. Using

; r )=l )

th(le; relations | \/(MV(Z +1)/4mP(cosd’) and  pEorr, .0, the integral in Eq(A8) remains finite and can be
Don(®r . 0:,0)=17Amw/ (20+1)Y)n(6, . ¢,), we then reduce \written as
Eqg. (A1) to the form

!

r'-r r’
———dr’. A8
47 dr rrec(r’—r)2+rfr (A8)

o | f ﬂ"'PJ dr’
1= > inYim(6r &), (A4) rec ¥ rec (' =)

=0

where the symbol P denotes the principal value of the inte-
1 . gral. We thus see that in the limit — 0 the whole integral
- / 12401 / / given by Eq.(A1) is finite. Settingr, =0 in the initial expres-
him ZwJ_ldcosa fo redr [h|m(r )Pi(cosd’) sion (A1) and keeping the symbol P for the integration over
dr’, one then writes the integralin the form of Eq.(20),
—h(]Ge(Nr2+ 12412 = 211" cosg’).  (A5)

With Eq. (15) for the Green functiotg, integration in parts I = Pf Ge(|r =r'DIh(r") = h(r)]1d%".
overdcos@' transforms Eq(A5) into

o = i We now derive Eq(62) for the four-body problem of the
L = A, +f V- Er'dr [hin(r’) = hin(1)] dimer-dimer scattering and prove that the integral in the sec-
L PR P m ond line of this equation is convergent. So, changing the

— notation fromr, to r, we start with the integral
Ki(V=-EV(r=r)2+r2)

N(r=r")2+r2

(A6)

J:Jd3r’d3R’[h(r’,R’)—h(r,R)]G(|S— S, (A9)
The quantitiesA,,, represent the sum of integrals in which o )

for r,=0 andr’—r the integrand either remains finite or Where the argument of the Green function in E&49) is
contains a logarithmic integrable singularity. Setting=0, _al=.,2 o2 N2

one obtains finite values of these quantities, [S=Sif=\ri+(r-r)*+ (R-RY%,

and consider the limit;— 0. As in the three-body case, we

ooy + ! =
A :f r_dr,[h”n(r) + (D" () V- E expand the functiom(r ,R) in spherical harmonics. The ex-
"o 47%(r +1') pansion now reads
oy [P dr 10+ 1) S
XKy (V=E(r +r ))+fO 42 2\ 2 hrR= > > 3 H™rR
1=0)"=0 M= m’=-1"

X[Ke(V=Elr =) + (- DKo~ Er+11)] X Yinl b $)Yim (6, b0, (AL0)

1
_f dxP () Ko(V- E\rZ+r72 - errx))_ (A7) Whered,, ¢ and dr, ¢ are the polar and azimuthal angles
-1 of the vectors andR. Then, using Eq(A3) for each of the
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spherical harmonics in the expansion of the functionother hand, owing to the inequaliti€817) and (A18), we

h(r’,R’), we transform Eq(A9) to the form can put infinity for the upper limits of integration ovéfr and
" L 0. Then, integrating over the angles inside the regicamnd
= 3 > J:,m,YIm(ar’(ﬁr)Yl,m,(aR’¢R), taking into account the contributiod},™ from the configu-
120,720 MF— /=" " ration space outside this region, we reduce &d.2) to
(A11)
r ’ -’ !/ 1 rIR,
. 1 1 w o Jl m :.JI moy = ——dr'drR’
Jm :4772f dcoser’f dcosaﬁf r’2dr’f R'2dR’ m oo et gey R
-1 -1 0 0

[hi" (r' ,R") = hi.™ (r,R)]
[rf+ (" -2+ (R -R??
~hin" (1, RIG(X), (A12) For calculating the integral in EqA20), we expand the

with the angle between the vectarsandr denoted as,, function h(r’,R’) in powers of (r'-r) and (R'-R). Qua-
the angle betweeR’ andR as 6, and the argument of the dratic and higher-order terms of the expansion lead to the

X [l ™ (r' ,R")P,(cos 8! )P, (cosbl) (A20)

Green function written as integrand which remains finite for, —0, at least after a
straightforward integration over one of the variable’s,or
X= \/r§+ r2+r'2-2rr’ cosh, + R?+R'?- 2RR cosfy. R’. For example, setting; =0, quadratic terms yield
We then separate out the region of integratihmmhere
the anglesf; and 6 are small,r’ is close tor, andR’ is P (1 R) rodr’ P (v R)
close toR. The regionV is determined by the relations 8m2ar? )5 [r§+ (r' -2 + 872 g R2
r'=ri<ryo<r’,r,a, Al3 -
| [=<To (AL3) f rodR’ .\ #hl™ (r,R) dr'(r' —r)?
IR -Rl<r,<R,Ra, (A14) rev[r5+ (R -RY¥2 472droR ey IR
: — ro+\/r3+(r’—r)2) o
"< p <min{1,a/\rr’ Al X In( - .
0. <mn n{1,a/\rr'}, (A15) l |r/ _r| [I’g+(l”—l’)2:|l/2
O < 7R < min{l,a/\r’ﬁ}, (A16) The contribution of the linear terms of the expansion, af-

. . ter integrating oveR’, can be written as
and the quantities;,,7g are selected such that they satisfy

the inequalities

g > |’ =l (A17) ah," (r,R) (r'-r) ror'dr’
- A ar oy i+ (' =2+ (r' - )22
\J’RR’ > R, -R. A18 I/
~77R | | (A18) ahl.™(r,R) r'dr’ o+ \ra+(r' =r)?
Outside the regioV, one can directly put;=0 in the argu- * 47RIR Jocy 1 r'—r
ment of the Green function and see that the quantiijgs
. .. . . =1 ! r

remain finite. These contributions are denoted below #5. - ﬁ] ’ (A21)
In the regionV, the argumeni of the Green function can [ro+(r" —n)7]

become equal ta; and, in principle, this region can be

thought of as the one leading to a singular behavior of the h —0inth di | as it th .
integralJ in the limitr; — 0. We will show that this is not the where we pur, =0 In the second integral as it then contains
case. only an integrable logarithmic singularity fof —r. The first

The Green functiorG is given by Eq.(58), and in the integral on the right-hand side of E¢A21) also remains

L~ , ~finite in the limit of r;— 0. It can be written in the form
region V the argument of the decaying Bessel function,
V2X/a, is small. Then, for small angle% and 6g, from Eq.

(58) we obtain f Fodr’ . f rdr’ fo
vev g+ =022 g (' =0 g+ (= )P

15
G= —32774[r§ +(r' =12+ (R - RZ+ 6, 1 + 0L RRT 72,

(A19) with the symbol P denoting the principal value of the inte-
Inside the regiorV, the inequalitiegA15) and (A16) allow gral. This means that setting=0, each of the quantities

us to putP(cosé;)=P/(cosé;)=1 in Eq. (A12). On the Jlr'nm' is equal to the principal value of the integral in Eq.
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(A12), taken with respect to the integration owdr’. Note _

that we could first make the integration ovd and reduce J= Pf d®’d®R'[h(r’',R") = h(r,R)IG(IS- S|)),

the result to the principal value for the integration od&’.

One thus sees that fof — 0, the initial integrald (A9) can  where the symbol P denotes the principal value for the inte-

be represented in the form of E@?2), gration overdr’ (or dR'), and|S-S;|=\/(r-r')?+(R-R")%
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