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I. INTRODUCTION

Since the early years of quantum mechanics and the de-
velopment of scattering theory, an accurate description of the
correlated motion of three unbound particles interacting via
Coulomb forces has been a difficult problem to treat theo-
retically. Indeed, this problem was only reduced to computa-
tion in the last decade[1]. The difficulty stems from the
long-range nature of the Coulomb potential which introduces
a number of formal and practical complications. Although
the formal theory ofe-H ionization was developed in the
1960s by Peterkop[2] and by Rudge and Seaton[3,4], it has
not provided a practical path to computation. The asymptotic
form of the wave function they derived is valid only in spe-
cific and limited geometries of the interacting particles and
has proved to be too complicated to use as a boundary con-
dition for solving the time-independent Schrödinger equa-
tion. Consequently, much of the work on electron-impact
ionization has been carried out using perturbative, distorted-
wave-type methods or with close-coupling approaches that
apply approximate two-body boundary conditions.

A practical path to accurate computation at low collision
energies was only fully realized in the past few years. The
key to overcoming the difficulties posed by the formal theory
has been to formulate methods that do not rely on explicitly
enforcing the boundary conditions for three-body Coulomb
breakup. Several theoretical methods can be mentioned in
this context. One such approach is the “time-dependent
close-coupling” method developed by Pindzola and co-
workers[5,6]. In that approach, a wave packet is fired at the
target atom and the time-dependent Schrödinger equation de-
scribing its dynamics is solved in a close-coupling formula-
tion. Asymptotic boundary conditions are avoided since the
time-dependent Schrödinger equation is solved as an initial-
value problem. Another successful method, which has been
applied to the atomic double-photoionization problem, is the

hypersphericalR-matrix method with semiclassical outgoing
waves [7]. In that approach, the time-independent
Schrödinger equation is solved without detailed specification
of three-body Coulomb boundary conditions by merging two
different approaches: anR-matrix treatment of the entire sys-
tem in the vicinity of the nucleus along with a semiclassical
description of the evolution of the system in the asymptotic
region. Exterior complex scaling(ECS) [8] avoids the ex-
plicit enforcement of boundary conditions entirely and has
been successful in solving all aspects of the prototypical
three-body Coulomb problem, electron-impact ionization of
atomic hydrogen, to arbitrary accuracy[9,10].

Most of the currently successful methods have been ap-
plied to study electron-impact ionization of multielectron at-
oms by treating all but one active target electron in a frozen-
core approximation, which reduces the problem to an
effective three-body Coulomb system. A notable exception is
the very recent work of Pindzolaet al. [11] which reports
total cross sections for electron-impact single and double
ionization of helium at several energies above 100 eV from
time-dependent close-coupling calculations carried out in
full dimensionality. The question we want to address here is
whether the ECS method offers a practical approach to
studying the ionization of atoms with twoactive electrons.
The method, as originally applied, involves solving large,
sparse systems of linear equations. Extending this implemen-
tation, directly, to three electrons leads to linear systems that
are extremely large and prohibitively expensive to solve. We
have addressed that issue previously[12] by showing how
the ECS method could be cast in a time-dependent formula-
tion that scales more favorably with the number of electrons
than the original time-independent formulation. The time-
dependent ECS(TD-ECS) method was successfully applied
to a problem involving four particles interacting via short-
range potentials.

Here we take the first steps toward applying ECS to the
full electron-helium system. In this paper we extend the
time-dependent ECS method to a system of four charged
particles and consider theS-wave model ofe−-He ionization.
The S-wave model provides a distillation of the full, nine-
dimensional, problem into a system involving just three ra-
dial coordinates. While the problem we consider here is a
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model, it has the complexity of a true four-body Coulomb
problem—involving long-range forces and an infinite num-
ber of two-body excitation channels—but simplifies the full
problem by treating only states with zero angular momen-
tum.

While theS-wave (or Temkin-Poet) model fore−-H ion-
ization has been a testbed for developing numerical ap-
proaches for studying ionization, the corresponding model
for electron-helium scattering and ionization has received
little attention in the literature, with most of the effort going
towards solving the full electron-helium system under a
number of approximations. Pindzolaet al. [13] have used the
time-dependent wave packet method to compute total cross
sections with theS-wave model in the context of double
ionization at high energies. This has been the only previous
calculation to treat all of the electrons on the same footing,
thus solving a true three-electron ionization problem. Plottke
et al., using the convergent close-coupling(CCC) method
[14], have also reported results for this problem by freezing
one of the electrons in the target. Under that approximation,
the model is effectively equivalent to a two-electron system.

The method of exterior complex scaling is implemented
here in three dimensions(3D) with a combined finite-
element discrete-variable representation(FEM-DVR) [15].
The FEM-DVR basis provides a numerical grid on which to
perform the calculation, as well as an underlying expansion
basis that allows the computed wave functions to be evalu-
ated as a continuous function of the coordinates. ECS pro-
vides a method for computing a numerical representation of
the physical scattering wave function on a finite volume by
imposing only outgoing-wave boundary conditions. Because
asymptotic scattering boundary conditions are not explicitly
specified, however, the calculations do not automatically pro-
vide the desired scattering information. For the three-body
problem, we have previously shown how to formulate a sur-
face integral expression for the ionization amplitude that pro-
vides numerically stable and accurate cross sections on a
finite volume [10,16,17]. With multielectron targets, there
are additional difficulties that arise which complicate the ex-
traction of ionization amplitudes. The method we have de-
vised for addressing these complications will be described as
well.

The outline of this paper is as follows. The theory is pre-
sented in Sec. II. We begin with a description of the TD-ECS
method for computing the scattered wave function. We then
describe how this wave function is used in calculating am-
plitudes for excitation and ionization. The formal results are
then applied in the case of theS-wave model. In Sec. III we
present numerical results for excitation as well as total and
differential ionization cross sections. In Sec. IV we summa-
rize and discuss our findings.

II. THEORY

Our treatment of this problem involves two main parts:
the computation of the three-electron scattering wave func-
tion and the extraction of physical cross sections.

A. Calculation of the scattered wave function

The starting point for all ECS applications is an equation
that determines the purely outgoing part of the full wave

function. To that end, we begin by partitioning the full wave
function C+ into two parts:

C+ = F0 + CSC, s1d

where the unperturbed functionF0 specifies the initial con-
ditions and the scattered waveCSC contains only outgoing
waves. Substituting Eq.(1) into the time-independent
Schrödinger equation gives a driven equation for the scat-
tered wave:

sE − HdCSC= sH − EdF0. s2d

Equation(2) must be solved with purely outgoing boundary
conditions; the scattered waveCSC carries information about
all the dynamical processes of interest.

The ECS method allows one to determine the scattered
wave on a finite volume without having to detail its explicit
asymptotic form. The method uses an analytic transformation
where the electron coordinates are rotated into the complex
plane beyond some pointR0. This is accomplished by replac-
ing each radial electron coordinater with a scaled coordinate
Rsrd, defined by

Rsrd = Hr , r , R0,

R0 + sr − R0deiu, r ù R0.
s3d

Purely outgoing functions decay on the complex portion of
the contour defined by the coordinateRsrd. However, the
function at distances less thanR0 is unaffected by the scal-
ing. Thus, by requiring that solutions vanish at the origin and
some appropriately large distance along the complex contour,
we obtain a solution that is purely outgoing and is effectively
equal to the physical wave function on the real portion of the
grid. The “effectively” qualifier reflects the fact that the in-
teraction potentials on the right-hand side(RHS) of Eq. (2)
must be truncated on the complex portions of the contour
[1,18]. As R0 is increased, the solution approaches the exact
physical scattered wave on the real portion of the grid. We
note here that while the scattered wave is continuous along
the contour defined byRsrd, its derivative is discontinuous at
R0.

In most of the previous applications of ECS, Eq.(2) was
solved by expanding the wave function on a grid using an
appropriate discretization method(finite difference or finite
elements) and solving the resulting linear equations to obtain
the scattered wave solution. However, due to the poor scaling
with respect of the number of particles, even in the case of
three electrons, the linear systems become very large and
impractical to solve. Our strategy for circumventing this dif-
ficulty is to recast the problem with an equivalent time-
dependent formulation[12] that does not require us to solve
large linear systems and that scales favorably with increasing
particle number.

In the reformulated method, the scattered wave function
in Eq. (2) is computed as the Fourier transform of a time-
dependent wave packet,

CSC= − iE
0

`

eiEtxstddt, s4d

with
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xstd = e−iHtxs0d. s5d

The initial “wave packet” is simply given by

xs0d = fH„Rsr1d,Rsr2d,¯… − EgF0„Rsr1d,Rsr2d¯…. s6d

This formulation follows from noting that the solution of Eq.
(2) which we seek can be formally written as

CSC= G+xs0d, s7d

with G+ being the full Green’s function:

G+ = sE − H + ied−1 =
1

i
E

0

`

eisE+iedte−iHtdt se → 0d. s8d

Because we are using ECS, the wave packetxstd will limit to
zero for largehr ij as t→`, so the +ie in Eq. (8) can be
dropped. Equation(4) is thus formally equivalent to the so-
lution of Eq. (2). Instead of solving large linear systems, it
requires that we propagatexstd on the ECS contour in mul-
tiple dimensions for times sufficiently large to converge the
Fourier transform that provides the numerical representation
of CSC. As previous applications have demonstrated[12,19],
ECS can be used to propagate outgoing wave packets on
finite grids for arbitrarily long times without producing spu-
rious reflections.

We seek a method that scales well with particle number
and therefore one that does not involve solutions of linear
equations representing multiple dimensions at each time
step. To that end, we employ a split operator approximation
[20] for the time propagation operator. The Hamiltonian for
d particles is first separated into one- and two-body terms:

H = o
i=1

d

h1sr id + o
i. j=1

d

v2sr i,r jd ; H1 + V2, s9d

and the propagator is then approximated as

e−iHDt < expF− iSDt

2
DV2GFp

i=1

d

e−ih1sridDtG
3expF− iSDt

2
DV2G . s10d

To approximate the one-body Hamiltonian terms, we use a
second-order Crank-Nicolson propagator

e−ih1Dt < S1 + ih1
Dt

2
− h1

2Dt2

12
D−1S1 − ih1

Dt

2
− h1

2Dt2

12
D .

s11d

The scaling properties of this propagator depend on the
representations of the operators, which we have yet to
specify. Earlier implementations of ECS used finite-
difference methods, but in the present work we employ, for
each radial electron coordinate, the combined FEM-DVR in-
troduced by Rescigno and McCurdy[15]. The DVR com-
bines a high-order polynomial treatment of the kinetic energy
operator with the advantage of a diagonal representation of
any local potential operator. For the DVR representation, we
use a basis of so-called “Lobatto shape functions”[21],

which are Lagrange interpolating polynomials with mesh
points derived from a Gauss-Lobatto quadrature. Gauss-
Lobatto quadrature is similar to the more familiar Gauss-
Legendre quadrature, with the difference that in Gauss-
Lobatto quadrature two of the points are constrained to
coincide with the specified end points. Since Gauss-Lobatto
quadrature explicitly includes the end points as quadrature
points, it is possible to combine this particular variety of
DVR with the finite-element method, as outlined in Ref.
[15]. Moreover, by choosing one of the element boundaries
to coincide with the pointR0 where the real and complex
parts of the ECS contour join, the derivative discontinuity in
the wave function atR0 is handled exactly.

With the FEM-DVR, matrix element computation is
greatly simplified compared with other basis set methods.
When the integrals are approximated using the underlying
Gauss quadrature, the local potential operators have a diag-
onal representation. Matrix elements of derivative operators,
such as the kinetic energy, are not diagonal, but are given by
simple analytic formulas. With the FEM-DVR, the one-
dimensional kinetic energy operator has a blocked matrix
structure, where each block representing a particular finite
element is full, and the various blocks are connected by the
end-point DVR functions that join adjacent elements[15].
Thus the overall kinetic energy matrix, while not diagonal,
can be very sparse, depending on the number of elements
and the order of quadrature used in each element.

The efficiency of the time-dependent formulation in more
than two dimensions becomes readily apparent with an
FEM-DVR. Since the matrix elements of local functions are
diagonal and the one-body Hamiltonian terms separate, the
number of operations needed to evaluate the exponential
propagators in Eq.(10) can be easily estimated. Assume we
have n grid points in each ofd dimensions. For one time
step, each operation on the wave packet with
exps−iV2Dt /2d requires one multiplication per grid point or
of order nd operations. The operator exps−ih1Dtd in each
dimension can be represented by ann3n matrix [ Eq. (11)],
which need be computed only once. Each operation with
exps−ih1Dtd involves a matrix multiplication for one of the
dimensions that has to be done for each point in the other
dimensions and thus requires of the ordern23nd−1=nd+1 el-
ementary operations. The entire propagator thus requires of
order 2nd+dnd+1,dnd+1 operations per time step. If we at-
tempted to represent the time-independent driven
Schrödinger equation on thend3nd grid, we would have to
solve a sparse set of linear equations forCSC. If iterative
methods were used, which offer the best scaling withn, the
effort required would scale no better thann2d. The scaling
advantage of the time-dependent approach implemented here
is that of nd+1 versusn2d. For d=3 and n=150, which is
typically required in these calculations, that advantage is 5
3108 vs 1013 operations to perform.

B. Extracting cross sections

The formal and computational advantage of ECS is that it
does not make reference to any specific asymptotic boundary
conditions other than the requirement that the scattered wave
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be purely outgoing. Once the scattered wave has been calcu-
lated, we must decide how to extract the detailed dynamical
information it describes. One would not normally view this
as a major issue, since in most standard methods, the
asymptotic boundary conditions that define the dynamical
quantities of interest are used in the generation of the wave
function. But in the ECS method, the quantity obtained is a
numerical representation of a wave function that contains
information about all processes that are allowed at a specific
total energy, as detailed specification of scattering boundary
conditions is avoided by design.

A simple and straightforward way to obtain the ionization
cross section is to compute the quantum mechanical flux
through a surface that lies inside the region where the coor-
dinates are real. While this method was used in the first
successful applications of ECS toe−-H ionization [9,22],
there are intrinsic problems with this approach. The method
requires fairly large grids since the numerically computed
quantities must be extrapolated to infinite grid size, where
the flux can be related to the differential cross sections for
ionization. More serious is the problem that the grids must be
large enough to allow the physical region inhabited only by
the ionization portion of the scattered wave to be distinguish-
able from the parts that describe discrete two-body channels.
The requirement that the ionization wave be “uncovered”
before the asymptotic flux is calculated can require grids that
extend well beyond the range where the interaction poten-
tials are appreciable.

The most practical, and economical, approach to calculat-
ing both excitation and breakup cross sections is to formulate
the problem in terms of integral expressions for the underly-
ing scattering amplitudes[16]. In the present case ofe−-He
in the S-wave model, the full Hamiltonian is

Hsr1,r2,r3d = T1 + T2 + T3 −
2

r1
−

2

r2
−

2

r3
+

1

r.s1,2d

+
1

r.s1,3d
+

1

r.s2,3d
, s12d

where r.si , jd=maxsr i ,r jd. For discrete excitations, we can
begin with the formal expression

f i→n =
2

Îkn

kfnsr1,r2dsinsknr3duE − H1uC+l, s13d

wherefn is a discrete target state andH1 is the unperturbed
Hamiltonian corresponding to the incident channel arrange-
ment,

H1sr1,r2,r3d = T1 + T2 + T3 −
2

r1
−

2

r2
+

1

r.s1,2d
, s14d

so that

sH1 − Edufnsr1,r2dsinsknr3dl = 0. s15d

It is to be understood that the matrix element in Eq.(13) ,
and in all the expressions that follow, is carried out over a
finite volume defined by some hyperradius where the elec-
tron coordinates are all real. We can then use Green’s theo-

rem, along with Eq.(15), to express the amplitude as a sur-
face integral:

f i→n =
1

Îkn
E

S

ffnsr1,r2dsinsknr3d ¹ C+sr1,r2,r3d

− C+sr1,r2,r3d ¹ fnsr1,r2dsinsknr3dg ·dŜ

=
1

Îkn
E

S

ffnsr1,r2dsinsknr3d ¹ CSCsr1,r2,r3d

− CSCsr1,r2,r3d ¹ fnsr1,r2dsinsknr3dg ·dŜ, s16d

where the replacement ofC+ by CSC in the surface integral
follows from an examination of the integrand of Eq.(16) on
the surface.

The derivation of a workable formula for the ionization
amplitude requires some care. We preface this discussion by
noting that all of the matrix elements considered here are
presumed to be evaluated on a large but finite volume, so we
will employ the standard rearrangement theory for short-
ranged interactions and not address any of the difficulties
posed by the formal theory of ionization. The connection
with the formal theory and, in particular, the question of the
proper definition of the overall phase of the ionization am-
plitude, which does not affect any physical cross section, has
been discussed at length elsewhere and will not be repeated
here[17,23].

We have previously pointed out that, for a one-electron
target, the expression for the breakup amplitude[16],

fsk1,k2d = 2ksinsk1r1dsinsk2r2duE − TuCSCl, s17d

whereT is the total kinetic energy operator, while formally
correct, does not prove to be useful in an actual numerical
calculation on a finite volume. This failure can be traced to
the contribution of discrete two-body channels inCSC which
give rise to overlap terms that properly converge to Diracd
functions of momentum differences only for infinite vol-
umes. To see this, we need only substitute the asymptotic
form of CSC into Eq. (17):

CSCsr1,r2d = CSC
ion + o

n
S f i→n

Îkn
Dwnsr2deiknr1 sr1 → `d,

s18d

wherewn is a bound target state andf i→n is a discrete exci-
tation amplitude. The contamination of the ionization ampli-
tude from bound states renders Eq.(17) useless on a finite
volume. The solution to this problem is to employ a formally
equivalent expression with distorted waves in the final state:

fsk1,k2d = 2kwk1
wk2

uE − T − V1uCSCl, s19d

whereV1 is the distorted-wave potential corresponding to the
final state. In thee−-H case, for example, we choose the
distorted waves to be Coulomb functions withZ=1 [17].
Since the Coulomb functions are eigenfunctions of the same
Hamiltonian as the hydrogenic bound states, orthogonality is
realized on the finite volume and the spurious contributions
to the breakup amplitude are eliminated.
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The natural extension of Eq.(19) to the present helium
case, for single ionization leaving the ion in thenth excited
state, would be

fsk1,k2d = 2kwnwk1
wk2

uE − T − V1uCSCl. s20d

However, the use of distorted waves alone cannot completely
eliminate the contamination of the ionization amplitude by
discrete excitation channels, since there is generally no or-
thogonality relationship between the single-particle distorted
waves and the exact two-particle bound states of the target.
Nevertheless, we can still achieve much by choosing the dis-
torted wave potential judiciously. The excited states of the
modelS-wave helium atom, both singlet and triplet, are rea-
sonably well described by single-configuration wave func-
tions of the form1,3uw1swnsu, wherew1s is the 1s orbital of
He+. Thewns orbitals for the corresponding singlet and triplet
states are of course not identical, but they are reasonably
similar. With these considerations in mind, we choose the
distorted waves to be solutions of the triplet static-exchange
equation

ST −
2

r
+ J1s − K1s − k2/2Dwk = 0, s21d

whereJ1s andK1s are the usual Coulomb and exchange op-
erators constructed with the He+ 1s orbital. Note that the He+

1s orbital is an eigenfunction of this equation, as are the
triplet wns orbitals. This choice therefore guaranteesapproxi-
mateorthogonality between the distorted waves andall the
excited helium target states. It doesnot, however, eliminate
contamination of the breakup amplitude by the ground-state
channel, since the neutral helium ground-state 1s orbital is
very different from the He+ 1s orbital.

To address the problem of contamination by the elastic
channel and to further improve on the prescription for com-
puting a stable ionization amplitude, we employ the tech-
nique of “asymptotic subtraction” which we introduced in
our earlier study of breakup with short-ranged potentials
[12]. The idea is to try to remove the asymptotic contribution
of the discrete two-body channels to the scattered wave be-
fore computing the ionization amplitude. These two-body
contributions appear in each asymptotic arrangement. For
example, asr3→`, the scattered wave has the form

CSC =
r3→`

CSC
ion + o

n
S f i→n

Îkn
Dfnsr1,r2deiknr3. s22d

So by subtracting the sum that appears in Eq.(22) from CSC
we can, in principle, isolate, asymptotically, the pure ioniza-
tion portion of the scattered wave. The excitation amplitudes
f i→n can be calculated using Eq.(13) or (16). There are of
course an infinite number of discrete two-body channels, but
on a finite volume only a finite number of bound states can
be supported.

The ionization amplitude is thus evaluated by starting
with the expression

fsk1,k2d = 2kwnwk1
wk2

uE − T − V1uCSC
ionl, s23d

and using Green’s theorem to convert it to a surface integral:

TABLE I. Expressions for scattering and ionization amplitudes
in terms of individual arrangement amplitudes.

uS,sil uS,sfl Fi→f
S,sf,si

u1/2,0l u1/2,0l 1/2f2f fi
s1d− f fi

s2d− f fi
s3dg

u1/2,0l u1/2,1l Î3/2ff fi
s3d− f fi

s2dg
u1/2,1l u1/2,0l Î3/2ff fi

s2d− f fi
s3dg

u1/2,1l u1/2,1l 1/2f2f fi
s1d− f fi

s2d− f fi
s3dg

u3/2,1l u3/2,1l f fi
s1d+ f fi

s2d+ f fi
s3d

FIG. 1. Excitation cross sections from the 11S, ground state.
Solid symbols: singlet final states. Open symbols: triplet final states.
Symbols with dark lines: current ECS results. Light symbols: CCC
results from[14].
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fsk1,k2d =E
S

fwnsr1dwk1
sr2dwk2

sr3d = CSC
ionsr1,r2,r3d

− CSC
ionsr1,r2,r3d = wnsr1dwk1

sr2dwk2
sr3dg · n̂dS.

s24d

The use of the surface integral form of the amplitude, which
only depends of the asymptotic part of the scattered wave, is
now essential, since asymptotic subtraction changes the inte-
rior part of the scattered wave and makes the volume integral
representation of the amplitude invalid. We have found that
asymptotic subtraction and the correct choice of distorted
waves are both essential in computing accurate ionization
cross sections.

C. S-wave model of helium

As we have mentioned, theS-wave model arises from
retaining only the first,l =0, term in the angular momentum
expansion of the electron repulsion potentials. The helium
target bound statesfnsr1,r2d are eigenfunctions of the two-
electron Hamiltonian

Htsr1,r2dfnsr1,r2d = FT1 + T2 −
2

r1
−

2

r2
+

1

r.s1,2dGfnsr1,r2d

= Enfnsr1,r2d. s25d

The spatial part of these states can be either symmetric or
antisymmetric with respect to interchange of the two electron
coordinates, corresponding to singlet,sn=0, or triplet,sn=1,
spin coupling of the target electrons.

The initial conditions for determiningCSC are contained
in the specification ofF0: since the full Hamiltonian is to-
tally symmetric, the permutational properties ofCSC are set
by the initial wave function. To construct a physical three-
electron initial state, labeled by target staten and spinsn and
total spin( S=1/2 orS=3/2), we can apply the antisymme-
trization operator to the product of a three-electron spin state,
uS,snl, and an unperturbed spatial function:

F0
n,S,snsr1,r2,r3d = AFfnsr1,r2d

sinsknr3d
Îkn

uS,snlG . s26d

For example, the three-electron doublet-spin eigenfunction
sS=1/2d for a triplet target statessn=1d is

FIG. 2. As in Fig. 1, for the 23S, excited state.
FIG. 3. As in Fig. 1, for the 21S excited state.
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U1

2
,1L =

1
Î6

s2aab − aba − baad, s27d

where we have chosen the projectionmS= 1
2. For the fully

antisymmetric three-electron state, the spatial and spin por-
tions of the wave function generally do not factor.

Having defined the unperturbed initial state with Eq.(26),
we must construct a solution of the driven Schrödinger for
the corresponding scattered waveCSC

n,S,sn:

sE − HdCSC
n,S,sn = sH − EdF0

n,S,sn. s28d

In practice, it is only necessary to solve this equation for a
single arrangement of the electron coordinates since any
other arrangement can be obtained by an appropriate permu-
tation of electron coordinate labels; i.e., we can propagate an
unsymmetric initial state and then construct the desired
physical state by combining the solution vectors with differ-
ent permutations of the coordinate indices. The single ar-
rangement we compute is

sE − Hdcisr1,r2,r3d = sH − Edfni
sr1,r2d

sinskir3d
Îki

. s29d

The amplitudes for discrete excitationFi→f
S,sf,si can then be

constructed from the quantities

f fi
s1d = 2Kfnf

sr1,r2d
sinskfr3d

Îkf

uE − H0
123ucisr1,r2,r3dL ,

f fi
s2d = 2Kfnf

sr2,r3d
sinskfr1d

Îkf

uE − H0
231ucisr1,r2,r3dL ,

f fi
s3d = 2Kfnf

sr3,r1d
sinskfr2d

Îkf

uE − H0
312ucisr1,r2,r3dL ,

s30d

where H0
i jk =Htsr i ,r jd+Tk. Using Green’s identities, as dis-

cussed above, these matrix elements can be converted to sur-
face integrals. For example,

f fi
s1d =

1
Îkf
E

S

ffnf
sr1,r2dsinskfr3d = cisr1,r2,r3d

− cisr1,r2,r3d = fnf
sr1,r2dsinskfr3dg · n̂dS. s31d

These arrangement amplitudes are not entirely independent.
In fact, f fi

s2d=pip f f f i
s3d, wherepn=s1–2snd is the parity of tar-

get staten. The arrangement amplitudes are combined to
obtain the physical amplitudesFi→f

S,sf,si. Table I gives explicit
formulas for the various physical amplitudes in terms of the
arrangement amplitudes, based on the initial and final spin
states of the three electrons. The physical cross sections for
inelastic scattering are computed using

FIG. 4. Comparison of SDCS for ground-state helium atE
=3 eV computed with and without the use of distorted waves and/or
asymptotic subtraction. Light solid curve: SDCS(divided by 10)
obtained with Coulomb functions and no asymptotic subtraction.
Dashed curve: SDCS obtained with Coulomb functions and
asymptotic subtraction. Dark solid curve: SDCS obtained with dis-
torted waves and asymptotic subtraction.

FIG. 5. Total ionization cross sections from different initial
states.
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s f i =
2S+ 1

2s2si + 1dS4p

ki
2 DuFi→f

S,sf,siu2. s32d

For the single-ionization amplitudes, similar consider-
ations apply. Following the discussion of Sec. II B, we begin
by using asymptotic subtraction to isolate the ionization por-
tion of the scattered wave for a single arrangement:

ci
ionsr1,r2,r3d = cisr1,r2,r3d − o

n

1
Îkn

ffni
s1dfnsr1,r2deiknr3

+ fni
s2dfnsr2,r3deiknr1 + fni

s3dfnsr3,r1deiknr2g.

s33d

Note that the scattered wave corresponding to a single initial
arrangement has asymptotic two-body channel components
in all arrangements, each of which must be removed in com-
puting ci

ion.
For the single-ionization amplitudes, the final states are

assembled from products of a He+ orbital wn and two con-
tinuum distorted waveswk1

and wk2
, which are solutions of

Eq. (21). As in the case of excitation, we can define different

arrangement amplitudes from which the physical ionization
amplitudes can be assembled:

f fi
s1dsk1,k2d = 2kwnsr1dwk1

sr2dwk2
sr3duE − H0

123uci
ionsr1,r2,r3dl

f fi
s2dsk1,k2d = 2kwnsr2dwk1

sr3dwk2
sr1duE − H0

231uci
ionsr1,r2,r3dl

f fi
s3dsk1,k2d = 2kwnsr3dwk1

sr1dwk2
sr2duE − H0

312uci
ionsr1,r2,r3dl.

s34d

We must emphasize again that these ionization amplitudes,
written in Eq. (34) as volume integrals for notational sim-
plicity, must be evaluated as surface integrals. Again, these
amplitudes are not completely independent, but related
through the symmetries

f fi
s1dsk1,k2d = pi f f i

s2dsk2,k1d,

f fi
s3dsk1,k2d = pi f f i

s3dsk2,k1d. s35d

The “physical” ionization amplitudesFi→f
S,sf,si are again given

in terms of the arrangement amplitudes in Eq.(34) by the
same formulas shown in Table I.

To compute the cross sections for unpolarized incident
electrons, we must sum the contributions from all allowed
intermediate spin couplings. For overall doublet coupling
sS=1/2d, the single differential cross sections(SDCS’s) for

FIG. 6. Examples of SDCS fitting at 2.0 eV(left) and 30.0 eV
(right) above the first IP starting in the 11S ground state. Dark
curve: quadratic fit of SDCS’s. Light curve: computed SDCS’s.

FIG. 7. SDCS for ionization from the 11S ground state for vari-
ous energies above the first IP. Left panel, top to bottom: 5.0, 4.0.
3.0, 2.0, and 1.0 eV. Right panel,y-axis intercept from top to bot-
tom: 5.0, 10.0, 15.0, 20.0, 25.0, and 30.0 eV.
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ionizing the atom in initial spin statesi are given by

dsS=1/2

de
=

4

k1k2E0

1

s2si + 1d
fuFfi

1/2,sf=0,sisk1,k2du2

+ uFi→f
1/2,sf=1,sisk1,k2du2g, s36d

while for the high-spin casesS=3/2d, the cross section is

dsS=3/2

de
=

4

k1k2E0
S2

3
DfuFi→f

3/2,sf=1,si=1sk1,k2du2g. s37d

The total ionization cross section for a given total spin is
computed by integrating the SDCS:

sS=E
0

E dsS

de
de. s38d

III. RESULTS

The computations were all carried out using an FEM-
DVR of the wave functions for a single initial arrangement
on a three-dimensional grid. For each radial dimension, the
DVR was based on 15th-order Gauss-Lobatto quadrature in
each of 11 finite elements, 9 real and 2 complex, for a total of
153 basis functions. The complex turning pointR0 was lo-
cated at 101 bohrs. The full three-dimensional grid thus con-

tained 1533=3 581 580 points. We have already noted that
the DVR gives a diagonal representation of all local opera-
tors. In this context, we should point out that an accurate
DVR representation of the two-electron repulsion operators
that appear in Eqs.(12) and (25) requires some care. As
detailed in Refs.[1] and [17], a procedure based on solving
Poisson’s equation yields a diagonal representation for the
two-electron matrix elements. The time propagation was car-
ried out using the split operator and Crank-Nicolson schemes
previously described in Sec. II A. The wave function was
evolved in time toTmax=400 a.u. with time steps ofDt
=0.1 a.u.

The amplitudes for excitation and ionization were all as-
sembled from permutations of the appropriate single-
arrangement amplitudes, based on final and initial symme-
tries, as indicated in Table I. These arrangement amplitudes
were all evaluated using the surface integral forms of the
amplitude expressions, Eqs.(30) and (34). The edges of the
surface were located just insideR0 at 100 bohrs.

We have calculated excitation and ionization cross sec-
tions for theS-wave model from both ground- and excited-
state, 23S and 21S, target atoms. The two-electron target
states were always obtained by diagonalizing the target
Hamiltonian given in Eq.(25) using the real portion of the
2D FEM-DVR basis.

Figures 1, 2, and 3 show cross sections starting from He
11S, 23S, and 21S, respectively, for excitation to states with

FIG. 8. SDCS for ionization from the 23S ground state for vari-
ous energies above the first IP, withS=1/2. Left panel, top to
bottom: 2.0, 1.0, 3.0, 4.0, and 5.0 eV. Right panel, top to bottom:
5.0, 10.0, 15.0, 20.0, 25.0, and 30.0 eV.

FIG. 9. SDCS for ionization from the 23S ground state for vari-
ous energies above the first IP, withS=3/2. Left panel, top to
bottom: 5.0, 4.0, 3.0, 2.0, and 1.0 eV. Right panel,y-axis intercept
from top to bottom: 10.0, 15.0, 5.0, 20.0, 25.0, and 30.0 eV.
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principle quantum number up ton=3. We have also plotted
the results of CCC calculations[14] in those figures for com-
parison. In all cases, the agreement between the two methods
is good. This comparison also indicates that, for excitation,
the frozen-core model, which is used in the CCC calcula-
tions, and the full model with two active electrons used here
give very similar results.

Differential single-ionization cross sections were com-
puted from the ionization amplitude expression given in the
previous section. The SDCS’s were then numerically inte-
grated over the full range of ejected electron energy to pro-
duce total ionization cross sections.

As outlined above, the ionization amplitudes were com-
puted using triplet static-exchange distorted waves for the
ejected free electrons along with scattered waves in which
the ionization component was isolated using asymptotic sub-
traction. Nine two-body channels, corresponding to target
states with principal quantum number up ton=5, were used
in the asymptotic subtraction. The use of properly defined
distorted waves, as well as asymptotic subtraction, is criti-
cally important in obtaining accurate ionization cross sec-
tions. This point is illustrated in Fig. 4, where we show the
SDCS’s for ground-state ionization atE=3 eV computed
three different ways, first with Coulomb functions and no
asymptotic subtraction, then with Coulomb functions and
asymptotic subtraction, and finally with distorted waves and
asymptotic subtraction.

The total ionization cross sections from the different ini-
tial states are all plotted in Fig. 5, along with the frozen-core
CCC results[14]. Once again, we find very good agreement
with the CCC results. There is a slight discrepancy in the
case of ionization starting in the 21S state, where the present
total cross sections peak at slightly smaller values than the
CCC results.

The single differential cross sections offer the most de-
tailed information about breakup in theS-wave model and
are the most difficult quantities to accurately calculate. Even
with asymptotic subtraction and the properly chosen dis-
torted waves there are small oscillations in the cross sections,
which arise from incomplete elimination of excited singlet
two-body states, which are not completely orthogonal to the
distorted wave. Figure 6 shows the SDCS’s from the ground
state at total energies of 2 eV and 30 eV, to show the typical
behavior at low and high energies. We found that the SDCS’s
in all cases could be well fit with a quadratic function whose
parameters are uniquely determined by a least-squares fit that
gives the same integrated cross sections as the unsmoothed
data. The SDCS values presented in Figs. 7–10 are all ob-

FIG. 10. SDCS’s for ionization from the 21S ground state for
various energies above the first IP. Left panel,y-axis intercept from
top to bottom: 2.0, 1.0, 3.0, 4.0, and 5.0 eV. Right panel, top to
bottom: 5.0, 10.0, 15.0, 20.0, 25.0, and 30.0 eV.

FIG. 11. Single-differential cross sections at equal energy shar-
ing for initial states(top to bottom) 11S, 23S, and 21S in the case of
S=1/2. Dark lines: current ECS results multiplied by 2.0. Light
points: CCC results from[14] scaled as explained in the text.
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tained from the fitted quadratic curves.
Interestingly, the SDCS’s for the high spin,S=3/2, case,

shown in Fig. 9, required no smoothing at all. The scattered
waves which determine these cross sections, by symmetry,
can only contain contributions from triplet two-body chan-
nels. The triplet distorted waves we employ remove these
contributions effectively exactly. We verified that for these
cases, identical results are obtained without asymptotic sub-
traction. We note that the high-spin SDCS’s are zero at
equal-energy sharing, which is also required by symmetry.

Differences between the presentS-wave results and the
frozen-core CCC treatment become more apparent when we
compare SDCS values. In the CCC study, SDCS results are
only reported for equal-energy sharing, for which case CCC
is purported to provide convergent results[14,24]. In Fig. 11,
the SDCS’s, at equal-energy sharing, are plotted as a func-
tion of total energy. Since Plottkeet al. define the total cross
section as the integral of the SDCS’s from zero toE/2, we
have multiplied our results by two for the comparison. Also,
the CCC results were published as separate singlet and triplet
contributions, not as their sum. However, the triplet contri-
bution to the SDCS at equal energy sharing should, formally,
be 3 times the singlet contribution. Thus to compare with our
results, we have multiplied the CCC singlet contributions by
4 and the triplet contributions by 4/3. While the present
results and the CCC values are in good agreement above
10 eV, the CCC SDCS’s are noticeably smaller at lower en-
ergies.

IV. DISCUSSION

This study represents a first step in applying the ECS
formalism to treat electron collisions with a target that has
two active electrons. TheS-wave model, which simplifies the
full e−-He problem by treating only states with zero angular
momentum, is nevertheless a true Coulomb four-body prob-
lem and, when treated in full dimensionality, displays much
of the complexity of the full problem. By employing a time-
dependent formulation of exterior complex scaling, we can
still obtain a numerical representation of the time-

independent scattered wave while avoiding the problem of
solving large systems of complex linear equations. There is
therefore every reason to believe that the same numerical
techniques we have used in this study could be successfully
applied to the fulle−-He problem.

The amplitudes for discrete excitation are easily com-
puted from the numerically obtained scattered waves and are
found to give cross sections that agree well with previous
CCC studies that employed a frozen-core model. The calcu-
lation of accurate ionization amplitudes, on the other hand,
poses significant formal and computational difficulties that
are not encountered when dealing with single active electron
targets. Our approach to this problem has been to combine
“asymptotic subtraction” along with a judicious choice of
continuum distorted waves to minimize the contamination of
the ionization amplitudes by discrete two-body channels.
This strategy was found to be reasonably successful in the
present case and should also carry over to the fulle-He prob-
lem. While the total cross sections for ionization we com-
puted were found to agree well with the frozen-core CCC
results, there were noticeable differences in the single-
differential cross sections, particularly at low energies. It is
not clear whether these differences can be attributed to defi-
ciencies in the frozen-core model or to convergence prob-
lems in the CCC calculations.
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