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Electron-helium scattering in the S-wave model using exterior complex scaling
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Electron-impact excitation and ionization of helium is studied in$hgave model. The problem is treated
in full dimensionality using a time-dependent formulation of the exterior complex scaling method that does not
involve the solution of large linear systems of equations. We discuss the steps that must be taken to compute
stable ionization amplitudes. We present total excitation, total ionization, and single differential cross sections
from the ground anch=2 excited states and compare our results with those obtained by others using a
frozen-core model.
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[. INTRODUCTION hypersphericaR-matrix method with semiclassical outgoing
) ) waves [7]. In that approach, the time-independent

Since the early years of quantum mechanics and the deschradinger equation is solved without detailed specification
velopment of scattering theory, an accurate description of thgf three-body Coulomb boundary conditions by merging two
correlated motion of three unbound particles interacting viadifferent approaches: @R-matrix treatment of the entire sys-
Coulomb forces has been a difficult problem to treat theotem in the vicinity of the nucleus along with a semiclassical
retically. Indeed, this problem was only reduced to computadescription of the evolution of the system in the asymptotic
tion in the last decad¢l]. The difficulty stems from the region. Exterior complex scalinECS [8] avoids the ex-
long-range nature of the Coulomb potential which introduceslicit enforcement of boundary conditions entirely and has
a number of formal and practical complications. Althoughbeen successful in solving all aspects of the prototypical
the formal theory ofe-H ionization was developed in the three-body Coulomb problem, electron-impact ionization of
1960s by Peterkof2] and by Rudge and Seat®,4], it has  atomic hydrogen, to arbitrary accurafg,10.
not provided a practical path to computation. The asymptotic Most of the currently successful methods have been ap-
form of the wave function they derived is valid only in spe- Plied to study electron-impact ionization of multielectron at-
cific and limited geometries of the interacting particles and®M$ by treating all but one active target electron in a frozen-
has proved to be too complicated to use as a boundary cof9'€ @pproximation, which reduces the problem to an

dition for solving the time-independent Schrédinger equa_effective three-body Coulomb system. A notable exception is

tion. Consequently, much of the work on electron-impactthe very recent work of Pindzolat al. [11] which reports

ionization has been carried out using perturbative, distortedlt-():]"iilZ a(;irgrfsofsﬁgﬂgg]s aftog e?,'gf;{%r:{'er?grfggt a@ggéelggdegoflrjgr!ne

wavle-type m_ethct)dsiv\(/)r gv't(:] (ﬂose—dcouplmgdipproaches th"’ff)me—dependent close-coupling calculations carried out in

apply approximate two-body boundary conditions. .._full dimensionality. The question we want to address here is
A practical path to accurate computation at low collision

. . . whether the ECS method offers a practical approach to
energies was only fully realized in the past few years. Theyqving the jonization of atoms with twactive electrons.

key to overcoming the difficulties posed by the formal theory-l-he method, as originally applied, involves solving large,

has been to formulate methods that do not rely on explicitlysparse systems of linear equations. Extending this implemen-

enforcing the boundary conditions for three-body COUlomb.tation, directly, to three electrons leads to linear systems that

breakup. Several theoretical methods can be mentioned e extremely large and prohibitively expensive to solve. We

this context. One such approach is the “time-dependerﬁ(,jwe addressed that issue previoudg] by showing how

closlf-co%plinglj” rr?ethod devheloped by P:(ndz_OI? "(ij”d (;]O'the ECS method could be cast in a time-dependent formula-
workers[5,6]. In that approach, a wave packet is fired at they;,, 1ot scales more favorably with the number of electrons

target atom and thge tir_ne-dependent Schrbdinge.r equation dﬁian the original time-independent formulation. The time-
scribing its dynamics is solved in a close-coupling formula—depenolent ECSTD-ECS method was successfully applied

tion. Asymptotic boundary conditions are avoided since th 0 a problem involving four particles interacting via short-

time-dependent Schrédinger equation is solved as an 'n't'a'ange potentials.

value problem. Another successful method, which has been Here we take the first steps toward applying ECS to the
applied to the atomic double-photoionization problem, is thefu" electron-helium system. In this paper we extend the

time-dependent ECS method to a system of four charged
particles and consider ti2wave model ok™-He ionization.

*Electronic address: dahorner@Ibl.gov The Swave model provides a distillation of the full, nine-
"Electronic address: cwmccurdy@Ibl.gov dimensional, problem into a system involving just three ra-
*Electronic address: tnrescigno@Ibl.gov dial coordinates. While the problem we consider here is a
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model, it has the complexity of a true four-body Coulomb function. To that end, we begin by partitioning the full wave
problem—involving long-range forces and an infinite num-function ¥'* into two parts:

ber of two-body excitation channels—but simplifies the full N

problem by treating only states with zero angular momen- V=P + W, (1)

tum. ) o where the unperturbed functich, specifies the initial con-
While the Swave (or Temkin-Poetmodel fore™-H ion- jitions and the scattered wavsc contains only outgoing

|zat|orr11 hafs beter:j a te_stb_edt_for q[ﬁveloplng nugn_erlcal g \waves. Substituting Eq.1) into the time-independent
proaches Tor studying lonization, thé COrresponding modes ., 4qinger equation gives a driven equation for the scat-
for electron-helium scattering and ionization has receive ered wave:

little attention in the literature, with most of the effort going
towards solving the full electron-helium system under a (E-H)¥gc=(H-E)D. (2
number of approximations. Pindzathal.[13] have used the

time-dependent wave packet method to compute total crodgduation(2) must be solved with purely outgoing boundary
sections with theSwave model in the context of double conditions; the scattered wadesc carries information about
ionization at high energies. This has been the only previoud!l the dynamical processes of interest.
calculation to treat all of the electrons on the same footing, The ECS method allows one to determine the scattered
thus solving a true three-electron ionization problem. Plottkavave on a finite volume without having to detail its explicit
et al, using the convergent close-couplitGCC) method asymptotic form. The method uses an analytic transformation
[14], have also reported results for this problem by freezingvhere the electron coordinates are rotated into the complex
one of the electrons in the target. Under that approximationplane beyond some poif. This is accomplished by replac-
the model is effectively equivalent to a two-electron systeming each radial electron coordinatevith a scaled coordinate
The method of exterior complex scaling is implementedR(r), defined by
here in three dimensiong3D) with a combined finite- {r [ <Ry
RM=1, ’

element discrete-variable representatiitM-DVR) [15]. _
Ro+(r-Rp)e’, r=R,.

The FEM-DVR basis provides a numerical grid on which to

perform the calculation, as well as an underlying expansiory, e, qutgoing functions decay on the complex portion of
basis that allows the computed wave functions to be evaluthe contour defined by the coordinaiér). However, the

ated as a continuous function of the coordinates. ECS prqg, \ion at distances less tha is unaffected by the scal-

vides a method for computing a numerical representation N g. Thus, by requiring that solutions vanish at the origin and

the physical scattering wave function on a finite volume bysome appropriately large distance along the complex contour,

|mposmg_only outgomg-wave boundqry conditions. Becggs%ve obtain a solution that is purely outgoing and is effectively
asymptotic scattering boundary conditions are not eXp“C'tlyequaI to the physical wave function on the real portion of the

specified, however, the calculations do not automatically pro- rid. The “effectively” qualifier reflects the fact that the in-

wdilthe de5|rr]ed sca'[te_rlngI mermatlr(])n. Forf the tlhree—bod eraction potentials on the right-hand sicRHS) of Eq. (2)
Fro _ertn, Wel ave pr_ewofus%s own t.OW to OIF[“E aiﬁ i Sur:must be truncated on the complex portions of the contour
ace integral expression for the lonization ampiitude that pro 1,18. As R, is increased, the solution approaches the exact
v_|d_es numerically stable @“d accgrate cross sections on ysical scattered wave on the real portion of the grid. We
finite vo_I_ume [1.0’.16’1.]' Wwith multlelgctron targets, there note here that while the scattered wave is continuous along
are qdd|t|onal Q|ﬁ|pult|es th.at arise which complicate the ®Xthe contour defined bR(r), its derivative is discontinuous at

traction of ionization amplitudes. The method we have de-

vised for addressing these complications will be described as™

well solved by expanding the wave function on a grid using an

The outline of this paper is as follows. The theory is pre- ; di S hafinite diff fini
sented in Sec. Il. We begin with a description of the TD_ECSapproprlate Iscretization met .Q nite difference or finite
method for co.m. uting the scattered wave function. We ther(]alement$and solving the resulting linear equations to obtain

X puting o . " the scattered wave solution. However, due to the poor scaling
describe how this wave function is used in calculating am- . . .
; o N with respect of the number of particles, even in the case of
plitudes for excitation and ionization. The formal results are

N three electrons, the linear systems become very large and
then applied in the case of tf&wave model. In Sec. Ill we . . ) . I
. - impractical to solve. Our strategy for circumventing this dif-
present numerical results for excitation as well as total an

differential ionization cross sections. In Sec. IV we summa-iCUIty Is 1o recast the problem with an equivalent time-
. . - ' ' dependent formulatiofiLl2] that does not require us to solve
rize and discuss our findings.

large linear systems and that scales favorably with increasing
Il. THEORY particle number.

In the reformulated method, the scattered wave function
in EqQ. (2) is computed as the Fourier transform of a time-
dependent wave packet,

3

In most of the previous applications of ECS, E®) was

Our treatment of this problem involves two main parts:
the computation of the three-electron scattering wave func
tion and the extraction of physical cross sections.

A. Calculation of the scattered wave function Vge=- if eFty(t)dt, (4)
0

The starting point for all ECS applications is an equation
that determines the purely outgoing part of the full wavewith
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x(t) =e™MH(0). (5)  which are Lagrange interpolating polynomials with mesh
e . . points derived from a Gauss-Lobatto quadrature. Gauss-
The initial “wave packet” is simply given by Lobatto quadrature is similar to the more familiar Gauss-

¥(0) = [H(R(r),R(r,), ) — EJ®o(R(ry),R(r,) ). (6) Legendre quadrature, with the difference that in 'Gauss-
Lobatto quadrature two of the points are constrained to
This formulation follows from noting that the solution of Eq. coincide with the specified end points. Since Gauss-Lobatto
(2) which we seek can be formally written as quadrature explicitly includes the end points as quadrature
Vo= Gy(0) 7) points, _it is pos_si.ble to combine this particulgr va_riety of
sc= 2 XA DVR with the finite-element method, as outlined in Ref.
with G* being the full Green’s function: [15]. Moreover, by choosing one of the element boundaries
. to coincide with the poinlR, where the real and complex
G'=(E-H+ie)l= }f dEH9tgH gt (¢ 0). (8) parts of the EQS conto.ur join, the derivative discontinuity in
iJo the wave function aR; is handled exactly.
With the FEM-DVR, matrix element computation is
Because we are using ECS, the wave pagkBtwill limitto  greatly simplified compared with other basis set methods.
zero for large{r;} ast—=, so the +e in Eq. (8) can be \when the integrals are approximated using the underlying
dropped. Equatioi4) is thus formally equivalent to the so- Gauss quadrature, the local potential operators have a diag-
lution of Eq. (2). Instead of solving large linear systems, it onal representation. Matrix elements of derivative operators,
requires that we propagajét) on the ECS contour in mul-  sych as the kinetic energy, are not diagonal, but are given by
tiple dimensions for times sufficiently large to converge thesimple analytic formulas. With the FEM-DVR, the one-
Fourier transform that provides the numerical representatiodimensional kinetic energy operator has a blocked matrix
of ¥sc. As previous applications have demonstrate?l19,  structure, where each block representing a particular finite
ECS can be used to propagate outgoing wave packets alement is full, and the various blocks are connected by the
finite grids for arbitrarily long times without producing spu- end-point DVR functions that join adjacent elemeft$].
rious reflections. Thus the overall kinetic energy matrix, while not diagonal,
We seek a method that scales well with particle numbetan be very sparse, depending on the number of elements
and therefore one that does not involve solutions of lineaand the order of quadrature used in each element.
equations representing multiple dimensions at each time The efficiency of the time-dependent formulation in more
step. To that end, we employ a split operator approximationhan two dimensions becomes readily apparent with an
[20] for the time propagation operator. The Hamiltonian for FEM-DVR. Since the matrix elements of local functions are
d particles is first separated into one- and two-body terms: diagonal and the one-body Hamiltonian terms separate, the

d d number of operations needed to evaluate the exponential
- _ ey = propagators in Eq.10) can be easily estimated. Assume we
H ‘,;1 (1) +i>2j:102(r|,rj) =Mt Va ©  haven grid points in each ofi dimensions. For one time
step, each operation on the wave packet with
and the propagator is then approximated as exp(—iV,At/2) requires one multiplication per grid point or
d of order nd operations. The operator exph;At) in each
e HAt o exp[— i<§>\/2} [H e-ihl(ri)At] dimension can be represented byrax n matrix [ Eqg. (11)],
2 i=1 which need be computed only once. Each operation with
At exp(—ih;At) involves a matrix multiplication for one of the
Xex;{— |<—)V2]. (100  dimensions that has to be done for each point in the other
dimensions and thus requires of the ordék nd-1t=nd*! el-

To approximate the one-body Hamiltonian terms, we use gmentary operations. The entire propagator thus requires of

. d d+1__ 4qd+l ; :
second-order Crank-Nicolson propagator order Zr"+dn™"~dn"* operations per time step. If we at-
, tempted to represent the time-independent driven
At At

At ( . ) )‘1( At 2Atz) Schrodinger equation on th# x n® grid, we would have to
e MM =|1+ih,—-hi— 1-ihy—-hi——]. : : . :
2 12 2 12 solve a sparse set of linear equations ¥gc. If iterative
(11) methods were used, which offer the best scaling witthe
effort required would scale no better thaff. The scaling
The scaling properties of this propagator depend on th@dvantage of the time-dependent approach implemented here
representations of the operators, which we have yet tds that of n®! versusn®. For d=3 andn=150, which is
specify. Earlier implementations of ECS used finite-typically required in these calculations, that advantage is 5
difference methods, but in the present work we employ, forx 10% vs 10" operations to perform.
each radial electron coordinate, the combined FEM-DVR in-
troduced by Rescigno and McCurd¢5]. The DVR com-
bines a high-order polynomial treatment of the kinetic energy
operator with the advantage of a diagonal representation of The formal and computational advantage of ECS is that it
any local potential operator. For the DVR representation, weloes not make reference to any specific asymptotic boundary
use a basis of so-called “Lobatto shape functiofi2l], conditions other than the requirement that the scattered wave

B. Extracting cross sections
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be purely outgoing. Once the scattered wave has been calctem, along with Eq(15), to express the amplitude as a sur-
lated, we must decide how to extract the detailed dynamicdlace integral:

information it describes. One would not normally view this 1

as a major issue, since in most standard methods, the —  _ _f F)SIN(Kar) VP (Fr For

asymptotic boundary conditions that define the dynamical =k, S[d)”( ur2)sinfkars) (rrars)
quantities of interest are used in the generation of the wave

function. But in the ECS method, the quantity obtained is a —WH(ry,r,,r9) V @y (rq,ro)sink,rq)] - dS
numerical representation of a wave function that contains 1
information about all Pprocesses thqt are aIIoweq at a specific == | [¢n(ro.ro)sin(kors) VW¥scry,ra,ra)
total energy, as detailed specification of scattering boundary VKyJs
conditions is avoided by design. ) -
A simple and straightforward way to obtain the ionization = Wsdry,ra,ra) V én(r,ra)sin(kyra)] -dS,  (16)

cross section is to compute the quantum mechanical fluyhere the replacement &f* by W in the surface integral
through a surface that lies inside the region where the cooky|ows from an examination of the integrand of Ea6) on
dinates are real. While this method was used in the firsf,o gyrface.

successful applications of ECS ®-H ionization [9,22, The derivation of a workable formula for the ionization
there are intrinsic problems with this approach. The method,yjityde requires some care. We preface this discussion by
requires fairly large grids since the numerically computedyiing that all of the matrix elements considered here are
quantities must be extrapolated to infinite grid size, Wher%resumed to be evaluated on a large but finite volume, so we
the flux can be related to the differential cross sections fo; employ the standard rearrangement theory for short-
ionization. More serious is the problem that the grids must b‘f'anged interactions and not address any of the difficulties
large enough to allow the physical region inhabited only byysgeq by the formal theory of ionization. The connection

the ionization portion of the scattered wave to be distinguishyith the formal theory and, in particular, the question of the
able from the parts that describe discrete two-body channel roper definition of the overall phase of the ionization am-

The requirement that the ionization wave be “uncovered'y|ir qe, which does not affect any physical cross section, has

before the asymptotic flux is calculated can require grids thagean giscussed at length elsewhere and will not be repeated
extend well beyond the range where the interaction pmenﬁere[l? 23.

tials are appreciable. We have previously pointed out that, for a one-electron

The most practical, and economical, approach to calculatfarget the expression for the breakup amplit{dl
ing both excitation and breakup cross sections is to formulate ' '

the problem in terms of integral expressions for the underly- f(kq, ko) = 2(sin(kyr1)sin(kor,) |[E - T|Pso), 17
ing scattering amplitudefl6]. In the present case &f-He

in the Swave model. the full Hamiltonian is whereT is the total kinetic energy operator, while formally

correct, does not prove to be useful in an actual numerical
2 2 2 1 calculation on a finite volume. This failure can be traced to
H(ry,ro,rg) =T+ To+ Ty - P 1.2 the contribution of discrete two-body channelsiac which
1 2 3 > l . . .
give rise to overlap terms that properly converge to Difac
1 1 functions of momentum differences only for infinite vol-
+ + , (12 . ; .
r-(1,39 r-(2,3 umes. To see this, we need only substitute the asymptotic
o ) o form of Wgcinto Eq.(17):
wherer.(i,j)=maxr;,r;). For discrete excitations, we can

begin with the formal expression ; fi ;
g P Wodry,ly) = $+2(+4>%mwm1<uawx
n AY

2
fiﬁn: V’r_k_<¢n(rlar2)3in(knr3)|E_ Hl|q}+>1 (13) (18)

. . . where ¢, is a bound target state ard., is a discrete exci-
wheredy, is a discrete target state aht] is the unperturbed tation amplitude. The contamination of the ionization ampli-

Hamiltonian corresponding to the incident channel arange; - tom bound states renders E47) useless on a finite

ment, volume. The solution to this problem is to employ a formally
) 1 equivalent expression with distorted waves in the final state:
Hi(ryrorg) =Ty + T+ Tg————+ , (14
rnorp r-(1,2 f(ky, ko) = 2@y, @i |E = T = Vi Ws0), (19
so that whereV; is the distorted-wave potential corresponding to the
(Hy = E)|(ry,rp)sin(k,rs)) = 0. (15) final state. In thee™-H case, for example, we choose the
distorted waves to be Coulomb functions witl+1 [17].
It is to be understood that the matrix element in ELB) , Since the Coulomb functions are eigenfunctions of the same

and in all the expressions that follow, is carried out over aHamiltonian as the hydrogenic bound states, orthogonality is
finite volume defined by some hyperradius where the elecrealized on the finite volume and the spurious contributions
tron coordinates are all real. We can then use Green’s thede the breakup amplitude are eliminated.
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TABLE |. Expressions for scattering and ionization amplitudes g T TR T TT T AT T Ty o re T T
in terms of individual arrangement amplitudes. ELS_' S 1's>1's 1
16 .

S.s) S, S ok R a L
11/2,0 11/2,0 1/22A - 12~ 1] 51 .
11/2,0 11/2,1 V3119 -2 g 08F 1
s @ 0.6| .

172, 11/2,0 \salzgfg?—zf(fﬁ)]s 2 oal 1
172, 172, 1/2[(21)f$i>(—2)f§i>(—3)f;>] 5 0af ]
|3/2:1> |3/211> ffi +fﬁ +ffi 00 g lIO 1I5 2IO 2|5 3I0

The natural extension of Eq19) to the present helium 2
case, for single ionization leaving the ion in thtéh excited  _°
state, would be

14
S

f(ky,Ka) = 2@ @i,|E— T = Vo[ ¥so. (20

; -1
cross section (10
o o o

FS

)
[

However, the use of distorted waves alone cannot completely
eliminate the contamination of the ionization amplitude by %~~~ "6 5 20 25 30
discrete excitation channels, since there is generally no or. ——
thogonality relationship between the single-particle distorted A“'w;j o080
waves and the exact two-particle bound states of the targef'g ¢

Nevertheless, we can still achieve much by choosing the dise,~ 18
torted wave potential judiciously. The excited states of the 'S 1
modelS-wave helium atom, both singlet and triplet, are rea- g,

11S - 32s+lS 1

sonably well described by single-configuration wave func- % 1 = 2 .
tions of the form*3¢;.0nd, Where ¢y is the Is orbital of 2 080g o @ ® ]
He'*. The ¢, orbitals for the corresponding singlet and triplet ggﬁ:‘ ]
states are of course not identical, but they are reasonabl' ~ o2f .
similar. With these considerations in mind, we choose the % 5 1 15 20 25 30
distorted waves to be solutions of the triplet static-exchange

equation FIG. 1. Excitation cross sections from théSl ground state.

Solid symbols: singlet final states. Open symbols: triplet final states.
Symbols with dark lines: current ECS results. Light symbols: CCC

2 Its f 14).
(T - digm e k2/2) oc=0, 2y e Temid
_ f .
— ion 1—n iknr
whereJ; andK, are the usual Coulomb and exchange op- ‘I’scr;x sc+2n ( \,fn>¢”(r1’r2)e " (22

erators constructed with the Hés orbital. Note that the He
1s orbital is an eigenfunction of this equation, as are the
triplet ¢, Orbitals. This choice therefore guaranteggroxi-
mate orthogonality between the distorted waves afidthe
excited helium target states. It doest, however, eliminate
contamination of the breakup amplitude by the ground-stat

channel, since the neutral helium ground-staentbital is course an infinite number of discrete two-body channels, but

very different from the Hels orbital. _on a finite volume only a finite number of bound states can
To address the problem of contamination by the elastche supported

Ch@””e' and to fl_,lrther Improve on the prescription for com- The ionization amplitude is thus evaluated by starting
puting a stable ionization amplitude, we employ the tech- . .
) N . s . ! . with the expression
nique of “asymptotic subtraction” which we introduced in
our earlier study of breakup with short-ranged potentials
[12]. The idea is to try to remove the asymptotic contribution B ion
of the discrete two-body channels to the scattered wave be- flky ko) = 2<‘Pn‘Pk1€°k2|E‘T‘V1| O (23
fore computing the ionization amplitude. These two-body
contributions appear in each asymptotic arrangement. For
example, as;— o, the scattered wave has the form and using Green’s theorem to convert it to a surface integral:

So by subtracting the sum that appears in 28) from Wgc
we can, in principle, isolate, asymptotically, the pure ioniza-
tion portion of the scattered wave. The excitation amplitudes
?Hn can be calculated using E¢L3) or (16). There are of
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. T 2's »2’s
N
§ E10
".'9 —'é 8
K g 6
.% §
] é
: o
% 5 10 5 30 25 30
- 2'ss2's ]
g ]
(5]
2 -
=
g & 3_
g
2 ]
2 ]
8 ]
1 P |
25 30
T T T T T 2 1 25+l
—~ 2
Pss3's ] g D 52378
1
o |
7 =gt
N % l-
1 38
2 |
- o
gos
" B s S S—— % 5 10 T =55 =55 30
0 5 10 15 20 25 30
- . FIG. 3. As in Fig. 1, for the 23S excited state.
FIG. 2. As in Fig. 1, for the 3S, excited state. n g Xl
Hi(rg,rp) dn(r,ro) = Ti+T 2 2+ L Pn(r1,r2)
_ i uh2 Ll)=| i+ To———— 1l
f(klakz)—f [en(r) @i (r) @i, (ra) VWS, rors) ' " reorp r-(1,2]7"
s
=Eqdn(rary). (25)

- \I’g’g(rl,rz,rs) Vv @n(r1)¢k1(r2)¢k2(r3)] -hdS.

(24) The spatial part of these states can be either symmetric or
antisymmetric with respect to interchange of the two electron
The use of the surface integral form of the amplitude, whichceordinates, corresponding to singlgf=0, or triplet,s,=1,
only depends of the asymptotic part of the scattered wave, igPin COF’P'!”Q of th.e. target eIectron.s._ .
now essential, since asymptotic subtraction changes the inte- The |n|t|a'1I. CO’Fd'“O”S for_ determining’sc are c.onta.uned
fior part of the scattered wave and makes the volume integrall te specification ofby: since the full Hamiltonian is to-
representation of the amplitude invalid. We have found tha ally symmetric, the permutatlonal properties W are set
asymptotic subtraction and the correct choice of distorte y the |n_|t|_ql wave function. To construct a phy§|cal three-
waves are both essential in computing accurate ionizatio Iectror_1 initial state, labeled by target statand SPINS, and
cross sections. total spin( S=1/2 orS=3/2), we can apply the antisymme-
trization operator to the product of a three-electron spin state,

IS,s.), and an unperturbed spatial function:
C. S-wave model of helium

As we have mentioned, th&-wave model arises from CDS’S%(HJZ,FQ,):A[%(M,Q)Lﬁrs)ﬁ%) . (26)
retaining only the first|=0, term in the angular momentum e
expansion of the electron repulsion potentials. The helium
target bound stateg,(r,,r,) are eigenfunctions of the two- For example, the three-electron doublet-spin eigenfunction
electron Hamiltonian (S=1/2) for a triplet target statés,=1) is
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or ' ' ' ' ] ok 8 | | | | IISI—>1sksI_
~ 1 gt ]
‘% 8.— -. 2;0 1+ -
o 7_ :0.8- 1
g 6 '206— 7
= I g
D St ] 2 04F -
T 4 7 502 -
m 3- = 1 1 1 1 1 1
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[ p 4- T T T T |-
It . . . . ] < 2’ > Isks |
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I
»n
T

FIG. 4. Comparison of SDCS for ground-state heliumEat
=3 eV computed with and without the use of distorted waves and/or
asymptotic subtraction. Light solid curve: SDQ&vided by 10
obtained with Coulomb functions and no asymptotic subtraction.
Dashed curve: SDCS obtained with Coulomb functions and ;
asymptotic subtraction. Dark solid curve: SDCS obtained with dis- 30
torted waves and asymptotic subtraction.

cross section (10
- O
T

54
n

K y 2's - 1sks
g r . =
1)=(aap-apa-paa), @D %
2, - \E aq, apa aa), -,'2 0.8F ‘ 4
Tod y
where we have chosen the projection=3. For the fully g T i
antisymmetric three-electron state, the spatial and spin por ; '
tions of the wave function generally do not factor. go2 .

Having defined the unperturbed initial state with E2f),
we must construct a solution of the driven Schrddinger for
the corresponding scattered waWgs:

5 10 15 20 25 30

FIG. 5. Total ionization cross sections from different initial

nSs, nSSn states.
(E-H)WRHN=(H-E)dg (29)

In practice, it is only necessary to solve this equation for a 3) = <¢nf( ra,r 1)SI (kfr2)|E H31ﬂ¢|(r1,r2,r3)>
single arrangement of the electron coordinates since any

other arrangement can be obtained by an appropriate permu- (30)

tation of electron coordinate labels; i.e., we can propagate an

unsymmetric initial state and then construct the desireqyhere H'Jk Hq(r;,r;)+T,. Using Green’s identities, as dis-
physical state by combining the solution vectors with differ-cyssed above these matrix elements can be converted to sur-
ent permutations of the coordinate indices. The single arface integrals. For example,

rangement we compute is

1 .
fi)=— j [bn,(r1.12)SiN(KiT9) V 4(r1,7272)
ka S

(E-H)¢i(ryrarg) =(H-E)dp(ry,r 2)

sin(k rs)
K (29

= i(ry,r,r3) V oy (ry,ro)sin(kers)] - AdS. (31
The amplitudes for discrete excitati¢irS can then be 219 ¥ o1y r2)sinkrs)] (31

constructed from the quantities . . .
q These arrangement amplitudes are not entirely independent.

In fact, f 2)_7Ti wff(3), wherem,=(1-2s,) is the parity of tar-
sin(kr 3) fi i .
2{ (11,1 2 |[E = HEBhi(ry,raTs) ), get staten. The arrangement amplitudes are combined to
f Ve obtain the physical amplitudes>SiS. Table | gives explicit
formulas for the various physical amplitudes in terms of the
n( ) arrangement amplitudes, based on the initial and final spin
_ frl 23 states of the three electrons. The physical cross sections for
= E-H ; : . . .
<¢” (rar 3) ke | 0 H¢/4(r1,r2,r3)>, inelastic scattering are computed using
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1_- 7 FIG. 7. SDCS for ionization from the'$ ground state for vari-
0 1 . 1 1 . 1 . ous energies above the first IP. Left panel, top to bottom: 5.0, 4.0.
0 0.2 0.4 /E 0.6 038 1 3.0, 2.0, and 1.0 eV. Right panekaxis intercept from top to bot-
81 tom: 5.0, 10.0, 15.0, 20.0, 25.0, and 30.0 eV.

FIG. 6. Examples of SDCS fitting at 2.0 g\éft) and 30.0 eV
(right) above the first IP starting in the!3 ground state. Dark
curve: quadratic fit of SDCS’s. Light curve: computed SDCS’s.

2S+1 (4w
= — — FS'ST'S 2, 32
O'ﬂ 2(25] + 1)( k|2 )| i—f | ( )

For the single-ionization amplitudes, similar consider- ) _ _ 14312 jjon
ations apply. Following the discussion of Sec. Il B, we begin fii (ka. ko) = 2en(rg) i (r) i, (r2) [E ~ Hg 1 r213)-
by using asymptotic subtraction to isolate the ionization por- (39
tion of the scattered wave for a single arrangement:

arrangement amplitudes from which the physical ionization
amplitudes can be assembled:

fgil)(klykz) = 2<§Dn(rl)¢kl(r2)@k2(r3)‘E - Hézﬁ ¢:°”(rl,r2,r3)>

7 (ke, ko) = 2en(r2) @i (13) @1 (1 )| E = HEH g (11,11 5)

We must emphasize again that these ionization amplitudes,

written in Eg. (34) as volume integrals for notational sim-
PONr T F3) = di(r,Ta3) — 2 é[fglg(ﬁn(rl,rz)eiknra plicity, must be evaluated as surface integrals. Again, these
n VKy amplitudes are not completely independent, but related

: - through the symmetries
+ fgzi)¢n(r2vr3)e'k"rl + fﬁ)fﬁn(rsyrl)e'k”rz]- g y

(33) D (ky, ko) = mf 2 (Ko, ko),

3 - 3

Note that the scattered wave corresponding to a single initial f%)(kl'kZ) - ”ifgi)(kz'kl)' (39
arrangement has asymptotic two-body channel componentshe “physical” ionization amplitudeE>%S are again given
in all arrangements, each of which must be removed in comin terms of the arrangement amplitudes in E84) by the
puting " same formulas shown in Table I.

For the single-ionization amplitudes, the final states are To compute the cross sections for unpolarized incident
assembled from products of a Herbital ¢, and two con-  electrons, we must sum the contributions from all allowed
tinuum distorted waves, and ¢y, which are solutions of intermediate spin couplings. For overall doublet coupling

Eq. (21). As in the case of excitation, we can define different(S=1/2), the single differential cross sectiofSDCS’y for
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20_ T T T T T T T T T ] 3
18 b

~

0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
g, /E g /E
FIG. 8. SDCS for ionization from the®3 ground state for vari- FIG. 9. SDCS for ionization from the®3 ground state for vari-
ous energies above the first IP, wir1/2. Left panel, top to ous energies above the first IP, wir3/2. Left panel, top to
bottom: 2.0, 1.0, 3.0, 4.0, and 5.0 eV. Right panel, top to bottombottom: 5.0, 4.0, 3.0, 2.0, and 1.0 eV. Right paye#xis intercept
5.0, 10.0, 15.0, 20.0, 25.0, and 30.0 eV. from top to bottom: 10.0, 15.0, 5.0, 20.0, 25.0, and 30.0 eV.

tained 158=3 581 580 points. We have already noted that

ionizing the atom in initial spin statg are given by the DVR gives a diagonal representation of all local opera-

doS12 4 1/2sf 05 5 tors. In this context, we should point out that. an accurate
de  KIoE, (25 + 1)[|F (ky, ko)l DVR representation of the two-electron repulsion operators
Koo (S that appear in Eqs(12) and (25) requires some care. As
+| P28k, ko) 7], (36)  detailed in Refs[1] and[17], a procedure based on solving

Poisson’s equation yields a diagonal representation for the
two-electron matrix elements. The time propagation was car-
doS372 4 ried out using the split operator and Crank-Nicolson schemes
e —( ) [F25715% Kk ky)[?].  (37)  previously described in Sec. Il A. The wave function was
de KikzEo\ 3 evolved in time toT,,,=400 a.u. with time steps oAt
The total ionization cross section for a given total spin is=0.1 a.u.

while for the high-spin cas€S=3/2), the cross section is

computed by integrating the SDCS: The amplitudes for excitation and ionization were all as-
sembled from permutations of the appropriate single-

- _f —de (39) arrangement amplitudes, based on final and initial symme-
tries, as indicated in Table I. These arrangement amplitudes

were all evaluated using the surface integral forms of the
amplitude expressions, Eq®R0) and(34). The edges of the
. RESULTS surface were located just insidRy at 100 bohrs.
We have calculated excitation and ionization cross sec-
The computations were all carried out using an FEM-tions for theS-wave model from both ground- and excited-
DVR of the wave functions for a single initial arrangementstate, 3S and 2S, target atoms. The two-electron target
on a three-dimensional grid. For each radial dimension, thagtates were always obtained by diagonalizing the target
DVR was based on 15th-order Gauss-Lobatto quadrature iHamiltonian given in Eq(25) using the real portion of the
each of 11 finite elements, 9 real and 2 complex, for a total 02D FEM-DVR basis.
153 basis functions. The complex turning pol was lo- Figures 1, 2, and 3 show cross sections starting from He
cated at 101 bohrs. The full three-dimensional grid thus conils, 23S, and 2S, respectively, for excitation to states with
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FIG. 10. SDCS's for ionization from the'8 ground state for zﬁo ]
various energies above the first IP. Left paryesixis intercept from o -
top to bottom: 2.0, 1.0, 3.0, 4.0, and 5.0 eV. Right panel, top to 8 ]
bottom: 5.0, 10.0, 15.0, 20.0, 25.0, and 30.0 eV. a2 1
principle quantum number up to=3. We have also plotted % 5 10 15 20 P

the results of CCC calculatiori&4] in those figures for com- _ ) _ )

parison. In all cases, the agreement between the two methods F!C: 11. Single-differential cross sections at equal energy shar-
is good. This comparison also indicates that, for excitationind for initial stateg(top to bottom 1'S, 2°S, and 2Sin the case of
the frozen-core model, which is used in the CCC Calcula-Szl/z' Darklines: current ECS results multiplied by 2.0. Light

tions, and the full model with two active electrons used herd®®nts: CCC results fronil4] scaled as explained in the text.

give very similar results. The total ionization cross sections from the different ini-
Differential single-ionization cross sections were com-tjg| states are all plotted in Fig. 5, along with the frozen-core
puted from the ionization amplitude expression given in theCCC result§14]. Once again, we find very good agreement
previous section. The SDCS’s were then numerically intewith the CCC results. There is a slight discrepancy in the
grated over the full range of ejected electron energy to proease of ionization starting in thé @ state, where the present
duce total ionization cross sections. total cross sections peak at slightly smaller values than the
As outlined above, the ionization amplitudes were com-CCC results.
puted using triplet static-exchange distorted waves for the The single differential cross sections offer the most de-
ejected free electrons along with scattered waves in whickailed information about breakup in ttf&wave model and
the ionization component was isolated using asymptotic subare the most difficult quantities to accurately calculate. Even
traction. Nine two-body channels, corresponding to targewvith asymptotic subtraction and the properly chosen dis-
states with principal quantum number uprte 5, were used torted waves there are small oscillations in the cross sections,
in the asymptotic subtraction. The use of properly definedvhich arise from incomplete elimination of excited singlet
distorted waves, as well as asymptotic subtraction, is crititwo-body states, which are not completely orthogonal to the
cally important in obtaining accurate ionization cross sec-distorted wave. Figure 6 shows the SDCS'’s from the ground
tions. This point is illustrated in Fig. 4, where we show thestate at total energies of 2 eV and 30 eV, to show the typical
SDCS’s for ground-state ionization &=3 eV computed behavior at low and high energies. We found that the SDCS’s
three different ways, first with Coulomb functions and noin all cases could be well fit with a quadratic function whose
asymptotic subtraction, then with Coulomb functions andparameters are uniquely determined by a least-squares fit that
asymptotic subtraction, and finally with distorted waves andyives the same integrated cross sections as the unsmoothed
asymptotic subtraction. data. The SDCS values presented in Figs. 7-10 are all ob-
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tained from the fitted quadratic curves. independent scattered wave while avoiding the problem of
Interestingly, the SDCS's for the high spi8=3/2,case, solving large systems of complex linear equations. There is
shown in Fig. 9, required no smoothing at all. The scatteredherefore every reason to believe that the same numerical
waves which determine these cross sections, by symmetriechniques we have used in this study could be successfully
can only contain contributions from triplet two-body chan- applied to the fulle™-He problem.
nels. The triplet distorted waves we employ remove these The amplitudes for discrete excitation are easily com-
contributions effectively exactly. We verified that for these puted from the numerically obtained scattered waves and are
cases, identical results are obtained without asymptotic sulfeund to give cross sections that agree well with previous
traction. We note that the high-spin SDCS’s are zero atCCC studies that employed a frozen-core model. The calcu-
equal-energy sharing, which is also required by symmetry. lation of accurate ionization amplitudes, on the other hand,
Differences between the prese®iwvave results and the poses significant formal and computational difficulties that
frozen-core CCC treatment become more apparent when ware not encountered when dealing with single active electron
compare SDCS values. In the CCC study, SDCS results artargets. Our approach to this problem has been to combine
only reported for equal-energy sharing, for which case CCCasymptotic subtraction” along with a judicious choice of
is purported to provide convergent resulig,24. In Fig. 11,  continuum distorted waves to minimize the contamination of
the SDCS’s, at equal-energy sharing, are plotted as a fun¢he ionization amplitudes by discrete two-body channels.
tion of total energy. Since Plottket al. define the total cross This strategy was found to be reasonably successful in the
section as the integral of the SDCS's from zerdEi®2, we  present case and should also carry over to theeftik prob-
have multiplied our results by two for the comparison. Also,lem. While the total cross sections for ionization we com-
the CCC results were published as separate singlet and triplptited were found to agree well with the frozen-core CCC
contributions, not as their sum. However, the triplet contri-results, there were noticeable differences in the single-
bution to the SDCS at equal energy sharing should, formallydifferential cross sections, particularly at low energies. It is
be 3 times the singlet contribution. Thus to compare with ounot clear whether these differences can be attributed to defi-
results, we have multiplied the CCC singlet contributions byciencies in the frozen-core model or to convergence prob-
4 and the triplet contributions by 4/3. While the presentlems in the CCC calculations.
results and the CCC values are in good agreement above
10 eV, the CCC SDCS’s are noticeably smaller at lower en- ACKNOWLEDGMENTS

ergies. ) . . ]
The authors acknowledge valuable discussions with Wim

Vanroose on various numerical aspects of time propagation.
V. DISCUSSION This work was performed under the auspices of the U.S.
This study represents a first step in applying the EC®epartment of Energy by the University of California
formalism to treat electron collisions with a target that hasLawrence Berkeley National Laboratory under Contract No.
two active electrons. Th8-wave model, which simplifies the DE-AC03-76SF00098 and was supported by the U.S. DOE
full e-He problem by treating only states with zero angularOffice of Basic Energy Sciences, Division of Chemical Sci-
momentum, is nevertheless a true Coulomb four-body probences. The calculations were carried out at the National En-
lem and, when treated in full dimensionality, displays muchergy Research Scientific Computing Center at Lawrence Ber-
of the complexity of the full problem. By employing a time- keley National Laboratory. D.A.H. acknowledges support
dependent formulation of exterior complex scaling, we carfrom the U.S. DOE Computational Science Graduate pro-
still obtain a numerical representation of the time-gram.

[1] C. W. McCurdy, M. Baertschy, and T. N. Rescigno, J. Phys. B McCurdy, Phys. Rev. A63, 022712(2001).

37, R137(2004. [10] M. Baertschy, T. N. Rescigno, and C. W. McCurdy, Phys. Rev.
[2] R. K. Peterkop, Opt. Spectrost3, 87 (1962. A 64, 022709(200D.
[3] M. R. H. Rudge and M. J. Seaton, Proc. Phys. Soc. Londor{11] M. S. Pindzola, F. J. Robicheaux, J. P. Colgan, M. C. Wit-

283 262(1965. thoeft, and J. A. Ludlow, Phys. Rev. &0, 032705(2004).
[4] M. R. H. Rudge, Rev. Mod. Phy<10, 564 (1968). [12] C. W. McCurdy, D. A. Horner, and T. N. Rescigno, Phys. Rev.
[5] M. S. Pindzola and D. R. Schultz, Phys. Rev. 38, 1525 A 65, 042714(2002.

(1996. [13] M. S. Pindzola, D. Mitnik, and F. Robicheaux, Phys. Rev. A
[6] M. S. Pindzola and F. Robicheaux, Phys. Rev.54, 2142 59, 4390(1999.

(1996. [14] C. Plottke, I. Bray, D. V. Fursa, and A. T. Stelbovics, Phys.
[7] L. Malegat, P. Selles, and A. K. Kazansky, Phys. Rev. L&%. Rev. A 65, 032701(2002.

4450(2000. [15] T. N. Rescigno and C. W. McCurdy, Phys. Rev.6®, 032706
[8] C. W. McCurdy, T. N. Rescigno, and D. Byrum, Phys. Rev. A (2000.

56, 1958(1997). [16] C. W. McCurdy and T. N. Rescigno, Phys. Rev.6®, 032712

[9] M. Baertschy, T. N. Rescigno, W. A. Isaacs, X. Li, and C. W. (2000.

012701-11



HORNER, McCURDY, AND RESCIGNO PHYSICAL REVIEW A1, 012701(2005

[17] C. W. McCurdy, D. A. Horner, and T. N. Rescigno, Phys. Rev. [21] D. E. Manolopoulos and R. E. Wyatt, Chem. Phys. L&%2,

A 63, 022711(2003). 23(1988.
[18] T. N. Rescigno, M. Baertschy, D. Byrum, and C. W. McCurdy, [22] T. N. Rescigno, M. Baertschy, W. A. Isaacs, and C. W. Mc-
Phys. Rev. A55, 4253(1997). Curdy, Science286, 2474(1999.

[19] C. W. McCurdy, C. K. Stroud, and M. K. Wisinski, Phys. ReV. 1531 1 N 'Rescigno, M. Baertschy, and C. W. McCurdy, Phys. Rev.

A 43, 5980(1991).
) . A 68, 020701R) (2003.
[20] ’\:7 alzi[gég,D Fleck, Jr., and A. Steiger, J. Comput. Phys.[24] |. Bray, Phys. Rev. Lett78, 4721(1997.

012701-12



