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Hyperspherical analysis of radial correlations in four-electron atoms
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Hyperspherical coordinates are used to study electron correlations in the radial motion of a four-electron
atom within the model o§* configurations. We identify groups of hyperspherical adiabatic potential curves that
support singly, doubly, triply, and quadruply excited states. By examining the nodal structures of the channel
functions, we show that it is possible to relate the number of nodal surfaces in the hyperangles and the principal
guantum numbers used in the independent particle picture.
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I. INTRODUCTION ing quadruply excited states of atoms where one can expect

Since the advent of quantum mechanics, the descriptioWUCh richer electron correlation effects. A new classification

of a many-electron atom is based mostly on the independerfceéme and a new set of quantum numbers will be needed
particle model(IPM). Within this model, a many-electron €ventually for describing quadruply excited states as well.
However, this is a monumental task, and before such a

atomic state is designated by a collection of quantum num* ; : .
bers from the individual electrons. However, in the past fenSCN€Me is possible, the various aspects of the correlated mo-

decades extensive theoretical and experimental investigdions of the four electrons should be examined in pieces first.
tions of doubly excited states and, to a lesser extent, triph-XPerimentally, littie is known about the quadruply excited

excited states of atoms have revealed that the independez}t?tes of an atom, although attempts are being made on these

. o : ates for the beryllium atom using synchrotron radiation
particle model is inadequate. At the next level of compIeX|ty,[19]_ Such states ere also formed ign c)gllisions of multiply
one can expect that the IPM alsc_) WO.UId hot work for qua'charged ions with multielectron targets, but they have not
druply excited states. However, little is known about them

. i X b identified individually due to the lack of h
both experimentally and theoretically. Unlike doubly and tri- reeseor}ultigrql ed individually due fo the fack of énough energy

ply excited states where approximate new quantum numbers |, the electronic structure of an atomic system, the motion
have been identified, little has been done for the classifican angular variables and that in radial variables are approxi-
tion of quadruply excited states. mately separated in the energy spectra at least for the lower
For multiply excited states, the motions of the electronsexcited states. Thus the angular and radial correlations in
are highly correlated and they are better described as analatoms can be considered separately. Indeed, the procedure
gous to the rotation and vibration of a polyatomic molecule.developed for classifying doubly and triply excited states has
Thus doubly excited states of a two-electron atom can béollowed these two steps. First, a new classification scheme
described qualitatively in terms of the rovibrational motionis developed for intrashell states where all the electrons are at
of a linearXY, molecule, whereX stands for the nucleus and about the same distance from the nucleus. To simplify the
Y for the electror{ 1-9]. Various theoretical approaches have study of these intrashell states, they are often analyzed by an
come to similar conclusions and this subject has been reapproximate model atom where all the electrons are confined
viewed extensively, for example, most recently by Reistl.  to the surface of a sphefé,12,13,16. This has the advan-
[10], and within the semiclassical method by Tanet¢ral.  tage that one can deal with doubly excited states of a two-
[11]. Similarly, triply excited states of an atom can be de-electron atom directly without calculating singly excited
scribed in terms of the rovibrational motion of a symmetric states, or deal with triply excited states of a three-electron
top XY; molecule[12—17, mostly based on the hyperspheri- atom directly without the need of calculating the lower sin-
cal approach. Except for the symmetric rotor states whiclgly and doubly excited states. For quadruply excited states, a
have been constructed using the algebraic appréemhthe similar analysis within this model has been investigated by
review by Madser{18]), most of the other approaches for Bao and co-workers in a series of papE26-23. In their
doubly excited states have not been extended to triply expapers, the nodal structures stemming from quantum symme-
cited states. These qualitative descriptions of the rovibratries for a subset of intrashell quadruply excited states have
tional modes are supported by analyzing the actual calcuseen examined for differeit, S, and, the total orbital and
lated wave functions, and the nodal surfaces of the wavangular momenta and parity, respectively. It was shown that,
functions of doubly and triply excited states are related to thesimilarly to doubly and triply intrashell states, the energy
new quantum numbers that describe the collective normdkvels of intrashell quadruply excited states can be ordered
modes of the joint motion of the electrofig,8,16,17. It is according to the number of nodal surfaces of the wave func-
natural to ask if the theoretical tools developed for doublytions, at least for the lower quadruply excited states. The
and triply excited states of atoms can be extended to analyZeur-electron system is the first few-electron system that has
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more than one equilibrium configuration in the intrashell 1 3 1 3
states. One is a tetrahedron with the four electrons at the ]
corners and the nucleus at the center; the other is a coplanar

square with the nucleus at the center. In their papers, these o Y B o Y
two configurations have been identified for the four-electron

states on the surface of a sphere. Komninos and Nicolaidas

[24] also calculated the angle between two electrons for the 2 4 2 4
type of nsnpS° intrashell quadruply excited states by the

multiconfigurational Hartree-Fock method, from which they @) (b)
confirmed that the electron densities of these intrashell states -~ ;| schematic diagram of the hyperspherical coordinates for
indeed reveal a tetrahedron shape. four-electron atoms(a) H set: @« measures the relative distance

The .Second step 'n.the classification of multiply e>(C'te‘jbetween electrons 1 and 2 measures the relative distance between
states is to focus on intershell states. For such states, th

electrons are located mostly at different distances from th%f;fgz)s ig rz;r:;:drzgdb;e(é)elitlzst:dgteacr:;;:ntsaelt\’/v;sgfpﬂjazire
nyc_leus_. The joint radial motuln of two such electrons IScoupled one by one in a hierarchical order.

distinguished by the so-called+” and “—" quantum num-
bers initially introduced by Fano and co-workdis. The ] ] ]
“+” corresponds to the méchanical analog that the two elecstates in thes* configuration. In Sec. IV, we analyze the
trons move toward or away from the nucleus together wittthannel functions. Within the* configuration, we show that
the same phase, and the ™ with opposite phase. The con- it is possible to relate the principal quantum numbers in the
cept of “+” and “~” has been extended by us to describe!PM to the number of npdal surface_s in the. hyperangles.
intershell triply excited states recenflg7]. To examine the Even though the calculation was carried out in tfiecon-
radial motion in intershell quadruply excited states, for thefiguration, this conclusion is expected to be the same for real
time being one can average out the angular degrees of fre@foms where angular correlation is included. We end this
dom to simplify the calculation and analysis. Thus in thePaper with a short summary and perspective for future de-
present paper, we address quadruply excited states within thé&lopment. o

s* configuration, where the orbital angular momentum of Atomic units are used throughout in this paper.

each electron is set to zero, similar to the analysis of the

three-electron atom in the configuratio 25-27. With this

model, we also set out to separate singly, doubly, triply, and!- HYPERSPHERICAL METHOD FOR FOUR-ELECTRON
quadruply excited states of a four-electron atom from the ATOMS

whole spectrum of the four-electron Hamiltonian. Since the A. The choice of hyperangles

spins of the fours electrons can couple to form total spin

S=0, 1, and 2, we will examine how these states depend on Following the procedure for two- and three-electron at-
the total spin of the system oms used previously we will employ hyperspherical coordi-

We will use hyperspherical coordinates for the study Ofnates to describe the four-electron atoms. Instead of the four

the four-electron atoms. This paper serves two purposeé‘f"d'al d|stance§ of the eIectrops frorn—qzthg nl;clez Sf2, fs,
First, we develop the theoretical and computational tech@"d 4, we define a hyperradiuB=ri+ry+ra+ry, which
niques needed for studying a four-electron atom using th&haracterizes the size of the system, and three hyperasmgles
hyperspherical approach. No previous work using hyperﬂ’ and vy, measuring the relative distances among the fc_Jur
spherical coordinates has been applied to four-electron atonf€ctrons. Two alternative sets of hyperangles can be defined
except for the general analysis of hyperspherical harmonic&S
by Cavagner$28-30. Conceptually the method is similar to

r=Rcosycosa
that for the two-electron and three-electron atoms, but the

r,=Rcosysina

computational complexity is a good step forward. Second, (H sel (1)
we focus on the analysis of radial correlations among the rs=Rsinycosp

four e!ectrons. Thus the present wqu complements the r,=Rsinysin g

analysis of angular correlations studied by Bao and co-

workers. and

The rest of this paper is organized as follows. In Sec. Il
we express the Schrédinger equation in hyperspherical coor- ] i
dinates, characterized by a hyperradius and three hyper- r,=Rsinysin B cosa (K

. : ; ) sel). (2)
angles. There are two obvious different methods of choosing rs=Rsinycosp
the hyperangles, and we study the properties of the two sets
of coordinate systems, considering the permutation symme-
try of the four electrons. Choosing the hyperradius as arfhe range of the hyperangles for both sets is®, 8,y
adiabatic parameter, we obtained the adiabatic potentiak /2. Schematically these two sets are indicated in Fig. 1.
curves and the associated channel functions. In Sec. Il wi the H set,a measures the relative distance between elec-
examine these potential curves to identify groups of curvegrons 1 and 2, while3 measures the relative distances be-
that support singly, doubly, triply, and quadruply excitedtween electrons 3 and 4. The relative distance between pair

ri=RsinysinBsina

r,=Rcosy
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(@) H-set appropriate boundary conditions in the coordinate space can
be easily incorporated to reduce the Hilbert space by 1/8. In
the K set, however, the size of the space is reduced by only
1/2 using (12), represented by the symmetry af— w/4
—a. Thus we use the H set coordinates in the actual numeri-
cal calculations of the channel functions. Meanwhile, the
analysis of the wave functions will be presented in the K set
coordinates, since it is easier to analyze the hierarchical
nodal structure of the wave functions in the hyperangles
(a,B,7y) in this set, and to see the relation between the hy-
perspherical coordinates and the independent particle coordi-
nates. Only one of the 24 domains is sufficient to analyze the
wave function. We will use the domain in the K set which
covers the space in hierarchical order of radiir{<r,
<rz=r,. We show this domain in Fig.(2). On each two-
dimensional boundary surface that separates two neighboring
domains, two electrons are at the same distance from the
nucleus. The surfaces containiaddCD, AEGD, and ABFE
I . . _are forrysro,srz=fry, 1{=r,=<r3=ry, aNdr{<r,=r3=ry,
o e e e+ eSpEciely” Simia,'on-each e where two f frese
X . boundary surfaces coincide, three electrons or two pairs of
electron atom in the H setb) The same a&) but in the K set(c) - .
The domain off;<r,<rs=<r, in the K set. two electrons are at the same .dlstance. The cBéds fpr
r{<r,=r3=ry and the curveéAE is for ry=r,=rz=<r, while
(1,2 and pair(3,4) is measured by the anghe In the K set, the curveAD is for r;=r,<r3=r,. The pointA, where the
the electrons are coupled one by one in a hierarchical ordetree boundary lines coincide, represents the case where all
The first two electrons 1 and 2 are coupled throughand  the four electrons are at the same distance from the nucleus.
electron 3 is coupled to thi€l,2) pair throughg, and then The 2D surfaces oABCD and ABFE are almost flat, so that
electron 4 is coupled to the three electrons throgygtiFor ~ the nodal structures can be clearly seen with respect to the
convenience, we shall us@ to denote the hyperangles hyperangles in this domain.
(a,B,7y) collectively. When we specify the hyperangles in
the H set or the K set, we ugey, or Q, respectively.

Since the electrons are indistinguishable, the spatial part
of the wave function can be divided into 4!=24 physically ~The Schrodinger equation for a four-electron atom in
equivalent domains separated by the surfaces where two &rms of independent electron coordinates with the nucleus at
the individual radiir; coincide. In Fig. 2 we show these 24 the center is
domains of the three-dimensiond@D) space of the hyper-
angles(a, B8, y), in the H set and in the K set, respectively. It [ 4 (

B. The Schrddinger equation

is sufficient to consider only one of the 24 domains. In prin- 21
ciple, one can solve the Schrddinger equation within a do- =

main with certain symmetry cc_)nditions on the bogndari.egNhereE is the total energy of the system afds the charge
and then extend the wave function to the whole conflguratloq)f the nucleus. In hyperspherical coordinates, the

space using the projection operators of Bepermutation chrddinger equation for the rescaled wave functign
group. However, the boundary surfaces are not separab_Rs/zr 1.1 is written as

with respect to the hyperspherical variables for both sets. Itis =~ * 22 *
more convenient to choose a particular set for the calcula- ( )

_%A$+Z>+EL—E]\I’=O, 3

i/ s

tion, but for illustration and for visualizing the results, dis-
play using the other set of coordinates may be more trans-

parent. .
Let us examine the two sets of coordinates more precisel;}'.VhereE is the total energy measured from the four-electron

The properties of the K set and the H set coordinates can H@nization threshold. The adiabatic Hamiltonitig((2;R) is
easily seen in the plots of the boundary surfaces in the hy20 operator inQ which depends parametrically oR,
perangular space. In the H set, particle permutation@®f ~ namely,
(34), and (13)(24) are represented by the exchange of the
angles a— w/4d-a, B—mwl4-B, and y— w/4—vy with A(Q) 3 C)

S ’ Had ;R = - oot . 5)
a <+ 3, respectively. Clearly we can see these exchange sym- & 2R 8R? R
metries in Fig. 2a) as the structure of the boundary surfaces
of the reflections with respect to the two flat planescof Here,A%(()) is the square of the rescaled grand angular mo-
=m/4 and B=m/4, and space inversion with respect to thementum operator. In th* configuration, its explicit forms in
center ofa=B=vy=m/4. Using these symmetry properties, the H set and the K set are

_Eﬁ"'Had(Q;R)_E)‘r//:Ov (4)
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1 d ﬁ 1 & x>
AHQy) = ————— sinycosy— s gt
() = sinycosydy 4 7 S y o2 X{S12834 = Xy (14)
, :
L(g—z (6) Similarly, for triplet(S=1) states, there are three independent
cos yda intermediate spin states as
and X{lO,lIZ}'
s 1
1 9 9 1 9 o =y XLz (15
N = L syt ——— 7 sinp Nora%ed ™| Tt/
Sir y dy dy sir? ysmﬁ&ﬂ B X132
+ ;ﬁz, 7 o
Sir? y sir? B dar (
X{1,0}
respectively.C(Q)) is the effective charge representing the s = (16)
Coulombic potential energy among the electrons averaged XiS12834 {11'1}’
over thes? configuration: [ X{o0,1-
( For quintet(S=2) states, there is only one type,
c@=r-2%+3 ) ®
i=1 T i<j (r j)> X{Sslz,512‘3}~:X{21,3/2} (17)
where (r;)- means the greater of andr;. The total wave Of
function, with total spirS, which satisfies the Pauli principle, S -2 18
can be written as XiSi2%0d ~ XiL3- (18)
We note that spin states with different coupling schemes hav-
=D Fi(R)(E DEXQ; R)ng), (9)  ing the same total spiS are related via the following unitary
© S transformation:
where F,(R) is the hyperradial wave function and Xy = X
DEHQ; R) the adiabatic channel function, ar)@K is the
four—electron spin function witt§={S;,,S;, 3 or {S;», S34} . 2, 1,
representing a set of intermediate coupled spins, namely, X0~ '\ X132 T\ XLz

X555, 4 = AX(DX(2T32x(3}*23x(4)°  (10)
' 1 1 2 1
or X{ll,l}: \/;X{1,3/2}+ \/;X{l,llz}v

Xisppsa = AXDXTHX(x(4T=4)S. (11) X = Xram
The adiabatic potential ,(R) and its associated channel
function ®,(Q;R) are obtained by solving the eigenvalue X{O 0~ X{O 12
problem at each fixe®, 0 0
X(1,13 = X{1,1/2-
[Had2;R) = U, (R)]®,(Q;R) = 0. (12 . o . .
To satisfy the Pauli principle which requires that the total

We solve the three-dimensional eigenvalue problem, Eqwave functiony® be antlsymmetrlc under any pairs of elec-
(12), numerically using direct products of discrete variabletron exchange, th%( andd) are chosen such that they
representatiofiDVR) basis set$31] in the 1/8 space of the transform as basis functlons for an irreducible representation
hyperanglega, 8, y) in the H set. and its conjugate representation of the symmetry gréyp

In Eg. (9), the summation inside the large parentheses isespectively{33]. In principle, the Hamiltonian matrix can be
taken over all the possible intermediate spin states. Indeededuced by 1/24, applying the proper symmetry of $e
there are two intermediate spin states for spin sing®t group. However, as described in the previous section, we can
=0) states, and they are represented by using the couplingnly reduce the Hamiltonian matrix by 1/8 with the ex-

schemeS={S;,,S;, 3 as change symmetries dfL2), (34), and (13) and (24) in the
H-set coordinates, and then sort out the wave functions with
< X?O,l/Z}* appropriate symmetries. This technique has been used for
XiSi2S123 = ) .0 (13)  calculating the three-electron wave functiof6,34. In-
' Xz deed, applying the following boundary conditions:
or by usingS:={S;», S} as (12P(Q;R) = - d(Q;R),
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Adiabatic potensials, U (a.u.)
Adiabatic potensials, U (a.u.)

0 25 5 75 10 125 15 175 20 0 25 5 75 10 125 15 175 20
Hyperradius, R (a.u.) Hyperradius, R (a.u.)
FIG. 3. Hyperspherical potentials for B&SY). FIG. 4. Hyperspherical potentials for B&s°).
(BHD(Q;R) =-D(Q;R), (199  curves are almost the same as those of two- and three-
electron atoms. At smaR, each potential curve goes up as
(13)(24D(Q:R) = + D(Q:R), 1/R? due to the dominance of the kinetic energyRpwhich

_ _ _ ~is controlled by the grand angular momentum. At laRge
we obtain two types of singléiS=0) states associated with where the Coulomb potential energy dominates, each curve
Xis, s =Xiy @nd of quintet(S=2) states associated with approaches one of the three-electron’ Béates asymptoti-

S =Xoy together. We cannot separate these two symcally and varies witlR as —~1R. In the intermediate region,

X p
rriltzr?éi based on the boundary conditions in @§). Thus, each curve has the form of a potential well where bound

we sort out the quintet and the singlet states, by applying th@tatefls ?]r reson?n(_:es c;an be formed. Let us exal{ninerin more
projection operators of thg, group, detail the two limits ofR—0 andR—c. At small R, the

Coulombic potential becomes negligible, and the adiabatic

S S i i
PSUS; = ; Dsks‘;(pi)piv (20) Hamiltonian approaches
A2(Q)/2 +3/8
to the calculated eigenfunctions in the 1/8 space. hyeis Had R — R (22)
theith permutation operator of th®, group, and)é(sﬁ(pi) is _
the{S,, S;}th matrix element of the irreducible representationThus each potential goes up at sfalas
associated with total spia Similarly, with the set of bound- A\ +10)/2+ 12+ 3/8
ary conditions U,(R) — 2 , (23

(12D R) = - PELR), wherex=4,6,8,... fors* configuration[28]. Meanwhile, in

the largeR limit, one electron is far away from the other
B4HP(Q;R) =-P(Q;R), (21) electrons and the nucleus. The K-set coordinates are conve-
nient to analyze the system at the lafgdimit. Introducing
(13)(24P(Q;R) = - D(Q;R),

we obtain only triplet(S=1) states associated wir,{fslz'%‘t}
= X{ll,l}- The states associated with all other symmetries such

as totally symmetric functions are also obtained by using a
similar set of boundary conditions as in EQ.9) and the
projection operator of the form in E420).

153s4s °S°
1s2s4s °S°

IIl. HYPERSPHERICAL ANALYSIS OF FOUR-ELECTRON Le253s °s*
8, S

ATOMS IN THE s* CONFIGURATION

Adiabatic potensials, U (a.u.)

The potential curves

In this subsection, we first present adiabatic potentials of 0 35 5 75 10 135 15 195 20
the Be atom within the* configuration. The adiabatic hyper- Hyperradius, R (a.u.)
spherical potential curves fd8=0, 1, and 2 are shown in
Figs. 3-5, respectively. The general features of the potential FIG. 5. Hyperspherical potentials for B&S®).
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the , hyapegradiu_s of a _threg-electrc_)n _sub_system, g -1 \ \\ 03 \ \\
=\r{+r;+r3=Rsinvy, the adiabatic Hamiltonian in the re- D-135 o Bet+
gion of (rq,r,,r3) <r, can be expressed as é -14 \/’—_M \/—-—(1s“s')3szs=
7-3 o 2-1/2 §_|4.5 L/"' » L(152 1525 25*
. — 43e, _ - = 2
HaC(QKl R) - H (a!ﬁ!p) R 1 (R) ’ (24) g -15 s
g
where H*® is the Hamiltonian of the three-electron sub- < 2o m e
system, Hyperradius, R (a.u.)
1 R 1 1 9 9 FIG. 6. Comparison of four-electron hyperspherical potentials of
H3e(a,B,p) Sy | B sinB— Be (s*!SY) to the two-electron hyperspherical potentials with a
2p dp 2p°LsinBap B model potential. The parameters for the model potential are the
1 & Cae(a,B) same as those used in R7]. Note that the hyperradius is defined
+ siepad) T, (25 by R=\r2+r2 for the two-electron model.
and obtained simultaneously using the hyperspherical approach.
3 Similar potential curves have been assigned for singly, dou-
Cala, ) =p = Z+2 1 (26) bly, triply, and quadruply excited states f8=1 in Fig. 4.
¢ =1l g (rij)> The lowest potential fo6=1 is much shallower than that for

the S=0 symmetry, since the lowest state f&@=1 is

is the effective charge for the three-electron atom with the; 254353< que to the Pauli principle. F&=2, the spins of
nuclear charge. Except for the screened Coulombic poten- 41 the four electrons are aligned such that the lowest state

tial and the quadrupolelike term, the adiabatic Hamiltonian, 14 be £2s3s4s°<. Thus there are no singly and doubly
for a four-electron atom coincides with the three-electron )

L : . ; excited states, and the potential curves in Fig. 5 do not in-
Hamiltonian. Thus, each adiabatic potential approaches o

& ion "Qude types I and II.
of the BE ionic states as ~H at largeR. We next examine théS® potential curves that support

We have separated the curves into subgroups by thelj,qy (1) and doubly(ll) excited states more carefully. The
asymptotic limits atR—-e. Let us first analyze the singlet g fo\y curves of Fig. 3 are shown in Fig. 6. Since the

potential curvegsee Fig. 3 There are four groups. Th_e first configurations of the two inner electrons arg? iS° for all
group, labeled as |, consists of only one curve. This CUV§ese states, we can treat the two inner electrons as frozen
converges to the ground state of'Bas’2s°S). The binding 51 consider the two outer electrons only. In other words, for
energies %”d wave functions of the ground state, designatgfle singly and doubly excited states of Be, it is possible to
as ¥ Zfz S, and singly excited states, designated as.arry out a two-electron atomic calculation by freezing the
1s?2sns'S® (n=3), of the Be atom can be evaluated approxi-two 1s electrons and treat the two outer electrons in a model
mately using this potential. The binding energy calculatedhotential[35-3§. The potential curves calculated in hyper-
from the single-channel adiabatic approximation includingspherical coordinates for such a two-valence-electron system
the second order derivative term is —14.616 a.u., which isyjthin the s? configuration are shown in Fig. 6. Clearly the
slightly higher than the result of the nonrelativistic varia- two sets of potential curves are very similar. Thus the doubly
tional calculation, ~14.667 3555 a[i82], but is lower than  eycited states of a four-electron atom can be classified using
that of the Hartree-Fock approximation, —14.5303 a.u. Morghe same set of quantum numbers that describe the doubly
accurate result can be obtained by including the couplingycited states of a two-electron atom. Note that the potentials
with the higher channels and with basis sets that have highe{aiculated using the real four-electron atomic Hamiltonian
angular momenta. The next group of curves, labeled Il'in thejg not contain the so called “ghost channel” which appears
figure, approach the singly excited states of *Be iy the model two-electron atom.

(1s’ms?S*,m=3) and they support doubly excited states of  |n Fig. 7 we zoom in the curves of type IIl that support
Be. The lowest curve of this group suppois®3s°S)ns'S"  triply excited states. These curves are intersected by the fam-
states. The higher curves of this group Il support higher douily of curves that support doubly excited states. The curves
bly excited states of the typels’ms®S)ns’S® for n=m  for the latter are almost like vertical straight lines in the
= 3. The next group of curves are labeled Ill. They convergeaegion considered and their crossings with the curves for the
to the doubly excited states of B€lsksmsm=k=2) and triply excited states are very sharp, indicating that there are
they support triply excited states. The lowest curve of thidittle interactions among the curves from the different
group would supportls2s? 2$)ns!S® (n=23) triply excited  groups. The lowest curve in type Il supports the
states. These triply excited states have a hole irktishell.  {(1s2s 1%)252Sins!S® (n=3) triply excited states, while

In other words, one electron is in the $hell and the other the next two curves suppoftls2s 1*s%)3s2S%ns'S® triply
three are all in a higher orbital af=2. The last group of excited states. In the asymptotic region, the two curves of the
curves, labeled 1V, approach the triply excited states of Be {(1s2s1°$)3s2SFins!S® states are separated by the ex-
(jsksm&S?) and they are to support quadruply excited stateghange interaction energy between theahd X electrons.

of Be of the typegsksmsndS® (2<j<k=m=n). Figure 3 The lowest state of the singlet grandparent is
illustrates that all the eigenstates of a four-electron atom arf(1s2s'S%)3s2S%}3s S, while that of the triplet grandparent
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-9 (a) 1s2s3sns (b)1s2s4sns
3 92
&
o -94
g (1525 '$%)35 ’8°
= -96
2 ™~(1s25 °5")3s ’s°
8 -98
&
-10

+—(152s '$%)2s 8°

Adiflbatic
S
~n

1
-
f=4
S

0 25 5 75 10 125 15 17.5 20

(d)2s3s4sns

Hyperradius, R (a.u.)

FIG. 7. Hyperspherical potentials of B&°) in the energy re-
gion of the triply excited states.

is {(1s2s°F)3s°S14s 1S, That is, the intrashell state of two
outer electrons is allowed for the singlet grandparent core
and thus the potential curve is more attractive even though
its potential curve lies above the triplet grandparent one at
large R _Consequently,_ the_ two _sets of curves Cross eaCh FIG. 9. Nodal structures of hyperspherical channel functions for
other. Since the crossing is quite sharp, the smglet-trlpletse sates in(a, 8, y) at R=10 a.u.(a) 1s2s3sns (b) 1s2s4sns (c)

grandparent mixing is weak and the triply excited states cafgzoasng and(d) 2s3s4sns Each function is plotted in the domain
be approximately labeled with singlet or triplet grandparentsys <, <

In qddition to the singlet or_t_riplet.gr_andparents, Fhese triply
g'z(;tgido?tgtterfrgei r;@;;:(l)?]s;g[i%,sllrg.llarly to the triply eXCIteclwo electrons form &3s, in e_ither the sin_glet or triplet two-
Finqlly, we come to agdress quadruply excitec_j states. Thgleggor;‘ fr?égé b;c]:(t)erﬁti(;(ljliﬂlrcgstoittigeglglgg %‘gfrwiﬁztrg;
BB Thoss surveL vt rubross s avoiied rosuginTuraton, the sing. douby, trpl. and quadruply e
Witﬁ c.urves that support doubly and triply excited states. W%" ed states of a four-electron atom can indeed be all calcu-

ry<r, in K-set coordinates; see Fig(.

have labeled the first few curves using the triply excited stat ated at.'hhf) same time. By rlemovmg fl$i‘eestri|]ct|on, clearly h

core that these quadruply excited states are attached t Uerreo:g ofea:]a(l)lrezirﬁouter?(talan:tlijrr\(/aezf %giiav%rc;ﬂgétli:oonrst 0?

where the triply excited states are labeled using the IPMP ege states tréymogel allows Us to examine the nature of

One can see the hierarchical order of the levels of quadrupl dial I, ion. This is th bi t th b .

excited states. Thus the lowest quadruply excited Rydber lal correlation. This Is the subject of the next subsection.

series is the one formed with the three-electron core

(252 1$9)3s%S. The next series is the one with identical IV. HYPERSPHERICAL ADIABATIC CHANNEL

grandparent €S but the third electron is excited tos4 FUNCTIONS

C_'ea”y each(2s’ 1$e)nszse core has its own quadruply ex- In order to identify the features that characterize the adia-

cited Rydberg series. The next subgroup of quadruply eXpatic channels of a four-electron atom, we examine the chan-

cited states would have excited grandparents, i.e., the firglg, functions ®,(Q;R). We will focus on quintet(S=2)

S ‘ states only. FoiS=2 states, there is only one intermediate
AR spin state corresponding to a quartet paf&hj ;=3/2) and

3:_25 a triplet grandparen(S;,=1), and the full spin function is
S (2535 'SYs 7S totally symmetric such that the spatial wave function is an-
< R <2s3s:s°>4s:5' tisymmetric under electron permutations. Thus, the spatial
2 (2635 938" wave function should vanish on each of the boundary sur-
2 faces of the domain in Fig.(8), and the number of nodal
Q-35 . . .
g N — oo surfaces is the same in each of the 24 domains.
§ » — (25" '873s’8° I_n Fig. 9, we show the chanr_lel functhﬂz{QK;R) in the
E region of r1<rp;<r3=fy as dlsplay.ed in Fig. @). The
i \! value ofRis fixed at 10 a.u. To highlight the nodal surfaces
0 25 5 75 10 125 15 175 20 of the channel functions, we will show the contour surface
Hyperradius, R (a.u.) where the absolute value of the channel function is 10% of

the maximum of the absolute value. Different shading is used
FIG. 8. Hyperspherical potentials of B&) in the energy re- to distinguish the region where the wave function has *
gion of the quadruply excited states. phase vs the" phase. A contour surface of slightly higher
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absolute value would fit inside the surface, but the nodals determined by the number of hyperradial nodes. Similarly,
structures would stay the same. The nodal structures of thide radial excitation of the third innermost electron is char-
channel functions evolve smoothly as the value Pfis  acterized by the anglg, the second innermost electron By
changed except in localized regions where the adiabatic pand the innermost electron hy. The motions in these hy-
tential curves exhibit avoided crossings. Thus it is enough tgerspherical variables fit the hierarchical adiabatic picture:
analyze the nodal structures at one of the fixed valueR of The motion of outer electron can indeed be regarded as

only. slower than that of the inner one. This is possible only be-

The channel function associated with the lowest potentiat;;se we used the angles in the K-set coordinate to charac-
curve in Fig. 5, which supports thesas3snsseries, should teize each electron in the domainmf<r,<rs<r,.
have no nodes within the domain. This is clearly seen in Fig.

9(a). The surface is also very smooth and the wave function V. SUMMARY AND CONCLUSION
is distributed with its maximum near the center of the do- . . . .
main, when the value dR~ 10 a.u. Note that in general, as In this paper we examine th_e radial correlation of a four-
R increases, the functions move to the corner(@fg,y)  €/€ctron model atom by assuming that each electron has zero
=(0,0,0 where the Coulomb potential is more attractive, Orbital angular momentum. Within this conf_lguratlon we
Recall that the radial excitation of the outermost electron id1ave four degrees of freedom and hyperspherical coordinates
represented by the distribution in the hyperraduhus the ~ Were used for such a study. There are two sets of hyperangles
Rydberg states in thes2s3sns series are distinguished by that are convenient to parameterize the coordinate space.
the number of nodes iR(R) within the adiabatic approxima- One is the H set and the other the K set. We have solved the
tion. Schrédinger equation in the H set, since the symmetry im-
The channel function for the second lowest channel assd?0sed by these identical particles is easier to implement in
ciated with each of the sPs4sns states is depicted in Fig. this set. To display the resulting wave functions it is more
9(b). This function clearly has a node which is almost per-convenient to express in K-set coordinates. The adiabatic
pendicular to they axis, and the(a,8) dependence of the hyperspherical potential curves have been calculated ig*the
function is very similar to the lowest channel for the configuration for total spir5=0, 1, and 2. We have found
1s2s3snsstates in Fig. @). Clearly, using the K-set coordi- that potential curves for the singly, doubly, triply, and qua-
nates in the region af, <r,<r;=r,, the radial excitation of druply excited states in th& configuration can be identified
the third innermost electron is determined by the nodal surtsee Figs. 3-5 We have also analyzed the channel functions
faces in hyperangle. Following this procedure, each of the to show that multiply excited states can be classified with the
1s2s5sns states, where thesSstate for the third innermost nhumber of nodes in the hyperanglesg, andy, in the K-set
electron has one more quantum of radial excitation than theoordinates.
4s state, the channel function would have two nodal surfaces The results obtained in this paper is to shiswprinciple
at two values ofy=const. Increasing the radial excitation of how to study quadruply excited states of a four-electron
the third electron increases the number of nodes.in atom. Thes* model has all the key elements that allow us to
Next, for 1s3s4sns states, where the second innermostdistinguish the major characteristics of singly, doubly, triply,
electron is also excited, the channel function is shown in Figand quadruply excited states. This model complements with
9(c). There is a different nodal surface given approximatelythe other model where the four electrons are confined to the
by B=const. Similar to the nodes i, the radial excitation surface of a sphere that is appropriate for studying angular
of the second innermost electron is characterized by thgorrelations in intrashell quadruply excited states. To treat
nodal surfaces ir8, and increasing the radial excitation of realistic four-electron atoms the present approach has to be
the second electron increases the number of nod@s We  extended to including states where the orbital angular mo-
notice that the nodal surface is not very flat comparing to thénentum of each electron is not zero. There is no built-in
node invy in Fig. Ab). The node in Fig. &) changes gradu- difficulty for such an extension from the computational
ally only in 8 when y is changed. This indicates that the viewpoint. However, the number of channels for quadruply
motion in y can be fixed when we consider the motiondn  €xcited states is quite large for each symmetry. There is also
namely, the adiabatic Hamiltonian expressed in E2$.and  the essential difficulty in examining the radial and angular
(25) can be approximately solved withfixed, and the mo-  correlations together in each wave function. Even within the
tion in B is regarded as “faster” than that # in the hierar-  adiabatic approximation within the hyperspherical approach,
chical adiabatic order as for the three-electron atpa63. each channel wave function is still represented by a function
Proceeding further, examination of the channel functiorof eight variables after the rotational motion of the whole
for the 23s4snsquadruply excited states shows that there isatom is removed. Thus the eventual classification of these
another nodal surface in=const, implying that the radial States would have to rely on the partial display of the channel
excitations of the innermost electron are represented bftnction in some subspace. We do not expect that this goal
nodes ine. The plot also shows a larger deviation from a flatcan be reached any time soon, but the present work has laid
surface comparing to those of the nodes@rand . This down the theoretical and computational procedure for such
implies that the motion inx is regarded as “fastest” among studies in the future based on the hyperspherical coordinates.
the hyperspherical variables.
We can summarize that within the hyperspherical ap-
proach, the radial function of the outermost electron is char- T.M. wishes to thank Professor M. Matsuzawa and Pro-
acterized by the hyperradii&where the degree of excitation fessor S. Watanabe for their encouragement throughout this
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