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I. INTRODUCTION

Since the advent of quantum mechanics, the description
of a many-electron atom is based mostly on the independent
particle modelsIPMd. Within this model, a many-electron
atomic state is designated by a collection of quantum num-
bers from the individual electrons. However, in the past few
decades extensive theoretical and experimental investiga-
tions of doubly excited states and, to a lesser extent, triply
excited states of atoms have revealed that the independent
particle model is inadequate. At the next level of complexity,
one can expect that the IPM also would not work for qua-
druply excited states. However, little is known about them,
both experimentally and theoretically. Unlike doubly and tri-
ply excited states where approximate new quantum numbers
have been identified, little has been done for the classifica-
tion of quadruply excited states.

For multiply excited states, the motions of the electrons
are highly correlated and they are better described as analo-
gous to the rotation and vibration of a polyatomic molecule.
Thus doubly excited states of a two-electron atom can be
described qualitatively in terms of the rovibrational motion
of a linearXY2 molecule, whereX stands for the nucleus and
Y for the electronf1–9g. Various theoretical approaches have
come to similar conclusions and this subject has been re-
viewed extensively, for example, most recently by Rostet al.
f10g, and within the semiclassical method by Tanneret al.
f11g. Similarly, triply excited states of an atom can be de-
scribed in terms of the rovibrational motion of a symmetric
top XY3 moleculef12–17g, mostly based on the hyperspheri-
cal approach. Except for the symmetric rotor states which
have been constructed using the algebraic approachssee the
review by Madsenf18gd, most of the other approaches for
doubly excited states have not been extended to triply ex-
cited states. These qualitative descriptions of the rovibra-
tional modes are supported by analyzing the actual calcu-
lated wave functions, and the nodal surfaces of the wave
functions of doubly and triply excited states are related to the
new quantum numbers that describe the collective normal
modes of the joint motion of the electronsf7,8,16,17g. It is
natural to ask if the theoretical tools developed for doubly
and triply excited states of atoms can be extended to analyz-

ing quadruply excited states of atoms where one can expect
much richer electron correlation effects. A new classification
scheme and a new set of quantum numbers will be needed
eventually for describing quadruply excited states as well.
However, this is a monumental task, and before such a
scheme is possible, the various aspects of the correlated mo-
tions of the four electrons should be examined in pieces first.
Experimentally, little is known about the quadruply excited
states of an atom, although attempts are being made on these
states for the beryllium atom using synchrotron radiation
f19g. Such states are also formed in collisions of multiply
charged ions with multielectron targets, but they have not
been identified individually due to the lack of enough energy
resolution.

In the electronic structure of an atomic system, the motion
in angular variables and that in radial variables are approxi-
mately separated in the energy spectra at least for the lower
excited states. Thus the angular and radial correlations in
atoms can be considered separately. Indeed, the procedure
developed for classifying doubly and triply excited states has
followed these two steps. First, a new classification scheme
is developed for intrashell states where all the electrons are at
about the same distance from the nucleus. To simplify the
study of these intrashell states, they are often analyzed by an
approximate model atom where all the electrons are confined
to the surface of a spheref6,12,13,16g. This has the advan-
tage that one can deal with doubly excited states of a two-
electron atom directly without calculating singly excited
states, or deal with triply excited states of a three-electron
atom directly without the need of calculating the lower sin-
gly and doubly excited states. For quadruply excited states, a
similar analysis within this model has been investigated by
Bao and co-workers in a series of papersf20–23g. In their
papers, the nodal structures stemming from quantum symme-
tries for a subset of intrashell quadruply excited states have
been examined for differentL, S, andp, the total orbital and
angular momenta and parity, respectively. It was shown that,
similarly to doubly and triply intrashell states, the energy
levels of intrashell quadruply excited states can be ordered
according to the number of nodal surfaces of the wave func-
tions, at least for the lower quadruply excited states. The
four-electron system is the first few-electron system that has
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more than one equilibrium configuration in the intrashell
states. One is a tetrahedron with the four electrons at the
corners and the nucleus at the center; the other is a coplanar
square with the nucleus at the center. In their papers, these
two configurations have been identified for the four-electron
states on the surface of a sphere. Komninos and Nicolaidas
f24g also calculated the angle between two electrons for the
type of nsnp35So intrashell quadruply excited states by the
multiconfigurational Hartree-Fock method, from which they
confirmed that the electron densities of these intrashell states
indeed reveal a tetrahedron shape.

The second step in the classification of multiply excited
states is to focus on intershell states. For such states, the
electrons are located mostly at different distances from the
nucleus. The joint radial motion of two such electrons is
distinguished by the so-called “1” and “2” quantum num-
bers initially introduced by Fano and co-workersf1g. The
“1” corresponds to the mechanical analog that the two elec-
trons move toward or away from the nucleus together with
the same phase, and the “2” with opposite phase. The con-
cept of “1” and “2” has been extended by us to describe
intershell triply excited states recentlyf17g. To examine the
radial motion in intershell quadruply excited states, for the
time being one can average out the angular degrees of free-
dom to simplify the calculation and analysis. Thus in the
present paper, we address quadruply excited states within the
s4 configuration, where the orbital angular momentum of
each electron is set to zero, similar to the analysis of the
three-electron atom in thes3 configurationf25–27g. With this
model, we also set out to separate singly, doubly, triply, and
quadruply excited states of a four-electron atom from the
whole spectrum of the four-electron Hamiltonian. Since the
spins of the fours electrons can couple to form total spin
S=0, 1, and 2, we will examine how these states depend on
the total spin of the system.

We will use hyperspherical coordinates for the study of
the four-electron atoms. This paper serves two purposes.
First, we develop the theoretical and computational tech-
niques needed for studying a four-electron atom using the
hyperspherical approach. No previous work using hyper-
spherical coordinates has been applied to four-electron atoms
except for the general analysis of hyperspherical harmonics
by Cavagnerof28–30g. Conceptually the method is similar to
that for the two-electron and three-electron atoms, but the
computational complexity is a good step forward. Second,
we focus on the analysis of radial correlations among the
four electrons. Thus the present work complements the
analysis of angular correlations studied by Bao and co-
workers.

The rest of this paper is organized as follows. In Sec. II
we express the Schrödinger equation in hyperspherical coor-
dinates, characterized by a hyperradius and three hyper-
angles. There are two obvious different methods of choosing
the hyperangles, and we study the properties of the two sets
of coordinate systems, considering the permutation symme-
try of the four electrons. Choosing the hyperradius as an
adiabatic parameter, we obtained the adiabatic potential
curves and the associated channel functions. In Sec. III we
examine these potential curves to identify groups of curves
that support singly, doubly, triply, and quadruply excited

states in thes4 configuration. In Sec. IV, we analyze the
channel functions. Within thes4 configuration, we show that
it is possible to relate the principal quantum numbers in the
IPM to the number of nodal surfaces in the hyperangles.
Even though the calculation was carried out in thes4 con-
figuration, this conclusion is expected to be the same for real
atoms where angular correlation is included. We end this
paper with a short summary and perspective for future de-
velopment.

Atomic units are used throughout in this paper.

II. HYPERSPHERICAL METHOD FOR FOUR-ELECTRON
ATOMS

A. The choice of hyperangles

Following the procedure for two- and three-electron at-
oms used previously we will employ hyperspherical coordi-
nates to describe the four-electron atoms. Instead of the four
radial distances of the electrons from the nucleus,r1, r2, r3,
and r4, we define a hyperradiusR=Îr1

2+r2
2+r3

2+r4
2, which

characterizes the size of the system, and three hyperanglesa,
b, and g, measuring the relative distances among the four
electrons. Two alternative sets of hyperangles can be defined
as

5
r1 = Rcosg cosa

r2 = Rcosg sina

r3 = Rsing cosb

r4 = Rsing sinb
6 sH setd s1d

and

5
r1 = Rsing sinb sina

r2 = Rsing sinb cosa

r3 = Rsing cosb

r4 = Rcosg
6 sK setd. s2d

The range of the hyperangles for both sets is 0øa ,b ,g
øp /2. Schematically these two sets are indicated in Fig. 1.
In the H set,a measures the relative distance between elec-
trons 1 and 2, whileb measures the relative distances be-
tween electrons 3 and 4. The relative distance between pair

FIG. 1. Schematic diagram of the hyperspherical coordinates for
four-electron atoms.sad H set: a measures the relative distance
between electrons 1 and 2,b measures the relative distance between
electrons 3 and 4, and the relative distance between pairs1,2d and
pair s3,4d is measured byg. sbd K set: Electrons 1, 2, 3, and 4 are
coupled one by one in a hierarchical order.
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s1,2d and pairs3,4d is measured by the angleg. In the K set,
the electrons are coupled one by one in a hierarchical order.
The first two electrons 1 and 2 are coupled througha, and
electron 3 is coupled to thiss1,2d pair throughb, and then
electron 4 is coupled to the three electrons throughg. For
convenience, we shall useV to denote the hyperangles
sa ,b ,gd collectively. When we specify the hyperangles in
the H set or the K set, we useVH or VK, respectively.

Since the electrons are indistinguishable, the spatial part
of the wave function can be divided into 4!=24 physically
equivalent domains separated by the surfaces where two of
the individual radiir i coincide. In Fig. 2 we show these 24
domains of the three-dimensionals3Dd space of the hyper-
anglessa ,b ,gd, in the H set and in the K set, respectively. It
is sufficient to consider only one of the 24 domains. In prin-
ciple, one can solve the Schrödinger equation within a do-
main with certain symmetry conditions on the boundaries
and then extend the wave function to the whole configuration
space using the projection operators of theS4 permutation
group. However, the boundary surfaces are not separable
with respect to the hyperspherical variables for both sets. It is
more convenient to choose a particular set for the calcula-
tion, but for illustration and for visualizing the results, dis-
play using the other set of coordinates may be more trans-
parent.

Let us examine the two sets of coordinates more precisely.
The properties of the K set and the H set coordinates can be
easily seen in the plots of the boundary surfaces in the hy-
perangular space. In the H set, particle permutations ofs12d,
s34d, and s13ds24d are represented by the exchange of the
angles a↔p /4−a, b↔p /4−b, and g↔p /4−g with
a↔b, respectively. Clearly we can see these exchange sym-
metries in Fig. 2sad as the structure of the boundary surfaces
of the reflections with respect to the two flat planes ofa
=p /4 andb=p /4, and space inversion with respect to the
center ofa=b=g=p /4. Using these symmetry properties,

appropriate boundary conditions in the coordinate space can
be easily incorporated to reduce the Hilbert space by 1/8. In
the K set, however, the size of the space is reduced by only
1/2 using s12d, represented by the symmetry ofa↔p /4
−a. Thus we use the H set coordinates in the actual numeri-
cal calculations of the channel functions. Meanwhile, the
analysis of the wave functions will be presented in the K set
coordinates, since it is easier to analyze the hierarchical
nodal structure of the wave functions in the hyperangles
sa ,b ,gd in this set, and to see the relation between the hy-
perspherical coordinates and the independent particle coordi-
nates. Only one of the 24 domains is sufficient to analyze the
wave function. We will use the domain in the K set which
covers the space in hierarchical order of radiir i, r1ø r2
ø r3ø r4. We show this domain in Fig. 2scd. On each two-
dimensional boundary surface that separates two neighboring
domains, two electrons are at the same distance from the
nucleus. The surfaces containingABCD, AEGD, andABFE
are for r1ø r2ø r3=r4, r1=r2ø r3ø r4, and r1ø r2=r3ø r4,
respectively. Similarly, on each line where two of these
boundary surfaces coincide, three electrons or two pairs of
two electrons are at the same distance. The curveAB is for
r1ø r2=r3=r4, and the curveAE is for r1=r2=r3ø r4, while
the curveAD is for r1=r2ø r3=r4. The pointA, where the
three boundary lines coincide, represents the case where all
the four electrons are at the same distance from the nucleus.
The 2D surfaces ofABCD andABFE are almost flat, so that
the nodal structures can be clearly seen with respect to the
hyperangles in this domain.

B. The Schrödinger equation

The Schrödinger equation for a four-electron atom in
terms of independent electron coordinates with the nucleus at
the center is

Fo
i=1

4 S−
1

2
Di

2 +
Z

ri
D + o

i. j

1

ur i − r ju
− EGC = 0, s3d

whereE is the total energy of the system andZ is the charge
of the nucleus. In hyperspherical coordinates, the
Schrödinger equation for the rescaled wave functionc
=R3/2r1r2r3r4C is written as

S−
1

2

]2

]R2 + HadsV;Rd − EDc = 0, s4d

whereE is the total energy measured from the four-electron
ionization threshold. The adiabatic HamiltonianHadsV ;Rd is
an operator inV which depends parametrically onR,
namely,

HadsV;Rd = −
L2sVd
2R2 +

3

8R2 +
CsVd

R
. s5d

Here,L2sVd is the square of the rescaled grand angular mo-
mentum operator. In thes4 configuration, its explicit forms in
the H set and the K set are

FIG. 2. sad Division of the 24 equivalent domains of the radial
configuration space in the space of three hyperangles of a four-
electron atom in the H set.sbd The same assad but in the K set.scd
The domain ofr1ø r2ø r3ø r4 in the K set.
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L2sVHd =
1

sing cosg

]

]g
sing cosg

]

]g
+

1

sin2 g

]2

]b2

+
1

cos2 g

]2

]a2 s6d

and

L2sVKd =
1

sin2 g

]

]g
sin2 g

]

]g
+

1

sin2 g sinb

]

]b
sinb

]

]b

+
1

sin2 g sin2 b

]2

]a2 , s7d

respectively.CsVd is the effective charge representing the
Coulombic potential energy among the electrons averaged
over thes4 configuration:

CsVd = RS− o
i=1

4
Z

ri
+ o

i, j

1

sr ijd.
D , s8d

where sr ijd. means the greater ofr i and r j. The total wave
function, with total spinS, which satisfies the Pauli principle,
can be written as

cS= o
m

Fm
SsRdSo

Sk

Fm
S,SksV;RdxSk

S D , s9d

where FmsRd is the hyperradial wave function and
Fm

S,SksV ;Rd the adiabatic channel function, andxSk

S is the
four-electron spin function withSk=hS12,S12,3j or hS12,S34j
representing a set of intermediate coupled spins, namely,

xhS12,S12,3j
= „hfxs1dxs2dgS12xs3djS12,3xs4d…S s10d

or

xhS12,S34j
S = „hfxs1dxs2dgS12fxs3dxs4dgS34j…S. s11d

The adiabatic potentialUmsRd and its associated channel
function FmsV ;Rd are obtained by solving the eigenvalue
problem at each fixedR,

fHadsV;Rd − UmsRdgFmsV;Rd = 0. s12d

We solve the three-dimensional eigenvalue problem, Eq.
s12d, numerically using direct products of discrete variable
representationsDVRd basis setsf31g in the 1/8 space of the
hyperanglessa ,b ,gd in the H set.

In Eq. s9d, the summation inside the large parentheses is
taken over all the possible intermediate spin states. Indeed,
there are two intermediate spin states for spin singletsS
=0d states, and they are represented by using the coupling
schemeSk=hS12,S12,3j as

xhS12,S12,3j
S =Hxh0,1/2j

0 ,

xh1,1/2j
0 ,J s13d

or by usingSk=hS12,S34j as

xhS12,S34j
S =Hxh0,0j

0 ,

xh1,1j
0 .J s14d

Similarly, for triplet sS=1d states, there are three independent
intermediate spin states as

xhS12,S12,3j
S = 5xh0,1/2j

1 ,

xh1,1/2j
1 ,

xh1,3/2j
1 ,

6 s15d

or

xhS12,S34j
S = 5xh1,0j

1 ,

xh1,1j
1 ,

xh0,1j
1 .

6 s16d

For quintetsS=2d states, there is only one type,

xhS12,S12,3j
S = xh1,3/2j

2 s17d

or

xhS12,S34j
S = xh1,1j

2 . s18d

We note that spin states with different coupling schemes hav-
ing the same total spinSare related via the following unitary
transformation:

xh1,1j
2 = xh1,3/2j

2 ,

xh1,0j
1 =Î2

3
xh1,3/2j

1 −Î1

3
xh1,1/2j

1 ,

xh1,1j
1 =Î1

3
xh1,3/2j

1 +Î2

3
xh1,1/2j

1 ,

xh0,1j
1 = xh1,3/2j

1 ,

xh0,0j
0 = xh0,1/2j

0 ,

xh1,1j
0 = xh1,1/2j

0 .

To satisfy the Pauli principle which requires that the total
wave functioncS be antisymmetric under any pairs of elec-
tron exchange, thexSk

S and Fm
S,Sk are chosen such that they

transform as basis functions for an irreducible representation
and its conjugate representation of the symmetry groupS4,
respectivelyf33g. In principle, the Hamiltonian matrix can be
reduced by 1/24, applying the proper symmetry of theS4
group. However, as described in the previous section, we can
only reduce the Hamiltonian matrix by 1/8 with the ex-
change symmetries ofs12d, s34d, and s13d and s24d in the
H-set coordinates, and then sort out the wave functions with
appropriate symmetries. This technique has been used for
calculating the three-electron wave functionsf26,34g. In-
deed, applying the following boundary conditions:

s12dFsV;Rd = − FsV;Rd,
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s34dFsV;Rd = − FsV;Rd, s19d

s13ds24dFsV;Rd = + FsV;Rd,

we obtain two types of singletsS=0d states associated with
xhS12,S34j

S =xh1,1j
0 and of quintetsS=2d states associated with

xhS12,S34j
S =xh1,1j

2 together. We cannot separate these two sym-
metries based on the boundary conditions in Eq.s19d. Thus,
we sort out the quintet and the singlet states, by applying the
projection operators of theS4 group,

PSk,Sk8
S = o

i

DSkSk8
S spidpi , s20d

to the calculated eigenfunctions in the 1/8 space. Herepi is
the ith permutation operator of theS4 group, andDSkSk8

S spid is

the hSk,Sk8jth matrix element of the irreducible representation
associated with total spinS. Similarly, with the set of bound-
ary conditions

s12dFsV;Rd = − FsV;Rd,

s34dFsV;Rd = − FsV;Rd, s21d

s13ds24dFsV;Rd = − FsV;Rd,

we obtain only tripletsS=1d states associated withxhS12,S34j
S

=xh1,1j
1 . The states associated with all other symmetries such

as totally symmetric functions are also obtained by using a
similar set of boundary conditions as in Eq.s19d and the
projection operator of the form in Eq.s20d.

III. HYPERSPHERICAL ANALYSIS OF FOUR-ELECTRON
ATOMS IN THE s4 CONFIGURATION

The potential curves

In this subsection, we first present adiabatic potentials of
the Be atom within thes4 configuration. The adiabatic hyper-
spherical potential curves forS=0, 1, and 2 are shown in
Figs. 3–5, respectively. The general features of the potential

curves are almost the same as those of two- and three-
electron atoms. At smallR, each potential curve goes up as
1/R2 due to the dominance of the kinetic energy inR, which
is controlled by the grand angular momentum. At largeR,
where the Coulomb potential energy dominates, each curve
approaches one of the three-electron Be+ states asymptoti-
cally and varies withR as −1/R. In the intermediate region,
each curve has the form of a potential well where bound
states or resonances can be formed. Let us examine in more
detail the two limits ofR→0 and R→`. At small R, the
Coulombic potential becomes negligible, and the adiabatic
Hamiltonian approaches

HadsV;Rd → L2sVd/2 + 3/8

R2 . s22d

Thus each potential goes up at smallR as

UmsRd → lsl + 10d/2 + 12 + 3/8

R2 , s23d

wherel=4,6,8, . . . fors4 configurationf28g. Meanwhile, in
the largeR limit, one electron is far away from the other
electrons and the nucleus. The K-set coordinates are conve-
nient to analyze the system at the largeR limit. Introducing

FIG. 3. Hyperspherical potentials for Bes1Sed. FIG. 4. Hyperspherical potentials for Bes3Sed.

FIG. 5. Hyperspherical potentials for Bes5Sed.
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the hyperradius of a three-electron subsystem,r
=Îr1

2+r2
3+r3

2=Rsing, the adiabatic Hamiltonian in the re-
gion of sr1,r2,r3dø r4 can be expressed as

HadsVK ;Rd = H3esa,b,rd −
Z − 3

R
F1 −S r

R
D2G−1/2

, s24d

where H3e is the Hamiltonian of the three-electron sub-
system,

H3esa,b,rd = −
1

2r

]2

]r2r −
1

2r2F 1

sinb

]

]b
sinb

]

]b

+
1

sin2 b

]2

]a2G +
C3esa,bd

r
, s25d

and

C3esa,bd = rS− o
i=1

3
Z

ri
+ o

i, j

1

sr ijd.
D s26d

is the effective charge for the three-electron atom with the
nuclear chargeZ. Except for the screened Coulombic poten-
tial and the quadrupolelike term, the adiabatic Hamiltonian
for a four-electron atom coincides with the three-electron
Hamiltonian. Thus, each adiabatic potential approaches one
of the Be+ ionic states as −1/R at largeR.

We have separated the curves into subgroups by their
asymptotic limits atR→`. Let us first analyze the singlet
potential curvesssee Fig. 3d. There are four groups. The first
group, labeled as I, consists of only one curve. This curve
converges to the ground state of Be+ s1s22s 2Sed. The binding
energies and wave functions of the ground state, designated
as 1s22s2 1Se, and singly excited states, designated as
1s22sns1Se snù3d, of the Be atom can be evaluated approxi-
mately using this potential. The binding energy calculated
from the single-channel adiabatic approximation including
the second order derivative term is −14.616 a.u., which is
slightly higher than the result of the nonrelativistic varia-
tional calculation, −14.667 355 5 a.u.f32g, but is lower than
that of the Hartree-Fock approximation, −14.5303 a.u. More
accurate result can be obtained by including the coupling
with the higher channels and with basis sets that have higher
angular momenta. The next group of curves, labeled II in the
figure, approach the singly excited states of Be+

s1s2ms2Se,mù3d and they support doubly excited states of
Be. The lowest curve of this group supportss1s23s 2Sedns1Se

states. The higher curves of this group II support higher dou-
bly excited states of the types1s2ms2Sedns1Se for nùm
ù3. The next group of curves are labeled III. They converge
to the doubly excited states of Be+ s1sksms,mùkù2d and
they support triply excited states. The lowest curve of this
group would supports1s2s2 2Sedns1Se snù3d triply excited
states. These triply excited states have a hole in theK shell.
In other words, one electron is in the 1s shell and the other
three are all in a higher orbital ofnù2. The last group of
curves, labeled IV, approach the triply excited states of Be+

s jsksms2Sed and they are to support quadruply excited states
of Be of the typesjsksmsns1Se s2ø j økømønd. Figure 3
illustrates that all the eigenstates of a four-electron atom are

obtained simultaneously using the hyperspherical approach.
Similar potential curves have been assigned for singly, dou-
bly, triply, and quadruply excited states forS=1 in Fig. 4.
The lowest potential forS=1 is much shallower than that for
the S=0 symmetry, since the lowest state forS=1 is
1s22s3s 3Se due to the Pauli principle. ForS=2, the spins of
all the four electrons are aligned such that the lowest state
would be 1s2s3s4s 5Se. Thus there are no singly and doubly
excited states, and the potential curves in Fig. 5 do not in-
clude types I and II.

We next examine the1Se potential curves that support
singly sId and doublysII d excited states more carefully. The
first few curves of Fig. 3 are shown in Fig. 6. Since the
configurations of the two inner electrons are 1s2 1Se for all
these states, we can treat the two inner electrons as frozen
and consider the two outer electrons only. In other words, for
the singly and doubly excited states of Be, it is possible to
carry out a two-electron atomic calculation by freezing the
two 1s electrons and treat the two outer electrons in a model
potentialf35–38g. The potential curves calculated in hyper-
spherical coordinates for such a two-valence-electron system
within the s2 configuration are shown in Fig. 6. Clearly the
two sets of potential curves are very similar. Thus the doubly
excited states of a four-electron atom can be classified using
the same set of quantum numbers that describe the doubly
excited states of a two-electron atom. Note that the potentials
calculated using the real four-electron atomic Hamiltonian
do not contain the so called “ghost channel” which appears
in the model two-electron atom.

In Fig. 7 we zoom in the curves of type III that support
triply excited states. These curves are intersected by the fam-
ily of curves that support doubly excited states. The curves
for the latter are almost like vertical straight lines in the
region considered and their crossings with the curves for the
triply excited states are very sharp, indicating that there are
little interactions among the curves from the different
groups. The lowest curve in type III supports the
hs1s2s 1Sed2s 2Sejns1Se snù3d triply excited states, while
the next two curves supporths1s2s 1,3Sed3s 2Sejns1Se triply
excited states. In the asymptotic region, the two curves of the
hs1s2s 1,3Sed3s 2Sejns1Se states are separated by the ex-
change interaction energy between the 1s and 2s electrons.
The lowest state of the singlet grandparent is
hs1s2s 1Sed3s 2Sej3s 1Se, while that of the triplet grandparent

FIG. 6. Comparison of four-electron hyperspherical potentials of
Be ss4 1Sed to the two-electron hyperspherical potentials with a
model potential. The parameters for the model potential are the
same as those used in Ref.f37g. Note that the hyperradius is defined
by R=Îr1

2+r2
2 for the two-electron model.
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is hs1s2s 3Sed3s 2Sej4s 1Se. That is, the intrashell state of two
outer electrons is allowed for the singlet grandparent core
and thus the potential curve is more attractive even though
its potential curve lies above the triplet grandparent one at
large R. Consequently, the two sets of curves cross each
other. Since the crossing is quite sharp, the singlet-triplet
grandparent mixing is weak and the triply excited states can
be approximately labeled with singlet or triplet grandparents.
In addition to the singlet or triplet grandparents, these triply
excited states can be classified similarly to the triply excited
states of a three-electron atomf16,17g.

Finally, we come to address quadruply excited states. The
potential curves supporting such states can be discerned from
Fig. 8. These curves have numerous sharp avoided crossings
with curves that support doubly and triply excited states. We
have labeled the first few curves using the triply excited state
core that these quadruply excited states are attached to,
where the triply excited states are labeled using the IPM.
One can see the hierarchical order of the levels of quadruply
excited states. Thus the lowest quadruply excited Rydberg
series is the one formed with the three-electron core
s2s2 1Sed3s 2Se. The next series is the one with identical
grandparent 2s2 1Se but the third electron is excited to 4s.
Clearly eachs2s2 1Sedns2Se core has its own quadruply ex-
cited Rydberg series. The next subgroup of quadruply ex-
cited states would have excited grandparents, i.e., the first

two electrons form 2s3s, in either the singlet or triplet two-
electron core, before coupling to the third outer electron.

From these potential curves it is clear that within thes4

configuration, the singly, doubly, triply, and quadruply ex-
cited states of a four-electron atom can indeed be all calcu-
lated at the same time. By removing thes4 restriction, clearly
there will be more potential curves for each group. For the
purpose of analyzing the nature of the wave functions of
these states, thes4 model allows us to examine the nature of
radial correlation. This is the subject of the next subsection.

IV. HYPERSPHERICAL ADIABATIC CHANNEL
FUNCTIONS

In order to identify the features that characterize the adia-
batic channels of a four-electron atom, we examine the chan-
nel functions FmsV ;Rd. We will focus on quintetsS=2d
states only. ForS=2 states, there is only one intermediate
spin state corresponding to a quartet parentsS12,3=3/2d and
a triplet grandparentsS12=1d, and the full spin function is
totally symmetric such that the spatial wave function is an-
tisymmetric under electron permutations. Thus, the spatial
wave function should vanish on each of the boundary sur-
faces of the domain in Fig. 2sbd, and the number of nodal
surfaces is the same in each of the 24 domains.

In Fig. 9, we show the channel functionsFsVK ;Rd in the
region of r1ø r2ø r3ø r4, as displayed in Fig. 2scd. The
value ofR is fixed at 10 a.u. To highlight the nodal surfaces
of the channel functions, we will show the contour surface
where the absolute value of the channel function is 10% of
the maximum of the absolute value. Different shading is used
to distinguish the region where the wave function has “1”
phase vs the “2” phase. A contour surface of slightly higher

FIG. 7. Hyperspherical potentials of Bes1Sed in the energy re-
gion of the triply excited states.

FIG. 8. Hyperspherical potentials of Bes1Sed in the energy re-
gion of the quadruply excited states.

FIG. 9. Nodal structures of hyperspherical channel functions for
5Se sates insa ,b ,gd at R=10 a.u.sad 1s2s3sns, sbd 1s2s4sns, scd
1s3s4sns, andsdd 2s3s4sns. Each function is plotted in the domain
of r1ø r2ø r3ø r4 in K-set coordinates; see Fig. 2scd.
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absolute value would fit inside the surface, but the nodal
structures would stay the same. The nodal structures of the
channel functions evolve smoothly as the value ofR is
changed except in localized regions where the adiabatic po-
tential curves exhibit avoided crossings. Thus it is enough to
analyze the nodal structures at one of the fixed values ofR
only.

The channel function associated with the lowest potential
curve in Fig. 5, which supports the 1s2s3snsseries, should
have no nodes within the domain. This is clearly seen in Fig.
9sad. The surface is also very smooth and the wave function
is distributed with its maximum near the center of the do-
main, when the value ofR,10 a.u. Note that in general, as
R increases, the functions move to the corner ofsa ,b ,gd
=s0,0,0d where the Coulomb potential is more attractive.
Recall that the radial excitation of the outermost electron is
represented by the distribution in the hyperradiusR. Thus the
Rydberg states in the 1s2s3sns series are distinguished by
the number of nodes inFsRd within the adiabatic approxima-
tion.

The channel function for the second lowest channel asso-
ciated with each of the 1s2s4sns states is depicted in Fig.
9sbd. This function clearly has a node which is almost per-
pendicular to theg axis, and thesa ,bd dependence of the
function is very similar to the lowest channel for the
1s2s3snsstates in Fig. 9sad. Clearly, using the K-set coordi-
nates in the region ofr1ø r2ø r3ø r4, the radial excitation of
the third innermost electron is determined by the nodal sur-
faces in hyperangleg. Following this procedure, each of the
1s2s5sns states, where the 5s state for the third innermost
electron has one more quantum of radial excitation than the
4s state, the channel function would have two nodal surfaces
at two values ofg.const. Increasing the radial excitation of
the third electron increases the number of nodes ing.

Next, for 1s3s4sns states, where the second innermost
electron is also excited, the channel function is shown in Fig.
9scd. There is a different nodal surface given approximately
by b.const. Similar to the nodes ing, the radial excitation
of the second innermost electron is characterized by the
nodal surfaces inb, and increasing the radial excitation of
the second electron increases the number of nodes inb. We
notice that the nodal surface is not very flat comparing to the
node ing in Fig. 9sbd. The node in Fig. 9scd changes gradu-
ally only in b when g is changed. This indicates that the
motion in g can be fixed when we consider the motion inb,
namely, the adiabatic Hamiltonian expressed in Eqs.s24d and
s25d can be approximately solved withg fixed, and the mo-
tion in b is regarded as “faster” than that ing, in the hierar-
chical adiabatic order as for the three-electron atomsf26g.

Proceeding further, examination of the channel function
for the 2s3s4snsquadruply excited states shows that there is
another nodal surface ina.const, implying that the radial
excitations of the innermost electron are represented by
nodes ina. The plot also shows a larger deviation from a flat
surface comparing to those of the nodes inb and g. This
implies that the motion ina is regarded as “fastest” among
the hyperspherical variables.

We can summarize that within the hyperspherical ap-
proach, the radial function of the outermost electron is char-
acterized by the hyperradiusR where the degree of excitation

is determined by the number of hyperradial nodes. Similarly,
the radial excitation of the third innermost electron is char-
acterized by the angleg, the second innermost electron byb,
and the innermost electron bya. The motions in these hy-
perspherical variables fit the hierarchical adiabatic picture:
The motion of outer electron can indeed be regarded as
slower than that of the inner one. This is possible only be-
cause we used the angles in the K-set coordinate to charac-
terize each electron in the domain ofr1ø r2ø r3ø r4.

V. SUMMARY AND CONCLUSION

In this paper we examine the radial correlation of a four-
electron model atom by assuming that each electron has zero
orbital angular momentum. Within this configuration we
have four degrees of freedom and hyperspherical coordinates
were used for such a study. There are two sets of hyperangles
that are convenient to parameterize the coordinate space.
One is the H set and the other the K set. We have solved the
Schrödinger equation in the H set, since the symmetry im-
posed by these identical particles is easier to implement in
this set. To display the resulting wave functions it is more
convenient to express in K-set coordinates. The adiabatic
hyperspherical potential curves have been calculated in thes4

configuration for total spinS=0, 1, and 2. We have found
that potential curves for the singly, doubly, triply, and qua-
druply excited states in thes4 configuration can be identified
ssee Figs. 3–5d. We have also analyzed the channel functions
to show that multiply excited states can be classified with the
number of nodes in the hyperanglesa, b, andg, in the K-set
coordinates.

The results obtained in this paper is to showin principle
how to study quadruply excited states of a four-electron
atom. Thes4 model has all the key elements that allow us to
distinguish the major characteristics of singly, doubly, triply,
and quadruply excited states. This model complements with
the other model where the four electrons are confined to the
surface of a sphere that is appropriate for studying angular
correlations in intrashell quadruply excited states. To treat
realistic four-electron atoms the present approach has to be
extended to including states where the orbital angular mo-
mentum of each electron is not zero. There is no built-in
difficulty for such an extension from the computational
viewpoint. However, the number of channels for quadruply
excited states is quite large for each symmetry. There is also
the essential difficulty in examining the radial and angular
correlations together in each wave function. Even within the
adiabatic approximation within the hyperspherical approach,
each channel wave function is still represented by a function
of eight variables after the rotational motion of the whole
atom is removed. Thus the eventual classification of these
states would have to rely on the partial display of the channel
function in some subspace. We do not expect that this goal
can be reached any time soon, but the present work has laid
down the theoretical and computational procedure for such
studies in the future based on the hyperspherical coordinates.
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