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We present the derivation of the effective higher-order Hamiltonian, which gives anma6 contribution to the
energy levels of an arbitrary light atom. The derivation is based on the Foldy-Wouthuysen transformation of the
one-particle Dirac Hamiltonian followed by perturbative expansion of the many-particle Green function. The
obtained results can be used for the high precision calculation of relativistic effects in atomic systems.
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I. INTRODUCTION

The calculation of relativistic corrections to energy levels
of atomic systems is usually accomplished by using the
many-electron Dirac-CoulombsDCd Hamiltonian with pos-
sible inclusion of the Breit interaction between electrons.
However, such a Hamiltonian can not be rigorously derived
from quantum electrodynamicsQEDd theory and thus gives
an incomplete treatment of relativistic and QED effects. The
electron self-energy and vacuum polarization can be in-
cluded in the DC Hamiltonianf1,2g, though only in an ap-
proximate way. A different approach, which is justified by
quantum field theory, is to start from a well adapted one-
electron local potential and build many-body perturbation
theory. This approach allows for the consistent inclusion of
QED effects as well as a correct treatment of the so-called
“negative-energy states.” It is being pursued by Sapirstein
and Chengf3g, but so far no high-accuracy results have been
achieved for neutral few-electron atoms. An alternative ap-

proach, which is suited for light atoms, relies on expansion
of energy levels in powers of the fine-structure constant

Esad = Es2d + Es4d + Es5d + Es6d + Osa7d, s1d

where Esnd is the contribution of orderman, so Es2d is the
nonrelativistic energy as given by the Schrödinger Hamil-
tonianHs2d;H0,

H0 = o
a
S pWa

2
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ra
D + o
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o
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a

rab
. s2d

Es4d is the leading relativistic correction given by the Breit-
Pauli HamiltonianHs4d f4g,

Es4d = kfuHs4dufl, s3d

where
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4m2rab
3 f2ssW a · rWab 3 pWb − sW b · rWab 3 pWad + ssW b · rWab 3 pWb − sW a · rWab 3 pWadgJ . s4d

Es5d is the leading QED correction, which includes Bethe
logarithms. It was first obtained for hydrogen; for a review,
see Refs.f5,6g. A few years laterEs5d was obtained for the
helium atomf7g; see Ref.f8g for a simple rederivation. This
result can be easily extended to arbitrary light atoms, and
recently calculations ofEs5d have been performed for lithium
f9,10g and beryllium atomsf11g. Es6d is a higher-order rela-
tivistic correction and is the subject of the present work. It
can be expressed as a sum of three terms,

Es6d =KfUHs4d 1

sE − H0d8
Hs4dUfL + kfuHs6dufl

+ a3lkfu o
a.b

o
b

ds3dsrabdufl, s5d

where Hs6d is an effective Hamiltonian of orderma6. It is
well known that the second-order correction from the Breit-
Pauli Hamiltonian is divergent since it contains, for example,
the Dirac d functions. It is less well known thatHs6d also
leads to divergent matrix elements and yet less well known
that in the sum of both terms these divergences almost cancel
out. The additional term containingl is the contribution*Electronic address: krp@fuw.edu.pl; www.fuw.edu.pl/˜krp
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coming from the forward-scattering three-photon-exchange
amplitude which cancels the last divergence in electron-
electron interactions, which leads to a finite result. The can-
cellation of divergences requires at first the inclusion of a
regulator, a cutoff in the maximum photon momenta, which
is allowed to go to infinity when all terms are combined
together.

The first derivation ofHs6d was performed for helium fine-
structure by Douglas and Kroll inf12g. In this case all matrix
elements were finite because they considered only the split-
ting of nPJ levels. The numerical evaluation of this splitting
has been performed to a high degree of precision by Yan and
Drake in f13g. Since calculations of higher-order relativistic
corrections when singular matrix elements are present are
rather complicated, they were first studied in detail for pos-
itronium, the electron-positron system. Thema6 contribution
to positronium hyperfine splitting was first obtainedswithout
annihilation termsd by Caswell and Lepage inf14g, where
they introduced a new approach to bound-state QED:
namely, nonrelativistic quantum electrodynamicssNRQEDd.
Although their original calculations happened to contain
some mistakes, the idea of NRQED was very fruitful, be-
cause it simplified enormously the treatment of bound states.
Its use has led to significant progress in bound-state QED,
with the calculation of the complete three-photon-exchange
contribution of orderma6 to positronium energy levels in
f15–17g. It was shown there that by introducing a regulator,
either a photon momentum cutoff or dimensional regulariza-
tion, one can derive and calculate all matrix elements in a
consistent way. The agreement between these calculations
and the other purely numerical calculation based on the
Bethe-Salpeter equationf18,19g justifies the correctness of
the effective Hamiltonian or NRQED approaches. It was
quickly found, after the positronium exercise, that a similar
effective HamiltonianHs6d can be derived for the helium
atom. Although the derivation ofHs6d for S and P states of
helium is rather straightforwardf20g, the elimination of
electron-electron singularities and the calculation of matrix
elements is quite involved. For this reason the first results
have been obtained for triplet states 23S1 in f21g and 23P
f22g, where electron-electron singularities are not present,
because the wave function vanishes atrW1=rW2. Within the di-
mensional regularization scheme Korobov and Yelkhovsky
f23g were able to derive a complete set of finite operators and
calculate their matrix elements for the 11S0 ground state of
helium. None of these results have been confirmed yet. In
this work we present a simple derivation of effective opera-
tors contributing toHs6d for an arbitrary state of arbitrary
light atoms. The results obtained agree for the special cases
of the1S, 3S1, and3PJ levels of helium with the former result
in f12,20g. Since we do not explicitly eliminate here
electron-electron singularities, we were not able to verify the
result f23g for the ground state of helium.

Our derivation consists of three steps. The first step is the
Foldy-Wouthuysen transformation of a single-electron Dirac
equation in an electromagnetic fieldf24g, performed to the
appropriate level of accuracy. The second step is formal. It is
the quantization of the electromagnetic field interacting with
the atom, using the Feynman integration by paths method
f24g. The third step is the derivation of an effective interac-

tion through the perturbative expansion of the equal-time
Green function of the total atomic system.

II. FOLDY-WOUTHUYSEN TRANSFORMATION

The Foldy-WouthuysensFWd transformationf24g is the
nonrelativistic expansion of the Dirac Hamiltonian in an ex-
ternal electromagnetic field,

H = aW · pW + bm+ eA0, s6d

wherepW =pW −eAW . The FW transformationS f24g leads to a
new Hamiltonian

HFW = eiSsH − i]tde−iS, s7d

which decouples the upper and lower components of the
Dirac wave function up to a specified order in the 1/m ex-
pansion. Here we calculate FW Hamiltonian up to terms
which contribute toma6 to the energy. While it is not clear
here which term contributes at which order, we postpone this
to the next section where this issue become more obvious.
Contrary to standard textbooks, we use a more convenient
single Foldy-Wouthuysen operatorS, which can be written as

S= −
i

2m
HbaW · pW −

1

3m2bsaW · pW d3

+
1

2m
faW · pW ,eA0 − i]tg + YJ , s8d

whereY is an as yet unspecified odd operatorhb ,Yj=0, such
that fY,eA0− i]tg<fY,saW ·pW d3g<0. It will be fixed at the end
to cancel all higher-order odd terms. The FW Hamiltonian is
expanded in a power series inS:

HFW = o
j=0

6

Hs jd + ¯ , s9d

where

Hs0d = H,

Hs1d = fiS,Hs0d − i]tg,

Hs jd =
1

j
fiS,Hs j−1dg for j . 1, s10d

and higher-order terms in this expansion, denoted by the el-
lipsis, are neglected. The calculations of subsequent commu-
tators is rather tedious. For the reader’s convenience we
present a separate result for eachHs jd:
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Hs1d =
b

m
saW · pW d2 −

b

3m3saW · pW d4 −
ie

4m2faW · pW ,aW ·EW g +
1

2m
fY,aW · pW g − aW · pW +

1

3m2saW · pW d3 − bY −
b

6m3fsaW · pW d3,eA0 − i]tg

−
e

4m2aW ·EẆ , s11d

Hs2d = −
b

2m
saW · pW d2 +

b

3m3saW · pW d4 −
b

18m5saW · pW d6 +
ie

8m2faW · pW ,aW ·EW g −
1

2m
fY,aW · pW g −

ie

24m4fsaW · pW d3,aW ·EW g

+
1

24m4faW · pW ,fsaW · pW d3,eA0 − i]tgg −
be

16m3saW · pW aW ·EẆ + aW ·EẆ aW · pW d −
1

2m2saW · pW d3 +
1

3m4saW · pW d5

−
ibe

16m3faW · pW ,faW · pW ,aW ·EW gg −
ibe

8m3fsaW · pW d2aW ·EW + aW ·EW saW · pW d2g, s12d

Hs3d = −
b

6m3saW · pW d4 +
b

6m5saW · pW d6 +
ie

96m4faW · pW ,faW · pW ,faW · pW ,aW ·EW ggg +
ie

48m4faW · pW ,saW · pW d2aW ·EW + aW ·EW saW · pW d2g

+
ie

24m4fsaW · pW d3,aW ·EW g +
1

6m2saW · pW d3 −
1

6m4saW · pW d5 +
ibe

48m3faW · pW ,faW · pW ,aW ·EW gg +
ibe

24m3fsaW · pW d3aW ·EW + aW ·EW saW · pW d3g,

s13d

Hs4d =
b

24m3saW · pW d4 −
b

18m5saW · pW d6 −
ie

384
faW · pW ,faW · pW ,faW · pW ,aW ·EW ggg −

ie

192m4faW · pW ,saW · pW d2aW ·EW + aW ·EW saW · pW d2g

−
ie

96m4fsaW · pW d3,aW ·EW g +
1

24m4saW · pW d5, s14d

Hs5d = −
1

120m4saW · pW d5 +
b

120m5saW · pW d6, s15d

Hs6d = −
b

720m5saW · pW d6. s16d

The sum ofHsid, Eq. s9d, gives a Hamiltonian, which still
depends onY. Following the FW principle, this operator is
now chosen to cancel all the higher-order odd terms from
this sum: namely,

Y =
b

5m4saW · pW d5 −
be

4m2aW ·EẆ +
ie

24m3faW · pW ,faW · pW ,aW ·EW gg

−
ie

3m3fsaW · pW d2aW ·EW + aW ·EW saW · pW d2g. s17d

Y fulfills the initial ansatz, that commutatorsfY,eA0− i]tg
and fY,saW ·pW d3g are of higher order and thus can be ne-
glected. The resulting FW Hamiltonian is

HFW = eA0 +
ssW · pW d2

2m
−

ssW · pW d4

8m3 +
ssW · pW d6

16m5

−
ie

8m2fsW · pW ,sW ·EW g −
e

16m3ssW · pW sW ·EẆ + sW ·EẆ sW · pW d

−
ie

128m4fsW · pW ,fsW · pW ,fsW · pW ,sW ·EW ggg

+
ie

16m4hssW · pW d2fsW · pW ,sW ·EW g + fsW · pW ,sW ·EW gssW · pW d2j,

s18d

where we used the commutator identity

fssW · pW d3,sW ·EW g = −
1

2
fsW · pW ,fsW · pW ,fsW · pW ,sW ·EW ggg

+
3

2
hssW · pW d2fsW · pW ,sW ·EW g + fsW · pW ,sW ·EW g

3ssW · pW d2j s19d

to simplify HFW. Moreover, there is some arbitrariness in the
operatorS, which means thatHFW is not unique. The stan-
dard approachf24g, which relies on subsequent use of FW
transformations, differs from this one by the transformationS
with some additional even operator. However, allHFW have
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to be equivalent at the level of matrix elements between the
states which satisfy the Schrödinger equation.

Let us now study the simple case of an external static
potential V;eA0. The FW Hamiltonian with the help of
simple commutations takes the form

HDC = V +
p2

2m
−

p4

8m3 +
p6

16m5 +
1

8m2s¹2V + 2¹W V 3 pW · sW d

−
3

32m4sp2¹W V 3 pW · sW + ¹W V 3 pW · sW p2d

+
1

128m4fp2,fp2,Vgg −
3

64m4sp2¹2V + ¹2V p2d. s20d

This Hamiltonian is equivalent to the one derived previously
in f15g, after use of the identity

kfufp2,fp2,Vggufl = 4kfus¹W Vd2ufl, s21d

which holds for expectation values on stationary Schrödinger
statesf. For the exact Coulomb potentialV=−Za / r, matrix
elements ofHDC become singular. Nevertheless, as was
shown inf15g, one can obtain Dirac energy levels up to order
msZad6 by regularizing the Coulomb potential in an arbitrary
way, and all singularities cancel out between the first- and
second-order matrix elements.

Our aim here is to obtain the Hamiltonian for further cal-
culations ofma6 contribution to energy levels of an arbitrary
light atom. For this one can neglect the vector potentialAW in
all the terms havingm4 and m5 in the denominator. More-

over, less obviously, one can neglect the term withsW ·AW sW ·EẆ

and theBW 2 term. It is because they are of second order in
electromagnetic fields which additionally contain derivatives
and thus contribute only at higher orders. After these simpli-
fications,HFW takes the form

HFW = eA0 +
1

2m
sp2 − esW ·BW d −

1

8m3sp4 − esW ·BW p2 − p2esW ·BW d −
1

8m2fe¹W ·EW + esW · sEW 3 pW − pW 3 EW dg

−
e

16m3ssW · pW sW ·EẆ + sW ·EẆ sW · pWd −
3

32m4fp2¹W seA0d 3 pW · sW + ¹W seA0d 3 pW · sW p2g +
1

128m4fp2,fp2,eA0gg

−
3

64m4fp2¹2seA0d + ¹2seA0d p2g +
1

16m5p6. s22d

From this Hamiltonian one builds the many-body Lagrangian
density

L = o
a

fa
!si]t − HFWdfa + LEM, s23d

whereLEM is a Lagrangian of the electromagnetic field and
with the help of perturbation theory calculates the Green
functions.

III. HIGHER-ORDER BREIT-PAULI HAMILTONIAN

We consider the equal-time retarded Green functionG
=GshrWaj ,t8 ; hrWaj ,td, where byhrWaj we denote the set of coor-
dinates for all particles of the system. This Green function is
similar to that used by Shabaev inf25g. In the stationary case
considered here,G=Gst8− td. The Fourier transform ofG in
the time variablet8− t can be written as

GsEd ;
1

E − HeffsEd
, s24d

which is the definition of the effective HamiltonianHeffsEd.
In the nonrelativistic caseHeff=H0. All the relativistic and
QED corrections resulting from the Lagrangian can be rep-
resented as

GsEd =
1

E − H0
+

1

E − H0
SsEd

1

E − H0

+
1

E − H0
SsEd

1

E − H0
SsEd

1

E − H0
+ ¯

=
1

E − H0 − SsEd
;

1

E − HeffsEd
, s25d

whereSsEd is then-particle-irreducible contribution. The en-
ergy level can be interpreted as a pole ofGsEd as a function
of E. For this it is convenient to consider the matrix element
of G between the the nonrelativistic wave function corre-
sponding to this energy level. There is always such a corre-
spondence, since relativistic and QED effects are small per-
turbations of the system. We follow here a relativistic
approach for the electron self-energy presented inf5g. This
matrix element is

kfuGsEdufl =KfU 1

E − H0 − SsEd
UfL ;

1

E − E0 − ssEd
,

s26d

where
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ssEd = kfuSsEdufl + o
nÞ0

kfuSsEdufnl
1

E − En
kfnuSsEdufl

+ ¯ . s27d

Having ssEd, the correction to the energy level can be ex-
pressed as

dE = E − E0 = ssE0d + s8sE0dssE0d + ¯

= kfuSsE0dufl + kfuSsE0d
1

sE0 − H0d8
SsE0dufl

+ kfuS8sE0duflkfuSsE0dufl + ¯ . s28d

Since the last term in Eq.s28d can be neglected up to order
ma6, one can consider onlySsE0d. In most cases, the explicit
dependence ofS on state, throughE0, can be eliminated by
appropriate transformations, with the help of various com-
mutations. The only exception is the so-called Bethe loga-
rithm, which contributes only to the orderma5. If we con-
sider this term separately, the operatorS gives an effective
Hamiltonian

Heff = H0 + S = H0 + Hs4d + Hs5d + Hs6d + ¯ , s29d

from which one calculates corrections to energy levels as in
Eq. s5d. The calculation ofS follows from Feynman rules for
Lagrangian in Eq.s23d. We will use the photon propagator in
the Coulomb gauge:

Gmnskd =5 −
1

kW2
, m = n = 0,

− 1

k0
2 − kW2 + ie

Sdi j −
kikj

kW2 D , m = i, n = j ,6
s30d

and consider separately corrections due to exchange of the
CoulombG00 and the transverseGij photon. The typical one-
photon-exchange contribution between electronsa andb is

kfuSsE0dufl = e2E d4k

s2pd4i
Gmnskd

3HKfU ja
mskdeikW·rWa

1

E0 − H0 − k0 + ie

3 jb
ns− kde−ikW·rWbUfL

+KfU jb
mskdeikW·rWb

1

E0 − H0 − k0 + ie

3 ja
ns− kde−ikW·rWaUfLJ , s31d

wheref is an eigenstate ofH0 and ja
m is an electromagnetic

current operator for particlea. One obtains the exact form of
jmskd from the Lagrangian in Eq.s23d and is defined as the
coefficient which multiplies the polarization vectorem in the
annihilation part of the electromagnetic potential:

AmsrW,td , el
meikW·rW−ik0tâl + H.c. s32d

The first terms of the nonrelativistic expansion ofj0 compo-
nent are

j0skWd = 1 +
i

4m
sW ·kW 3 pW −

1

8m2kW2 + ¯ s33d

and of thejW component are

jWskWd =
pW

m
+

i

2m
sW 3 kW . s34d

Most of the calculation is performed in the nonretardation
approximation; namely, one setsk0=0 in the photon propa-
gatorGmnskd and jskd. The retardation corrections are consid-
ered separately. Within this approximation and using the
symmetrizationk0↔−k0, thek0 integral is

1

2
E dk0

2pi
F 1

− DE − k0 + ie
+

1

− DE + k0 + ie
G = −

1

2
,

s35d

where we have assumed thatDE is positive, which is correct
whenf is the ground state. For excited states, the integration
contour is deformed in such a way that all the poles from the
electron propagator lie on one side, so it is not strictly speak-
ing the Feynman contour. However, the result of thek0 inte-
gration for excited states is the same as in the above, which
leads to

kfuSsE0dufl = − e2E d3k

s2pd3GmnskWdkfu jamskWdeikW·srWa−rWbd

3 jb
ns− kWdufl . s36d

The kW integral is the Fourier transform of the photon propa-
gator in the nonretardation approximation

GmnsrWd =E d3k

s2pd3GmnskWd =
1

4p

3 5−
1

r
, m = n = 0,

1

2r
Sdi j +

r ir j

rW2 D , m = i, n = j .

h s37d

One easily recognizes that in the nonrelativistic limitG00 is
the Coulomb interaction. However, this term is already in-
cluded inH0, which means that this nonrelativistic Coulomb
interaction has to be excluded from the perturbative expan-
sion. Next-order terms resulting fromj0 and jW lead to the
Breit-Pauli Hamiltonian, Eq.s4d. Below we derive the
higher-order term in the nonrelativistic expansion—namely,
the ma6 Hamiltonian, which we call here the higher-order
effective HamiltonianHs6d. It is expressed as a sum of vari-
ous contributions

Hs6d = o
i=0,9

dHi , s38d

which are calculated in the following.
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dH0 is the kinetic energy correction:

dH0 = o
a

pa
6

16m5 . s39d

dH1 is a correction due to the last three terms inHFW in
Eq. s22d. These terms involve onlyA0, so the nonretardation
approximation is strictly valid here. This correctiondH1 in-
cludes the Coulomb interaction between the electron and
nucleus and between electrons. So, if we denote byV the
nonrelativistic interaction potential

V ; o
a

−
Za

ra
+ o

a.b
o
b

a

rab
s40d

and byEa the static electric field at the position of particlea

eEWa ; − ¹W aV = − Za
rWa

ra
3 + o

bÞa

a
rWab

rab
3 , s41d

thendH1 can be written as

dH1 = o
a

3

32m4sW a · spa
2eEWa 3 pWa + eEWa 3 pWapa

2d

+
1

128m4fpa
2,fpa

2,Vgg −
3

64m4spa
2¹a

2V + ¹a
2Vpa

2d.

s42d

dH2 is a correction to the Coulomb interaction between
electrons which comes from the fourth term inHFW: namely,

−
1

8m2fe¹W ·EW + esW · sEW 3 pW − pW 3 EW dg. s43d

If interaction of both electrons is modified by this term, it
can be obtained in the nonretardation approximation, Eq.
s36d, so one obtains

dH2 = o
a.b

o
b
E d3k

4p

k2

1

64m4sk2 + 2isW a · pWa 3 kWdeikW·rWabsk2 + 2isW b ·kW 3 pWbd

= o
a.b

o
b

1

64m4H− 4p¹2d3srabd − 8pisW a · pWa 3 d3srabdpWa − 8pisW b · pWb 3 d3srabdpWb + 4ssW a 3 pWadiFdi j

3
4pd3srabd

+
1

rab
3 Sdi j − 3

rab
i rab

j

rab
2 DGssW b 3 pWbd jJ . s44d

We have encountered here for the first time singular electron-electron operators. One can make them meaningful by appro-
priate regularization of the photon propagator or by dimensional regularization. In general it is a difficult problem and, as we
have written in the Introduction, the explicit solution was demonstrated for the positronium and helium atoms only.

dH3 is an correction that comes from the fifth term in Eq.s22d:

−
e

16m3ssW · pWsW ·EẆ + sW ·EẆ sW · pWd. s45d

To calculate it, we have to return to the original expression for one-photon exchange. We assume that particlea interacts by
this term, while particleb by nonrelativistic couplingeA0, and obtain

dE3 = o
aÞb

o
b

− e2E d4k

s2pd4i

1

kW2

1

16m3HKfUssW a · pWasW a ·kWeikW·rWa + eikW·rWasW a · pWasW a ·kWd
k0

E0 − H0 − k0 + ie
e−ikW·rWbUfL

+KfUeikW·rWb
k0

E0 − H0 − k0 + ie
ssW a · pWasW a ·kWeikW·rWa + eikW·rWasW a · pWasW a ·kWdUfLJ . s46d

We replacekW→−kW in the second term then perform thek0 integral, and obtain

dE3 = o
aÞb

o
b

−
e2

2
E d3k

s2pd3

1

kW2

1

16m3hkfussW a · pWasW a ·kWeikW·rWa + eikW·rWasW a · pWasW a ·kWdsH0 − E0de−ikW·rWbufl

+ kfueikW·rWbsH0 − E0dssW a · pWasW a ·kWeikW·rWa + eikW·rWasW a · pWasW a ·kWduflj. s47d
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After commutingsH0−E0d with e±ikW·rWb one expresses this cor-
rection in terms of an effective operator

dH3 = o
aÞb

o
b

−
1

32m4Fpb
2,Fpa

2,
a

rab
GG . s48d

dH4 is the relativistic correction to transverse photon ex-

change. The first electron is coupled toAW by the nonrelativ-
istic term

−
e

m
pW ·AW −

e

2m
sW ·BW s49d

and the second one by the relativistic correction, the third
term in Eq.s22d:

−
1

8m3sp4 − esW ·BW p2 − p2esW ·BW d

→ e

8m3sp22pW ·AW + 2pW ·AW p2 + sW ·BW p2 + p2sW ·BW d.

s50d

It is sufficient to calculate it in the nonretardation approxi-
mation

dH4 = o
aÞb

o
b

a

8m3f2pa
2pa

i + pa
2ssW a 3 ¹adigFpb

j

m
+

1

2m
ssW b

3 ¹W bd jG 1

2rab
Sdi j +

rab
i rab

j

rab
2 D + H.c. s51d

It is convenient at this point to introduce a notation for the
vector potential at the position of particlea which is pro-
duced by other particles:

eAa
i ; o

bÞa

a

2rab
Sdi j +

rab
i rab

j

rab
2 Dpb

j

m
+

a

2m

ssW b 3 rWabdi

rab
3 .

s52d

Then this correction can be written as

dH4 = o
a

e

8m3f2pa
2pWa ·AW a + 2pa ·AW apa

2 + pa
2sW a ·¹W a 3 AW a

+ sW a ·¹W a 3 AW apa
2g. s53d

Let us notice that in the nonretardation approximation any
correction can be simply obtained by replacing the magnetic

field AW by a static fieldAW a. We will use this fact in further
calculations.

dH5 comes from the coupling

e2

8m2sW · sEW 3 AW − AW 3 EW d, s54d

which is present in the fourth term in Eq.s22d. The resulting

correction is obtained by replacing the fieldsEW andAW by the
static fields produced by other electrons:

dH5 = o
a

e2

8m2sW a · fEWa 3 AW a − AW a 3 EWag. s55d

dH6 comes from the coupling

e2

2m
AW 2, s56d

which is present in the second term of Eq.s22d. Again, in the

nonretardation approximation theAW a field is being replaced
by the static fields produced by other electrons:

dH6 = o
a

e2

2m2AW a
2. s57d

dH7 is a retardation correction in the nonrelativistic
single-transverse-photon exchange. To calculate it, we have
to return to the general one-photon-exchange expression, Eq.
s31d, and take the transverse part of the photon propagator:

dE = − e2E d4k

s2pd4i

1

sk0d2 − kW2 + ie
Sdi j −

kikj

kW2 D
3KfU ja

i skdeikW·rWa
1

E0 − H0 − k0 + ie
jb
j s− kde−ikW·rWbUfL

+ sa ↔ bd. s58d

We assume that the productja
i skd jb

j s−kd contains at most a
single power ofk0. This allows one to perform thek0 inte-
gration by encircling the only polek0= ukWu on Rsk0d.0 com-
plex half plane and obtain

dE = e2E d3k

s2pd32k
Sdi j −

kikj

k2 DKfU ja
i skdeikW·rWa

1

E0 − H0 − k

3 jb
j s− kde−ikW·rWbUfL + sa ↔ bd, s59d

wherek= ukWu. By using the nonrelativistic form ofj i and tak-
ing the third term in the retardation expansion,

1

E0 − H0 − k
= −

1

k
+

H0 − E0

k2 −
sH0 − E0d2

k3 + ¯ , s60d

where the first one contributes to the Breit-Pauli Hamil-
tonian, the second term toEs5d, and the third term givesdE7:

dE7 = o
aÞb

o
b

− e2E d3k

s2pd32k4Sdi j −
kikj

k2 DKfUSpWa

m
+

1

2m
sW a

3 ¹W aDi

eikW·rWasH0 − E0d2SpWb

m
+

1

2m
sW b 3 ¹W bD j

e−ikW·rWbUfL .

s61d

This is the most complicated term in the evaluation, and we
have to split it into three parts with no-spin, single-spin, and
double-spin terms:

dE7 = dEA + dEB + dEC. s62d

The part with double-spin operators is
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dEC = o
a

o
aÞb

− e2E d3k

s2pd32k4

ssW a 3 kWd · ssW b 3 kWd
4m2

3kfueikW·rWasH0 − E0d2e−ikW·rWbufl. s63d

One uses the commutation identity

keikW·rWasH0 − E0d2e−ikW·rWbl + sa ↔ bd

= kfeikW·rWa,fsH0 − E0d2,e−ikW·rWbggl

= −
1

2m2kfpa
2,fpb

2,eikW·rWabggl s64d

to express this correction in terms of the effective operator
dHC:

dHC = o
a.b

o
b

a

16m4Fpa
2,Fpb

2,sW a · sW b
2

3rab

+ sa
i sb

j 1

2rab
S rab

i rab
j

rab
2 −

di j

3
DGG . s65d

The part with the no-spin operator is

dEA = o
aÞb

o
b

− e2E d3k

s2pd32k4Sdi j −
kikj

k2 DKfU pa
i

m
heikW·rWa

3sH0 − E0d2e−ikW·rWb − sH0 − E0d2j
pb

j

m
UfL . s66d

We subtracted here the term withk=0. We ought to perform
this in Eq. s61d, where lower-order terms were subtracted,
but for simplicity of writing we have not done it until now.
We use another commutator identity

eikW·rWasH0 − E0d2e−ikW·rWb − sH0 − E0d2

= sH0 − E0dseikW·rWab − 1dsH0 − E0d

+ sH0 − E0dF pb
2

2m
,eikW·rWab − 1G

+ FeikW·rWab − 1,
pa

2

2m
GsH0 − E0d

+ F pb
2

2m
,FeikW·rWab − 1,

pa
2

2m
GG s67d

and the integration formula

E d3k
4p

k4 Sdi j −
kikj

k2 DseikW·rW − 1d =
1

8r
sr ir j − 3di j r2d s68d

to obtain the effective operatordHA:

dHA = o
a.b

o
b

−
a

8m2Hfpa
i ,Vg

rab
i rab

j − 3di j rab
2

rab
fV,pb

j g + fpa
i ,Vg

3F pb
2

2m
,
rab

i rab
j − 3di j rab

2

rab
Gpb

j + pa
i F rab

i rab
j − 3di j rab

2

rab
,

pa
2

2m
G

3fV,pb
j g + pa

i F pb
2

2m
,F rab

i rab
j − 3di j rab

2

rab
,

pa
2

2m
GGpb

jJ . s69d

The part with the single-spin operator is

dEB = o
aÞb

o
b

−
ie2

4m2 E d3k

s2pd3k4heikW·rWasH0 − E0d2e−ikW·rWbsW a

3 kW · pWb − pWa · sW b 3 kWeikW·rWasH0 − E0d2e−ikW·rWbj. s70d

With the help of the commutator in Eq.s67d identity and the
integral

E d3k
4pkW

k4 eikW·rW =
i

2

rW

r
, s71d

one obtains

dHB = o
a.b

o
b

a

4m2HFsW a 3
rWab

rab
,

pa
2

2m
GfV,pWbg

+ F pb
2

2m
,FsW a 3

rWab

rab
,

pa
2

2m
GGpWb − fpWa,VgFpb

2,sW b 3
rWab

rab
G

− pWaF pa
2

2m
,FsW a 3

rWab

rab
,

pb
2

2m
GGJ . s72d

Finally, the operatordH7 is a sum of already derived parts:

dH7 = dHA + dHB + dHC. s73d

dH8 is a retardation correction in a single-transverse-
photon exchange, where one vertex is nonrelativistic, Eq.
s49d, and the second comes from the third term in Eq.s22d:

−
e

8m2sW · sEW 3 pW − pW 3 EW d. s74d

With the help of Eq.s59d one obtains the following expres-
sion for dE8:

dE8 = o
aÞb

o
b

e2E d3k

s2pd3Sdi j −
kikj

k2 D i

16m3kfuseikW·rWapWa 3 sW a

+ pWa 3 sW ae
ikW·rWadi 1

E0 − H0 − k
SpWb −

i

2
sW b 3 kWD j

e−ikW·rWbufl

+ H.c. s75d

In the expansion of 1/sE0−H0−kd in Eq. s60d the first term
vanishes because H.c. and the second term is a correction of
orderma6. After commutingsH0−E0d on the left one obtains
the effective operatordH8:
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dH8 = o
aÞb

o
b

e2E d3k

s2pd3Sdi j −
kikj

k2 D 1

k2

i

16m3FeikW·rWabpWa 3 sW a + pWa 3 sW ae
ikW·rWab,V +

pa
2

2m
G iSpWb −

i

2
sW b 3 kWD j

+ H.c.

= o
a

e2

8m2sW a · fEWa 3 AW a − AW a 3 EWag +
ie

16m3fAW a · pWa 3 sW a + pWa 3 sW a ·AW a,pa
2g. s76d

dH9 is a one- and two-loop radiative correction,

dH9 = HR1 + HR2, s77d

and its derivation requires a separate treatment. We base our
treatment here on known results for helium, which in turn are
based on hydrogen and positronium, and extend it to an ar-
bitrary atom, as long as nonrelativistic expansion makes
sense:

HR1 = o
a

asZad2

m2 9.61837d3srad

+ o
a.b

o
b

a3

m2s14.33134 − 3.42651sW a · sW bdd3srabd,

s78d

HR2 = o
a

a2sZad
m2 0.17155d3srad

+ o
a.b

o
b

a3

m2s− 0.66526 + 0.08633sW a · sW bdd3srabd

+ Sa

p
D2Ho

a

Za

4m2sW a ·
rWa

ra
3 3 pWa2ae

s2d

+ o
a.b

o
b

a

4m2

sa
i sb

j

rab
3 Sdi j − 3

rab
i rab

j

rab
2 Df2ae

s2d + sae
s1dd2g

−
a

4m2rab
3 ssW a + sW bd · rWab 3 spWa − pWbd2ae

s2dJ . s79d

where

k =
a

p
ae

s1d + Sa

p
D2

ae
s2d + . . . , s80d

ae
s1d = 0.5, s81d

ae
s2d = − 0.328 478 965 . . . , s82d

andk is the electron magnetic moment anomaly.

IV. SUMMARY

The obtained completema6 contributionHs6d, Eq. s38d, is
in agreement with the former derivation for the particular
case of heliumS f20g and P levels f12g, but is much more
compact. Due to differing ways of representing various com-
plicated operators, this comparison is rather nontrivial, and
we had to refer in many case to a momentum representation
to find agreement. Since the present derivation differs from

the former one, this agreement may be regarded as a justifi-
cation of this and as well as the former results. We have not
derived here the terml in Eq. s5d. It is obtained by matching
the forward-scattering amplitude in full QED with the one
obtained from the effective Hamiltonian or NRQED, and it
accounts for the contribution with high electron momentum.
l depends, however, on the regularization scheme, and once
it is fixed, it can be obtained in a similar way as in dimen-
sional f23g or photon propagator regularizationsf20g.

Hs6d can be used for high-precision calculations of energy
levels of few-electron atoms, provided two difficulties are
overcome. The first one is the algebraic elimination of
electron-electron singularities. The elimination of electron-
nucleus singularities was demonstrated on hydrogen and he-
lium examples, and could easily be extended to an arbitrary
atom. The elimination of electron-electron singularities using
the dimensional regularization scheme was performed for the
ground state of helium atom inf23g; however, this derivation
was very complicated and so far this result has not been
confirmed. The extension to more than two-electron atoms is
even more complicated; therefore, a new idea which will
lead to elimination of electron-electron singularities is
needed. The second difficulty is the lack of analytical values
for integrals with basis sets, which fulfill the cusp conditions.
For example, for the Hylleraas basis set only three-electron
integrals are known analyticallyf26,27g. This cusp condition
is necessary, because effective operators present indHs6d

contain many derivatives. For these reasons the calculation
of ma6 contribution to atomic energy levels has been accom-
plished only for a few states of helium atomsf13,21–23g and
hyperfine splittingf28g, where a powerful random exponen-
tial basis set has been applied. For the three-f9,10g and four-
electronf11g systems the leading QED effects—namely, the
correction of orderma5—have only recently been calculated.
Due to developments in the Hylleraas basis setsf27,29g, we
think the calculation ofma6 contribution to lithium energy
levels is now possible. Particularly interesting is theQsa2d
correction to hyperfine splitting, which may be regarded as a
benchmark calculations for multiconfiguration Dirac-Fock or
many body perturbation theorysMBPTd methods. Another
interesting example is the fine structure ofPJ levels, where
electron-electron singularities are not present, such as for
helium fine structure.
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