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Higher-order effective Hamiltonian for light atomic systems
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We present the derivation of the effective higher-order Hamiltonian, which givess8rcontribution to the
energy levels of an arbitrary light atom. The derivation is based on the Foldy-Wouthuysen transformation of the
one-particle Dirac Hamiltonian followed by perturbative expansion of the many-particle Green function. The
obtained results can be used for the high precision calculation of relativistic effects in atomic systems.
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I. INTRODUCTION proach, which is suited for light atoms, relies on expansion

The calculation of relativistic corrections to energy levelsOf €nergy levels in powers of the fine-structure constant
of atomic systems is usually accomplished by using the
many-electron Dirac-CoulomtDC) Hamiltonian with pos- E(e) =E@+EW+E® +E® +0(d"), 1)
sible inclusion of the Breit interaction between electrons. " - n @
However, such a Hamiltonian can not be rigorously derivethereE. 1S the contnbutlc_)n of ordema”, sc_)_E s the .
from quantum electrodynami€ED) theory and thus gives nonrelatzv)lstlc energy as given by the Schrodinger Hamil-
an incomplete treatment of relativistic and QED effects. The fonianH'®'= Ho,
electron self-energy and vacuum polarization can be in-
cluded in the DC Hamiltoniaf1,2], though only in an ap- Ho=S ( A >+ D Z a 2
proximate way. A different approach, which is justified by 0~ ~\2m r,
quantum field theory, is to start from a well adapted one-
electron local potential and build many-body perturbationE® is the leading relativistic correction given by the Breit-
theory. This approach allows for the consistent inclusion ofPauli HamiltonianH™® [4],
QED effects as well as a correct treatment of the so-called
“negative-energy states.” It is being pursued by Sapirstein E@ = (p|H?| ), (3)
and Chend3], but so far no high-accuracy results have been
achieved for neutral few-electron atoms. An alternative apwhere

a>b b rab

o=s{- P ”2“53( P A TSOD R ) - <5j rabréb) b= 2T - o)
- a 8m3 G'a g p a>b b fab 2pa lap rgb pb 3m2 Ua Ub 2
@ ool rir
o ra b(&' 3-2t ab) rr12 3 [2(0a Fap X Po= 0 * Fap X Pa) + (0 Fap X Pp = Ta - Fap X pa)]} (4)
ab
[

E® is the leading QED correction, which includes Bethe © w1 @ ©
logarithms. It was first obtained for hydrogen; for a review, E¥=\¢H (E—— HO)’H ¢ ) +(H®|¢p)
see Refs[5,6]. A few years latelE® was obtained for the
helium atom[7]; see Ref[8] for a simple rederivation. This +a®\(p| X, D 8 (rap)| e, (5)
result can be easily extended to arbitrary light atoms, and a>b b

recently calculations dE®® have been performed for lithium
[9,10] and beryllium atom$11]. E©® is a higher-order rela-
tivistic correction and is the subject of the present work. It
can be expressed as a sum of three terms,

whereH® is an effective Hamiltonian of ordema®. It is

well known that the second-order correction from the Breit-
Pauli Hamiltonian is divergent since it contains, for example,
the Dirac & functions. It is less well known that® also
leads to divergent matrix elements and yet less well known
that in the sum of both terms these divergences almost cancel
*Electronic address: krp@fuw.edu.pl; www.fuw.edujifp out. The additional term containiny is the contribution
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coming from the forward-scattering three-photon-exchangéion through the perturbative expansion of the equal-time
amplitude which cancels the last divergence in electronGreen function of the total atomic system.

electron interactions, which leads to a finite result. The can-

cellation of divergences requires at first the inclusion of a

regulator, a cutoff in the maximum photon momenta, which Il. FOLDY-WOUTHUYSEN TRANSFORMATION
is allowed to go to infinity when all terms are combined ) )
together. The Foldy-WouthuyserfFW) transformation[24] is the

The first derivation oH (6) was performed for helium fine- nonrelativistic eXpanSIon of the Dirac Hamiltonian in an ex-

structure by Douglas and Kroll ifi12]. In this case all matrix ~ ternal electromagnetic field,

elements were finite because they considered only the split-

ting of nP; levels. The numerical evaluation of this splittin _2. = 0

hag beeanerformed to a high degree of precision bpran gnd H=a-m+pmten, ©)
Drake in[13]. Since calculations of higher-order relativistic

corrections when singular matrix elements are present arehere w=p- eA The FW transformatiors [24] leads to a
rather complicated, they were first studied in detail for possnew Hamiltonian
itronium, the electron-positron system. Time contribution

to positronium hyperfine splitting was first obtain@dthout

annihilation termp by Caswell and Lepage ifil4], where

they introduced a new approach to bound-state QED:

namely, nonrelativistic quantum electrodynamibRQED).  Which decouples the upper and lower components of the
Although their original calculations happened to containDirac wave function up to a specified order in theviéx-
some mistakes, the idea of NRQED was very fruitful, be-pansion. Here we calculate FW Hamiltonian up to terms
cause it simplified enormously the treatment of bound statevhich contribute toma® to the energy. While it is not clear

Its use has led to significant progress in bound-state QED)ere which term contributes at which order, we postpone this
with the calculation of the complete three-photon-exchangé0 the next section where this issue become more obvious.
contribution of orderma® to positronium energy levels in Contrary to standard textbooks, we use a more convenient
[15-17. It was shown there that by introducing a regulator,single Foldy-Wouthuysen operatSrwhich can be written as
either a photon momentum cutoff or dimensional regulariza-

tion, one can derive and calculate all matrix elements in a i . o

consistent way. The agreement between these calculations S:—% Ba - - ﬁﬁ(a-ﬂ)s

and the other purely numerical calculation based on the

Bethe-Salpeter equatidri8,19 justifies the correctness of
the effective Hamiltonian or NRQED approaches. It was
quickly found, after the positronium exercise, that a similar

effective HamiltonianH® can be derived for the helium whereY is an as yet unspecified odd opera8rY}=0, such
tom. Although the derivation dfi®® for S andP states of N . ; o
arom. Ahough the cerivation Of Sanar Saies OF o t[Y,eA%~ig]=[Y, (@73 ~0. It will be fixed at the end

helium is rather straightforward20], the elimination of t L
electron-electron singularities and the calculation of matrix© ¢ancel all higher-order odd terms. The FW Hamiltonian is
&xpanded in a power series #

elements is quite involved. For this reason the first result
have been obtained for triplet state$S in [21] and 2°P
[22], where electron-electron singularities are not present, )
because the wave function vanishesatr,. Within the di- Hew=2 HO+ -, 9
mensional regularization scheme Korobov and Yelkhovsky i=0
[23] were able to derive a complete set of finite operators and
calculate their matrix elements for the', ground state of where
helium. None of these results have been confirmed yet. In
this work we present a simple derivation of effective opera- HO = H
tors contributing toH® for an arbitrary state of arbitrary
light atoms. The results obtained agree for the special cases
of the''S, °S;, and®P, levels of helium with the former resuit HO =[iS,HO —ig],
in [12,20. Since we do not explicitly eliminate here
electron-electron singularities, we were not able to verify the
result[23] for the ground state of helium. 1

Our derivation consists of three steps. The first step is the HY =[S HI™Y] forj>1, (10)
Foldy-Wouthuysen transformation of a single-electron Dirac ]
equation in an electromagnetic figld4], performed to the
appropriate level of accuracy. The second step is formal. It i@nd higher-order terms in this expansion, denoted by the el-
the quantization of the electromagnetic field interacting withlipsis, are neglected. The calculations of subsequent commu-
the atom, using the Feynman integration by paths methothtors is rather tedious. For the reader’s convenience we
[24]. The third step is the derivation of an effective interac-present a separate result for eat#:

Hew=€S(H -idg)e™s, (7)

1
+ ?n[& -ar,eA—ig] +Y}, (8)

6
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.o .o e . .. o= 1 . .- :
H(l)Zg(a-77)2—%(a-77)4—£1rl—m2[a-77,a-E]+§n[Y,a-7T]— 7T+3F(a/ )3 —IBY—%[(Q'W)S,GAO—I(?I]
e _ >
“am® B (11
B .. B . . e . .. - 1__ . . e _ . ... =
HP —En(a-ﬂ')2+ﬁ(a-7r)4 8m5( )8+ mz[a-ﬂ',a-E]—in[Y,a-ﬂ']—24m4[(a-77)3,a-E]
pe . L. = L =, . 1 .
24m4[a m[(a-m)3 e - I&t]]—16m3(a-77a-E+a-Ea-w)—ﬂ(a-ﬂ')3+—4(a-ﬂ')5
|ﬁe R e
[a mla-ma- E]]—8 3[(a m2a-E+a-E(a-m?], (12
B /3 e e .o e -
HO = o —l(a- 77)4+ -77)6+96m4[a-w,[a-w,[a-ﬂ',a-E]]]+48m4[a-77,(a-77)2a-E+a-E(a-7T)2]
N 1 . . e . L. L 9o e 5 2 s 24 s
24m4[(a w3, E]+ e 5(a- )3 - 6m4(a-7r)5+4|'3 s[a- 7 [a W,a-E]]+ L s[(a- mia-E+a-E(a 773,
(13
HW = A (a-m)*- A (a- ) ——[a mla-mla-ma- E]]] e ——[a-m(a- 7)°a é+&-|§(&-7?r)2]
24m? 187 384 192m*
1
96m4[(a 3 a- E]+ 4m4(a m)°, (14)
|
(R . (¢-m? (¢-m* (o-m°
®=_ .7+ - 7)8, 15 —ap0 -
R = e @ ™ e @™ (139 Hew=eA+ = =T ¥ e
e -
[0' T,0 - E] —3(o-7o- E+(r EO’ T)
6) — - -6 -
MO == @ P (16) = Dogl? mlo - mld- ma-Elll
e b s s s 2 b o s 2 s
: . o o ——lo- Mo 7,6 -El+[o- 76 El(d- ™),
The sum ofH", Eq. (9), gives a Hamiltonian, which still 16m
depends orY. Following the FW principle, this operator is (19

now chosen to cancel all the higher-order odd terms from
this sum: namely, where we used the commutator identity

[(6-7)3 6 é]=—%[5'-ﬁ,[&-ﬁ,[&-ﬁ,&-é]]]
B .. .. Be. -
ﬁ(“'”)s'fn?“'a

Y

e e s s o L=

= ——sla-mla-ma-E]] 3 . N
4m S aors s .

+5{(a'-77) [c 70 -E]+[o 7 0-E]

>

Ly
- 3m3[(a ~m)a-E+a-E(a-m)7]. (17 x(&- M2 (19)
to simplify Hg,. Moreover, there is some arbitrariness in the
. o _ operatorS, which means thaHg, is not unique. The stan-
Y fulfills the initial ansatz, that commutatof&,eA’-i3]  dard approachi24], which relies on subsequent use of FW
and [Y,(a-m)? are of higher order and thus can be ne-transformations, differs from this one by the transformaon

glected. The resulting FW Hamiltonian is with some additional even operator. However, l#, have
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to be equivalent at the level of matrix elements between the

states which satisfy the Schrédinger equation.

PHYSICAL REVIEW A71, 012503(2005

(BIPAIPA VI ) = Kl (VV)? ), (21)

Let us now study the simple case of an external statiovhich holds for expectation values on stationary Schrodinger

potential V=eA’. The FW Hamiltonian with the help of
simple commutations takes the form

Moo=V B P P + L (VA4 29V X B )
bC= Y om sm®  16mP 8 p-o
3 . -
- 32m4(I02VV>< p-c+VVXp-apd)
F e [RIPPV]] - — (PPVV+ VAV D). (20)
128n*" 64m’* '

states¢. For the exact Coulomb potentisl=—-Za/r, matrix
elements ofHpc become singular. Nevertheless, as was
shown in[15], one can obtain Dirac energy levels up to order
m(Za)® by regularizing the Coulomb potential in an arbitrary
way, and all singularities cancel out between the first- and
second-order matrix elements.

Our aim here is to obtain the Hamiltonian for further cal-
culations ofma® contribution to energy levels of an arbitrary

light atom. For this one can neglect the vector potenﬁim
all the terms havingn* and m® in the denominator. More-
over, less obviously, one can neglect the term ViitAG - E

and theB? term. It is because they are of second order in
electromagnetic fields which additionally contain derivatives

This Hamiltonian is equivalent to the one derived previouslyand thus contribute only at higher orders. After these simpli-

in [15], after use of the identity

fications,Hg,, takes the form

1 o= 1 o= R 1_ - - .o L L=
HFW=eA0+%(7TZ—eo'-B)—%(ﬂ"‘—ea'-Bﬂ'Z—ﬂ'Zeo-B)—ﬁ[ev-E+ea'-(E><7T—7T><E)]

e . .. = . =, 3 - . . = . 1
- 16mg(cr-p(r-E+ g-Ed-p)- 32n4[p2V(er) Xp-o+V(EerA) X p-ap?l+ 128ﬂ4[p2’[p2’8A0]]
3 2v72 0 2 0\ 12 1 6 22
" amilP VAeR) + VHeA) pil+ TP (22
[
From this Hamiltonian one builds the many-body Lagrangian 1 1 1
density G(E) = + 2(B)
E-Hy E-Hg E-Hg
L= ~(ig,—H + Lews 23 1 1 1
§¢a( i~ Hew) a + Lem (23) . 5® 5® .
E - Ho E - HO E - HO
where Lgy is a Lagrangian of the electromagnetic field and 1 1
with the help of perturbation theory calculates the Green (25)

functions.

lll. HIGHER-ORDER BREIT-PAULI HAMILTONIAN

We consider the equal-time retarded Green functin
=G({rg},t";{r4,1), where by{r,} we denote the set of coor-

“E-Ho-3(E) E-Hey(E)’

whereX, (E) is then-particle-irreducible contribution. The en-
ergy level can be interpreted as a poleG{E) as a function

of E. For this it is convenient to consider the matrix element
of G between the the nonrelativistic wave function corre-
sponding to this energy level. There is always such a corre-

d_inz;tes for all particles of the system. This Gre_en function iSSpondence, since relativistic and QED effects are small per-
similar to that used by Shabaev[i5]. In the stationary case y,hations of the system. We follow here a relativistic

considered hereG=G(t' —t). The Fourier transform of in
the time variabld’ -t can be written as

1t
E—Her(E)’

which is the definition of the effective Hamiltonidfi.x(E).
In the nonrelativistic caséls=H,. All the relativistic and

G(E) = (24)

approach for the electron self-energy presentefbin This
matrix element is

__ 1
 E-Eg-o(E)’
(26)

1
<¢|G(E)|¢>:<¢‘m’¢>

QED corrections resulting from the Lagrangian can be rep-

resented as

where
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1 A(F 1) — attaikT-ikOtA
o(B)= (IS E) ) + 3 (SIS E)| ) - (Al2E)) ARD ~ g T v e 52
n#0 n The first terms of the nonrelativistic expansionjdttompo-
oo (27)  nentare
Having o(E), the correction to the energy level can be ex- o) =1 +i—&-IZ>< B - iEZJ, (33)
pressed as 8m?
SE=E-Ey=0(Ey) + o' (Ep)o(Eg) + - - and of thef component are
1 >~ ﬁ | - -
= Eo)|¢) + E)————3(E ==—+—oxk
(GIEED|D) + (A (ED) 5 E0ld) )=+ xK (34
+ (B2 (Eo)|pX B2 (Eg)| ) + - . (28)  Most of the calculation is performed in the nonretardation

. . approximation; namely, one set8=0 in the photon propa-
Since the last term in Ed28) can be neglected up to order gatorG,,(k) andj(k). The retardation corrections are consid-

6 ; e
ma?, one can consider onBi(E). In most cases, the explicit ered separately. Within this approximation and using the
dependence af on state, througly, can be eliminated by symmetrizatiorik? — —k?, the k° integral is

appropriate transformations, with the help of various com-

mutations. The only exception is the so-called Bethe loga- 1 d 1 1 1
rithm, which contributes only to the ordena®. If we con- Ef ol —AE-K0+ie * CAE+K+ie|l T T 2
sider this term separately, the operatoigives an effective

Hamiltonian (35

where we have assumed thd is positive, which is correct
when ¢ is the ground state. For excited states, the integration
from which one calculates corrections to energy levels as iffontour is deformed in such a way that all the poles from the
Eq. (5). The calculation o follows from Feynman rules for €l€ctron propagator lie on one side, so it is not strictly speak-
Lagrangian in Eq(23). We will use the photon propagator in N9 the Feynman contour. However, the result of kAénte-

Heﬁ:HO+E:HO+H(4)+H(5)+H(6)+... , (29)

the Coulomb gauge: gration for excited states is the same as in the above, which
leads to
1
- —yp= d3k -, . > Gl (P
® “ e Wl =-¢ [ 50, 0l g o
G,k =
(6=, =i e Xjb(=R)g) (36)
Gerie\ MR ) mTh e S

(30) Thek integral is the Fourier transform of the photon propa-
gator in the nonretardation approximation
and consider separately corrections due to exchange of the Pk 1
CoulombGgq and the transversg;; photon. The typical one- G, :f —BGW(R) =
photon-exchange contribution between electraradb is (2m) 4w

1

(BZ(Ey)| >—e2fﬂe K -, u=v=0,
d) 0)¢ - (27T)4| MV() " r (37)
Q 1 i(,;_+m) PR
X{<¢i‘a‘<k>é”am 2\ W) T
0~ Mo~

One easily recognizes that in the nonrelativistic liBj, is
b the Coulomb interaction. However, this term is already in-
cluded inHg, which means that this nonrelativistic Coulomb
interaction has to be excluded from the perturbative expan-
sion. Next-order terms resulting frof? andf lead to the
Breit-Pauli Hamiltonian, Eq.(4). Below we derive the
higher-order term in the nonrelativistic expansion—namely,
¢>} (31) the ma® Hamiltonian, which we call here the higher-order
effective HamiltonianH®. It is expressed as a sum of vari-
where ¢ is an eigenstate dfl, andj% is an electromagnetic ous contributions
current operator for particla. One obtains the exact form of

Xjp(= ke

(k)T

+<¢ EO_HO_kO+i€

Xy ke

j*“(k) from the Lagrangian in Eq23) and is defined as the H® = _E oH;, (38)
coefficient which multiplies the polarization vectet in the =09
annihilation part of the electromagnetic potential: which are calculated in the following.
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S6Hy is the kinetic energy correction: 3
oH, = 2 Spria (PZ6Ea X Pa+ €€2 X ap)
2 o (39)
. . . 128“4[pa:[palv]] - 4(D§V§V + V§Vp§)
6H4 is a correction due to the last three termsHpy in
Eq. (22). These terms involve only®, so the nonretardation (42)

approximation is strictly valid here. This correcti@hi, in-
cludes the Coulomb interaction between the electron an
nucleus and between electrons. So, if we denote/kthe
nonrelativistic interaction potential

d oH2 is a correction to the Coulomb interaction between
electrons which comes from the fourth termHi,,: namely,

Za a
V= - —+> > — (40) 1 _ > » . = . . =
a Ta abblap ~gpetev Eted (Exp-pxBE)] (43
and by¢&, the static electric field at the position of particle
o _ _ r-)a l?ab
el =-VaV= _Zaﬁ + 2 s (41) | interaction of both electrons is modified by this term, it
a bra Tab can be obtained in the nonretardation approximation, Eq.
then 8H,; can be written as (36), so one obtains

4 1 T Lo e s
SHp= 2 > d3kk—’27 a2+ 216, B, X KXl + 2, - KX i)
a>b b

=> E 6am { AmV283(r ) — 871Gy - Pa X 8 ap)Pa— 87 T - P X (F ap) Py + 4(T5 X B’ 47753(rab)
a>b b
J
+%<5ij_ abrab)}((fbx pb)J} (44)
lab rab

We have encountered here for the first time singular electron-electron operators. One can make them meaningful by appro-
priate regularization of the photon propagator or by dimensional regularization. In general it is a difficult problem and, as we
have written in the Introduction, the explicit solution was demonstrated for the positronium and helium atoms only.

SHs is an correction that comes from the fifth term in Eg2):

® (G-p6-E+d-Ed-p) (45)
- o - pPo - [0 =0 .
1em " P P
To calculate it, we have to return to the original expression for one-photon exchange. We assume thaapatticets by
this term, while particleo by nonrelativistic couplingA°, and obtain
¢>

eSS ¢k 1 1 {<¢
m

I e Lo KO e
(04 Pada- keTa+ e a0, - Pa0a - k)E——ko-i-iee o

azb b (2m)"i k2 L6m°

+<¢,

We replacek— —k in the second term then perform tk&integral, and obtain

K0
elkrbE _ —KO+ie (O'a pao'a kelkra+elkraa'a pao'a
0

d* 1 1
2 E 2 ) I2216m3{<¢|(0a paaa kelkra+ e|kl'ag'a paoa k)(HO Eo)e |krb|¢>
a#b b
’ <‘f’|eik"Fb(Ho ~ Eo)(Ga - Pada - Ke 1o+ €725, - B - )| ). (47)
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After commuting(Ho—E;) with €7 one expresses this cor-  dHg comes from the coupling
rection in terms of an effective operator &2

@ —A, (56)
SHy= - 2,{ g,—”. 48 2m
° gb% 32m4|:pb P lab ( )

which is present in the second term of E22). Again, in the

S8H, is the relativistic correction to transverse photon ex- : oo P :
) ] - ) nonretardation approximation the, field is being replaced
change. The first electron is coupledAddy the nonrelativ-  py the static fields produced by other electrons:
istic term

e? 2
e. - e . - SH 2 (57)
-—p-A-—5B 49 6=
P om® (49) 2mZ
and the second one by the relativistic correction, the third 6H; is a retardation correction in the nonrelativistic
term in Eq.(22): single-transverse-photon exchange. To calculate it, we have
to return to the general one-photon-exchange expression, Eq.
- is(ﬂzt_ e - Bm? — m2ed - B) (31), and take the transverse part of the photon propagator:
8
d*k 1 o KK
e s R ox F2. - & - g 5E:—e2J & -—
—>R(pZZp-A+2p-Ap2+(r-Bp2+p20'-B). (2m)i (kO)Z—IZZ+ie< I22>
(50) <¢ jla(k)elk'rawj{)(_ k)e_'k'rb ¢>
It is sufficient to calculate it in the nonretardation approxi- 0 70 e
mation +(a«<b). (58
SHa= > E —I2 +p2(G, X V ][ +—(& We assume that the produgf(k)j}(-k) contains at most a
TS e PaPa + Pa(Ta X Vo) 2m " ° single power ofk’. This allows one to perform thk® inte-
) » gration by encircling the only pol’=|K| on 9:(k° >0 com-
X V) } (51 "o ab) +H.c. (51)  plex half plane and obtain
2rab rab
3 o
It is convenient at this point to introduce a notation for the sg =2 L( i _ %) b ji (k)eilZ-Fa—
vector potential at the position of particke which is pro- (2m)32k k? 2 Eo—Ho—k
duced by other particles: _ 3
Y X jL(= ke +(a«—b), 59
ed =S (5'1 Fay ab) Ph @ (X Fap)' I~k ¢+ ) %9
® pra2ap 3 /M " om rab

wherek=|K|. By using the nonrelativistic form gf and tak-
(52) ing the third term in the retardation expansion,

Then this correction can be written as

1 1 Ho-Ey (Ho-Ep?
€ o2z 7 T2, 2- 7 m:_i+ Okz °- 0k:f;O +-o0, (60)
5"'4:2 Q[Zpapa'Aa*' 2P, APy + Paoa- Va X Ay 0 0
a
- s where the first one contributes to the Breit-Pauli Hamil-
+ 05 Va X Agpz]. (53)  tonian, the second term &, and the third term givesE;:
Let us notice that in the nonretardation approximation any Kiki B 1
correctlon can be S|mply obtained by replacing the magneticsg, = >, >, - ezf . 32k4( i ?> d)‘ ( a 2 =
field A by a static fieldA,. We will use this fact in further a#b b (27) m em
calculations. . c 1 j e
S6Hs comes from the coupling X Va e' "a(H - Ey)? E + Engb X V kbl g ).
e€ . - - - =
ﬁa’-(EXA—AX E), (54) (61)

hich i in the fourth _ h " This is the most complicated term in the evaluation, and we
which is present in the fourth term in EQ2). The resulting 56 10 spliit it into three parts with no-spin, single-spin, and

correction is obtained by replacing the fielHsand A by the  double-spin terms:
static fields produced by other electrons:
2 ez . R R . 5E7: 5EA+ 5EB+ 5Ec. (62)
SHs= 2, =0, [EaX Ag— Aa X Eq4l. (55)
° 2 8m T e The part with double-spin operators is
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Bh (G,%K) - (G X K) ATl = 335,
=S5 | o SRS [NV LR
c 2a:a;b (2m)32k* 4ny? a>b b 2 lap > 2
X (| Ta(Ho — Eg) %] ). (63 x[ Py Taphp— 39" rab:|pj +p [rialbrgb_35ijr§b P_g}

2m’ Fab b ab '2m

One uses the commutation identity fo—38ir2 o2
p? 385, p 4
X[V, pb]+pa{ :;1 {—abr ) ab,ﬁl”p‘b}- (69)
s s a
(eTa(Hy ~ Eg)%e ™) + (a < b)

= ([€73,[(Ho — Eo)2, e %))

1 .
= 5 ([P o5, € 7a01)) (64)

The part with the single-spin operator is

d3k |kr
2

_ EO)2e—|krb5_a

ie?
SEg= > > = an?

a#b b

X K- Pp— Pa - 0p X K&¥Ta(Hy - Eg)2e ™}, (70)

to express this correction in terms of the effective operator

SHc: With the help of the commutator in E¢67) identity and the
integral
2

E 2 |:p21|:p !0- -0 ir
e o1 R R "3 f dskﬂ(e'k I (71)

Ll K 2r’

- (PR
+ a'aon—< ab al —) . (65) .
20\ 12, 3 one obtains

> 2
The part with the no-spin operator is = 2 {[Ua % @,&][V, Bol
a>b b Fap 2M

— _ i] @ p_ia ikfy ra Pa a
Faz 2 2 ezf@ )32k4<J k2)<""m{é { [ X am ”"b [pa’V][pb’”b aﬂ

- pi - Fab Ph
¢>>. (66) pa{ |:cra>< - ZmH}' (72)

Finally, the operatosH is a sum of already derived parts:

X(HO_

. i
Eoe - (Ho= E?} "

We subtracted here the term witlx 0. We ought to perform
this in Eq. (61), where lower-order terms were subtracted,

but for simplicity of writing we have not done it until now. OH7 = OHa+ oHg + oHc. (73

We use another commutator identity

e”Z'Fa(Ho - Eo)ze_ilz'fb ~ (Ho - Ep)?
= (Ho - E)(€*Tab— 1)(Ho — Eo)

P s
+<H0—Eo)[—b,e'k-rab—1}

2
[pb |:e|krb pZH 67)
2m'’ 2m

and the integration formula

+ [éR'Fab Pa }(HO Eo)

J T[54 )= w20 oo

to obtain the effective operatdiH;

6Hg is a retardation correction in a single-transverse-
photon exchange, where one vertex is nonrelativistic, Eq.
(49), and the second comes from the third term in &9):

e - R N -
" a2’ g-(EXp-pXxE). (74

With the help of Eq.59) one obtains the following expres-
sion for JEg:

5E8—2262 2 )3(5”——k> 3<¢|(elk|’ an O'a
a#b b
+ 5a X &aeilz.r‘a)i;(pb | O'b X k) _Ik.r‘b|¢>
EO_ HO k
+H.c. (75)

In the expansion of AEy,—Hgy—k) in Eq. (60) the first term
vanishes because H.c. and the second term is a correction of
orderma®. After commuting(Ho—Ep) on the left one obtains

the effective operatoéHg:

012503-8



HIGHER-ORDER EFFECTIVE HAMILTONIAN FOR..

d3k ( k'k')
= j —
oHg 5,%‘*2 (2m)? o k2 k216m3
—Eszaa [EaX Ag— Ay X E]+ 1o

6Hg is a one- and two-loop radiative correction,

OHg=Hpgq + Hpy, (77)

3[-’4.':1 pa X 0'a"' pa X Ua

PHYSICAL REVIEW A 71, 012503(2005

i j
[e'kra bp, X 04+ Py X Uae'krabV+ ;r;] (ﬁb I—a'bX k) +H.c.

Aqp?l. (76)

the former one, this agreement may be regarded as a justifi-
cation of this and as well as the former results. We have not
derived here the term in Eq. (5). It is obtained by matching

and its derivation requires a separate treatment. We base offfe forward-scattering amplitude in full QED with the one
treatment here on known results for helium, which in turn areobtained from the effective Hamiltonian or NRQED, and it
based on hydrogen and positronium, and extend it to an accounts for the contribution with high electron momentum.
bitrary atom, as long as nonrelativistic expansion maked depends, however, on the regularization scheme, and once

sense:

2
He = “(:;“) 9.61837%%(r,)

3
+ 3 %(14.33134 — 3.42653, - G1) (T ap),

a>b b
(78)

A(Za
HR2:2 r(T12 )

a

0.1715%%(r,)

+> > mz( 0.66526 + 0.08633, - 6,) 5*(r )

a>b b

@ Za . Ta ..
= 2%
(23 o o

w) | r

@ a'on<

r I
e —g-agab ab' ab)[z 2)+( l)) ]
a>b b Iab s

ab

4 2 3 (O'a+0'b) rabX (pa pb)zae)}- (79)

where
K= (1)+< )aff)+... , (80)
a a
aP=0.5, (81)
a?=-0.328478965..., (82)

and « is the electron magnetic moment anomaly.

IV. SUMMARY
The obtained complet@a® contributionH®, Eq. (38), is

in agreement with the former derivation for the particular
case of heliumS [20] and P levels[12], but is much more

it is fixed, it can be obtained in a similar way as in dimen-
sional[23] or photon propagator regularizatiofz0].

H® can be used for high-precision calculations of energy
levels of few-electron atoms, provided two difficulties are
overcome. The first one is the algebraic elimination of
electron-electron singularities. The elimination of electron-
nucleus singularities was demonstrated on hydrogen and he-
lium examples, and could easily be extended to an arbitrary
atom. The elimination of electron-electron singularities using
the dimensional regularization scheme was performed for the
ground state of helium atom [23]; however, this derivation
was very complicated and so far this result has not been
confirmed. The extension to more than two-electron atoms is
even more complicated; therefore, a new idea which will
lead to elimination of electron-electron singularities is
needed. The second difficulty is the lack of analytical values
for integrals with basis sets, which fulfill the cusp conditions.
For example, for the Hylleraas basis set only three-electron
integrals are known analytical[{26,27]. This cusp condition
is necessary, because effective operators preserdHIif
contain many derivatives. For these reasons the calculation
of ma® contribution to atomic energy levels has been accom-
plished only for a few states of helium atofis,21-23 and
hyperfine splitting[ 28], where a powerful random exponen-
tial basis set has been applied. For the thfeetQ] and four-
electron[11] systems the leading QED effects—namely, the
correction of ordema®—have only recently been calculated.
Due to developments in the Hylleraas basis §2%29, we
think the calculation ofna® contribution to lithium energy
levels is now possible. Particularly interesting is Qéx?)
correction to hyperfine splitting, which may be regarded as a
benchmark calculations for multiconfiguration Dirac-Fock or
many body perturbation theofMBPT) methods. Another
interesting example is the fine structure Rf levels, where
electron-electron singularities are not present, such as for
helium fine structure.
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