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The multiconfiguration Dirac-Hartree-Fock model has been employed to compute the magnetic dipole hy-
perfine structure constant and the electric field gradient in the3P1 state of neutral mercury. Combined with the
experimental electric quadrupole hyperfine interaction constant, the computed electric field gradient yields the
nuclear quadrupole momentQ=387±6 mb for201Hg. This value is in good agreement with older muonic,
atomic, and solid-state values, but differs from the latest muonic result and from the recentg spectroscopy
determination.
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I. INTRODUCTION

Mercury has one stable quadrupolar isotope201Hg
sI =3/2d, with relative abundance 13.2%. The isotope199Hg,
with relative abundance 16.9%, has two quadrupolar excited
states at 158 and 208 keV. Values of the quadrupole mo-
ments for several radioactive isotopes with masses from 185
to 203 were reported by Ulmet al. [1]. A comprehensive
compilation of the quadrupole moments for the isotopes in
the mass range 185–206 was included in the tables of Ragha-
van [2]. Most of these data are based on the primary
Qs201Hgd value, combined with measured isotopic ratios. A
number of available experimental values[1,3–11] of the
quadrupole momentQ of 201Hg isotope are quoted in Table I
of the present paper. The “muonic 3d” value of 386s49d mb
was used in a recent “year-2001” summary[12] of nuclear
quadrupole moments.

The electric quadrupole spectroscopic hyperfine constant
B of an atomic state is related to the electric field gradientq
and to the electric quadrupole momenteQ of the nucleus in
the following way:

B = eqQ/h. s1d

In the present paper we combine the available experimental
hyperfine atomic data for201Hg [14] with the electric field
gradient obtained from large-scale multiconfiguration Dirac-
Hartree-Fock(MCDHF) calculations, to obtain a more accu-
rate value ofQs201Hgd. The same method has previously
been applied to the nuclear electric quadrupole moments of
other heavy elements, such as Br, I[15], and Bi [16].

II. THEORY

The multiconfiguration Dirac-Hartree-Fock method[17]
was used in the present paper. Starting from the Dirac-
Coulomb Hamiltonian

HDC = o
i

cai ·pi + sbi − 1dc2 + Vi
N + o

i. j

1/r ij , s2d

whereVN is the monopole part of the electron-nucleus Cou-
lomb interaction, the wave function for an atomic state

(ASF) was obtained as the self-consistent solution of the
Dirac-Fock equation[18] in a basis of symmetry-adapted
configuration-state functions(CSF’s)

CsGPJMd = o
j

NCF

cjFsg jPJMd. s3d

The basis was systematically enlarged[16,19] to yield in-
creasingly accurate approximations to the exact wave func-
tion. All calculations were done with the nucleus modeled as
a variable-density sphere, where a two-parameter Fermi
function [20] was employed to approximate the charge dis-
tribution. The magnetic dipole interaction constantA and the
electric field gradientq were evaluated from the computed
wave functions, using theHFS92 program[21]. The nuclear

TABLE I. Proposed values of nuclear electric quadrupole mo-
mentQ of 201Hg in reverse chronological order.

Q smbd Method Reference Year

387 (6) Atomic This work

347.0(43.0) Nuclear Fornalet al. [3] 2001

385 (40) Atomica Ulm et al. [1] 1988

485 (68) Muonicb Güntheret al. [4] 1983

386 (49) Muonic 3dc Hahnet al. [5] 1979

267 (37) Muonic 2pc Hahnet al. [5] 1979

390 (20) Solidd Edelstein and Pound[6] 1975

455 (40) Atomic 3P2 McDermott and Lichten[7] 1960

420 Atomic Murakawa[8] 1959

500 (50) Atomice Blaise and Chantrel[9] 1957

600 Solide Dehmeltet al. [10] 1954

500 Atomice Schüler and Schmidt[11] 1935

aStandard value of Raghavan[2].
bCombines the199HgsI =5/2d value of[4] with the 201/199 ratio of
[13].
cDirect muonic measurement on201Hg.
dSolid HgCl2 plus 199Hg nuclear primary value.
eNot Sternheimer corrected.
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magnetic dipole moment for the80
201Hg isotope was taken

from the tables of Raghavan[2].

III. METHOD

The generation of the wave function was divided into four
phases. In the first phase, the spectroscopic orbitals required
to form a reference wave function were obtained with a mini-
mal configuration expansion, with full relaxation.

In the second phase, the virtual orbitals were generated in
four consecutive steps. At each step the virtual set was ex-
tended by one layer of virtual orbitals. A layer is defined as a
set of virtual orbitals with different angular symmetries. In
the present paper four layers of virtual orbitals of each of the
s,p,d, f ,g,h symmetries were generated. At each step the
configuration expansions were limited to single and double
substitutions from valence shells to all new orbitals and to all
previously generated virtual layers(valence correlation ap-
proximation). These configuration expansions were aug-
mented by small subset of dominant single and double sub-
stitutions from cores5s5p5dd and valences6s6pd shells, with
the further restriction that at most one electron may be pro-
moted from core shells(which means that in the case of a
double substitution the second electron must be promoted
from a valence shell). All configurations from earlier steps
were retained, with all previously generated orbitals fixed,
and all new orbitals made orthogonal to others of the same
symmetry. The initial shapes of radial orbitals were obtained
in Thomas-Fermi potential and then driven to convergence
with the self-consistency threshold set to 10−8.

In the third phase, the configuration-interaction calcula-
tions (i.e., with no changes to the radial wave functions)
were performed, with multiconfiguration expansions tailored
in such a way as to capture the core polarization, which is the
leading electron correlation contribution to the hyperfine ex-
pectation values[22–24]. All single and double substitutions
were allowed from several core shells and all valence shells
(i.e., 6s, 6p−, and 6p+) to all virtual shells, with the same
restriction as above—i.e., that at most one electron may be
promoted from core shells(core-valence approximation).
The virtual set was systematically increased from one to four
layers. In a similar manner, several core shells were system-
atically opened for electron substitutions—from the outer-
most 5d to 3s3p3d shells. The substitutions from 3s shell
changed the calculated value of magnetic dipole hyperfine
constantA by less than 0.2%. The effect on electric field
gradient was almost an order of magnitude smaller; there-
fore, no deeper core shells were opened. The contribution
from the fourth layer of virtual orbitals to the calculated val-
ues of the magnetic dipole hyperfine constantA and the elec-
tric field gradientq turned out to be less than 1%. During
generation of the fifth layer convergence problems were en-
countered with thes symmetry orbital. The contribution from
the incomplete fifth layer of virtual orbitals to the calculated
value ofA was of the order of 0.1%, and 0.5% in the case of
q. Based on our earlier hyperfine structure calculations
[19,25], we estimate the core-valence contribution arising
from all omitted shells to be of the order of a fraction of a
percent.

In the fourth phase of the wave function generation the
core-core correlation effects were estimated in a series of
configuration-interaction calculations. First, the core
4s4p4d4f5s5p5d shells were systematically opened for
double substitutions to one layer of virtual orbitals. At each
step they were added to the final core-valence expansion.
The double substitutions from the outermost core shells
s5s5p5dd together brought about almost 10% change of the
calculated value ofA and 6% change ofq. The effect of the
deeper-lying core shellss4s4p4d4fd was almost an order of
magnitude smaller. In the next step, the double substitutions
from the core 5s5p5d shells were allowed to the full first
layer of virtual orbitals and to the subset of the second layer
(the subset comprised a virtual orbital of the symmetrys, p,
or both), and again augmented by the final core-valence ex-
pansion. The effect of the substitutions to the(incomplete)
second layer turned out to be a fraction of a percent for both
A and q. At this point, the bulk structure of the core-core
electron correlation had been revealed and all dominant ef-
fects were under control with 1% precision or better. The
final, largest configuration-interaction calculation was com-
posed of 158 534 configurations which were generated from
(1) final core-valence expansion,(2) double substitutions
from the core 4s4p4d4f5s5p5d shells to the full first layer of
virtual orbitals, or (3) double substitutions from the core
5s5p5d shells to the first layer of virtual orbitals augmented
by the subset(s andp symmetries) of the second layer. Each
of the last few configuration-interaction calculations took be-
tween 1 and 2 weeks on an eight-node cluster of Linux ma-
chines of 13 GHz total peak power and required up to
100 GB temporary disk storage for the Hamiltonian matrix.

The Breit and QED corrections were estimated with the
method described in[19], limited to a small-scale(3134 rela-
tivistic configurations) configuration-interaction calculation,
where multiconfiguration expansions were limited to core-
valence substitutions from the valence shells and the core
4f5s5p5d shells to one layer of virtual orbitals. The matrix
elements of the Breit operator in the low-frequency limit

Bij = −
1

2r ij
Fai · a j +

sai · r ijdsa j · r ijd
r ij

2 G , s4d

were evaluated perturbatively, as described in[26]. The QED
effects included the anomalous magnetic moment of the elec-
tron, for which the factorgs/2=1.001 159 652 19 has been
used[27], vacuum polarization, and self-energy[26].

The hyperfine structure Hamiltonian[21] assumes point-
like nuclear dipole moments. The correction arising from
spatial distribution of magnetic moment inside the nucleus
(the Bohr-Weisskopf[28] effect) depends primarily on the
radial shape of the magnetization distribution of201Hg,
which is unknown. We employed the modified approach of
Zemach [29], who evaluated the multiplicative correction
factor arising from the magnetization distribution for states
of s symmetry. In order to apply this correction, we separated
the calculated value of the magnetic hyperfine constantA
into contact, spin-dipole, andorbital terms, using the nonrel-
ativistic MCHF formalism[30]. It turned out that thecontact
term yields approximately 80% of the total value of the cal-
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culated value ofA. Therefore we applied the Zemach correc-
tion to thecontactterm alone and neglected contributions to
Bohr-Weisskopf effect arising from other spherical symme-
tries[31]. This approximate procedure yields Zemach correc-
tion factor 1−e=0.987, in qualitative agreement with 1−e
=0.992 reported by Kopfermann[32].

IV. RESULTS AND DISCUSSION

Table II shows the calculated values of the nuclear electric
quadrupole momentQ of 201Hg isotope, the electric field
gradientq (a.u.), and the magnetic dipole hyperfine constant
A of the 3P1 state of neutral mercury. The left-hand side of
Fig. 1 presents the dependence of the calculated value of the
nuclear quadrupole momentQ on the size of the multicon-
figuration expansion in the MCDHF model and shows the
convergence towards the final value ofQ. On the right-hand
side of Fig. 1 our final value is compared with several recent
results obtained with other methods(in reverse chronological

order—the latest to the left). Only those experimental values
are represented for which error limits had been published.
Our calculated value ofQ lies within the error bounds of the
two latest experimental results and agrees quite well with
one of them. As can be seen in Fig. 2, the experimental
values themselves also exhibit a pattern of convergence, al-
though relatively large error bars do not allow too far reach-
ing conclusions, and tension still remains between the latest
six results. The resolution of the differences was the prime
objective of the present paper; therefore, in the last section
we make an attempt to estimate the accuracy of the result of
our calculations.

V. ERROR BUDGET

The error limit of the semiempirically determined value of
the quadrupole momentQ arises from theoretical and experi-
mental contributions. While the latter is directly scaled from
the experimental error bar of the hyperfine constantB, estab-
lishing error bounds ofab initio computer simulations of
many-body systems is a very difficult and risk-prone task.
We envisaged three different methods, but no firm level of
confidence can be established for any of them. They are dis-
cussed in the following subsections.

A. Extrapolation

The calculations presented in the present paper were
based on the principle of the systematic expansions of the
active set, as described in Sec. III. Systematic increase of the
multiconfiguration expansion allows us to control the size of
the active set and to monitor the convergence of the expec-
tation value(s). In combination with the method of complete
active set[33,34], this procedure permits also an extrapola-
tion of the dependence of the calculated expectation values
on the multiconfiguration expansion, at least for light atoms
[35,36]. For a system as heavy as Hg, neither the complete
active set nor fully systematic expansion is possible and one
has to rely on stepwise procedures of the sort described in
Sec. III. A rigorous extrapolation is not possible either. The
only reasonable approach is a visual inspection of the graphs,
in order to observe the convergence. To make an error esti-
mate, one may identify the last “visible,” non-negligible os-
cillation in Fig. 1 as a crude estimate of the error bar, pro-

TABLE II. Calculated values of the nuclear electric quadrupole
momentQ (mb), the electric field gradientq (a.u.), and the mag-
netic dipole hyperfine structure constantA (MHz) of 201Hg in vari-
ous approximations, compared with experiment. DF: uncorrelated
Dirac-Fock. vv (valence correlation): 6sp→4 virtual layers. cv
(core-valence): 3spd4spdf5spd6sp→4 virtual layers. cc(core-
core): 4spdf5spd6sp→1 virtual layer+5spd6sp→4/3 virtual
layers(see text for full descriptions).

Model Q (mb) q (a.u.) A (MHz)

DF 478.713 2.49027 −4368.266

vv 380.549 −3.13264 −5846.665

vv+cv 359.056 −3.32016 −6216.632

vv+cv+cc 389.035 −3.06431 −5523.861

Breit & QED −2.409 −0.01909 −20.739

Bohr-Weisskopf +73.790

Total 386.626 −3.08340 −5470.810

Expt. [14] −5454.569(0.003)

FIG. 1. The mercury-201 nuclear quadrupole momentQ as a
function of the number of configuration functions in the multicon-
figuration expansion, compared with experimental values(in re-
verse chronological order—the latest to the left). The numbers in
square brackets indicate the literature references.

FIG. 2. The mercury-201 nuclear quadrupole momentQ as a
function of time. Note the essential convergence of the 1975 solid-
state, 1979 muonic, and present atomic values.
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vided that the oscillations are damped. This approach yields
error limit DQ=5.1 mb.

B. Estimates of the error sources

The accuracy of the calculated value of the hyperfine
magnetic dipole constantA and its dependence on the expan-
sions employed in the core-valence model indicate that the
core-polarization effects were fully accounted for. The same
cannot be said about higher-order effects, though. The “core-
valence+core-core” model certainly captured a large part of
the core-core correlation, but the “core-core” configuration
expansions rather do not guarantee saturation of the expec-
tation values with respect to the core-core correlation. The
computer limitations did not permit more extensive core-core
configuration expansions and certain classes of substitutions
were left out.

While it is difficult to precisely determine the magnitude
of the uncaptured correlation effects, rough estimates of all
possible sources of uncertainty were given in Sec. III, in
percentage points. Translated into absolute values, they yield
2 mb from the incomplete fifth layer of virtual orbitals, 4 mb
from the omitted core-valence substitutions, 8 mb from the
omitted double substitutions, and 4 mb from the triple- and
higher-order substitutions. The above estimates are rather
conservative. The largest source of the uncertainty comes
probably from the omitted double substitutions; our estimate
was based on direct calculations for other, much lighter sys-
tems [15,19,25]. The relative contribution from(omitted in
the present paper) triple- and higher-order substitutions has
been taken from the(nonrelativistic) evaluations for bromine
and iodine[15]. The root mean square of the above four
estimates yieldsDQ=5.8 mb.

C. Relative accuracy of the hyperfine constantA

Both the experimental value of the magnetic dipole hy-
perfine constantA [14] and the nuclear magnetic dipole mo-
ment m [2] had been measured at the ppm level, which al-
lows making meaningful comparisons of the theoretically
determined results. The accuracy of the calculated value of
the electric field gradientq may be expected to be of the
same order or better than the accuracy of the calculated value
of magnetic dipole hyperfine constantA, for the following
reasons: in the relativistic theory[37] theq operator depends
on the kr−3l expectation value, whereas theA operator de-
pends onkr−2l; however, the latter mixes the great and small
components of the radial wave function. Therefore, in the
nonrelativistic approximation, bothq and A depend on the
kr−3l expectation value, which makes them equally sensitive
to the inner part of the radial wave function, where core-core
correlation dominates the configuration-interaction effects.
The A value depends on spin polarization effects, which
makes it more sensitive thanq to core-valence electron cor-
relation effects. Neglecting for a while the experimental un-
certainty(i.e., the contribution from the error boundsDB of
the experimental value of the electric quadrupole hyperfine
constantB), the following approximations may be inferred
from the above considerations and Eq.(1):

DQ/Q < Dq/q < DA/A. s5d

The calculated value ofA in several different approxima-
tions is presented in the last column of the Table II and
compared with the experimentally determined value[14].
Figure 3 shows the dependence of the calculated value ofA
on the size of the multiconfiguration expansion in the
MCDHF model. The points in Fig. 3 are corrected for Breit,
QED, and Bohr-Weisskopf effects. The relative accuracy
DA/A=0.003 is very impressive and yields, via Eq.(5), the
error limit DQ=1.2 mb. It can be taken as a confirmation
that the theoretical model adopted in the present paper cor-
rectly describes the dominant correlation effects. However,
experience from previous calculations of hyperfine structures
and electromagnetic moments of heavy elements
[15,16,19,25] indicates that agreement this close is very
likely accidental; therefore, the estimate based on Eq.(5)
should not be considered as a reliable determination of the
accuracy of the calculated value ofQ.

D. Accuracy of the hyperfine constantB

The hyperfine structure constantsA and B were deter-
mined by Kohler[14]. The stated error limit of the experi-
mental valueB=−280.107±0.005 MHz translates into the
experimental contributionDQ=0.007 mb, which is negli-
gible in comparison with the theoretical uncertainty.

E. Total error estimate

The largest of the above estimates of the theoretical un-
certainty(Sec. V B) yields the following electric quadrupole
moment for the201Hg nucleus:

Q = 387 ± 6 mb.

VI. CONCLUSIONS

Neglecting small-scale differences, a striking resemblance
of the overall shapes of the curves presented in Figs. 1 and 3
is worth noting. It supports the conclusion drawn above that
both q and A are equally sensitive to electron correlation
effects. Should this trend continue, it would be tempting to
assume that the quadrupole moment should asymptotically

FIG. 3. The mercury-201 hyperfine magnetic dipole constantA
as a function of the number of configuration functions in the mul-
ticonfiguration expansion, compared with experimental value[14].
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arrive at the valueQ=387.78 mb(with error limit set by the
numerical accuracy), but the assumption is not true in gen-
eral.

As seen from Table I and Figs. 1 and 2, the 1979 “muonic
3d” value by Hahnet al. [5], the latest solid-state, and the
atomic values of theQs201Hgd agree rather well with each
other and with the present MCDHF value. Among the latest
results the 1983 “muonic” value[4], the 1979 “muonic 2p”
value [5], and the 2001 “nuclear”(g-ray) determination[3]
deviate most from our value. The present MCDHF value of
Qs201Hgd is in very good agreement with the standard value

of Raghavan[2], as well as with the value quoted in the
“year-2001” summary[12]. Therefore our calculations con-
firm the previously adopted standards but reduce the error
limits from the 10% range to the 2% range, a fivefold im-
provement.
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