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We present an optical scheme to implement the Deutsch-Jozsa algorithm using ac Stark shifts. The scheme
uses an atomic ensemble consisting of four-level atoms interacting dispersively with a field. This leads to a
Hamiltonian in the atom-field basis which is quite suitable for quantum computation. We show how one can
implement the algorithm by performing proper one- and two-qubit operations. We emphasize that in our model
the decoherence is expected to be minimal due to our usage of atomic ground states and freely propagating
photon.
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I. INTRODUCTION

Quantum computers are expected to be much faster than
the classical ones, especially in performing some specific
jobs, like factorization, searching, etc. For example, any
function of N binary variablessbitsd can be identified as a
constantssingle valuedd or balancedsbivaluedd by a single
enquiry through the well-known Deutsch-Jozsa algorithm
f1g, whereas classically it needs up tos2N−1+1d enquiriesf2g.
Let us considerN=2 bits. There are 2N=4 possible states 00,
01, 10, 11, which we can designate as four values of a vari-
ablex=0, 1, 2, 3. One requires 2N−1+1=3 evaluations of the
function fsxd to determine its characteristic, whereas this al-
gorithm needs only one evaluation for the same. Further, in
Grover’s search algorithmf3g, searching for a specific state
from an unsorted database ofN states requiresOsÎNd repeti-
tions of a certain unitary operation, whereas any classical
computer would needOsNd attempts. All these faster algo-
rithms have been made possible by the special property of a
quantum state, which enables one to apply the same unitary
operations simultaneously on a number of basis statessquan-
tum parallelismd.

These algorithms have been implemented using nuclear
magnetic resonance technologies, trapped ions, etc. Bulk
nuclear magnetic resonance has been used to implement scal-
able versions of the Deutsch-Jozsa algorithmf4g and Grov-
er’s algorithmf5g. The Deutsch-Jozsa algorithm using selec-
tive pulses f6g and quadrupolar nucleif7g in nuclear
magnetic resonance systems has been demonstrated. Guide
et al. f8g have implemented the Deutsch-Jozsa algorithm in
an ion trap system. Theoretical proposals to implement
Grover’s algorithm using trapped ionsf9g and cavity quan-
tum electrodynamicsf10g have been reported.

In this paper, we propose an optical system to implement
the Deutsch-Jozsa algorithm. We use an ensemble of four-
level atoms interacting dispersively with a field to obtain an
effective Hamiltonian like the one on which a typical nuclear
magnetic resonance experiment is basedf11g. This enables
us to implement various two-qubit and single-qubit opera-

tions to realize the Deutsch-Jozsa algorithm. The entire algo-
rithm can be implemented by using, for example, the clock
transitions in the Cs atomic ensemble.

The structure of the paper is as follows. In Sec. II, we
briefly discuss the basic method to implement the Deutsch-
Jozsa algorithm. In Sec. III, we describe the model and the
relevant Hamiltonian. In Sec. IV, we provide the required
pulse sequence to implement the algorithm using our model.

II. BASIC REQUIREMENTS OF THE
DEUTSCH-JOZSA ALGORITHM

To start with, let us recall the main features of this algo-
rithm. This algorithm is used to determine whether a given
function is constant or balanced. In the simplest case, we
consider a one-bit output functionfsxd swhich can take only
the value 0 or 1d of a one-bit inputx sx=0 or 1d. If f1sxd
=0 and f2sxd=1, then these functions are constant. On the
other hand, iff3sxd=x and f4sxd=NOT x, then they are bal-
anced functions. In Table I, we show the above functions
fnsxd. The one-bit version of the Deutsch-Jozsa algorithm
sN=1d f8g determines the characteristics of the function by a
single function call, contrary to its classical counterpart,
which requires 2N−1+1=2 function calls to check whether
the function is constant or balanced. In fact, in this algo-
rithm, one calculates the valuefs0d % fs1d swhere% denotes
addition modulo 2d. This yields 0sor 1d for a constantsor
balancedd function.

In Fig. 1, we show the basic circuitf2g to perform one-bit
version of the Deutsch-Jozsa algorithm. We start with the
initial state of the two qubits as
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TABLE I. Different one-bit functions showing their
characterizations.

Input Constant Balanced

x f1sxd f2sxd f3sxd f4sxd

0 0 1 0 1

1 0 1 1 0
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uc0l = u0lAu1lB. s1d

The transformationshA and hB create superpositionssu0l
+ u1ldA/Î2 andsu0l− u1ldB/Î2 from the input statesu0lA and
u1lB, i.e.,

uc1l =
1
Î2

su0l + u1ldA
1
Î2

su0l − u1ldB. s2d

In Fig. 1, Ufn
is the unitary operator corresponding to each

function fnsxd sn[1,… ,4d shown in Table I. This two-bit
operator yields the resultuxlAuylB→ uxlAuy % fnsxdlB, where
x,y[0,1. One can identify differentUfn

’s as follows:Uf1
is

the identity operation andUf2
is theNOT operation on qubit

B; Uf3
is the controlled-NOT sCNOTd operation andUf4

is the
zero-CNOT operation in the two-qubit basis
su0A,0Bl , u0A,1Bl , u1A,0Bl , u1A,1Bld f8g.

The outputuc2l after the operationUfn on the stateuc1l
becomes

uc2l =
1
Î2

fu0lAu0 % fns0dlB − u0lAu1 % fns0dlB

+ u1lAu0 % fns1dlB − u1lAu1 % fns1dlBg. s3d

It can be easily verified that for anyfnsxd as defined in Table
I, the above stateuc2l becomes factorized in the Hilbert
space ofA andB. This can be written assignoring the overall
phase factord

uc2l ;
1
Î2

su0l ± u1ldA
1
Î2

su0l − u1ldB, s4d

where the output state of the qubitA becomes a superposi-
tion with positivesnegatived sign, if the function is constant
sbalancedd. Hence, after performing the final one-qubit rota-
tion hA, one can detect the qubitA in stateu0l su1ld to identify
that the function is constantsbalancedd. Thus, to perform a
one-bit Deutsch-Jozsa algorithm one has to be able to con-
struct certain two-qubit gates as well as single-qubit rotation
gates.

III. MODEL

A. Dispersive interaction between an ensemble of atoms
and a single photon

To obtain the required single-qubit and two-qubit opera-
tors so as to perform the Deutsch-Jozsa algorithm, we con-
sider a four-level atomic configuration of energy levels as
shown in Fig. 2. The dipole moment vectors between the

levels uel, ugl and ue8l, ug8l are orthogonal to each other. We
note that this kind of configuration can be found in the opti-
cal domain in many atoms such as133Cs and199Hg and has
been studied in the context of spin squeezing and quantum
nondemolition measurementsf12g, for generating mesos-
copic superposition states in atomic gasesf13g, and in quan-
tum communication between two different atomic ensembles
f14g. Two trapped atoms with such configurations interacting
with s-polarized laser fields have been shown to perform
quantum logic gates conditioned on photon detectionf15g.

In our model, an atomic ensemble consisting ofN atoms,
each with relevant level configuration as shown in Fig. 2,
interacts with a single photon. The states of the photon are to
be labeled asu1,0l andu0,1l which refer to, for example, the
two orthogonal polarization componentss±, respectively.
These components interact with theuel↔ ugl and ue8l↔ ug8l
transitions, respectively. Both the components are equally
detuned from the corresponding transition by an amount −D
ssee Fig. 2d. Let us consider that the coupling of both the
components is the same and equal tog. The interaction
Hamiltonian of the ensemble-photon system under the rotat-
ing wave approximation can be written as

H = − "Do
j=1

N

suejlkeju + uej8lkej8ud − i"go
j=1

N

fuejlkgjuu0,0lk1,0u

+ uej8lkgj8uu0,0lk0,1u − H.c.g. s5d

Now in the large detuning regimesD@gd, the ground levels
ugl and ug8l of each atom in the ensemble get Stark shifted.
The energy shift of the levelugl of each atom can be calcu-
lated using second-order perturbation theory as follows:

zkg,1,0uHue,0,0lz2

Eg − Ee
=

"ugu2

D
= "l, s6d

wherel= ugu2/D. HereEk=kkuHukl sk=e,gd are the energies
of the corresponding levels. Note that the levelugl gets Stark
shifted only if there is a photon in thea+ mode. In a similar
way, the level ug8l also gets Stark shifted by the same
amount, if there is a photon in the modea−. Note that the
levels uel and ue8l will not be populated under the action of
the Hamiltonians5d as we are working in the large detuning
regime. On the basis of Stark shifts, the effective Hamil-
tonian for each atomj can be written as

FIG. 1. Basic circuit to perform the Deutsch-Jozsa algorithm.
The detector measures the stateu0l or u1fl of the qubitA.

FIG. 2. Relevant level configuration for implementing the
Deutsch-Jozsa algorithm. The excited levelsuel andue8l are coupled
with the ground levelsugl and ug8l, respectively, by the orthogonal
polarization modesa+ and a−. These modes are detuned from the
corresponding transitions by the same amount −D.
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Heff
j = "lfugj,1,0lkgj,1,0u + ugj8,0,1lkgj8,0,1ug. s7d

The effective Hamiltonian of thesN-atomsd+sphotond sys-
tem becomes

Heff = o
j=1

N

Heff
j s8ad

="lo
j=1

N

fugjlkgjuu1,0lk1,0u + ugj8lkgj8uu0,1lk0,1ug s8bd

=− 2"lFŜzR̂z −
1

4
N̂1̂G , s8cd

where

Ŝz =
1

2o
j=1

N

sugj8lkgj8u − ugjlkgjud, s9ad

R̂z =
1

2
su1,0lk1,0u − u0,1lk0,1ud, s9bd

N̂ = o
j=1

N

sugj8lkgj8u + ugjlkgjud, s9cd

1̂ = su1,0lk1,0u + u0,1lk0,1ud. s9dd

In Appendix A, we provide a rigorous derivation of the ef-
fective Hamiltonians8d. Note that the Hamiltonians8cd has a
form that is similar to those used for quantum computation
with nuclear magnetic resonance systemsf11g. Hence it is
possible to perform all the required logic gate operations
with the atoms and the photon in the present model as are
possible with the standard nuclear magnetic resonance
Hamiltonian.

B. Two-qubit and single-qubit operations

The system ofN atoms has 2N states. We identify two
statesp j=1

N ugjl s;u0lAd and p j=1
N ugj8l s;u1lAd to identify one

qubit. The other qubit will consist of two polarization states
of the photonu0,1l s;u0lFd and u1,0l s;u1lFd. Because the
relevant atomic levels are the ground levels, there is no de-
coherence due to the spontaneous emission of the atom. Fur-
ther, we are considering a photon in free space which can
have a long decay time.

1. Two-qubit operation

We can write the unitary operatorUeff=expf−iHefft /"g
corresponding to the effective Hamiltonians8d. Under the
action of this operator, the stateu0lFu1lA evolves as follows:

Ueffu0lFu1lA = e−iHefft/"p
j=1

N

ugj8lu0,1l = e−ito j=1
N lp

j=1

N

ugj8lu0,1l

= e−ilNtp
j=1

N

ugj8lu0,1l. s10d

The stateu1lFu0lA will evolve in a similar way as above and
acquires a phasee−ilNt. However, the statesu0lFu0lA and
u1lFu1lA will not evolve under the action ofUeff. Thus, for
lNT=p /2, the basis states of the two qubits evolve as fol-
lows:

u0lFu0lA → u0lFu0lA, s11ad

u0lFu1lA → − i u0lFu1lA, s11bd

u1lFu0lA → − i u1lFu0lA, s11cd

u1lFu1lA → u1lFu1lA, s11dd

whereT is the interaction time of the atomic ensemble with
the photon.

We next show how this realization of two-qubit gate is
feasible. We use some of the examples considered previously
f12,16,17g. We consider the clock transition in133Cs with
atomic frequency 2p33.51731014 s−1 and dipole moment
element 3.797310−29 C m. For a Cs atomic cloudf12g of
length 5 mm and cross section,0.1 mm2 svolume of the
cloud=5310−10 m−3d, the atom-photon coupling constantg
becomes 1.843106 s−1. The number of atomsN being,108

sfor an atomic density,331011 cm−3d, we can calculate the
required detuningD=3.59 GHz=1951g so as to satisfy the
condition lNT=p /2. If we choose f16g a volume 3
310−9 m−3, the atom-photon coupling constantg becomes
7.543105 s−1. Thus for N=23108 and T=10−11 s scorre-
sponding to a cloud of length 3 mmd, we get D
=0.724 GHz=960g. Note that in both the examples, the ap-
proximationD@g is satisfied.

Since the results11d is the key to the successful imple-
mentation of the Deutsch-Jozsa algorithm, we have done nu-
merical simulations using the full Hamiltonians5d to verify
the validity of the results11d. Let us denote byc0 the ampli-
tude of the stateu1Flu0Al. Then using Eqs.sB2d, we obtain
the exact time evolution of the amplitudec0. In Fig. 3sad, we
show the numerical solutions of Eqs.sB2d for a large detun-
ing D=40g and the initial conditionc0st=0d=1. It is clear
that at timegT=sD /gdsp /2Nd=12.56sfor N=5d, the imagi-
nary part ofc0 becomes21, i.e., the amplitude of the state
u1Flu0Al becomes −i, verifying the two-qubit operations11cd.
We also found the analytical solution forc0 fsee Eq.sB3dg
which shows similar temporal behavior as in Fig. 3sad. Fur-
ther, in Fig. 3sbd, we show the variation ofc0 calculated at
timesgT with respect toD. Clearly, the imaginary part ofc0
becomes21 only for largeD. Thus the adiabatic approxima-
tion considered in the present paper is verified.
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2. One-qubit operations

Let us now introduce one-qubit operators foreach atom in
the ensembleand the photon, which will be used in later
sections:

h1 =
1
Î2

S1 − 1

1 1
D, h2 =

1
Î2

S1 i

i 1
D ,

h3 =
1
Î2

S1 1

− 1 1
D, h4 =

1
Î2

S1 − i

− i 1
D . s12d

In an atomic configuration as in Fig. 2, these inequivalent
rotations can be performed by using a resonant microwave
field between the ground levelsugjl and ugj8l of the j th atom.
The relevant collective Hamiltonian forN atoms can be writ-
ten as

Hm = − "Vo
j=1

N

feifugj8lkgju + H.c.g, s13d

whereV is the coupling constant of the microwave field with
the atomic ensemble andf is the phase of the field with
respect to the matrix element between the levelsugjl andugj8l
of the j th atom. Under the action of this Hamiltonian, the

evolution of the collective statesp j=1
N ugjl andp j=1

N ugj8l can be
expressed as

p
j=1

N

ugjl → p
j=1

N

fcossVtdugjl + ieif sinsVtdugj8lg,

p
j=1

N

ugj8l → p
j=1

N

fie−if sinsVtdugjl + cossVtdugj8lg. s14d

Thus by choosingVt=p /4, one can implement the opera-
tionshi si [1,… ,4d for each atom forf=−p /2 ,0 ,p /2, and
p, respectively. Alternatively, a combination of two resonant
optical fields with s polarization sinteracting with the
uejl↔ ugjl transition, sayd and p polarization sinteracting
with uejl↔ ugj8l, sayd can be used in the Raman configuration
in the j th atom. A suitable choice of the relative phase and
amplitude of the pulses can provide the required single-qubit
operations of each atom. It should be borne in mind that we
do not produce a Hadamard transformation between the cho-
sen states of the collective ensemble. However, Eq.s14d will
be useful in the realization of the Deutsch-Jozsa algorithm.

The operationshi for the photon can be implemented us-
ing linear optical elements like absorptionless 50-50 beam
splitters and phase shiftersf18,19g. One can send the photon
with either polarization through a beam splitter, so that the
photon is prepared in an equal superposition state in the po-
larization basis after passing through it. The relative phases
between the basis states at the output can be incorporated
using phase shifters on the path of the photon.

We next show how the Deutsch-Jozsa algorithm can be
implemented as a sequence of the above operations.

IV. IMPLEMENTING THE DEUTSCH-JOZSA ALGORITHM

A. Constructing the tools for the Deutsch-Jozsa algorithm

Note that successful implementation of this algorithm re-
lies on one’s ability to perform all the relevant unitary op-
eratorsUfn

. For the present problem we choose the photon
sthe atomic ensembled as the firstssecondd qubit.

Uf1
operation. One can identify the operatorUf1

as an
identity operator

Uf1
=1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
2 . s15d

This operation on the atomic qubit does not require any in-
teraction with the photon at all.Uf1

can be written as
h1

Ash1
Ad−1, whereh1

A=p j=1
N h1

jA denotes the operationh1 on all
the atoms simultaneously, as defined in Sec. III B 2. From
now onward, we denoteh=p j=1

N hj.
Uf2

operation. One can identify the operatorUf2
as aNOT

operation on the atomic qubitp j=1
N ugjl↔p j=1

N ugj8l and it can
be written in the following matrix form:

FIG. 3. Variation of the realslong-dashed lined and imaginary
ssolid lined parts of the coefficientc0 sad with time for D=40g and
sbd with the detuningD. In the case ofsbd, c0 is calculated at times
defined bylNT=p /2. The other parameter used here isN=5.
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Uf2
=1

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0
2 . s16d

This operation can be achieved by applying a resonant mi-
crowave field between the levelsugl and ug8l of each atom,
such thatVt=p /2 fsee Eq.s14dg. Thus

Uf2
= e−iHmt. s17d

Note that heref can be chosen arbitrarily. We choosef
=p /2 such that theNOT operation on the atomic qubit with a
certain relative phasecan be expressed as

p
j=1

N

ugjl → eiNpp
j=1

N

ugj8l, p
j=1

N

ugj8l → p
j=1

N

ugjl. s18d

The other qubitsphotond remains redundant.
Uf3

operation. To perform theUf3
operation, we choose

the following operator sequence:

Uf3
= h1

AQ1h1
A, s19d

whereQ1 is another two-qubit operation andh1
A represents

the Hadamard rotation on the atomic qubit. The operatorQ1
is defined as

Q1 = hA8hF8Ueff s20d

whereh8=p j=1
N h8 j and Ueff=expf−iHeffT/"g. Here,hA,F8 are

the single-qubit operations oneach atomand the photon,
respectively, and can be decomposed ash8=h1h4h3.

Note that the operationsh8 acting on single-qubit basis
states provide the following results:

hF8 u0lF = eip/4u0lF, hF8 u1lF = e−ip/4u1lF,

hA8 u0lA = eiNp/4u0lA, hA8 u1lA = e−iNp/4u1lA, s21d

Then the operatorQ1 takes the following form in the
su0F0Al , u0F1Al , u1F0Al , u1F1Ald basis:

Q1 = diagfeisN+1dp/4,e−isN+1dp/4,− ieisN−1dp/4,e−isN+1dp/4g.

s22d

The complete operator sequence for the operatorUf3
can

now be written as

Uf3
= h1

AfhA8hF8Ueffgh1
A. s23d

Uf4
operation. We choose the following operator sequence to

perform theUf4
operation:

Uf4
= h1

AQ2h1
A s24d

whereQ2 is another two-qubit operation and can be defined
as

Q2 = hA9hF8Ueff. s25d

Hereh8 is defined as in Eq.s20d andh9=p j=1
N h9 j, whereh9

=h1h2h3 is another one-qubit operator. Note that the opera-
tors h9 result in the following:

hF9 u0lF = e−ip/4u0lF, hF9 u1lF = eip/4u1lF,

hA9 u0lA = e−iNp/4u0lA, hA9 u1lA = eiNp/4u1lA, s26d

Thus the operatorQ2 takes the following form in the
su0F0Al , u0F1Al , u1F0Al , u1F1Ald basis:

Q2 = diagfe−isN−1dp/4,eisN−1dp/4,− ie−isN+1dp/4,eisN−1dp/4g.

s27d

The complete operator sequence for the operatorUf4
can

then be written as

Uf4
= h1

AfhA9hF8Ueffgh1
A. s28d

B. Deutsch-Jozsa operations

The entire operation for the algorithm can be written in
the form ssee Fig. 1d

UDJ = h1
FUfn

h1
Fh1

A, s29d

where time goes from right to left. Here we should mention
that the operatorh1 given by s12d does not provide ideal
Hadamard rotation, ash1

2 is not equivalent to the identity
operation, i.e.,

u0l→
h1 1

Î2
su0l + u1ld→

h1

u1l,

u1l→
h1

−
1
Î2

su0l − u1ld→
h1

− u0l s30d

for the photon and similarly for qubit statesugl and ug8l of a
single atom. So, in this case, at the end of the operationUfn
in Eq. s29d, we obtain the statefsu0l± u1ldF /Î2gp j=1

N fsugjl
+ ugj8ldA/Î2g up to overall phase factors, which is equivalent
to the stateuc2l s4d. The finalh1

F operation on this state yields
the u1lF su0lFd state for a constantsbalancedd function.

Note that the operationUDJ requires a large number of
single-qubit rotation operators. We here emphasize that it is
sufficient to perform less operations even without completing
all the steps inUf3

or in Uf4
to serve the purpose of the

Deutsch-Jozsa algorithm. For example, we consider the op-
erationUf3

given by Eq.s23d. Then the relevant operatorUDJ

to implement the entire algorithm can be written in the fol-
lowing form using Eqs.s23d and s29d:

UDJ = h1
Ffh1

AhhA8hF8Ueffjh1
Agh1

Fh1
A, s31d

where the square-bracketed term stands for theUf3
operation.

Rearranging the above, we can write

UDJ = fh1
AhA8gfh1

FhF8gfUeffgfh1
Fgfh1

Ah1
Ag. s32d

Because we measure only the polarization state of the photon
at the detectorssee Fig. 1d, from the above expression it is
clear that it is not really necessary to perform the operation
h1

AhA8 on the atomic qubit. Precisely, we write the required
part of the above operatorUDJ, which is sufficient to deter-
mine if the function is balanced:
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UDJ
eq = sh1

FhF8dUeffh1
Fsh1

Ah1
Ad, s33d

i.e., it is clear from Eq.s23d that for successful realization of
the Deutsch-Jozsa algorithm, one need not perform theUf3
operation completely as one can ignore the atomic operations
h1

AhA8 at the end of theUf3
operation.

Interestingly, if we consider the operatorUf4
, the same

equivalent operator sequences33d is sufficient to perform the
algorithm. We provide the corresponding operator sequence
of UDJ in the following:

UDJ = h1
Ffh1

AhhA9hF8Ueffjh1
Agh1

Fh1
A

= fh1
AhA9gfh1

FhF8gfUeffgfh1
Fgfh1

Ah1
Ag = fh1

AhA9gUDJ
eq. s34d

In Fig. 4, we show the pulse sequence required to imple-
ment the Deutsch-Jozsa algorithm using theUf3

or Uf4
op-

erator. One first performs the operationh1
Ah1

A on the atomic
ensemble andh1

F on the photon. As soon as these operations
are over, the photon interacts with the atomic ensemble for a
time T=p /2Nl so that the two-qubit operations11d occurs.
Then one performs the final one-qubit operations for the pho-
ton. Thereby, the equivalent operations33d for the algorithm
is complete.

V. CONCLUSIONS

In conclusion, we have described a scheme to implement
the Deutsch-JozsasDJd algorithm. The scheme is based on a
dispersive interaction of a macroscopic sample ofN atoms
with a photon. Thus the ac Stark shift of the atomic ground
levels leads to an effective Hamiltonian that has a form simi-
lar to the one used for quantum computation experiments
with nuclear magnetic resonance systems. We properly
choose different two-qubit unitary operators to perform the
algorithm without actually producingCNOT or zero-CNOT

sZ-CNOTd operations as in an ideal DJ algorithm. However for
a specific choice ofN one can getCNOT, Z-CNOT, or quantum
phase gate operationssas described in Appendix Cd. More-
over, the present scheme is experimentally more favorable as
it can be implemented using an atomic ensemble interacting
with a freely propagating photon. Note that single-photon
sources are now becoming availablef20g. Further, the
chances of decoherence in the process are minimal as we
deal with ground state atomsf21g.

APPENDIX A: DERIVATION OF THE HAMILTONIAN (8b)

For simplicity, we consider two atoms in the ensemble.
For a single photon interacting with these atoms, the wave
function of the entire system can be spanned in terms of the
relevant basis states as

ucstdl = hCgg10ugg10l + Cge00uge00l + Ceg00ueg00lj

+ hCgg810ugg810l + Ceg800ueg800lj + hCgg801ugg801l

+ Cge800uge800lj + hCg8g10ug8g10l + Cg8e00ug8e00lj

+ hCg8g01ug8g01l + Ce8g00ue8g00lj + hCg8g801ug8g801l

+ Cg8e800ug8e800l + Ce8g800ue8g800lj, sA1d

where uabnml refers to the state with atom 1s2d in state
ual subld and the modea+ sa−d in Fock stateunl sumld and
Cabnm is the corresponding probability amplitude. Here we
have grouped different subspaces in brackets. We use the
interaction Hamiltonians5d in the Schrödinger equation to
derive the probability amplitude equations for all the basis
states and use the adiabatic approximationD@g. In this
limit, as the levelsuel and ue8l of both the atoms are never
populated, the variation of the amplitudesCge00, Ceg00,
Cg8e800, Ce8g800, Ceg800, Cge800, Cg8e00, and Ce8g00 vanishes.
After adiabatically eliminating these amplitudes in the re-
maining amplitude equations, we get the following:

iĊgg10 =
2ugu2

D
Cgg10, iĊg8g801 =

2ugu2

D
Cg8g801,

iĊgg810 =
ugu2

D
Cgg810, iĊgg801 =

ugu2

D
Cgg801,

iĊg8g10 =
ugu2

D
Cg8g10, iĊg8g01 =

ugu2

D
Cg8g01. sA2d

We thus can write aneffectiveHamiltonian corresponding to
the above equations as

Heff =
2"ugu2

D
fugg10lkgg10u + ug8g801lkg8g801ug

+
"ugu2

D
fugg810lkgg810u + ugg801lkgg801u

+ ug8g10lkg8g10u + ug8g01lkg8g01ug, sA3d

After a little algebra, we can rewrite the above Hamiltonian
in the following form:

Heff

"
= lfug10lkg10u + ug801lkg801ug1fuglkgu + ug8lkg8ug2

+ lfuglkgu + ug8lkg8ug1fug10lkg10u + ug801lkg801ug2,

sA4d

where the subscriptj refers to thej th atom andl= ugu2/D. As
the levelsuel andue8l are never populated in the large detun-
ing limit, we can approximate the termsuglkgu+ ug8lkg8u to be
a unit operator which does not contribute to the evolution of
the system. Thus the Hamiltonian now reads as

FIG. 4. Pulse sequences33d is shown, which is sufficient to
implement the Deutsch-Jozsa algorithm, using theUf3

or Uf4
opera-

tor. The figure shows only the necessary part of theUfn
operation to

complete the algorithm. One can measure the polarization state of
the photonic qubit at the end of the process.
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Heff = "lo
j=1

2

fugl jkguu1,0lk1,0u + ug8l jkg8uu0,1lk0,1ug,

sA5d

which is the same as Eq.s8bd for N=2.

APPENDIX B: EQUATIONS USED
IN NUMERICAL SIMULATIONS

Let us consider the initial state of the atom-photon system
to beu1Flu0Al=p j=1

N ugjlu1,0l. Then the total wave function of
the system can be expanded in terms of the possible basis
states as

ucstdl = c0p
j=1

N

ugjlu1,0l + o
l=1

N

clp jÞl
ugjluellu0,0l. sB1d

Then using the Hamiltonians5d, we find the following am-
plitude equations:

ċ0 = g*d, d = o
l=1

N

cl ,

ḋ = iDd − gNc0. sB2d

From the above equations, one can find out the analytical
solution forc0 as

c0std = eiDt/2H− iD

p
sinSpt

2
D + cosSpt

2
DJ , sB3d

wherep=ÎD2+4Nugu2.

APPENDIX C: WORKING WITH A SPECIFIC
CHOICE OF N

If one puts the constraintN=8m+1, m=0,1,2,…, on the
number of atoms in the sample, then the evolutions21d can
be written as

hA8 u0lA = eip/4u0lA, hA8 u1lA = e−ip/4u1lA. sC1d

Thus the operationQ1 represents a phase gate given by

Q1 = diagfi,− i,− i,− ig sC2d

in the su0F0Al , u0F1Al , u1F0Al , u1F1Ald basis. Then the operator
Uf3

can be identified as aCNOT gate

Uf3
= i1

1 0 0 0

0 − 1 0 0

0 0 0 1

0 0 − 1 0
2 sC3d

in the same basis as is derived by applying Hadamard rota-
tions before and after the phase gate operationQ1 fEq. sC2dg.
In a similar fashion, for the same choice ofN, the operator
Q2 represents the following phase gate operation:

Q2 = diagf1,1,− 1,1g sC4d

in the su0F0Al , u0F1Al , u1F0Al , u1F1Ald basis. Thus theUf4
rep-

resents aZ-CNOT gate given by

Uf4
=1

0 − 1 0 0

1 0 0 0

0 0 − 1 0

0 0 0 1
2 sC5d

in the same basis. Note that this gate inverts the state of the
atomic qubit only when the photonic qubit is in theu0lF state.
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