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Implementing Deutsch-Jozsa algorithm using light shifts and atomic ensembles
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We present an optical scheme to implement the Deutsch-Jozsa algorithm using ac Stark shifts. The scheme
uses an atomic ensemble consisting of four-level atoms interacting dispersively with a field. This leads to a
Hamiltonian in the atom-field basis which is quite suitable for quantum computation. We show how one can
implement the algorithm by performing proper one- and two-qubit operations. We emphasize that in our model
the decoherence is expected to be minimal due to our usage of atomic ground states and freely propagating
photon.
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[. INTRODUCTION tions to realize the Deutsch-Jozsa algorithm. The entire algo-
rIL;[hm can be implemented by using, for example, the clock
ransitions in the Cs atomic ensemble.

The structure of the paper is as follows. In Sec. I, we

efly discuss the basic method to implement the Deutsch-
Jozsa algorithm. In Sec. lll, we describe the model and the
relevant Hamiltonian. In Sec. IV, we provide the required

pulse sequence to implement the algorithm using our model.

Quantum computers are expected to be much faster th
the classical ones, especially in performing some specifi
jobs, like factorization, searching, etc. For example, any, .
function of N binary variablegbits) can be identified as a
constant(single valued or balancedbivalued by a single
enquiry through the well-known Deutsch-Jozsa algorithm
[1], whereas classically it needs up(8'~1+ 1) enquirieq2].

Let us consideN=2 bits. There are'®=4 possible states 00,
01, 10, 11, which we can designate as four values of a vari-

ablex=0, 1, 2, 3. One requires‘2'+ 1 =3 evaluations of the Il. BASIC REQUIREMENTS OF THE

function f(x) to determine its characteristic, whereas this al- DEUTSCH-JOZSA ALGORITHM

gorithm needs only one evaluation for the same. Further, in ) . ]
Grover's search algorithif], searching for a specific state 10 start with, let us recall the main features of this algo-
from an unsorted database Mfstates require®(yN) repeti- rithm. This algorithm is used to determine whether a given
tions of a certain unitary operation, whereas any classicdHnction is constant or balanced. In the simplest case, we
computer would nee®(N) attempts. All these faster algo- CONSider a one-bit output functiditx) (which can take only
rithms have been made possible by the special property of € value 0 or 1 of a one-bit inputx (x=0 or 1. If f4(x)
quantum state, which enables one to apply the same unitary® @ndf2()=1, then these functions are constant. On the
operations simultaneously on a number of basis stgiean- ~ Other hand, iff3(x)=x and f,(x)=norx, then they are bal-
tum parallelism. anced functions. In Table I, we show the above functions

These algorithms have been implemented using nucledn(X). The one-bit version of the Deutsch-Jozsa algorithm
magnetic resonance technologies, trapped ions, etc. BullN=1) [8] determines the characteristics of the function by a
nuclear magnetic resonance has been used to implement scaiRgle function call, contrary to its classical counterpart,
able versions of the Deutsch-Jozsa algorifthand Grov-  Which requires B™1+1=2 function calls to check whether
er's algorithm[5]. The Deutsch-Jozsa algorithm using selec-the function is constant or balanced. In fact, in this algo-
tive pulses[6] and quadrupolar nucle{7] in nuclear rithm, one calculates the vali€0) @ f(1) (where® denotes
magnetic resonance systems has been demonstrated. Guatidition modulo 2 This yields O(or 1) for a constantor
et al. [8] have implemented the Deutsch-Jozsa algorithm irbalanced function.
an ion trap system. Theoretical proposals to implement In Fig. 1, we show the basic circyi2] to perform one-bit
Grover’s algorithm using trapped iofi8] and cavity quan- version of the Deutsch-Jozsa algorithm. We start with the
tum electrodynamic10] have been reported. initial state of the two qubits as

In this paper, we propose an optical system to implement
the Deutsch-Jozsa algorithm. We use an ensemble of four-
level atoms interacting dispersively with a field to obtain an TABLE I Different one-bit functions showing their
effective Hamiltonian like the one on which a typical nuclear characterizations.
magnetic resonance experiment is bagel]. This enables

us to implement various two-qubit and single-qubit opera- Input Constant Balanced
X f1(x) f2(X) f3(x) fa(x)

0 0 1 0 1

*Present address: Department of Physics, Oklahoma State Univer- 1 0 1 1 0

sity, Stillwater, OK 74078, USA.

1050-2947/2005/71)/0123338)/$23.00 012333-1 ©2005 The American Physical Society



DASGUPTA, BISWAS, AND AGARWAL PHYSICAL REVIEW A71, 012333(2009

0 L > U, x | Do Y i-a
P 1y y®f®

Vo> [vi> 5>

FIG. 1. Basic circuit to perform the Deutsch-Jozsa algorithm. lg>

The detector measures the steor |1f) of the qubitA. le>

FIG. 2. Relevant level configuration for implementing the
|¢o> = |0>A| 1g. (1) Deutsch-Jozsa algorithm. The excited leve}sand|e’) are coupled
with the ground level$g) and|g’), respectively, by the orthogonal
The trarlsformation§1/‘\ ang h® create superposition§0) polarization modes, anda_. These modes are detuned from the
+|1))a/v2 and(|0)=|1))g/ 2 from the input statef)), and  corresponding transitions by the same amouht —
[Lg, i.e.,

1 1 levels|e), |g) and|e’), |g’) are orthogonal to each other. We
lyn) = —=(|0) + [1)o—=(|0) = |1))g. (2)  note that this kind of configuration can be found in the opti-

V2 V2 cal domain in many atoms such #Cs and*®**Hg and has
been studied in the context of spin squeezing and quantum
nondemolition measuremenfd 2], for generating mesos-
copic superposition states in atomic gagk3, and in quan-

In Fig. 1, U, is the unitary operator corresponding to each
function f(x) (n€1,...,4) shown in Table I. This two-bit

ope;)to; yéelds the_ dresgf'wg.'f);)Bﬁan{Jy@ff”(l)l(»B’ .ﬁhe.re tum communication between two different atomic ensembles
X,yeb, 1. One can identity difierenty s as follows:Yy, 1S 11 Two trapped atoms with such configurations interacting
the identity operation ant, is the NOT operation on qubit it o-polarized laser fields have been shown to perform
B; Uy, is the controlledNoT (CNOT) operation andJs, is the guantum logic gates conditioned on photon detecfid].

zero€NOT  operation in  the  two-qubit  basis  In our model, an atomic ensemble consisting\oatoms,
(10a,08) |04, 16), |14, 08}, |14, 1g)) [8]. each with relevant level configuration as shown in Fig. 2,
The output|,) after the operatiotJ;, on the statg ) interacts with a single photon. The states of the photon are to
becomes be labeled akl,0) and|0, 1) which refer to, for example, the
1 two orthogonal polarization components., respectively.
1) = “=[|0)|0 @ ,(0))g = |0)a|1 & ,(0))g Thes_e_ components_interact with tf@«|g) and|e’)«~|g’)
V2 transitions, respectively. Both the components are equally

B detuned from the corresponding transition by an amount -
+HDA0® fo1)e = DAL  fr(L)el. & (see Fig. 2 Let us consider that the coupling of both the
It can be easily verified that for arfy(x) as defined in Table components is the same and equalgoThe interaction

|, the above stateyr,) becomes factorized in the Hilbert Hamiltonian of the ensemble-photon system under the rotat-
space ofA andB. This can be written aGgnoring the overall  ing wave approximation can be written as

phase factor

N N
1 H=-%A2 (le)el +e)Xe]) - i7g> [|e)(g;l|0,0¢1,0
— j=1 j=1

1
|4} = TE(I0>1 [ 1)a "E(|O> -[1)e, (4)
V V ’ !
_ _ +[€/)(g;[/0,01(0,1 - H.c]. (5
where the output state of the quiitbecomes a superposi- i i _
tion with positive (negative sign, if the function is constant NOW in the large detuning regim@ > g), the ground levels

(balancedl Hence, after performing the final one-qubit rota- |9> and|g’) of each atom in the ensemble get Stark shifted.
tion hA, one can detect the quiAitin state|0) (|1)) to identify ~ The energy shift of the leved) of each atom can be calcu-
that the function is constarfbalancedl Thus, to perform a lated using second-order perturbation theory as follows:

one-bit Deutsch-Jozsa algorithm one has to be able to con- [g,1,0H|e,0,0> #|gf?
struct certain two-qubit gates as well as single-qubit rotation E_E =TA T fin, (6)
gates. 9 ¢
wherex=|g|?/A. Here E,=(k|H|k) (k=e,q) are the energies
I1l. MODEL of the corresponding levels. Note that the lejgglgets Stark

shifted only if there is a photon in thee. mode. In a similar
way, the level|g’) also gets Stark shifted by the same
amount, if there is a photon in the mode. Note that the

To obtain the required single-qubit and two-qubit opera-levels|e) and|e’) will not be populated under the action of
tors so as to perform the Deutsch-Jozsa algorithm, we corthe Hamiltonian(5) as we are working in the large detuning
sider a four-level atomic configuration of energy levels asregime. On the basis of Stark shifts, the effective Hamil-
shown in Fig. 2. The dipole moment vectors between the&onian for each atonm can be written as

A. Dispersive interaction between an ensemble of atoms
and a single photon
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Héﬁ:h)\ﬂgjvlvoxg]!l!q + |gJ’101]'><g]’!Ov]'u (7)

The effective Hamiltonian of théN-atoms+(photon sys-
tem becomes

N
Her= > Hig (8a)
j=1
N
:ﬁle [lg;)(gj{11,06(1,0 + g/ Xg;110,2)0, 1] (8b)
<
“n 1aa
= Zh)\{SZRZ— ZNl}, (8c)
where
~ 1 N
S= EZl(Igj’Xg,-’l = lgiXgi). (9a)
p
e =2(1.0(1,0-[0,00,1), (9b)
R N
N=2 (g Xg]| +lg;}g). (9¢)
j=1
1=(]1,0¢1,0 +0,1)0,1)). (9d)

In Appendix A, we provide a rigorous derivation of the ef-

fective Hamiltonian(8). Note that the HamiltoniafBc) has a

PHYSICAL REVIEW A 71, 012333(2005

N N
Uerl O 1)4 = e Me [ T |g)[0, 1) = =T |g7)]0, 2)
j:]_ J:l

N
=™ T |g)l0, ). (10)
j=1

The statd1)¢|0)5 will evolve in a similar way as above and
acquires a phase™N. However, the statef0)g|0), and
|1)g|1) will not evolve under the action ofl. Thus, for
ANT=m/2, the basis states of the two qubits evolve as fol-
lows:

|0)¢[0)a — [0)F[O)a, (118
0| LA — = 1[0} D), (11b
[ Dl00a — =i|1)e|0)a, (119

[DelDa— [DelDa, (11d

whereT is the interaction time of the atomic ensemble with
the photon.

We next show how this realization of two-qubit gate is
feasible. We use some of the examples considered previously
[12,16,17. We consider the clock transition iHCs with
atomic frequency 2 X 3.517x 10'*s™* and dipole moment
element 3.79% 102° C m. For a Cs atomic cloufil2] of
length 5 mm and cross section0.1 mn? (volume of the
cloud=5x10"19m), the atom-photon coupling constagt
becomes 1.84 1(f s™*. The number of atomil being~10?
(for an atomic density-3x 10t cm™3), we can calculate the
required detuning\=3.59 GHz=195§ so as to satisfy the

form that is similar to those used for quantum computationcondition ANT==/2. If we choose[16] a volume 3

with nuclear magnetic resonance systgrg|. Hence it is

X 107° m™3, the atom-photon coupling constagtbecomes

possible to perform all the required logic gate operations7.54x 10° st Thus for N=2x10® and T=10"s (corre-
with the atoms and the photon in the present model as arsponding to a cloud of length 3 mmwe get A
possible with the standard nuclear magnetic resonance0.724 GHz=966. Note that in both the examples, the ap-

Hamiltonian.

B. Two-qubit and single-qubit operations

The system ofN atoms has % states. We identify two
stateslI;-|g;) (=[0)») and H}\‘:1|gj’> (=|1)4) to identify one

proximationA> g is satisfied.

Since the resulf1l) is the key to the successful imple-
mentation of the Deutsch-Jozsa algorithm, we have done nu-
merical simulations using the full Hamiltonig) to verify
the validity of the resulf11). Let us denote by, the ampli-
tude of the statélr)|0,). Then using Eqs(B2), we obtain

qubit. The other qubit will consist of two polarization states the exact time evolution of the amplitudg In Fig. 3a), we
of the photon|0,1) (=|0)¢) and|1,0) (=|1)¢). Because the §how the numerical ;qutions of 'Ec(§2) for a Iargt_a detun-
relevant atomic levels are the ground levels, there is no ddlg A=40g and the initial conditioncy(t=0)=1. It is clear
coherence due to the spontaneous emission of the atom. Fifat at timegT=(A/g)(w/2N)=12.56(for N=>5), the imagi-
ther, we are considering a photon in free space which cafary part ofc, becomes-1, i.e., the amplitude of the state

have a long decay time.

1. Two-qubit operation

We can write the unitary operatddqqs=exd—iHqqt/#]
corresponding to the effective HamiltonidB). Under the
action of this operator, the stal@):|1), evolves as follows:

|1¢)|0,) becomes  verifying the two-qubit operatiofllc).
We also found the analytical solution fop [see Eq.(B3)]
which shows similar temporal behavior as in Figa)3 Fur-
ther, in Fig. 3b), we show the variation of, calculated at
timesgT with respect taA. Clearly, the imaginary part af,
becomes-1 only for largeA. Thus the adiabatic approxima-
tion considered in the present paper is verified.
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LO P - evolution of the collective statd$!;|g;) andII},|g/) can be
e ~— expressed as
0.5} \‘\_\
S H lgp) — H [cog)|g;) +i€e' sin(Qt)[g7)],
\\‘\ j =1
0.0
N N
05 IT1g)) — I1Lie™* sin(t)|gy) + cog)|g))].  (14)
j=1 j=1
L0 . . Thus by choosind)t=x/4, one can implement the opera-
0.0 4.0 8.0 12.0 tionsh; (i€1,...,4) for each atom fokp=-=/2,0,7/2, and
(@) gt , respectively. Alternatively, a combination of two resonant
Lo optical fields with o polarization (interacting with the
A lej)«<|g;) transition, say and 7 polarization (interacting
\ with |ej><—>|gj’>, say) can be used in the Raman configuration
0_5].‘ in the jth atom. A suitable choice of the relative phase and
1
]

0.0

!

l‘\‘,\
y VWA

amplitude of the pulses can provide the required single-qubit
operations of each atom. It should be borne in mind that we
do not produce a Hadamard transformation between the cho-

sen states of the collective ensemble. However,(E4). will
be useful in the realization of the Deutsch-Jozsa algorithm.
-0.5} 1 The operationdy; for the photon can be implemented us-
ing linear optical elements like absorptionless 50-50 beam
splitters and phase shiftef$8,19. One can send the photon
with either polarization through a beam splitter, so that the
photon is prepared in an equal superposition state in the po-
larization basis after passing through it. The relative phases
between the basis states at the output can be incorporated
using phase shifters on the path of the photon.

We next show how the Deutsch-Jozsa algorithm can be
implemented as a sequence of the above operations.

—1. W
0.0 10.0 20.0 30.0 40.0
(b) Ag

FIG. 3. Variation of the reallong-dashed lineand imaginary
(solid line) parts of the coefficient, (a) with time for A=40g and
(b) with the detuningA. In the case ofb), ¢, is calculated at times
defined byA\NT=#/2. The other parameter used heréNis5.

2. One-qubit operations

Let us now introduce one-qubit operators éarch atom in
the ensembland the photon, which will be used in later

IV. IMPLEMENTING THE DEUTSCH-JOZSA ALGORITHM

A. Constructing the tools for the Deutsch-Jozsa algorithm

sections: Note that successful implementation of this algorithm re-
_ : lies on one’s ability to perform all the relevant unitary op-
1(1 -1 1/(1 i
h == , hy=—=| , eratorsUfn. For the present problem we choose the photon
v\l 1 vaii 1 (the atomic ensembles the first(second qubit.
Us, operation One can identify the operatdy; as an
1(1 1 1(1 ~—i identity operator
v2\-1 1 v2\-i 1
1000
In an atomic configuration as in Fig. 2, these inequivalent 0100
rotations can be performed by using a resonant microwave Up, = (15)
field between the ground levellg;) and|g;) of the jth atom. 0010
The relevant collective Hamiltonian fod atoms can be writ- 0001
ten as
N This operation on the atomic qubit does not require any in-

teraction with the photon at aIIUf can be written as
h1(h1) ™, wherepf=IIYL,h}* denotes the operatiom_on all

the atoms S|multaneously, as defined in Sec. Il B 2. From

where( is the coupling constant of the microwave field with now onward, we denotg=11't;h/.

the atomic ensemble and is the phase of the field with Us, operation One can |dent|fy the operatal;, as aNOT

respect to the matrix element between the lejg)sand|g;) operaﬂon on the atomic qubiI 1|g,>HH] lg) and it can

of the jth atom. Under the action of this Ham|Iton|an the be written in the following matrlx form:

H,=-%02> [€%g)g| +H.c], (13
j=1

012333-4
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0100 heO)e = € ™0)e,  hE|L)e = ™1,
1000

Y"lo 001 (16) DA = ™00, DADA= N1, (26)
0010 Thus the operatorQ, takes the following form in the

10,11 11 is:
This operation can be achieved by applying a resonant mi(-|OFOA>’|0F 2):|1608),|1¢1) basis

crowave field between the levellg) and|g’) of each atom, Q, =diag e N-D74 (N-D74 _jeiNeD)mi4 Gi(N-1)mld]
such thatQt=7/2 [see Eq(14)]. Thus 27)
U, = e H.t, (17)

The complete operator sequence for the oper&ltgr can

Note that hereg can be chosen arbitrarily. We chooge then be written as
=1/ 2 such that theloT operation on the atomic qubit with a

— AL R A

certain relative phasean be expressed as Ut, = 01lbaneUerlha. (28)

N N N N

H ) — eleTH ), H ) — H ). (18) B. Deutsch-Jozsa operations

=1 =1 =1 =1 The entire operation for the algorithm can be written in
The other qubifphoton remains redundant. the form(see Fig. 1

U;. operation To perform theU;_ operation, we choose
fo OP P fs OP Upy=hfU; hins, (29)

the following operator sequence:
Us. = b2Q,h" (19) where time goes from right to left. Here we should mention
fa ™ P10 that the operatoh, given by (12) does not provide ideal

where Q, is another two-qubit operation arif represents Hadamard rotation, ak? is not equivalent to the identity
the Hadamard rotation on the atomic qubit. The oper@pr Operation, i.e.,
is defined as - )
! ! 0 ? O + 1 1 ,

Q1= hANEUert (20) 0)— V,2(| ) +[1)—|1)

Whereh’=H]N=1h’i and Ueg=exd —iHe4T/A]. Here, hy - are

h h

the single-qubit operations oeach atomand the photon, o1 o
respectively, and can be decomposedash;h;hs. - VE(|0> )= -10) (30
Note that the operationB’ acting on single-qubit basis o )
states provide the following results: for the photon and similarly for qubit staté and|g’) of a
) _ single atom. So, in this case, at the end of the operaﬂlen
helO)e = €™0)e,  hilL)e =€ ™41, in Eqg. (29), we obtain the staté(|0>4_r|1>),:/\s’§]H}\'=l[(|gj>

) N ) Nwld +|gj’>)A/ V2] up to overall phase factors, which is equivalent

A0 A= €N 0)a,  bADIa=E T D)a, (21) 1o the statdy) (4). The finalht operation on this state yields
Then the operatoiQ, takes the following form in the the|Lr (|0)e) state for a constarfbalanced function.
(I0£0A),|0£1A),|1£04), |1£14)) basis: Note that the operatiotdp; requires a large number of
single-qubit rotation operators. We here emphasize that it is
sufficient to perform less operations even without completing
(22) all the steps inUf3 or in U, to serve the purpose of the
Deutsch-Jozsa algorithm. For example, we consider the op-
erationUs_ given by Eq.(23). Then the relevant operatbly;
to implement the entire algorithm can be written in the fol-

Ql - diad:ei(N+l)7T/4,e_i(N+1)7T/4, _ iei(N—l)’lT/4, e—i(N+l)7T/4].

The complete operator sequence for the operatparcan
now be written as

Up, = b/i\[hAh’FUeﬁ]h/i\- (23) lowing form using Egs(23) and (29):
— WAL ATFLA

Uy, operation We choose the following operator sequence to Up;= hilh7{baheUertb b7, (31
perform theUs, operation: where the square-bracketed term stands fokth@peration.

Uy, = h/szh/f (24) Rearranging the above, we can write

— WAL’ Fi7 F AL A

whereQ, is another two-qubit operation and can be defined Uos=[hrhallhrhellUenllhy 1Tb1171]. (32
as Because we measure only the polarization state of the photon

Q, = hihiUes. (25) at the detectofsee Fig. 1, from the above expression it is

clear that it is not really necessary to perform the operation
Hereh’ is defined as in Eq(20) and b”=H}\‘=1h”j, whereh” h’fh,& on the atomic qubit. Precisely, we write the required
=h;h,h; is another one-qubit operator. Note that the operapart of the above operatdp; which is sufficient to deter-
torsh” result in the following: mine if the function is balanced:
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APPENDIX A: DERIVATION OF THE HAMILTONIAN (8b)

T - Measurement
PH%T>(F)N L U.. T For simplicity, we consider two atoms in the ensemble.
ATOMS il o For a single photon interacting with these atoms, the wave
|15, function of the entire system can be spanned in terms of the
relevant basis states as

TIME —

) o . |(1)) = {Cyg10/9910) + Cyenolg€00) + Cegnl€g00)}
FIG. 4. Pulse sequena®3) is shown, which is sufficient to

implement the Deutsch-Jozsa algorithm, usingWhgor Uy, opera- +{Cyy1099'10) + Ceyooled 00)} +{Cyy019g'01)
tor. The figure shows only the necessary part oﬂﬂmrgoperation to , ' '
complete the algorithm. One can measure the polarization state of + Cge00lg€ 00} +{Cyrg10l9'910) + Cyreodlg’e00)}
the photonic qubit at the end of the process. + {Cg,901|g’901> + Ce,goo|e’goo)} + {Cg,g,01|g’g'01>
' + Cyrer00/0'€'00) + Cergroole’g’ 00)}, (A1)
Up3 = (hihe)Uerhi (57h7), (33) ve -

where |aBnm) refers to the state with atom (2) in state
i.e., it is clear from Eq(23) that for successful realization of |2) (|8)) and the modea, (a) in Fock stateln) (jm)) and
the Deutsch-Jozsa algorithm, one need not performthe  Capom IS the corresponding probability amplitude. Here we

operation completely as one can ignore the atomic operatiorf@Ve grouped different subspaces in brackets. We use the
hh, at the end of théJ,_operation interaction Hamiltonian5) in the Schrodinger equation to
, .

Interestingly, if we consider the operatb,, the same derive the probability amplitude equations for all the basis

equivalent operator sequen@3) is sufficient to perform the states and use the adiabatic approximatiorrg. In this

algorithm. We provide the corresponding operator sequenc"mit’ as the levelge) and|e’) of both the atoms are never
of Up, in the following: Sopulated, the variation of the amplitudeéq, Cegor

Cyrer00 Cergron Cegoo Cyeronr Cgrenn @aNd Cergop Vanishes.
After adiabatically eliminating these amplitudes in the re-
Upy = [0 {hAhtUerth 1 ThEH2 maining amplitude equations, we get the following:

= [h2h AN hEl[Uerd[hE 107071 = [h1HAlUSS. (34) _2|g? : _2|g?

. . . ICqg10= ~~Cyro 1Cyrg01= =~ Cygron
In Fig. 4, we show the pulse sequence required to imple-
ment the Deutsch-Jozsa algorithm using Uhfg or Ug, op- 5 5
erator. One first performs the operatigfh; on the atomic iC.,. = @C ) iC = @C )
ensemble andi] on the photon. As soon as these operations 9g'10™ A Tog'll Trogl0lT  ogOl
are over, the photon interacts with the atomic ensemble for a

time T=7/2N\ so that the two-qubit operatiof11) occurs. - o)? g 9|2
Then one performs the final one-qubit operations for the pho- 1Cqrg10= Tcg’glo' ICqrgo1 = TCQ'QOT (A2)
ton. Thereby, the equivalent operati@8) for the algorithm
is complete. We thus can write aeffectiveHamiltonian corresponding to
the above equations as
2h|g/?
V. CONCLUSIONS Herr = —, (19910910 +|g'g’01)(g’g'01]]
In conclusion, we have described a scheme to implement ilg|?
the Deutsch-Jozs@J) algorithm. The scheme is based on a +——|gg'10X(gg’' 10| + |gg'01){gg’' 01
dispersive interaction of a macroscopic sampleNoatoms A
with a photon. Thus the ac Stark shift of the atomic ground +|9’'g10X(g'910 +|g'g01)(g'g01]], (A3)

levels leads to an effective Hamiltonian that has a form simi- ) ) o
lar to the one used for quantum computation experimenté\fter a little _algebra, we can rewrite the above Hamiltonian
with nuclear magnetic resonance systems. We properl{p the following form:

choose different two-qubit unitary operators to perform the p "

algorithm without actually producingNOT or zeroeNoT —= =\[|g10x(g10| + |g'01Xg’ 01 11[|g)(gl +]9')(g'[1
(z-cNOT) operations as in an ideal DJ algorithm. However for

a specific choice ol one can getNoT, Z-CNOT, or quantum +\[|g)gl + |9’ [11[|g10Xg10 +|g'01)(g’01],,
phase gate operatiorias described in Appendix)CMore- (A4)
over, the present scheme is experimentally more favorable as

it can be implemented using an atomic ensemble interacting/here the subscrigtrefers to thejth atom anch=|g|?/A. As
with a freely propagating photon. Note that single-photonthe levelsle) and|e’) are never populated in the large detun-
sources are now becoming availabJg0]. Further, the ing limit, we can approximate the terngy(g|+|g’){g’| to be
chances of decoherence in the process are minimal as weunit operator which does not contribute to the evolution of
deal with ground state atonigl]. the system. Thus the Hamiltonian now reads as
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2 APPENDIX C: WORKING WITH A SPECIFIC
Herr =N 2 [19)(gl[1,0%(1,0 +[g");¢g’[[0, 20, 1], CHOICE OF N
1= If one puts the constraili=8m+1, m=0,1,2..., on the

(A5) number of atoms in the sample, then the evoluiidh can

S be written as
which is the same as E¢Bb) for N=2.

bAlO)A=€T0)a,  HAL)aA=€"TD)a. (CY
APPENDIX B: EQUATIONS USED Thus the operatio®, represents a phase gate given by
IN NUMERICAL SIMULATIONS Q, =diadi,—i,—i,—i] (C2

Letus considNer the initial state of the atom-photon_ systenin the (|00,),|0r14),|1£04),|1¢1,)) basis. Then the operator
to be|1¢)|0a)=11j24/g))[1,0). Then the total wave function of y, can be identified as anoT gate
the system can be expanded in terms of the possible basis

states as 10 0 0
. N Uo =i 0-1 0 0 (c3)
=
) =col T gp[1,0+ X oIl lgplenlo. 0. (BY) P|\e oot
=1 I=1 0 0 -10

Then using the HamiltoniatB), we find the following am- in the same basis as is derived by applying Hadamard rota-
plitude equations: tions before and after the phase gate operafiphEq. (C2)].
In a similar fashion, for the same choice Nf the operator

N Q, represents the following phase gate operation:

c=9gd d=>c,

=1 Q,=diad1,1,-1,] (C4)
in the (|0g04), 0 14),|1£0n), |1¢ 1)) basis. Thus theJ;, rep-
d=iAd- gNG. (B2)  resents &-CNOT gate given by
. . . 0 -1 0 O
From the above equations, one can find out the analytical
solution forc, as U, = 10 00
f,= (CH
) 4 0O 0 -10
ot = éﬂtfz{% sin(%) + cos(%t)}, (B3) 0 0 0 1
in the same basis. Note that this gate inverts the state of the
wherep=yA?+4N|g|2. atomic qubit only when the photonic qubit is in t}@®¢ state.
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