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Positive-operator-value measuressPOVM’sd are the most general class of quantum measurements. We pro-
pose a setup in which all possible POVM’s of a single-photon polarization statescorresponding to all possible
sets of two-dimensional Kraus operatorsd can be implemented easily using linear optics elements. This method
makes it possible to experimentally realize any projective orthogonal, projective nonorthogonal or nonprojec-
tive sets of any number of POVM operators. Furthermore, our implementation only requires vacuum ancillas
and is deterministic rather than probabilistic. Thus it realizes every POVM with the correct set of output states.
We give the settings required to implement two different well-known nonorthogonal projective POVM’s.
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I. INTRODUCTION

The rapidly increasing interest in quantum information
theory and its applications—a comprehensive overview of
which can be found inf1g—has also generated significant
interest in the theory and possible implementations of gener-
alized measurement in the form of positive-operator-value
measuressPOVM’sd f2–5g. Such measurements are particu-
larly useful in the context of quantum cryptographyf6–9g.

Experimentally, a wide variety of quantum mechanical
phenomena such as teleportationf10g, interaction-free mea-
surementf11g, and nonlocalityf12–14g have been demon-
strated experimentally using photonsf15–18g. Recently it
was shown that the operations necessary for quantum com-
putation can be implemented using linear opticsf19,20g,
which makes photons a promising candidate for quantum
information applications.

We propose here a single setup for the implementation of
all possible POVM’s of a single-photon polarization state.
This includes POVM’s with orthogonal projective, nonor-
thogonal projective, and nonprojective sets of Kraus opera-
tors. Similar to our previous work inf5g, our setup is a de-
terministic as opposed to probabilistic implementation of a
POVM, which means that the setup delivers one of the pos-
sible POVM output states of Eq.s2d in every measurement.
In contrast tof5g, however, the setup introduced here is much
more general and at the same time far simpler. Furthermore,
our method does not require any ancillas except for vacuum
states. Finally, we illustrate how our setup can be used to
implement two well-known POVM’s, including one required
for established quantum cryptography protocolsf6–9g.

II. POSITIVE OPERATOR VALUE MEASURES

The positive operator value measure is the most general
formulation of quantum measurementf21g. Mathematically
it corresponds to a positive-definite partition of unity in the
space of operators on a given Hilbert space. A POVM is
given by a set of positive-definite Hermitian operatorshFij,
which in turn can be expressed in terms of a set of so-called
Kraus operatorshMij, such thatFi =Mi

†Mi and for a POVM
with n operators,

o
i=1

n

Mi
†Mi = o

i=1

n

Fi = I , s1d

where I is the unit matrix. After a POVM measurement is
performed on a quantum state represented by a density ma-
trix r, the state becomesri, where

ri =
MirMi

†

trsMirMi
†d

, s2d

with probability pi, where

pi = trsMirMi
†d. s3d

Note that a POVM can project the input state to a fixed set
of sorthogonal or nonorthogonald states, but can also be non-
projective, meaning that the set of possible final states is not
fixed, but depends on the input state. In the case of a set of
projective orthogonal operators allMi can be written as outer
products of pairs of orthogonal state vectors. For projective
nonorthogonal operators allMi can be written as outer prod-
ucts of general state vectors. Finally, nonprojective operators
are all remaining sets—i.e., sets which contain at least one
member which cannot be written as an outer product of state
vectors.

A deterministic implementationssuch as the setup we
present hered of any of these types of POVM gives one of the
possible POVM output states of Eq.s2d in every measure-
ment, with probabilities of Eq.s3d. A probabilistic implemen-
tation by contrast would only give the probability distribu-
tion of Eq.s3d and may not even be successful in performing
the POVM every time.

III. POVM OPERATOR MODULE

The implementation proposed here usessn−1d linear op-
tics modules for ann operator POVM. One such module is
depicted in Fig. 1. It consists of five polarizing beam split-
ters, arranged as shown in this figure. The photon enters at
the bottom left of Fig. 1 and is split into its horizontal and
vertical polarization statesuHl and uVl, respectively. These
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components, now in the pathsor “which-path”d statesus1l sH
componentd and us2l sV componentd are then rotated by
anglesu sH componentd and f sV componentd, using vari-
able polarization rotators. Then both of these amplitudes are
in turn split by two further polarizing beam splitters and
form a superposition of the four path states
ut1l, ut2l, ut3l ,andut4l. The beam splittersP1 then reunify the
path statesut2l andut3l in up1l, andP2 recombinesut1l andut4l
in up2l. Furthermore, the setup contains another five polariza-
tion rotatorssrotating by angles +p /2 , −p /2, andpd, three
variable unitary operatorsU , V1, and V2, and two variable
phase shiftseiz and eij. All these elements are placed as
shown in Fig. 1. Ancillas, often required in linear optics
implementations of quantum information processes, are here
only present in the form of vacuum states in the ports of the
polarizing beam splitters.

Consider the case whereU=V1=V2= I sthe unit matrixd
andz=j=0. Then a photon incident on the apparatus in the
state

uCl = auHl + buVl, s4d

whereuau2+ ubu2=1 evolves to

uCl → auHlus1l + buVlus2l → ascosuuHl + sinuuVldus1l

+ bscosfuVl − sinfuHldus2l → ascosuuVl − sinuuHld

3us1l + bscosfuVl − sinfuHldus2l → ascosuuVlut2l

− sinuuHlut1ld + bscosfuVlut3l − sinfuHlut4ld

→ ascosuuHlut2l + sinuuHlut1ld + bscosfuVlut3l

+ sinfuVlut4ld. s5d

The beam splitterP1 then recombines path statesut2l and
ut3l and, similarly,P2 recombinesut1l and ut4l, so that

uCl → sa cosuuHl + b cosfuVdup1l + sa sinuuHl

+ b sinfuVldup2l, s6d

where up1l and up2l denote the path states of amplitudes
emerging from beam splittersP1 andP2, respectively.

This corresponds to the matrix transformations

Sa

b
D → D1Sa

b
D = Scosu 0

0 cosf
DSa

b
D , s7d

Sa

b
D → D2Sa

b
D = Ssinu 0

0 sinf
DSa

b
D , s8d

in the respective Hilbert spaces ofup1l andup2l. Note that, as
required,D1

2+D2
2= I whereI is the unit matrix. It is due to the

vacuum state ancilla entering the first beam splitter that two
of the four outputs of the two final beam splitters remain
dark, giving a partition of unity into two operators rather
than four.

An arbitrary n3n matrix A can be written asA=VDU
where V and U are unitary matrices andD is a diagonal
matrix. Thus we can write any general Kraus operatorM for
quantum measurement as

Mi = ViDiUi . s9d

The moduli of the elements of the diagonal matrixDi are
confined to lie between 0 and 1.sNote that in generalMi
ÞMi

†.d
Let us consider the two operators in our module, with

U1=U2 implemented by a variable polarization rotator,
placed before the entrance of the module. Also we introduce
phase shiftsz andj for the sake of generality, as thehDij in
Eq. s9d are in general complex. Hence,

D1 = Seizcosu 0

0 cosf
D, D2 = Seijsinu 0

0 sinf
D .

s10d

Thus,

F1 = M1
†M1 = U1

†D1
2U1, s11d

whereD1
2;D1

†V1
†V1D1=D1

†D1. Hence,

F2 = I − F1 = I − U1
†D1

2U1 = U1
†U1 − U1

†D1
2U1

= U1
†sI − D1

2dU1 = U1
†D2

2U1, s12d

as required byoi=1
n Mi

†Mi =oi=1
n Fi = I. This also makes it clear

that U1=U2 follows naturally and does not place an addi-
tional constraint on the space of possible operators that can
be implemented. Hence the arrangement illustrated in Fig. 1
provides a physical implementation of a completely general
positive-definite bipartition of unity, which is what a two-
operator POVM represents in mathematical terms. This ap-
paratus is deterministic, which means that all output states
are given by Eq.s2d with probabilities given in Eq.s3d. It
therefore does not only implement the POVM operators, but
also specific Kraus operators, chosen by the operatorshVij in

FIG. 1. The module implementing measurement operatorsF1

andF2. The photon enters in stateuCl at the bottom left corner and
exits either atE1 or E2, where it can be detected. All beam splitters
are polarizing beam splitters with the same polarization basis and
transmit photons in theuHl state, while reflecting photons in theuVl
state. The anglesu , f , p /2, andp of the polarization rotators are
measured relative to this basis.U , V1, andV2 are unitary operators,
andeiz andeij signify phase shifters.
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Eq. s9d. These operators are implemented at the exits of the
operator modules, as shown in Figs. 1 and 2.

IV. GENERALIZATION TO N MODULES

If we wish to perform any POVM consisting of three
measurement operators, we implement the first POVM op-
erator asF1 in the first module and redirect the amplitude
emerging from the other exit into a second module, which
acts upon it with different initial rotation and differentu and
f parameters, implementing the remaining operatorsF2 and
F3, so that

F1 = UI
†DI

2UI ,

F2 = UI
†D̃I

†UII
†DII

2UIID̃IUI ,

F3 = UI
†D̃I

†UII
†sI − DII

2dUIID̃IUI = I − F1 − F2, s13d

whereUI and UII are the unitary operators implemented on
the photon before modules I and II, respectively,DI andDII
correspond toD1 in the modules I and II, respectively, and

D̃I plays the role ofD2 so thatD̃I
†D̃I = I −DI

2. Figure 2 shows
the complete setup for performing any POVM with three
measurement operators.

The generalization ton operators, usingn−1 modules, is
straightforward. In general, forn operators andn−1 modules
we have, forj ,n,

Fj = Fp
i=1

j−1

Usid
† D̃sid

† GUs jd
† Dj

2Us jdFp
i=1

j−1

D̃s j-idUs j-idG s14d

and the last operators j =nd is given by

Fn = Fp
i=1

n−1

Usid
† D̃sid

† GFp
i=1

n−1

D̃sn-idUsn-idG , s15d

where have introduced the notationUI =Us1d , UII =Us2d ,…,
UI =Us1d , UII =Us2d ,…, etc.

Note that any probabilistic POVM on a single-photon po-
larization state can be realized with a statistical mixture of at
most four POVM operators. If however our setup is to be
used for realizing a fully deterministicn-operator POVM,
thenn−1 modules are needed.

V. EXAMPLES

As an example of the simplicity of applying this proce-
dure, we implement the nonorthogonal projective POVM
with the three axes of projection separated by 120°, as dis-
cussed in our previous workf5g. However, in contrast to our
previous example, we now do not require any delay lines in
order to recycle photons around the apparatus in order to
implement these operators with unit probability of success.

If we consider

UI = S1 0

0 1
D, UII =

1
Î2

S 1 1

− 1 1
D , s16d

DI =Î2

3
S1 0

0 0
D, DII = S1 0

0 0
D , s17d

which corresponds touI =arccossÎ2/3d , uII =0, fI =p /2,
and fII =p /2. The angles of initial polarization rotation at
modules I and II are 0 andp /4, respectively.

Then, using Eq.s13d, we find that these give

F1 =
2

3
S1 0

0 0
D , s18d

F2 =
1

6
S 1 Î3

Î3 3
D , s19d

F3 =
1

6
S 1 − Î3

− Î3 3
D , s20d

as required for this POVM. Note that if we want our appa-
ratus to output photon states whose polarizations are sepa-
rated by 120°, we can simply implement the appropriate
Kraus operators while leavinghFij unchanged, by choosing

V1 = I, V2 =
1

2
S 1 − Î3

Î3 1
D, V3 =

1

2
S 1 Î3

− Î3 1
D .

s21d

A second example which illustrates the flexibility of this
approach is the implementation of the POVM employed in
the quantum cryptography protocol proposed by Ekertet al.
f6–9g. The operators can be considered in terms of two po-
larization states with polarizations at anglesa andb:

FIG. 2. The full setup for three measurement operators, using
two modules. Note the phase shifters with phase factorszI , zII , jI,
andjII , as well as additional unitary operatorsUI , UII , V1, V2, and
V3 introduced in order to make the setup completely general. A
general stater entering the setup becomes the output stateri

=MirMi
†/ trsMirMi

†d at exit Ei with probability pi =trsMirMi
†d.
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F1 =
1

1 + cossb − ad
S sin2a − sina cosa

− sina cosa cos2a
D ,

s22d

F2 =
1

1 + cossb − ad
S sin2b − sinb cosb

− sinb cosb cos2b
D ,

s23d

and

F3 = I − F1 − F2. s24d

These can be implemented using

UI = S cosa sina

− sina cosa
D, UII = S cosa8 sina8

− sina8 cosa8
D ,

s25d

wherea8=arccothfÎ1+1/cossb−adgcotsb−adj and

DI = 10 0

0 Î 1

1 + cossb − ad
2, DII = S0 0

0 1
D . s26d

Note that for projective POVM’ssi.e., where the Kraus
operators are outer productsd, one of the elements ofD will
always be zero, as the set of output states is independent of
the input state. Our setup, however, is more general and en-

compasses all POVM’s, including nonprojective sets, whose
output states depend on the input states.

VI. CONCLUSION

We have presented a linear optics setup for the determin-
istic implementation of an arbitrary positive-operator-value
measurement of single-photon polarization states, with any
number of operators. The only ancillas required for this
implementation are vacuum states. Our method is completely
general and includes all possible sets of POVM operators:
namely, projective orthogonal, projective nonorthogonal, and
nonprojective.

Thus any possible generalized quantum measurement of
single-photon polarization states can be easily performed us-
ing this setup.

Due to its deterministic nature, this POVM setup could be
used to perform POVM’s on members of entangled states
with the correct multipartite postmeasurement state as given
by Eq. s2d. Another interesting question arising from this is
to ask what the most general setup for multipartite POVM’s
could be.
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