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General implementation of all possible positive-operator-value measurements of single-photon
polarization states
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Positive-operator-value measur@OVM’s) are the most general class of quantum measurements. We pro-
pose a setup in which all possible POVM'’s of a single-photon polarization &ateesponding to all possible
sets of two-dimensional Kraus operatocan be implemented easily using linear optics elements. This method
makes it possible to experimentally realize any projective orthogonal, projective nonorthogonal or nonprojec-
tive sets of any number of POVM operators. Furthermore, our implementation only requires vacuum ancillas
and is deterministic rather than probabilistic. Thus it realizes every POVM with the correct set of output states.
We give the settings required to implement two different well-known nonorthogonal projective POVM's.
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I. INTRODUCTION

n n
T .= .=
The rapidly increasing interest in quantum information EM‘M' EF' h @)

theory and its applications—a comprehensive overview of
which can be found if1]—has also generated significant wherel is the unit matrix. After a POVM measurement is
interest in the theory and possible implementations of geneiPerformed on a quantum state represented by a density ma-
alized measurement in the form of positive-operator-valudrix p, the state becomes, where
measuregPOVM's) [2-5]. Such measurements are particu- M-pMT

| |

larly useful in the context of quantum cryptograpl-9]. pi = g 2)
Experimentally, a wide variety of quantum mechanical tr(M;pM;)

phenomena such as teleportatid®], interaction-free mea- . I

surement{11], and nonlocality{12—14 have been demon- with probability p;, where

strated experimentally usir?g photoh$5-18. Recently it pi:tr(MiPMiT)- (3)

was shown that the operations necessary for quantum com- ) ) i

putation can be implemented using linear optid®,20, Note that a POVM can project the input state to a fixed set

which makes photons a promising candidate for quantun®f (Orthogonal or nonorthogonastates, but can also be non-

information applications. projective, meaning that the set of possible final states is not

We propose here a single setup for the implementation Of,ixe'd, put depends on the input state. In the'case of a set of
all possible POVM's of a single-photon polarization state.Projective orthogonal operators &ll; can be written as outer
This includes POVM's with orthogonal projective, nonor- products of pairs of orthogonal state v_ectors. For projective
thogonal projective, and nonprojective sets of Kraus operalonorthogonal operators al; can be written as outer prod-
tors. Similar to our previous work if6], our setup is a de- ucts of gene.ra.l state vec_tors. Finally, .nonprOJeptlve operators
terministic as opposed to probabilistic implementation of '€ &ll remaining sets—i.e., sets which contain at least one
POVM, which means that the setup delivers one of the IOOS[nember which cannot be written as an outer product of state
sible POVM output states of Eq2) in every measurement. Vectors. .

In contrast td5], however, the setup introduced here is much A déterministic implementatiorisuch as the setup we
more general and at the same time far simpler. Furthermor@reésent heneof any of these types of POVM gives one of the
our method does not require any ancillas except for vacuurRoSSible POVM output states of E(p) in every measure-
states. Finally, we illustrate how our setup can be used t§"€nt With probabilities of E¢(3). A probabilistic implemen-
implement two well-known POVM's, including one required tation by contrast would only give the probability distribu-

for established quantum cryptography protod@sd]. tion of Eq.(3) and may not even be successful in performing
the POVM every time.

Il. POSITIVE OPERATOR VALUE MEASURES

The positive operator value measure is the most general
formulation of quantum measuremdl]. Mathematically
it corresponds to a positive-definite partition of unity in the  The implementation proposed here u¢es1) linear op-
space of operators on a given Hilbert space. A POVM istics modules for am operator POVM. One such module is
given by a set of positive-definite Hermitian operatgg, depicted in Fig. 1. It consists of five polarizing beam split-
which in turn can be expressed in terms of a set of so-calleters, arranged as shown in this figure. The photon enters at
Kraus operator$M;}, such that~;=M'M; and for a POVM  the bottom left of Fig. 1 and is split into its horizontal and
with n operators, vertical polarization statefH) and |V), respectively. These

IIl. POVM OPERATOR MODULE
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B\ B The beam splitteP, then recombines path statiey and
-t e v |ts) and, similarly,P, recombinest;) and|t,), so that
et 71 )
z T TV Alp) |¥) — (acosd|H) + b cos|V)|p.) + (asin 6H)
pal i +bsin ¢|V))|p2), (6)
p
[ts) ' where |p;) and |p,) denote the path states of amplitudes
[ J == emerging from beam splittei®, and P,, respectively.
- |ta) This corresponds to the matrix transformations
e e (a)_}D (a)_(cosa 0 )(a) @
¢ ) b "o/"\ 0 cosp/\b/
Js2) =g
Iy D-ol)-( 2
jwy” U I / b 2Ab/ "\ 0 sing/\b/’
U |s1) 9 z [t1)

in the respective Hilbert spaces|pf) and|p,). Note that, as
. . ; 2, 2= ; ; ; ;

FIG. 1. The module |mp|ement|ng measurement operafqrs reqUII’ed,D1+ D2—| wherel is the unit matrix. It is due to the
andF,. The photon enters in staf@) at the bottom left corner and vacuum state ancilla entering the first beam splitter that two
exits either aE; or E,, where it can be detected. All beam splitters Of the four outputs of the two final beam splitters remain
are polarizing beam splitters with the same polarization basis andark, giving a partition of unity into two operators rather
transmit photons in thiH) state, while reflecting photons in ti) than four.
state. The angle8, ¢, 7/2, andw of the polarization rotators are An arbitrary n X n matrix A can be written aA=VDU
measured relative to this basl$, V,, andV, are unitary operators, whereV and U are unitary matrices an® is a diagonal
ande’ ande* signify phase shifters. matrix. Thus we can write any general Kraus operafofor

quantum measurement as
components, now in the patbr “which-path” stategs,) (H M. = V.D.U: 9)
component and |s,) (V component are then rotated by b
anglesé (H componentand ¢ (V componeny, using vari-  The moduli of the elements of the diagonal matibx are
able polarization rotators. Then both of these amplitudes areonfined to lie between 0 and INote that in generaM;
in turn split by two further polarizing beam splitters and ;éMiT.)
form a superposition of the four path states Let us consider the two operators in our module, with
[t), |t), [t3),and|t,). The beam splitter®; then reunify the U,;=U, implemented by a variable polarization rotator,
path stated,) and|ts) in |p;), andP, recombinest,) and|t,)  placed before the entrance of the module. Also we introduce
in |p,). Furthermore, the setup contains another five polarizaphase shiftg and £ for the sake of generality, as tiB;} in
tion rotators(rotating by angles #/2, —m/2, andm), three  Eq. (9) are in general complex. Hence,

variable unitary operatord, V,, andV,, and two variable cosd 0 dising 0

phase shiftsg¢ and €. All these elements are placed as D :(e cos ) 2:< sne- )
shown in Fig. 1. Ancillas, often required in linear optics 0 COos¢ 0 sing
implementations of quantum information processes, are here (10)
only present in the form of vacuum states in the ports of the

polarizing beam splitters. Thus,

Consider the case wheté=V;=V,=I (the unit matriy F.=MM. =uD2U 11
and7=¢=0. Then a photon incident on the apparatus in the e (1)
state whereD?=DIVIVv,D,=DID;. Hence,

1 1v1 1
F,=1-F,=1-U!D2U, = Ulu, - UlD?U,
| W) =a|H) + b|V), (4) " 2 ' 1‘r 2 ' o
where|al>+|b[?=1 evolves to as required b ,MM; ==, F;=1. This also makes it clear
that U;=U, follows naturally and does not place an addi-
) — alH)|sy) + b|V)|sy) — a(cosb|H) + sin gV))|sy) tional constraint on the space of possible operators that can

. _ be implemented. Hence the arrangement illustrated in Fig. 1
+b(cos¢|V) - sing|H))[s,) — a(cosb|V) -sin6|H))  provides a physical implementation of a completely general

%ls) + b(cos I\ — sin &lH a(cosoWlt positive-definite bipartition qf unity, whic_h is what a t\_/vo-
|S_'1> (cosglV) = sin g >)|Sz>_ﬂ (cosVtz) operator POVM represents in mathematical terms. This ap-
= sing|H)[ty)) + b(cos@|V)|t) — sin ¢|H)|ty)) paratus is deterministic, which means that all output states
. . are given by Eq(2) with probabilities given in Eq(3). It
a(cosfH)ltz) + sin H)t)) + b(cos¢V)ity therefore does not only implement the POVM operators, but
+sin ¢|V)|ts)). (5) also specific Kraus operators, chosen by the opergtGysn
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By B3 n-1 n-1
AR Fo=| ITUEDE || LDV | (15
ﬁ A 2 [ i=1 i=1
Jul 1]
7 07 cheitu where have introduced the notatith=U ), U;=U,...,
el BT U|:U(1), U|| :U(z), ..., etc.
o ¢ Note that any probabilistic POVM on a single-photon po-
bn -3 larization state can be realized with a statistical mixture of at
o UE”_ e most four POVM operators. If however our setup is to be
. acby ! 2 used for realizing a fully deterministin-operator POVM,
ﬂ fi H thenn-1 modules are needed.
1 ] [me ei&]
=S V. EXAMPLES
el ==
o1 L= As an example of the simplicity of applying this proce-
nr g‘ noz .’ dure, we implement the nonorthogonal projective POVM
* 0 0 % with the three axes of projection separated by 120°, as dis-

cussed in our previous wofls]. However, in contrast to our
FIG. 2. The full setup for three measurement operators, usingrevious example, we now do not require any delay lines in
two modules. Note the phase shifters with phase fadforg,, &,  order to recycle photons around the apparatus in order to

andg, as well as additional unitary operatdds, Uy, Vi, Vo, and  implement these operators with unit probability of success.
V3 introduced in order to make the setup completely general. A |f we consider

general statep entering the setup becomes the output stagte

=M;pM[/tr(M;pM]) at exit E; with probability p;=tr(M;pM). _(1 0) ~ 1( 1 1) 16
=g 1/ ||—VE_11, (16)
Eqg. (9). These operators are implemented at the exits of the
I h in Figs. 1 2.
operator modules, as shown in Figs. 1 and ) \/5(1 0) _(1 0) .
| = 3\lo0 o ’ 1= 00 ’

IV. GENERALIZATION TO N MODULES

—
If we wish to perform any POVM consisting of three Which corresponds tog=arccobV2/3), 6,=0, ¢=m/2,
measurement operators, we implement the first POVM opand ¢, =m/2. The angles of initial polarization rotation at

erator asF; in the first module and redirect the amplitude Modules I and Il are 0 and/4, respectively.
emerging from the other exit into a second module, which  Then, using Eq(13), we find that these give
acts upon it with different initial rotation and differefitand

¢ parameters, implementing the remaining operakgrand ,:l:g(l 0>, (18)
Fs, so that 3\0 0
I:1:U|TD|2U|1 1/1 \3
Fo=2l & , (19
1= TN21 ) 6\v3 3
F,=U,D;U;bjU,D U,
- - C1{ 1 -3
F3=U/D/U[(I-D)UDU =1 -F1-F,, (13 F=5l_3 3 ) (20

whereU, andU, are the unitary operators implemented on 55 yequired for this POVM. Note that if we want our appa-
the photon before modules I and 11, respectivé@ly,andDy 515 to output photon states whose polarizations are sepa-
Eorrespond td; in the moduINesNI and Il, respectively, and otaq by 120°, we can simply implement the appropriate
D, plays the role oD, so thatD;D,=1-D?. Figure 2 shows Kraus operators while leavingF;} unchanged, by choosing

the complete setup for performing any POVM with three

measurement operators. ~ 11 - NE 1/ 1 3
The generalization to operators, using—1 modules, is Vi=l, VZ—E B 1) 375\ B 1)
straightforward. In general, far operators and—-1 modules
we have, forj <n, (21
j-1 -1 A second example which illustrates the flexibility of this
E = ulDt (Ut DU DU 14 approach is the implementation of the POVM employed in
J [El ® (')} O=1=0 ,1:[1 GV | (14 the quantum cryptography protocol proposed by Ekeérl.

[6-9]. The operators can be considered in terms of two po-
and the last operatdj=n) is given by larization states with polarizations at angkesnd g:
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_ 1 ( sirfa -sina COSa)
171+ codB-a)\-sinacosa cofa
(22)
. 1 ( sir?3 -sing cos,B)
27 1+cofB-a)\-sinBcosB  cop
(23
and
Fa=I—-F1-Fy. (24)
These can be implemented using
_( cosa sina> ! _( cosa’ sina’ )
'""\-sina cose/)’ " \-sina’ cosa')’
(25

where o’ =arccof[1+1/co$B-a)]cot( - a)} and

0 0

00
/ 1 , D”:(0 1). (26)
1+codB-a)

Note that for projective POVM'di.e., where the Kraus
operators are outer produgtene of the elements dd will

D, =

PHYSICAL REVIEW A71, 012330(20095

compasses all POVM'’s, including nonprojective sets, whose
output states depend on the input states.

VI. CONCLUSION

We have presented a linear optics setup for the determin-
istic implementation of an arbitrary positive-operator-value
measurement of single-photon polarization states, with any
number of operators. The only ancillas required for this
implementation are vacuum states. Our method is completely
general and includes all possible sets of POVM operators:
namely, projective orthogonal, projective nonorthogonal, and
nonprojective.

Thus any possible generalized quantum measurement of
single-photon polarization states can be easily performed us-
ing this setup.

Due to its deterministic nature, this POVM setup could be
used to perform POVM’s on members of entangled states
with the correct multipartite postmeasurement state as given
by Eg. (2). Another interesting question arising from this is
to ask what the most general setup for multipartite POVM’s
could be.
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