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We explore a generalization of quantum secret sharingsQSSd in which classical shares play a complemen-
tary role to quantum shares, exploring further consequences of an idea first studied by Nascimento, Mueller-
Quade, and ImaifPhys. Rev. A64, 042311s2001dg. We examine three ways, termed inflation, compression,
and twin thresholding, by which the proportion of classical shares can be augmented. This has the important
application that it reduces quantumsinformation processingd players by replacing them with their classical
counterparts, thereby making quantum secret sharing considerably easier and less expensive to implement in a
practical setting. In compression, a QSS scheme is turned into an equivalent scheme with fewer quantum
players, compensated for by suitable classical shares. In inflation, a QSS scheme is enlarged by adding only
classical shares and players. In a twin-threshold scheme, we invoke two separate thresholds for classical and
quantum shares based on the idea of information dilution.
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I. INTRODUCTION

Suppose the president of a bank, Alice, wants to give
access to a vault to two vice-presidents, Bob and Charlie,
whom she does not entirely trust. Instead of giving the com-
bination to any one of them, she may desire to distribute the
information in such a way that no vice-president alone has
any knowledge of the combination, but both of them can
jointly determine the combination. Cryptography provides
the answer to this question in the form ofsecret sharing
f1,2g. In this scheme, some sensitive data are distributed
among a number of parties such that certain authorized sets
of parties can access the data, but no other combination of
players. A particularly symmetric variety of secret splitting
ssharingd is called athreshold scheme: in a sk,nd classical
threshold schemesCTSd, the secret is split up inton pieces
ssharesd, of which any k shares form a setauthorized to
reconstruct the secret, while any set ofk−1 or fewer shares
has no information about the secret. Blakelyf3g and Shamir
f4g showed that CTS’s exist for all values ofk and n with
nùk. By concatenating threshold schemes, one can construct
arbitrary access structures, subject only to the condition of
monotonicity si.e., sets containing authorized sets should
also be authorizedd f5g. Hillery et al. f6g and Karlssonet al.
f7g proposed methods for implementing CTS’s that use
quantuminformation to transmit shares securely in the pres-
ence of eavesdroppers.

Subsequently, extending the above idea to the quantum
case, Cleve, Gottesman, and Lof8g proposed ask,nd quan-
tum threshold schemesQTSd as a method to split up an un-
known secret quantum stateuSl into n piecesssharesd with
the restriction thatk.n/2 sfor if this inequality were vio-
lated, two disjoint sets of players can reconstruct the secret,

in violation of the quantum no-cloning theoremf9,10gd. The
notion of the QTS is based on quantum erasure correction
f11,12g. Quantum secret sharingsQSSd has been extended
beyond QTS to general access structuresf13,14g, but here
the no-cloning theorem implies that none of the authorized
sets shall be mutually disjoint. Potential applications of QSS
include creating joint checking accounts containing quantum
moneyf15g, or sharing hard-to-create ancilla statesf13g, or
performing secure distributed quantum computationf16g.
Implementing QSS is well within current technologyf17g,
and has been demonstrated by a recent experimentf18g.

In conventional QSS schemes, it is often implicitly as-
sumed that all shareholders carry and process quantum infor-
mation. Given the fragile nature of quantum information, this
can often be difficult and expensive from a practical view-
point. Fortunately, it turns out to be possible sometimes to
construct an equivalent scheme in which some shareholders
carry only classical information and no quantum informa-
tion, an idea first studied by Nascimetoet al. f19g. Our work
is dedicated to exploring further consequences of this idea. It
is of considerable importance to consider ways in which the
proportion of classical shares and classical information pro-
cessing can be increased in realizing a QSS scheme. Further-
more, hybridsclassical-quantumd QSS can potentially make
use of features available to classical secret sharing such as
share renewalf20g, secret sharing with preventionf21g, and
disenrollmentf22g.

In particular, our work is aimed at studying ways to aug-
ment the proportion of classical shares in different ways for
various situations in QSS. As pointed out above, the main
purpose of this exercise is to render practical implementation
easier and less expensive. In Sec. II, we present some basic
ways to introduce a classical information component into
QSS. In Sec. III, we discuss how this can be used to “com-
press” a QSS scheme, that is, reduce the proportion of
quantum-information-carrying players. In Sec. IV, we show
how a QSS scheme can be “inflated” by adding only classi-
cal shares. In Sec. V, we invoke two separate thresholds for
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classical and quantum shares based on the idea of informa-
tion dilution. This generalizes the idea of conventional
single-threshold QSS schemes and is again shown to lead to
savings of quantum players.

II. HYBRIDIZING QUANTUM SECRET-SHARING
SCHEMES

The essential method to hybridizesi.e., to introduce clas-
sical shares intod QSS is to somehow incorporate classical
information that is needed to decrypt or prepare the quantum
secret as classical shares. Use of classical shares can some-
times obviate and thus lead to savings in quantum shares, or,
at any rate, quantum players. A simple instance of such clas-
sical information is the ordering information of the shares. In
QTS, it is implicity assumed that the shareholders know the
coordinates of the shares in the secret, i.e., they know who is
holding the first qubit, who the second, and so on. This or-
dering information is necessary to reconstruct the secret,
without which successful reconstruction of the secret is not
guaranteed. If we wish to make use of this ordering informa-
tion in the above sense, then only quantum-error-correction-
based secret sharing, where lack of ordering information
leads to maximal ignorance, can be used. In particular, the
scheme should be sensitive to the interchange of two or more
qubits. For example, let us consider as2,3d QTS. The secret
here is an arbitrary qutrit and the encoding maps the secret
qutrit to three qutrits as

au0l + bu1l + gu2l ° asu000l + u111l + u222ld + bsu012l

+ u120l + u201ld + gsu021l + u210l

+ u102ld, s1d

and each qutrit is taken as a share. While from a single share
no information can be obtained, two shares, with ordering
information, suffice to reconstruct the encoded statef8g.
However, the lack of ordering information does not always
lead to maximal ignorance about the secret. Note that the
structure of the above code is such that any interchange of
two qubits leaves an encodedu0l intact but interchangesu1l
and u2l. Thus, a secret likeu0l or s1/Î2dsu1l+ u2ld can be
entirely reconstructed without the ordering information.
Therefore, only the subset of quantum error correction codes
admissible in QSS that do not possess such symmetry prop-
erties can be used if the scheme is to be sensitive to ordering
information.

Another scheme relevant here is due to Nascimentoet al.
f19g, based on qubit encryptionf23g. We adopt this method
to generate the relevant encrypting classical information.
However, in principle any classical data whose suppression
leads to maximal ignorance of the secret are also good. Else-
where, in Sec. V, we consider another way. Quantum encryp-
tion works as follows. Suppose we have ann-qubit quantum
stateucl and random sequenceK of 2n classical bits. Each
sequential pair of classical bits is associated with a qubit and

determines which transformationŝP hÎ ,ŝx,ŝy,ŝzj is applied

to the respective qubit. If the pair is 00,Î is applied, if it is
01, ŝx is applied, and so on. To one not knowingK, the

resulting uc̃l is a complete mixture and no information can
be extracted out of it because the encryption leaves any pure

state in a maximally mixed state, that is,s1/4dsÎ uSlkSuÎ
+ŝxuSlkSuŝx+ŝyuSlkSuŝy+ŝzuSlkSuŝzd=s1/2dÎ. However,
with knowledge ofK the sequence of operations can be re-
versed anducl recovered. Therefore, classical data can be
used to encrypt quantum data. In general, given
d-dimensional objects, quantum encryption requiresd2 op-
erators and a key of 2 logsdd bits per object to randomize
perfectly. In practice, such quantum operations may prove
costly, and only near-perfect security may be sufficient. In
this case, there exists a set of roughlyd logsdd unitary opera-
tors whose average effect on every input pure state is almost
perfectly randomizing, so that the size of the key can be
reduced by about a factor of 2f10,24g.

III. COMPRESSING QUANTUM SECRET-SHARING
SCHEMES

In hybrid QSS, the quantum secret is split up into quan-
tum and classical shares of information. We call the former
q-shares, and the latterc-shares. A player holding only
c-shares is called ac-player orc-member. Otherwise, she or
he is aq-player orq-member.

Definition 1. A QSS scheme realizing an access structure
G=ha1,a2, . . . ,arj among a set of players P
=hP1,P2, . . . ,Pnj is said to be compressible if fewer than
n q-players are sufficient to implement it.

Here theai’s are the minimal authorized sets of players.
Knowledge of compressibility helps us decide how to mini-
mize valuable quantum resources needed for implementing a
given QSS scheme. As an example of compression by means
of hybrid QSS, suppose we want to split a quantum secretuSl
among a set of playersP=hA,B,C,D ,E,Fj realizing the ac-
cess structureG=hABC,AD,AEFj. That is, the only sets au-
thorized to reconstruct the secret arehA,B,Cj, hA,Dj, and
hA,E,Fj and sets containing them, while any other set is
unauthorized to do so. For distributing the secret, we encrypt
uSl using the quantum encryption methodsdescribed aboved
with classical keyK into a new stateuS̃l and giveuS̃l to A.
We then split upK using a CSS scheme that realizesG.

PlayerA cannot recoveruSl from uS̃l because he cannot un-
scramble it withoutK. Only the a j’s, and sets containing
them, can recover the classical keyK, and thence decrypt the
secret state. In this way, by means of a hybridsclassical-
quantumd secret-sharing scheme, we can compress the origi-
nal QSS scheme into an equivalent one in which fewer play-
ers need to handle quantum information.

We use the notation of single parenthesessdouble paran-
thesesd to indicate a CTSsa QTSd. In a conventionalssk,ndd
scheme, a compression is known to be possible if 2k.n+1,
in which case, the scheme can be compressed into assk
−g ,n−gdd scheme combined with ask,nd scheme, whereg
;2k−n−1 f18g. A general access structureG
=ha1,a2, . . . ,arj can be realized by a first layer of a
s1,rd-threshold scheme. In the quantum case, since this vio-
lates the no-cloning theorem, it is replaced by the majority
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function ssr ,2r −1dd schemef13g. This, again, is incompress-
ible. However, in the second layer of the construction, the
ssuaiu , uaiudd schemes can be replaced with ass1,1dd scheme
combined withsuaiu , uaiud schemesf19g.

In the above, the degree of compression is determined by
G=ha1, . . . ,arj and the requirement to minimizeq-players,
no matter who they are. This can be distorted if the
information-processing capabilities of individual players are
known to be different. In particular, suppose we are given a
set Q, such that players from this set are able to process
quantum information reliably. The set of remaining players

Q̄=P−Q are best designated to bec-players. A “hitting set”
HsGd for the collection of setsG is a set of players such that
Hùai Þ x ∀ is1ø i ø rd. Let MsGd be the smallest hitting
set for G such thatMsGd,Q. MsGd may or may not be
unique. We denoteM ;uMsGdu. Under compression, onlyM
q-players are needed. First a majority functionssr ,2r −1dd is
employed,r of the shares being encrypted and deposited
with theM q-players. In the second layer of the construction,
the ssuaiu , uaiudd schemes can be compressed toss1,1dd
schemes combined withsuaiu , uaiud schemes, theq-shares of
eachai being deposited with the respectiveq-player. The
remainingM −1 shares are split-shared according to a maxi-
mal scheme that containsG. The maximal scheme is ob-
tained by adding authorized sets toG until authorized and
unauthorized sets form exact complementsf13g. Thus we
require only M ø uPu q-players to implement the protocol,
which represents a compression byuPu−M q-players. We
note that ifMsGd=x, then compression is impossible. We
can observe that for a general access structure involving a
large number of players, computingM is a provably hard
problem sin fact its decision version can be shown to be
NP-completef25,26gd.

As an example, let us consider the access structureG
=hABCD,ADF,CDEj among six players P
=hA,B,C,D ,E,Fj. SupposeQ=hA,C,Ej. We can choose
M=hA,Cj or M=hA,Ej, representing the two required
q-playerssinstead of sixq-players, required in the uncom-
pressed versiond. Suppose we choose the latter. The first
layer will employ a s3,5d QTS to split secretuSl. At the
second layer, the shares on the top two rows are encrypted
usingK1, K2 and given toA, the last usingK3 and given toE.
The Kj’s are classically shared on each row, though the
q-shares remains withA or E. The last shareuS8l is shared
using a pure state scheme that implementsGmax, the maximal
scheme obtained fromG. The resultantq-shares for each au-
thorized seta j are deposited witha j ùMsGd. This scheme is
depicted in Eq.s2d:

ss3,5dd5
A →s4,4d:A,B,C,D,

A →s3,3d:A,D,F,

E →s3,3d:C,D,E,

uS8l.
6 s2d

We note that if DPQ then MsGd=hDj, and only one
q-player, namely,D, would have sufficed to implement com-
pression. And ifQ=hE,Fj, thenM=x because there is an

authorized set with noq-player. Hence no compression
would be possible.

IV. INFLATING QUANTUM SECRET
SHARING SCHEMES

The question of how to augment or “inflate” a given QSS
scheme keeping the quantum component fixed is considered
below. This is of practical relevance if we wish to expand a
given QSS scheme by including new players who do not
havesreliabled quantum information processing capacity. To
this end, we now define an inflatable QSS.

Definition 2. A QSSsGd scheme realizing an access struc-
ture G=ha1,a2, . . . ,arj among a set of playersP
=hP1,P2, . . . ,Pnj is inflatable ifn can be increased for fixed
number of q-players to form a new QSSsG8d such that
uG8uP=G, where uG8uP denotes the restriction ofG8 to P.

Clearly, inflation involves the addition of classical-
information-carrying c-players. The additional shares re-
quired for them will bec-shares, so thatq-shares may remain
fixed at m. The following theorem answers the question
when a QSS scheme can be inflated.

Theorem 1. A QSS scheme realizing an access structure
G=ha1,a2, . . . ,arj among a set of players P
=hP1,P2, . . . ,Pnj can always be inflated.

Proof. Consider the addition of m new players
Pn+1, . . . ,Pn+m, wheremù1. The new set of all players are
P8;hP1,P2, . . . ,Pn+mj. A new access structureG8
=ha18 , . . . ,ar8j can be obtained by arbitrarily adding the new
players to any of thea j’s. Clearly, G8 will not violate the
no-cloning theorem, sinceG does not. The secretuSl is en-

crypted using classical stringK to obtainuS̃l. This encrypted
secret is split-shared according to the original scheme imple-
mentingG, while K is split-shared among alln+m players
according to the classical scheme implementingG8. To re-
construct the secret, members of anya j8 combine the

q-shares ofa j #a j8 to reconstructuS̃l, and thec-shares with
all members ofa j8 to reconstructK, using which the en-

crypted secretuS̃l is decrypted touSl. The new scheme is
such thatG= uG8uP and P8−P are c-players. Therefore, the
new scheme QSSsG8d is an inflation of the given scheme
QSSsGd. j

The above theorem only says that any QSS scheme can be
inflated insomeway. A specific problem is whether a given
sk,nd QTS can be inflated to another QTS. This is considered
in the following theorem and corollary.

Theorem 2. A sk,nd QTS can be inflated only conformally,
i.e., to threshold schemes having the formsk+g ,n+gd,
whereg sù0d is an integer.

Proof. If the given sk,nd QTS satisfies the no-cloning
theorem, then clearly so will thesk+gk,n+gnd QTS, where
gkùgnù0 andk+gkøn+gn. Further, according to Lemma
1 of Ref. f19g, a restriction of thesk+gk,n+gnd QTS by g
players necessarily yields a conformally reduced,sk+gk

−g ,n+gn−gd QTS. The restricted scheme has a different
access structure fromsk,nd QTS unlessgk=gn=g. There-
fore, only a conformal inflation ofsk,nd QTS is possible,
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whereby it is inflated to ask+g ,n+gd QTS by the addition
of g c-players. j

In an implementation of Theorem 2, the quantum secret

uSl is encrypted touS̃l using a classical stringK which is
split-shared among alln+g players according to ask+g ,n

+gd CTS. StateuS̃l is then quantally split-shared among then
q-players according to ask,nd QTS. As a consequence of
Theorem 2, we have the following negative result.

Corollary 1. A sk,nd QTS cannot be inflated at constant
threshold. j

V. TWIN-THRESHOLD QUANTUM SECRET SHARING
SCHEMES

In a conventional or compressedsk,nd QTS, the threshold
k applies to all members taken together. Now suppose that
we haveseparatethresholds forc-members andq-members,
namely,kc andkq, with k=kc+kq. We now extend the defini-
tion of a conventional QTS to askc,kq,nd quantum twin-
threshold schemesQ2TSd and askc,kq,n,Cd quantum twin-
threshold scheme with common setsQ2TS+Cd, where a
quantum secretuSl is split inton piecesssharesd according to
some preagreed procedure and distributed amongn players.
These n shareholders consist of members of setQ of

q-players and setQ̄ of c-players. We denoteq;uQu, so that

uQ̄u=n−q. Obviously, in a quantum scheme,QÞx.
Definition 3. A QSS scheme is askc,kq,nd quantum twin-

threshold scheme amongn players, of whichq areq-players
and the remaining arec-players, if at leastkc c-players and at
leastkq q-players are necessary to reconstruct the secret.

Definition 4. A QSS scheme is askc,kq,n,Cd quantum
twin-threshold scheme with common set amongn players, of
which q areq-players and the remaining arec-players, if:sad
at leastkc c-players and at leastkq q-players are necessary to
reconstruct the secret;sbd all members of the setC are nec-
essary to reconstruct the secret.

The idea behind distinguishing between the classical
thresholdkc and the quantum thresholdkq is to obtain a
simple generalization that combines the properties of the
CTS and QTS. Practically speaking, it is best to minimizekq,
at fixedk. However, one can in principle consider situations
of potential use for a twin-threshold scheme, when a suffi-
ciently large number of members are able to process quan-
tum information safely. Further, some of the shareholders,
while not entirely trustworthy, may yet be more trustworthy
than others. The share dealerssay Aliced may prefer to in-
clude all such shareholders during any reconstruction of the
secret. This is the requirement that motivates the introduction
of setC. In general,C can contain members drawn fromQ
and/orQ̄ or may be a null set. By definition, Q2TS+C with
C=x is Q2TS.

In the following sections we present two methods to real-
ize in varying degrees the generalized quantum secret split-
ting scheme. The first of these is the general version of
Q2TS+C. The second, while more restricted, is interesting
because it is not directly based on quantum erasure correc-
tion, but on information dilution via homogenization, in con-
trast to current proposals of QSS.

A. Quantum error correction and quantum encryption

We now give protocols that realizes the twin-threshold
scheme based on quantum encryption.

Scheme 1. Protocol to realizeskc,kq,nd Q2TS.
Distribution phase. s1d Choose a random classical encryp-

tion K. Encrypt the quantum secretuSl using the encryption
algorithm described in Sec. I. The encrypted state is denoted

uS̃l. s2d Using a conventionalskq,qd QTS, split-shareuS̃l
among the members ofQ; to not violate no-cloning,q should
satisfy kq. sq/2d. s3d Using askc,n−qd CTS, split-shareK

among the members ofQ̄.
Reconstruction phase. s1d Collect anykq q-shares from

members ofQ and reconstructuS̃l. s2d Collect anykc shares

from members ofQ̄ and reconstructK. s3d ReconstructuSl
using uS̃l andK.

Now consider the caseCÞx and the Q2TS scheme be-
comes the more general Q2TS+C scheme. We now give a
protocol that realizes this more general twin-threshold

scheme. We denotelq;uQùCu and lc;uQ̄ùCu. Clearly,
lc+lq= uCu. If there are noq-players inC, setlq=0, and if
there are noc-players inC, setlc=0. Note that by definition,
q-players may also carry classical information, butc-players
do not carry quantum information.

Scheme 2. Protocol to realizeskc,kq,n,Cd-Q2TS+C.
Distribution phase. s1d Choose a random classical encryp-

tion K. Encrypt the quantum secretuSl using the encryption
algorithm described in Sec. I. The encrypted state is denoted

uS̃l. s2d Using as2, 2d QTS, divideuS̃l into two pieces, say

uS̃1l and uS̃2l. s3d Using aslq,lqd QTS, split uS̃1l among the
q-members inC. s4d Using a conventionalskq−lq,q−lqd
QTS, splituS̃2l among theq-members not inC; to not violate
no-cloning,q should satisfyskq−lqd. sq−lqd /2. s5d Using a
s2,2d CTS, divideK into two shares, sayK1 andK2. s6d Part
K1 is split among the members ofC using asuCu , uCud CTS.
Alternatively, it can be split using aslc,lcd CTS among the
c-players inC. s7d Using askc−lc,n−q−lcd CTS, splitK2

among the members ofQ̄−C.
Reconstruction phase. s1d Collect all lq shares from all

members ofQùC and reconstructuS̃1l. s2d Collect anykq

−lq q-shares fromQ−C to reconstructuS̃2l. s3d Combining

uS̃1l anduS̃2l, reconstructuS̃l. s4d Collect all uCu c-shares from
members ofC and reconstructK1. Alternatively, collect alllc

c-shares from members ofQ̄ùC and reconstructK1. s5d Col-

lect any kc−lc shares fromQ̄−C and reconstructK2. s6d
Combining K1 and K2, reconstructK. s7d ReconstructuSl
using uS̃l andK.

B. Quantum twin-threshold scheme based on information
dilution via homogenization

The second, more restrictive scheme, is based on the pro-
cedure for information dilution in a system-reservoir interac-
tion, proposed by Zimanet al. f27g. The novelty of the
scheme lies in the fact that it is not directly based on a
quantum error-correction code. However, it is applicable
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only to QSS withCÞx. Referencef27g presents auniversal
quantum homogenizer, a machine that takes as input a sys-
tem qubit initially in the stater and a set ofN reservoir
qubits initially prepared in the identical statej. In the ho-
mogenizer the system qubit sequentially interacts with the
reservoir qubits via the partial swap operation so that the
initial state rS

s0d of the system, after interacting with theN
reservoir qubits, becomes

rsNd = TrRfUN ¯ U1srS
s0d

^ j^NdU1
†
¯ UN

†g s3d

where Uk;U ^ s^ jÞkI jd describes the interaction between
the kth qubit of the reservoir and the system qubit. The ho-
mogenizer realizes, in the limit sense, the transformation
such that at the output each qubit is in an arbitrarily small
neighborhood of the statej irrespective of the initial states of
the system and the reservoir qubits. Formally,

DsrS
sNd,jd ø d, ∀ N ù Nd, s4ad

Dsjk8,jd ø d, ∀ 1 ø k ø N, s4bd

whereDs· , ·d denotes some distancese.g., a trace normd be-
tween the states,d.0 is a small parameter chosen apriori ,
andjk8;TrSfUrS

sk−1d
^ jU†g.

The interaction between a reservoir qubit and the system
qubit is given by the partial swap operationPshd=scoshdI
+ issinhdS, whereS, theswapoperator acting on the state of
two qubits, is defined bySucl ^ ufl= ufl ^ ucl. It can be
shown thath can be chosen to enforce Eq.s4ad according to
the relation

sinh ø Îd/2. s5d

Thus the information contained in the unknown system state
is distributed in the correlations among the system and the
reservoir qubits, whose marginal states are close toj. As the
authors point out, this process can be used as aquantum safe
with a classical combination.

Now we show how this particular feature can be turned
into a special case of theskc,kq,n,Cd threshold scheme, sub-
ject to the restriction thatQ#C, so that kq=q, i.e., all
q-players must be present to reconstruct the secret. The ho-
mogenization is reversible and the original state of the sys-
tem and the reservoir qubits can be unwound. Perfect un-
winding can be performed only when the system particle is
correctly identified from among theN+1 output qubits, and
it and the reservoir qubits interact via the inverse of the origi-
nal partial swap operation. Therefore, in order to unwind the
homogenized system, the classical informationsdenotedKd
about the sequence of the qubit interactions is essential.
Now, of thesN+1d! possible orderings, only one will reverse
the original process. The probability to choose the system
qubit correctly is 1/sN+1d. Even when the particle is chosen
successfully, there are stillN! different possibilities in choos-
ing the sequence of interaction with the reservoir qubits.
Thus, without the knowledge of the correct ordering, the
probability of successfully unwinding the homogenization
transformation is 1/ssN+1d!d, which is exponentially small
in N. Moreover, a particular order of trial unwinding and
measurement will irrecoverably destroy the system. This is

demonstrated in Figs. 4 and 5 of Ref.f27g, where various
wrong permutations of the ordering, chosen by trial-and-
error strategy, are shown not to reproduce the state. So, for a
sufficiently large value ofN, no information about the sys-
tem qubit can be deduced without this classical information.
Nevertheless, it is worth noting that the above computational
argument, while rendering security of the homogenizing pro-
cedure intuitively understandable and highly plausible, does
not rigorously prove it, even in theN→` limit.

A secondary wall of security is provided by the smallness
of d. It is useful if players already have knowledge ofj. In
this case, because of conditionss4ad, the homogenized state
of the system or reservoir qubit cannot be distinguished from
j.

If K is split up among theq members holding the system
and reservoir qubits according to asq,qd CTS, it is easy to
observe that this realizes asq,qd QTS not based directly on a
quantum error-correction code. In terms of the generalized
definition, this corresponds to askc,kq,n,Cd scheme in which
kc=0, Q=C, andn=kq=q. The classical layer of information
sharing is necessary in order to strictly enforce the threshold:
if prior ordering information were openly available, then, for
example, the lastq−1 participants could collude to obtain a
state close tor. We now present the most general twin-
threshold scheme possible based on homogenization. It will
still be more restricted than that obtained via quantum en-
cryption, requiring thatQ#C, so thatkq=q. If n is not too
large, it is preferable for prevention of partial information
leakage to choose the numberN of reservoir qubits such that
N@n. The general protocol is executed recursively as fol-
lows.

Scheme 3. Protocol to realize a restrictedskc,kq,n,Cd
Q2TS+C, withkq=qøn. Alice takesN s@1d reservoir qu-
bits, whereN+1=oimi and integersmi ù1 s∀i ,1ø i ønd,
and performs the process of homogenization to obtain states
j0,j1, . . . ,jN on the system qubit and theN reservoir qubits.

Distribution phase. s1d Any mi qubits fromN+1 qubits
are given to theith member ofQ. s2d K is divided into two
parts, K1 and K2, according to as2,2d CTS. s3d Let lc

;uQ̄ùCuù0. K1 is further split among the members ofQ
and Q̄ùC using asq+lc,q+lcd CTS. s4d K2 is split among

the members ofQ̄−C using askc−lc,n−q−lcd CTS.
Reconstruction phase. s1d Collect allq-shares from mem-

bers ofQ. s2d Collect all uCu c-shares from members ofC and
reconstructK1. s3d Collect anykc−lc shares from members

of Q̄−C to reconstructK2. s4d Using K1 andK2, reconstruct
K. s5d Using theq-shares andK, unwind the system state to
restore the secretuSl.
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