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We explore a generalization of quantum secret shai@g9 in which classical shares play a complemen-
tary role to quantum shares, exploring further consequences of an idea first studied by Nascimento, Mueller-
Quade, and ImdiPhys. Rev. A64, 042311(2001)]. We examine three ways, termed inflation, compression,
and twin thresholding, by which the proportion of classical shares can be augmented. This has the important
application that it reduces quantufimformation processingplayers by replacing them with their classical
counterparts, thereby making quantum secret sharing considerably easier and less expensive to implement in a
practical setting. In compression, a QSS scheme is turned into an equivalent scheme with fewer quantum
players, compensated for by suitable classical shares. In inflation, a QSS scheme is enlarged by adding only
classical shares and players. In a twin-threshold scheme, we invoke two separate thresholds for classical and
guantum shares based on the idea of information dilution.
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I. INTRODUCTION in violation of the quantum no-cloning theord®,10]). The
) ) _ notion of the QTS is based on quantum erasure correction
Suppose the president of a bank, Alice, wants t0 givg11 17, Quantum secret sharin@S9 has been extended

access to a vault to two vice-presidents, Bop .and Charliegeyond QTS to general access structUik3, 14, but here
whom she does not entirely trust. Instead of giving the comthe no-cloning theorem implies that none of the authorized
bination to any one of them, she may desire to distribute th@ets shall be mutually disjoint. Potential applications of QSS
information in such a way that no vice-president alone hasnclude creating joint checking accounts containing quantum
any knowledge of the combination, but both of them canmoney[15], or sharing hard-to-create ancilla stafé§], or
jointly determine the combination. Cryptography providesperforming secure distributed quantum computatjd®].
the answer to this question in the form sécret sharing Implementing QSS is well within current technolo@i/7],
[1,2]. In this scheme, some sensitive data are distribute@nd has been demonstrated by a recent experipi&ht
among a number of parties such that certain authorized sets In conventional QSS schemes, it is often implicitly as-
of parties can access the data, but no other combination gumed that all shareholders carry and process quantum infor-
players. A particularly symmetric variety of secret splitting mation. Given the fragile nature of quantum information, this
(sharing is called athreshold schemen a (k,n) classical can often be difficult and expensive from a practical view-
threshold scheméCTS), the secret is split up inta pieces point. Fortunately, it turns out to_be ppssmle sometimes to
(shares, of which anyk shares form a seauthorizedto construct an eqqlvalt_ant sche.me in which some shareholders
reconstruct the secret, while any setkafl or fewer shares carry only classical information and no quantum informa-

. ; -~ tion, an idea first studied by Nascimegbal.[19]. Our work
anssn?)\;\?efgr?wZilogTiispglngZte ff)?céﬁt;,;ffgfzrﬁ% frﬁmr is dedicated to exploring further consequences of this idea. It

n=k. By concatenating threshold schemes, one can construi of co.nsiderable i.mportance o considgr ways in WhiCh the
arbit}ary access structures, subject only té) the condition OE opprt|on of clqssmal shqres anq classical information pro-
monotonicity (i.e., sets cor,1taining authorized sets should o9 ¢@n be mc_reased in realizing a QSS scheme. Further-
also be authorizé’c{S] Hillery et al.[6] and Karlssoret al more, hybrld(classm_al-quantquS_S can potentially make

’ . : . ’ ) use of features available to classical secret sharing such as
[7] proposed methods for implementing CTS'’s that use

) ; . . share renewdl20], secret sharing with preventid21], and
guantuminformation to transmit shares securely in the pres'disenrollment[ZZ].

ence of eavesdroppers. In particular, our work is aimed at studying ways to aug-

Cai“%’g;fg'g&:ﬁﬁ;g'nsnéh&jab%veoiza a(tlg r:)h € uqaf}mu%ent the proportion of classical shares in different ways for
! ' ! prop N g various situations in QSS. As pointed out above, the main

Lum thresholdt SCheTéQT? h%s atmethqd to Sprll't ug af‘th“”' purpose of this exercise is to render practical implementation
nown secret quantum staf§) into n pieces(shares wi easier and less expensive. In Sec. Il, we present some basic

the restriction t_hak>n/2 (for if this inequality were vio- ways to introduce a classical information component into
lated, two disjoint sets of players can reconstruct the secrebss_ In Sec. Ill, we discuss how this can be used to “com-
press” a QSS scheme, that is, reduce the proportion of

quantum-information-carrying players. In Sec. IV, we show

*Electronic address: suds@ee.ucla.edu how a QSS scheme can be “inflated” by adding only classi-
"Electronic address: srik@rri.res.in cal shares. In Sec. V, we invoke two separate thresholds for
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classical and quantum shares based on the idea of informgesulting|y) is a complete mixture and no information can
tion dilution. This generalizes the idea of conventionalpe extracted out of it because the encryption leaves any pure

single-threshold QSS schemes and is again shown to lead gt)ate in a maximally mixed state, that i(s1/4)(i|S)<$i
savings of quantum players. ’

+0,|S(S 0y + 0| 9(F o, +0,S(F0,)=(1/2)l.  However,
with knowledge ofK the sequence of operations can be re-
Il HYBRIDIZING QUANTUM SECRET-SHARING versed andy) recovered. Therefore, classical data can be
SCHEMES used to encrypt quantum data. In general, given

d-dimensional objects, quantum encryption requitéop-
erators and a key of 2 l¢d) bits per object to randomize
erfectly. In practice, such quantum operations may prove
8_stly, and only near-perfect security may be sufficient. In

The essential method to hybridizee., to introduce clas-
sical shares intoQSS is to somehow incorporate classical
information that is needed to decrypt or prepare the quanturﬂ

secret as classical shares. Use of classical shares can so

times obviate and thus lead to savings in quantum shares, d IS case, there exists a set of rougdllkog(d) unitary opera-
at any rate, quantum players. A simple instance of such cladors whose average effect on every input pure state is almost

sical information is the ordering information of the shares. InPerfectly randomizing, so that the size of the key can be

QTS, it is implicity assumed that the shareholders know thé€duced by about a factor 0f[20,24.

coordinates of the shares in the secret, i.e., they know who is

holding_the first.qub.it, who the second, and so on. This or- |, cOMPRESSING QUANTUM SECRET-SHARING

dering information is necessary to reconstruct the secret, SCHEMES

without which successful reconstruction of the secret is not

guaranteed. If we wish to make use of this ordering informa- In hybrid QSS, the quantum secret is split up into quan-
tion in the above sense, then only quantum-error-correctiontum and classical shares of information. We call the former
based secret sharing, where lack of ordering informatiorg-shares, and the lattec-shares. A player holding only
leads to maximal ignorance, can be used. In particular, the-shares is called e-player orc-member. Otherwise, she or
scheme should be sensitive to the interchange of two or morie is ag-player org-member.

qubits. For example, let us considefZ3) QTS. The secret Definition 1 A QSS scheme realizing an access structure
here is an arbitrary qutrit and the encoding maps the secrét={a;,a,,...,a,} among a set of players P
qutrit to three quitrits as ={P;,P,,...,P,} is said to be compressible if fewer than

n g-players are sufficient to implement it.

a(0) + A1)+ ¥2) = a(|000 + 111 +[222) + B(|012) Here thea;’s are the minimal authorized sets of players.

+|120 +[20D) + 4(|02D) +|210 Knowledge of compressibility helps us decide how to mini-
mize valuable quantum resources needed for implementing a
+102), 1) given QSS scheme. As an example of compression by means

and each qutrit is taken as a share. While from a single sha@ hybrid QSS, suppose we want to split a quantum s¢gyet
no information can be obtained, two shares, with ordering@mong a set of playe8={A,B,C,D,E, F} realizing the ac-
information, suffice to reconstruct the encoded st@@p  cess structur&={ABC,AD,AEF}. That is, the only sets au-
However, the lack of ordering information does not alwaysthorized to reconstruct the secret d¢e B,C}, {A,D}, and
lead to maximal ignorance about the secret. Note that thA,E,F} and sets containing them, while any other set is
structure of the above code is such that any interchange afnauthorized to do so. For distributing the secret, we encrypt
two qubits leaves an encodé@) intact but interchangeld)  |S using the quantum encryption methaikscribed above
and [2). Thus, a secret likg0) or (1/y2)(|1)+]2)) can be with classical keyK into a new statéS) and give|S) to A.
entirely reconstructed without the ordering information.We then split upK using a CSS scheme that realizZEs
Therefore, only the subset of quantum error correction COdeﬁIayerA cannot recovefS) from |§> because he cannot un-
admissible in QSS that do not possess such symmetry progeramble it withoutk. Only the o;'s, and sets containing
erties can be used if the scheme is to be sensitive to orderingem can recover the classical kéyand thence decrypt the
information. , _ secret state. In this way, by means of a hybhfitassical-
Another scheme relevant here is due to Nascimed@.  g,antum secret-sharing scheme, we can compress the origi-
[19], based on qubit encryptioi23]. We adopt this method 5] QSS scheme into an equivalent one in which fewer play-
to generate the relevant encrypting classical informationg s need to handle guantum information.
However, in principle any classical data whose suppression \we use the notation of single parenthegdsuble paran-
leads to maximal ignorance of the secret are also good. E|S?hese$ to indicate a CTSa QTS. In a conventional(k,n))
where, in Sec. V, we consider another way. Quantum eNncryPscheme, a compression is known to be possibléitB+1,
tion works as follows. Suppose we haveragubit quantum , \vhich case, the scheme can be compressed inttk a

state|¢)_and Fa”dom sequendée of 2n cl_assical_bits. Ea<_:h —7y,n—v)) scheme combined with &,n) scheme, where/
sequential pair of classical bits is associated with a qubit and ok-n-1 [18]. A general access structurel

determines which transformatiane {I, oy, oy, 05} is applied  ={a,,a5,...,a,} can be realized by a first layer of a
to the respective qubit. If the pair is 0Djs applied, if it is  (1,r)-threshold scheme. In the quantum case, since this vio-
01, oy is applied, and so on. To one not knowikg the lates the no-cloning theorem, it is replaced by the majority

012328-2



GENERALIZED QUANTUM SECRET SHARING PHYSICAL REVIEW A71, 012328(2005

function ((r, 2r—1)) schemd13]. This, again, is incompress- authorized set with nag-player. Hence no compression
ible. However, in the second layer of the construction, thewould be possible.
((l],|ei])) schemes can be replaced with((4,1)) scheme
combined with(|e;|,|e|) schemeg19].

In the above, the degree of compression is determined by
I'={a,...,o} and the requirement to minimizg-players,

no matter who they areThis can be distorted if the — 1pe guestion of how to augment or “inflate” a given QSS
information-processing capabilities of individual players aregpeme keeping the quantum component fixed is considered
known to be different. In particular, suppose we are given gygqy This is of practical relevance if we wish to expand a
set (), suc_:h that players_ from this set are ab!e_ to Procesgiven QSS scheme by including new players who do not
quantum information reliably. The set of remaining playershave(reliable) guantum information processing capacity. To
Q=P-(Q are best designated to leeplayers. A “hitting set”  this end, we now define an inflatable QSS.

H(T") for the collection of set$’ is a set of players such that Definition 2 A QSS(I") scheme realizing an access struc-
HNa#+ @ 0Oi(l<i<r). Let M(I') be the smallest hitting tyre '={ay,a,,...,0,} among a set of playersP

set for I such thatM(I') CQ. M(I') may or may not be ={P,,P,,...,P,} is inflatable ifn can be increased for fixed
unique. We denot® =|M(T')|. Under compression, onlyi number of g-players to form a new QSS$I'') such that
g-players are needed. First a majority functién, 2r -1)) is I'"|,=T", where T"|, denotes the restriction dt’ to P.
employed,r of the shares being encrypted and deposited Clearly, inflation involves the addition of classical-
with theM g-players. In the second layer of the construction,information-carrying c-players. The additional shares re-

IV. INFLATING QUANTUM SECRET
SHARING SCHEMES

the ((|aj|,|ai])) schemes can be compressed (d,1))
schemes combined witaj|,|aj|) schemes, the-shares of
each a; being deposited with the respectigeplayer. The

remainingM —1 shares are split-shared according to a maxi-

mal scheme that contains. The maximal scheme is ob-
tained by adding authorized sets fountil authorized and
unauthorized sets form exact complemefi8]. Thus we
require onlyM <|P| g-players to implement the protocol,
which represents a compression [%-M g-players. We

quired for them will bec-shares, so that-shares may remain
fixed at m. The following theorem answers the question
when a QSS scheme can be inflated.
Theorem 1A QSS scheme realizing an access structure
'={ay,a5,...,¢} among a set of players P
={P,,P,,...,P,} can always be inflated.

Proof. Consider the addition ofm new players
Pot1s -+, Premy Wherem=1. The new set of all players are
P ={P;,P,,...,Pusm}- A new access structurel”

note that if M(I")=¢%), then compression is impossible. We ={q;, ... ,a/} can be obtained by arbitrarily adding the new
can observe that for a general access structure involving players to any of they;'s. Clearly, I'" will not violate the

large number of players, computing! is a provably hard

no-cloning theorem, sincE does not. The secré®) is en-

problem (in fact its decision version can be shown to becrypted using classical stririg to obtain|§). This encrypted

NP-complete[25,26]).

As an example, let us consider the access struckure
={ABCD,ADF,CDE} among six players P
={A,B,C,D,E,F}. Suppose()={A,C,E}. We can choose
M={A,C} or M={A,E}, representing the two required
g-players(instead of sixg-players, required in the uncom-

pressed version Suppose we choose the latter. The first

layer will employ a(3,5 QTS to split secretS). At the

second layer, the shares on the top two rows are encrypt

usingK, K, and given taA, the last usind<; and given tcE.

The Kj's are classically shared on each row, though theRQSSD).

g-shares remains witi or E. The last shar¢S') is shared
using a pure state scheme that impleméits, the maximal
scheme obtained frofi. The resultang-shares for each au-
thorized sety; are deposited witl; N M(I'). This scheme is
depicted in Eq(2):

A —(4,4:AB,C,D,
(BS)A —(3,3:AD,F, .
Ve _(3,3:C,D,E,
S).

We note that ifDe() then M(I")={D}, and only one

g-player, namelyD, would have sufficed to implement com-

pression. And ifQ={E,F}, then M =@ because there is an

secret is split-shared according to the original scheme imple-
mentingI’, while K is split-shared among afi+m players
according to the classical scheme implementiiig To re-
construct the secret, members of amj combine the

g-shares ofa; C a]-’ to reconstrucfS), and thec-shares with
all members ofaj’ to reconstructk, using which the en-

crypted secretS) is decrypted to|S). The new scheme is

eyich thatl'= I''[, and P’ —P are c-players. Therefore, the

new scheme QS¥’) is an inflation of the given scheme
|

The above theorem only says that any QSS scheme can be
inflated insomeway. A specific problem is whether a given
(k,n) QTS can be inflated to another QTS. This is considered
in the following theorem and corollary.

Theorem 2A (k,n) QTS can be inflated only conformally,
i.e., to threshold schemes having the foi(+y,n+7y),
wherey (=0) is an integer.

Proof. If the given (k,n) QTS satisfies the no-cloning
theorem, then clearly so will th&k+y,,n+v,) QTS, where
Y%= v,=0 andk+ y,=<n+1y,. Further, according to Lemma
1 of Ref.[19], a restriction of thek+ y,,n+v,) QTS by y
players necessarily yields a conformally reducékl
-v,n+y,—7y) QTS. The restricted scheme has a different
access structure frortk,n) QTS unlessy,=v,=7. There-
fore, only a conformal inflation ofk,n) QTS is possible,
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whereby it is inflated to &k+y,n+y) QTS by the addition
of y c-players. [ |

PHYSICAL REVIEW A71, 012328(2009

A. Quantum error correction and quantum encryption

We now give protocols that realizes the twin-threshold

In an implementation of Theorem 2, the quantum secret:neme based on quantum encryption.

|S is encrypted to|~S> using a classical string¢ which is

Scheme 1Protocol to realizék.,k,,n) Q2TS.

split-shared among al+y players according to &+y,n Distribution phase(1) Choose a random classical encryp-
+7) CTS. StatdS) is then quantally split-shared among the tion K. Encrypt the quantum secr8) using the encryption
q-p'ayers according to ak,n) QTS As a Consequence Of q’.lgonthm described in Sec. |. The encrypted state is Clenoted
Theorem 2, we have the following negative result. |S). (2) Using a conventionalk,,q) QTS, split-share|S)
Corollary 1. A (k,n) QTS cannot be inflated at constant among the members €f; to not violate no-cloningg should
threshold. [ | satisfy k,>(q/2). (3) Using a(k;,n—-q) CTS, split-sharek
among the members @f.
Reconstruction phasél) Collect anyk, g-shares from
members of) and_reconstrucliS). (2) Collect anyk, shares
In a conventional or compresséd n) QTS, the threshold  from members of) and reconstrucK. (3) ReconstructS)
k applies to all members taken together. Now suppose thaﬂsing |§> andK.
we haveseparatethresholds folc-members and-members, Now consider the casé# @ and the Q2TS scheme be-

namely,k; andk,, with k=k+k,. We now extend the defini-  .omes the more general Q2TS+C scheme. We now give a
tion of a conventional QTS t0 &, ky,n) quantum twin- 6000l that realizes this more general twin-threshold

V. TWIN-THRESHOLD QUANTUM SECRET SHARING
SCHEMES

threshold scheméQ2TS and a(k;,ky,n,C) quantum twin-
threshold scheme with common 482TS+Q, where a
quantum secrég) is split inton pieces(shareg according to
some preagreed procedure and distributed ammoplayers.
These n shareholders consist of members of sgtof

scheme. We denot&,=|QNC| and \;=|QNC|. Clearly,

At Ag=|C|. If there are nag-players inC, setAq=0, and if

there are na-players inC, seth.=0. Note that by definition,
g-players may also carry classical information, biglayers
do not carry quantum information.

g-players and se@_‘of c-players. We denotg=|()|, so that

|Q)]=n—-g. Obviously, in a quantum schem@# @.

Definition 3 A QSS scheme is &, kg, n) quantum twin-
threshold scheme amomgplayers, of whichg areqg-players
and the remaining areplayers, if at leask, c-players and at
leastk, g-players are necessary to reconstruct the secret.

Definition 4 A QSS scheme is &k;,ky,n,C) quantum
twin-threshold scheme with common set amaonglayers, of
which g areg-players and the remaining aceplayers, if:(a)
at leastk; c-players and at leagt; g-players are necessary to Ao )
reconstruct the secreth) all members of the set are nec- (2,2 CTS, divideK into two shares, sal{; andK,. (6) Part
essary to reconstruct the secret. Ky is split among the members 6f using a(|C],|C|) CTS.

The idea behind distinguishing between the classicafilternatively, it can be split using @,\;) CTS among the
thresholdk, and the quantum threshokj, is to obtain a C-players inC. (7) Using a(ks—Ac,n=q-A) CTS, splitK;
simple generalization that combines the properties of th@mong the members ¢j-C.

CTS and QTS. Practically speaking, it is best to mininkge Reconstruction phasél) Collect all \, shares from all
at fixedk. However, one can in principle consider situations ,ampers of)NC and reconstrucﬁ). (2) Collect anyk,

of potential use for a twin-threshold scheme, when a suffi- o = L
ciently large number of members are able to process quan:"d d-shares from)-C to reconstructS,). (3) Combining

tum information safely. Further, some of the shareholders|Sp and|S,), reconstructs). (4) Collect all|C| c-shares from
while not entirely trustworthy, may yet be more trustworthy members of: and reconstrud(,. Alternatively, collect all\
than others. The share dealsay Alice may prefer to in-  c-shares from members §fN C and reconstrudf;,. (5) Col-
clude all ;uqh sharehollders during any reconstruption of Fhf“ect any k.—\. shares froma—u and reconstrucK,. (6)
secret. This is the requirement that motivates the mtroductloQ;ombining K, and K,, reconstructk. (7) ReconstructS)
of setC. In general,C can contain members drawn froth using |§> andK

and/or() or may be a null set. By definition, Q2TS+C with '
C=@ is Q2TS.

In the following sections we present two methods to real-
ize in varying degrees the generalized quantum secret split-
ting scheme. The first of these is the general version of The second, more restrictive scheme, is based on the pro-
Q2TS+C. The second, while more restricted, is interestingedure for information dilution in a system-reservoir interac-
because it is not directly based on quantum erasure corretion, proposed by Zimaret al. [27]. The novelty of the
tion, but on information dilution via homogenization, in con- scheme lies in the fact that it is not directly based on a
trast to current proposals of QSS. quantum error-correction code. However, it is applicable

Scheme 2Protocol to realizek, kg, n,)-Q2TS+C.

Distribution phase(1) Choose a random classical encryp-
tion K. Encrypt the quantum secrf8) using the encryption
algorithm described in Sec. I. The encrypted state is denoted

|~S>. (2) Using a(2, 2) QTS, divide|§> into two pieces, say
S) and|[S)). (3) Using a(\g,\g) QTS, split/S,) among the
g-members inC. (4) Using a conventionalky—\g,q—A\g)
QTS, split|~82> among theg-members not irf’; to not violate
no-cloning,q should satisfy(k,—Aq) > (q—\g)/2. (5) Using a

B. Quantum twin-threshold scheme based on information
dilution via homogenization
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only to QSS withC # @. Referencg27] presents ainiversal  demonstrated in Figs. 4 and 5 of R¢27], where various
quantum homogenizea machine that takes as input a sys-wrong permutations of the ordering, chosen by trial-and-
tem qubit initially in the statep and a set ofN reservoir  error strategy, are shown not to reproduce the state. So, for a
qubits initially prepared in the identical stafe In the ho-  sufficiently large value oN, no information about the sys-
mogenizer the system qubit sequentially interacts with théem qubit can be deduced without this classical information.
reservoir qubits via the partial swap operation so that théNevertheless, it is worth noting that the above computational
initial state p’ of the system, after interacting with thé  argument, while rendering security of the homogenizing pro-
reservoir qubits, becomes cedure intuitively understandable and highly plausible, does
not rigorously prove it, even in thid—co limit.

P =Trel Uy Ul(P(SO) ® £MUT -+ UY] ©) A secondary wall of security is provided by the smallness
where U,=U® (®,;,];) describes the interaction between Of J. It is useful if players already have knowledge &fin
the kth qubit of the reservoir and the system qubit. The ho-this case, because of conditiofs), the homogenized state
mogenizer realizes, in the limit sense, the transformatior®f the system or reservoir qubit cannot be distinguished from
such that at the output each qubit is in an arbitrarily smalf: ) i i
neighborhood of the stateirrespective of the initial states of ~ If K is split up among theg members holding the system

the system and the reservoir qubits. Formally, and reservoir qubits gccording to(q,q) CTS, it i_s easy to
observe that this realizesq,q) QTS not based directly on a
D), &) <8 ON=N, (43 quantum error-correction code. In terms of the generalized
definition, this corresponds to(&, ky,n,C) scheme in which
D(é.é) <6, O1<k<=N, (4b)  k.=0,=C, andn=k,=q. The classical layer of information

sharing is necessary in order to strictly enforce the threshold:
; L if prior ordering information were openly available, then, for
tween the states3>0 is a small parameter choserpeori, example, the lasf|—1 participants could collude to obtain a

’ (k-1) 1
and§=TrdUpg ~ @ £U']. state close tgp. We now present the most general twin-

The interaction between a reservoir qubit and the systeryesnold scheme possible based on homogenization. It will
qubit is given by the partial swap operati®f7) =(cosn)! il be more restricted than that obtained via quantum en-

+i(sin 77)5, wheres_theswapoperator acting on the state of cryption, requiring that) C C, so thatk,=g. If n is not too
two qubits, is defined by§y)@[h)=|¢)®|y). It can be |arge, it is preferable for prevention of partial information
shown thaty can be chosen to enforce H¢a) according to  |eakage to choose the numbéiof reservoir qubits such that
the relation N>n. The general protocol is executed recursively as fol-
R y>S lows.
siny = ol2. ©®) Scheme 3Protocol to realize a restrictetk;,ky,n,C)

Thus the information contained in the unknown system statg@)2TS+C, withk,=q=n. Alice takesN (>1) reservoir qu-
is distributed in the correlations among the system and thejts, whereN+1=3m and integersm=1 (0i,1<i<n),
reservoir qubits, whose marginal states are closé &5 the  and performs the process of homogenization to obtain states
authors point out, this process can be used quamtum safe £« . & on the system qubit and thé reservoir qubits.
with a classical combinatian Distribution phase (1) Any m qubits fromN+1 qubits

Now we show how this particular feature can be turnedyye given to théth member of(). (2) K is divided into two
into a special case of thé,k,,n,C) threshold scheme, sub- parts, K; and K,, according to a(2,2) CTS. (3) Let \,

ject to the restriction that)CC, so thatky=q, i.e., all —|)NC|=0. K, is further split among the members of
g-players must be present to reconstruct the secret. The ho-' '— ‘

mogenization is reversible and the original state of the sys@"dQNC using a(+Ac,q+A) CTS.(4) K, is split among
tem and the reservoir qubits can be unwound. Perfect urthe members of)—C using a(k;—\¢,n—q—-A,) CTS.
winding can be performed only when the system particle is Reconstruction phasé¢l) Collect allg-shares from mem-
correctly identified from among thid+1 output qubits, and bers of(). (2) Collect all|C| c-shares from members 6fand
it and the reservoir qubits interact via the inverse of the origi+econstructk,. (3) Collect anyk.—\. shares from members

nal partial swap operation. Therefore, in order to unwind theyf 6% to reconstrucK,. (4) Using K; andK,, reconstruct

homogenized system, the classical informatidenotedK) K. (5) Using theg-shares andk, unwind the system state to
about the sequence of the qubit interactions is essentiglestore the secrés).

Now, of the(N+1)! possible orderings, only one will reverse
the original process. The probability to choose the system
qubit correctly is 1{N+1). Even when the particle is chosen
successfully, there are st! different possibilities in choos- We are grateful to Dr. Mueller-Quade for pointing out an
ing the sequence of interaction with the reservoir qubitsimportant reference. We thank Professor Anil Kumar, Profes-
Thus, without the knowledge of the correct ordering, thesor J. Pasupathy, and Ranabir Das for discussions. S.K.S.
probability of successfully unwinding the homogenizationthanks Professor Anil Kumar for enabling his visit to IISc
transformation is 1(N+1)!), which is exponentially small during which this work was done. R.S.’s work, begun at the
in N. Moreover, a particular order of trial unwinding and Center for Theoretical Studies, was partially supported by
measurement will irrecoverably destroy the system. This i99RDO Project No. 510 01PS-00356.

whereD(-, ) denotes some distan¢e.g., a trace norjrbe-
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