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Sixth-order robust gates for quantum control
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Composite pulse sequences designed for nuclear magnetic resonance experiments are currently being ap-
plied in many quantum information processing technologies. We present an analysis of a family of composite
pulse sequences used to address systematic pulse-length errors in the execution of quantum gates. It has been
demonstrated by Cummiret al. [Phys. Rev. A67, 042308(2003] that for this family of composite pulse
sequences, the fidelity of the resulting unitary operation compared with the ideal unitary operatidefs 1 -
wheree is the fractional error in the length of the pulse. We derive an exact expression for the sixth-order
coefficientC and from this deduce conditions under which this sixth-order dependence is observed. We also
present pulse sequences which achieve the same fidelity.
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Systematic errors are always present in any experimentat=0 being theX axis. We now consider the effects of a
setup. They are best dealt with by stripping down the experisystematic error, such as a pulse-length-type error. Using a
ment and finding them one by one. Even after doing thissuperscript to denote pulse sequences suffering this type of
there is still the possibility of not eliminating them all. Quan- error, where all rotation angles are altered by the fractional

tum computers operate universally with single-qubit rota-error ¢, the above one single-qubit rotation becomes
tions and a controlledioT gate between two qubifd]. Re-
O(1+e)
2

cently, Cumminset al. [2] have addressed the issue of .

systematic errors in single-qubit gates due to pulse-length R(6,c) = exp| i
and off-resonance effects. Off-resonance errors result in a

rotation around an axis tilted with respect to the desired rowheree is the fractional error. In order to compare the error-
tation axis. Pulse-length errors result in a rotation through aprone unitary transformatiofV=R<(8,«)] with the error-

angle WhiCh falls short of, or goes _beyond, the desired anglgee unitary transformatiofy=R(8, «)], the following fidel-
of rotation, due to an error in the timing of the pulse. Com'itg definition is used:

posite pulse techniques have received much attention as
means to correct systematic err¢3,5,6, with [7] a sig- ITr(vu?)|
nificant recent development. First developed in the NMR set- = Troun
ting, these techniques can be very useful in reducing the r( )
effects of systematic errors in a wide range of quantum comy,4 composite pulse sequence as presented by Wimperis
puter proposals. They have been identified as such in NUMef3, os the form

ous quantum information processing technologies such as

trapped-ion technologid8-10], in rare-earth-doped crystal — pe € €

technology{ 11,12, in superconducting technologigk3,14], W1 ¢2) = Ri(m )RA2m, @R, ) @

and in solid-state quantum information processing technoloso that where=0, W is simply the identity. When this pulse
gies[15,16. The BB1 composite pulse sequence, first develsequence is carried out before or after the desired single-
oped by Wimperig3], deals with pulse-length errors in a qubit rotation, the fidelity of the resulting composite pulse
remarkably efficient manner. It is shown[ig] that the com-  sequence is 1E€€°. In fact, W<(¢,, #,) may be placed at any

posite pulse sequence has a fidelity of Qe when com- Jpoint during a rotation around a given axis—ie.,
pared to the exact qubit rotation. In this article we examin

the origin of this sixth-order dependence on the error in the R(a6,a) < W1, d,) < R((1 -a)6,a),

fidelity of the gate and deduce some constraints on the pos-

sible composite pulse sequences one may use. We also sugith a < [0,1], and the same fidelity is observed.

gest some other pulse sequences whose fidelities display this |n order to show where this comes from, we need to ex-

(Xcosa+Ysin a)) ., (2

3

sixth-order dependence. amine the definition of the fidelity. First we let
A general single-qubit rotation around an axis in X¥
plane of the Bloch sphere can be written as A=XcoSs¢y+Ysin ¢y,
e H 9 H
R(6, @) = ex —IE(XCOSa+YS|na) , (1) B=Xcos¢,+ Y sin ¢,

whered is the angle through which the qubit is rotated and
is the angle of the axis in theY plane of the Bloch sphere,
be three axes in thXY plane of the Bloch spher&€ is the
axis around which we wish to perform the rotation adnd

*Electronic address: dmchugh@thphys.may.ie B are the two axes iWV<(¢,, ¢,). The fidelity is

C=Xcosa+Ysina
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F= %ITr(e““’“*f)”-’]C\/\F(m, $)e720)| Tr(e™) =Tr(1) + Tr{ %[P(e)]z} 0 F=1+ %Tr{[P(e)]z}

_ —|Tr( (02CEH(EHROWE( | ) H2C) e

For the next step we let the first derivative of the total
1 _ _ pulse sequence with respect to the ereoequal the zero
= §|Tr(e_'(69’4)c\/\/€(¢11¢z)e_'(69/4)c)|- matrix ate=0 to find a relation between the rotation agls
and the axe#\ andB.

The last step is due to the trace property of invariance under The total pulse sequence is given by

cyclic permutationsW¢(¢,, ¢,) can be simplified to BB(e) = & (1491210l (1+0/2Rg(1+Sgl (1+9/2]R
WE(¢1,¢2) e—l[w(l+5)/2]Ae[—l l+6)7TB] —i[m(1+e)/2]A so that
—a E7T/2)A( IA)e—Ieﬂ'B( D( |A) ~i(em/2)A dBB(G)
—g i(eml2)A —IEWABAe—I(EW/Z)A de =0

since A2=1=B2 ABA=X COS2;— ¢, +Y Sin2¢,— ) is 0 3Q+(R+9=0.

another axis in th&Y plane of the Bloch sphere. The fidelity ~ This allows us to simplify the expression f8e),
now takes on a more symmetric look when written as
Ple) =€ (‘ —[R+2S[R, S]]+ —[Q [Q.QII

1 . . : i ) 192
F= _|Tr(e—|(60/4)Ce—|(ew/Z)Ae—lewAB%—I(ew/Z)Ae—I(56/4)C)| )
2

1
, o - 9—6[Q,[Q,Q]]) +0(€)
This form for the fidelity turns out to be the reason the BB1
sequence performs so well. The symmetric Baker-Campbell- 1 5 5
Hausdorff formula is stated and derived[#] as =- 2—4[R+ 25[R,S[le*+ O(e).

eRZtSgR2 = gFsvattRS), (5 Next we expand the commutatfR+2S,[R, S]] to get

with, ([R+2S[R,S]])?= - #°( [A+ 2ABA[A,ABA]])?
= - 75401 + 8(AB+ BA) — 20(ABAB

1
Foult:R S =t(R+9) - —t[R+ 2S[R, S]] + O(1°).
shetl ) =1( ) 24 L [RSI]+O() +BABA) - 8(ABABAB+ BABABA)

If we defineQ=-i16C, R=—i7A, andS=-i7ABAto simplify = — 7940 + 16 co$p, — 1) — 40 cos 2¢,
the notation, we can reduce the expression in the trace above
; P ; e -¢) -1 - 1
by twice applying the symmetric BCH formula, yielding ¢1) =16 €05 32~ )]
sinceAB=exdi(¢,— ¢1)Z].
_1 -i -i -i -i -i Therefore, we can write the fidelity as
F= _|Tr(e |(59/4)Ce I(ev'r/Z)Ae IE‘ITAB% |(E7T/2)Ae |(5€/4)C)| s Yy
2
=1+ ETr{([R+ 2S[R S + O(€®
— }|-|—r(e(5/4)Qe(e/z)Reese(e/z)Re(e/A)Q)| 4 2304 all SIRSD +0()
2 6 6
=1-——[5+2co —-5cos -
- 1|Tr(e(e/4>Qe(s/2>(<2/e>Fsbcr{s;R,S»e(em)o)| 144[ b2~ 40 2= by)
? ~2.c0s 3y~ )]+ O()
1 . .
= 5|Tr(e':sbcf((dz)'Q’(2/5>Fsbcf{€'R's)))|. Finally, by writing A, B, andC in terms of the Pauli opera-

tors, X andY, the condition;Q+R+S=0 implies
Letting P(e)=Fgpc{€/2;Q,(2/e)Fgpef€; R, S), we find that

0
COS¢y + COS2¢; — pp) = — — COSa (6)
1 of 1
P(e) =€ §Q+ R+S|+¢€| - Z[R+ 2S[R, S]]
0
sin ¢1+sin(2q§l—¢2):—2—sina, (7)
- 5[0 2R+9 1- IR+ S[Q R+S]]) g
and these two equations lead to the following rule for choos-
+0(e). ing ¢, and ¢, given § and a:
Given that all the operators iR(e) are proportional to the _ 1 { )
Pauli operators, TP(¢)]=0, and, therefore, 41 arcco 82 A ®
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o =31~ 20 (9

To give a concrete example, we choase0, 6= corre-
sponding to a 180° rotation about tieaxis of the Bloch
sphere. This gives us

1
1= arccoé— Z) ,

¢h2=3d1,
and a fidelity
5 45 8 FIG. 1. Fidelity of composite pulse sequences (f@rthe three-
F=1- 102477 e+0(e), pulse sequencesolid) and (b) the five-pulse sequencédashed,
with coefficients for the sixth-order term of the fidelity given in
which agrees with the findings ii5]. Table I. The fidelity of the single error-prone pulse is also shown
(dotted ling.

It can be readily seen that if copies ofW¢(¢,, @) are
carried out one after the other, then the condition that

dBB/de| (=0, 0= gc +yA+ (2mm — y)e (VAR (A
1
05Q+n(R+9=0, O sinysin(¢, — ¢1)

= O,
and alsoP(e) = Q+n(R+9]+O(&). This defines the gen- _
eral Wn pulses, introduced if2] as giving y=pm, »=2qm with p+q=2mandp,q=1,2,.... The
most general three-pulse sequences aR&(p,¢,)
1 g Re(2qm, ¢,) Ré(p, ith ¢;, ¢, determined from
¢1=a——ar000< . _1>' (207, ¢) R(p7, 1) With ¢y, b, !
2 8n?m? 0
—C+pA+qAPBAP=0.
2

$2=3¢1~ 20,
For evenp,
and shows that they all perform with a fidelity ©¢e°). We I
note that it is only necessary to show the sequence works for p sin ¢, +qsin ¢, = Py sin(a),
a

one angle—saya=0—with other axes accounted for by
phase shifting each pulse by some angle

Other sixth-order pulse sequence¥/e now look at
whether there are other types of pulse sequences similar to

those above which can achieve the same fidelity. The most . . _ . .
general three-pulse sequence is meaning that eitheip,=a—arcsin(q/p)sin(¢,—a)] or ¢,

=a+arcsin(p/qg)sin(a—¢1)]. Hence p/q<l since -1
WE( by, o, ba) = RE(Z, b1)R( 77, o) RE(y, ) . < (p/g)sif(a—¢1) <1 Da. Silmilarily, g/psl—ie., g=p
and ¢+ ¢,=2a. The same is true for odg except 3,
As before we define axes, B, andC in the XY plane of the  —¢,=2a.
Bloch sphere by the angles,, ¢,, anda, respectively. The We are left with the general three-pulse sequences
first condition to satisfy is that the pulse sequence must be . . .
symmetric so that it can be reduced using the symmetric Wirl( b1, #2) = RAm, p1)R(2m, )R, ).
BCH formula, thus keeping the fidelity for the total pulse The Wn family is obtained from repeating theVS( b1, b,)
sequence sixth order i\. This means we need=y and  sequence times. Wherm=2, the “passband” Wimperis se-
$1=¢h3. Also to satisfy the condition that/“(¢;, $,)=1, we  quence[3,6] is recovered. Moreover, these are the only
require three-pulse sequences which achieve this sixth-order fidelity.
The first three of these composite sequences are plotted in
2y+n=4mm, m=1,2, ... . (100 Fig. 1. In other three-pulse sequences, the first-order term in
the fidelity always disappears due to the fact that by collaps-
ing the entire pulse sequence using the BCH formula to

W1, ) = Ry, p)R(2(2Mar = ), $) RN, 1) . BB(e) = € ANy, py) = €719,

Finally, we let the first derivative of the total pulse sequencehe fidelity is]-‘=1+‘—11Tr{[P1(e)]2}+--~ and the leading term
with respect toe equal zero at=0 and obtain the constraint in P;(e) is O(e).

-0
P COS¢h; +qCOSh, = —— coda),
2

We are then left with sequences of the form
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So there are no pulse sequences constructed from three TABLE I. The coefficientsC in the fidelity expansionF=1
pulses which achieve this sixth-order dependence for the fi=Ce® for six composite pulse sequences which compensate for an
delity for the resulting rotation other than the above familyerror-proner pulse around th& axis.
of pulse sequences. There is, however, the option of creating

a five-pulse sequence by introducing a third axis. The general Three-pulse c Five-pulse c
form for such a sequence is WE(BB1) 47 WE,, 793
R, p0R(7, )Ry, hpa) R (1, $a)RY(v, bs) . W5(PB1) 59.1 Wi1, 190.6
W 283.4 WE,, 877.8

We define the axe#, B, C, andD in the XY plane of the
Bloch sphere by the angles, ¢,, ¢s, anda, respectivelyD

:/?/enf/)vvi\lll tPee ‘3;(:;’ ?Iound_wh:ac: dv:;e_wq;sh ;O _rc:;atii &;])}ﬁjgear“?c; improve for higher values gb and so these sequences are of
q ~n =k 1= %5 2™ no real practical use.

keep symmetry in the sequence and hence the sixth-order Another five-pulse sequence which achieves the same

fidelity dependence. In order that the pulse sequence be the . - o )
identity whene=0, we need to satisfy 2 27+ y=4m, m sixth-order dependence for the fidelity is found by setting

= ) L . p=1, q=2, andr=1. Equation(11) is now satisfied when

_1,2,..._. Thefirst 9er|vatlze of the tota_l pqlse sequence is 1= ArccoB(0—4m) 1 417], dp=2c1, and ds=3¢, for a rota-

zero ate=0 when{=pm, n=q for positive integergp and tion around theX axis (a=). As before, other axes may be

. We arrive at general five-pulse sequences of the form =) ’ Y e
accounted for by phase shifting each pulse by the appropriate

Wi, = RE(p7r, ) R(Q, o) R(2r 7, ¢bs) angle. The fidelity of this sequence is much better than the
Re R previous five-pulse sequence and is quite close to that of the
XR(am, ¢)R(pm, bo), PB1 sequence as seen in Fig. 1. Other sequences can be

wherep+q+r=2m and ¢,, ¢,, and ¢, are determined from constructed by varying, g, andr.

) Conclusion We have presented an analysis of the com-

s PR AP PRA RAAP — posite pulse sequences presented by Jones and co-workers

n-D tPA+QATBATHIATBICEIAT=0. (1) [2,6] to combat systematic pulse-length errors in single-qubit
rotations. We have derived an explicit form for the fidelity
and shown how it is possible to set up other three-pulse
sequences which achieve the same order error dependence
for the fidelity. We have shown that there are also five-pulse
sequences which do achieve the sixth-order dependence of
the fidelity on the error.

One solution to find five-pulse sequences ipat=r, analo-
gously to the three-pulse sequence case. In this gase
=2m/3 and, as it must remain an integer,must be a mul-
tiple of 3 with nowp=2,4,6... .Equation(11) is satisfied
for p=2 when¢,=0, ¢,=arcco§(§-4m)/8m] and p3=—¢,
for a rotation around th& axis. However, while the fidelity
displays a sixth-order dependence on the fractional error, the D.McH. kindly acknowledges support from Enterprise-
coefficient of the leading term, shown in Table I is so muchireland Basic Research Grant No. SC/1999/080. The work
larger that the sequence is only better than the error-pron@as also supported by the EC IST FET project QIPDDF-
pulse for small values o€ (~0.2). The situation does not ROSES IST-2001-37150.
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