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Composite pulse sequences designed for nuclear magnetic resonance experiments are currently being ap-
plied in many quantum information processing technologies. We present an analysis of a family of composite
pulse sequences used to address systematic pulse-length errors in the execution of quantum gates. It has been
demonstrated by Cumminset al. fPhys. Rev. A67, 042308s2003dg that for this family of composite pulse
sequences, the fidelity of the resulting unitary operation compared with the ideal unitary operation is 1−Ce6,
wheree is the fractional error in the length of the pulse. We derive an exact expression for the sixth-order
coefficientC and from this deduce conditions under which this sixth-order dependence is observed. We also
present pulse sequences which achieve the same fidelity.
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Systematic errors are always present in any experimental
setup. They are best dealt with by stripping down the experi-
ment and finding them one by one. Even after doing this,
there is still the possibility of not eliminating them all. Quan-
tum computers operate universally with single-qubit rota-
tions and a controlled-NOT gate between two qubitsf1g. Re-
cently, Cumminset al. f2g have addressed the issue of
systematic errors in single-qubit gates due to pulse-length
and off-resonance effects. Off-resonance errors result in a
rotation around an axis tilted with respect to the desired ro-
tation axis. Pulse-length errors result in a rotation through an
angle which falls short of, or goes beyond, the desired angle
of rotation, due to an error in the timing of the pulse. Com-
posite pulse techniques have received much attention as a
means to correct systematic errorsf2,3,5,6g, with f7g a sig-
nificant recent development. First developed in the NMR set-
ting, these techniques can be very useful in reducing the
effects of systematic errors in a wide range of quantum com-
puter proposals. They have been identified as such in numer-
ous quantum information processing technologies such as
trapped-ion technologiesf8–10g, in rare-earth-doped crystal
technologyf11,12g, in superconducting technologiesf13,14g,
and in solid-state quantum information processing technolo-
giesf15,16g. The BB1 composite pulse sequence, first devel-
oped by Wimperisf3g, deals with pulse-length errors in a
remarkably efficient manner. It is shown inf2g that the com-
posite pulse sequence has a fidelity of 1−Ce6 when com-
pared to the exact qubit rotation. In this article we examine
the origin of this sixth-order dependence on the error in the
fidelity of the gate and deduce some constraints on the pos-
sible composite pulse sequences one may use. We also sug-
gest some other pulse sequences whose fidelities display this
sixth-order dependence.

A general single-qubit rotation around an axis in theXY
plane of the Bloch sphere can be written as

Rsu,ad = expS− i
u

2
sX cosa + Y sinadD , s1d

whereu is the angle through which the qubit is rotated anda
is the angle of the axis in theXY plane of the Bloch sphere,

a=0 being theX axis. We now consider the effects of a
systematic error, such as a pulse-length-type error. Using a
superscript to denote pulse sequences suffering this type of
error, where all rotation angles are altered by the fractional
error e, the above one single-qubit rotation becomes

Resu,ad = expS− i
us1 + ed

2
sX cosa + Y sinadD , s2d

wheree is the fractional error. In order to compare the error-
prone unitary transformationfV=Resu ,adg with the error-
free unitary transformationfU=Rsu ,adg, the following fidel-
ity definition is used:

F =
uTrsVU†du
TrsUU†d

. s3d

The composite pulse sequence as presented by Wimperis
takes the form

Wesf1,f2d = Resp,f1dRes2p,f2dResp,f1d, s4d

so that whene=0, W is simply the identity. When this pulse
sequence is carried out before or after the desired single-
qubit rotation, the fidelity of the resulting composite pulse
sequence is 1−Ce6. In fact,Wesf1,f2d may be placed at any
point during a rotation around a given axis—i.e.,

Resau,ad ↔ Wesf1,f2d ↔ Re
„s1 − adu,a…,

with aP f0,1g, and the same fidelity is observed.
In order to show where this comes from, we need to ex-

amine the definition of the fidelity. First we let

A = X cosf1 + Y sinf1,

B = X cosf2 + Y sinf2,

C = X cosa + Y sina

be three axes in theXY plane of the Bloch sphere.C is the
axis around which we wish to perform the rotation andA and
B are the two axes inWesf1,f2d. The fidelity is*Electronic address: dmchugh@thphys.may.ie
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F =
1

2
uTrse−ifus1+ed/2gCWesf1,f2deisu/2dCdu

=
1

2
uTrse−isu/2dCe−iseu/2dCWesf1,f2deisu/2dCdu

=
1

2
uTrse−iseu/4dCWesf1,f2de−iseu/4dCdu.

The last step is due to the trace property of invariance under
cyclic permutations.Wesf1,f2d can be simplified to

Wesf1,f2d = e−ifps1+ed/2gAef−is1+edpBge−ifps1+ed/2gA

= e−isep/2dAs− iAde−iepBs− Ids− iAde−isep/2dA

= e−isep/2dAe−iepABAe−isep/2dA,

since A2=I=B2. ABA=X coss2f1−f2d+Y sins2f1−f2d is
another axis in theXY plane of the Bloch sphere. The fidelity
now takes on a more symmetric look when written as

F =
1

2
uTrse−iseu/4dCe−isep/2dAe−iepABAe−isep/2dAe−iseu/4dCdu.

This form for the fidelity turns out to be the reason the BB1
sequence performs so well. The symmetric Baker-Campbell-
Hausdorff formula is stated and derived inf4g as

etR/2etSetR/2 = eFsbchst;R,Sd, s5d

with,

Fsbchst;R,Sd = tsR+ Sd −
1

24
t3†R+ 2S,fR,Sg‡ + Ost5d.

If we defineQ=−iuC, R=−ipA, andS=−ipABA to simplify
the notation, we can reduce the expression in the trace above
by twice applying the symmetric BCH formula, yielding

F =
1

2
uTrse−iseu/4dCe−isep/2dAe−iepABAe−isep/2dAe−iseu/4dCdu

=
1

2
uTrsese/4dQese/2dReeSese/2dRese/4dQdu

=
1

2
uTrsese/4dQese/2d„s2/edFsbchse;R,Sd…ese/4dQdu

=
1

2
uTrseFsbch„se/2d;Q,s2/edFsbchse;R,Sd…du.

Letting Psed=Fsbch(e /2 ;Q,s2/edFsbchse ;R,Sd), we find that

Psed = eS1

2
Q + R+ SD + e3S−

1

24
†R+ 2S,fR,Sg‡

−
1

192
†Q,fQ,2sR+ Sdg‡ −

1

24
†R+ S,fQ,R+ Sg‡D

+ Ose5d.

Given that all the operators inPsed are proportional to the
Pauli operators, TrfPsedg=0, and, therefore,

TrsePsedd = TrsId + TrH1

2
fPsedg2J ⇒ F = 1 +

1

4
TrhfPsedg2j

+ ¯ .

For the next step we let the first derivative of the total
pulse sequence with respect to the errore equal the zero
matrix ate=0 to find a relation between the rotation axisC
and the axesA andB.

The total pulse sequence is given by

BBsed = efs1+ed/2gQefs1+ed/2gRes1+edSefs1+ed/2gR,

so that

UdBBsed
de

U
e=0

= 0

⇒ 1
2Q+sR+Sd=0.
This allows us to simplify the expression forPsed,

Psed = e3S−
1

24
†R+ 2S,fR,Sg‡ +

1

192
†Q,fQ,Qg‡

−
1

96
†Q,fQ,Qg‡D + Ose5d

= −
1

24
†R+ 2S,fR,Sg‡e3 + Ose5d.

Next we expand the commutator[R+2S,fR,Sg] to get

s†R+ 2S,fR,Sg‡d2 = − p6
„s†A + 2ABA,fA,ABAg‡d2

= − p6s40I + 8sAB+ BAdd − 20sABAB

+ BABAd − 8sABABAB+ BABABAd…

= − p6f40 + 16 cossf2 − f1d − 40 cos 2sf2

− f1d − 16 cos 3sf2 − f1dgI,

sinceAB=expfisf2−f1dZg.
Therefore, we can write the fidelity as

F = 1 +
1

2304
e6Trhs†R+ 2S,fR,Sg‡d2j + Ose8d

= 1 −
e6p6

144
f5 + 2 cossf2 − f1d − 5 cos 2sf2 − f1d

− 2 cos 3sf2 − f1dg + Ose8d

Finally, by writing A, B, andC in terms of the Pauli opera-
tors,X andY, the condition1

2Q+R+S=0 implies

cosf1 + coss2f1 − f2d = −
u

2p
cosa, s6d

sinf1 + sins2f1 − f2d = −
u

2p
sina, s7d

and these two equations lead to the following rule for choos-
ing f1 andf2 given u anda:

f1 = a −
1

2
arccosS u2

8p2 − 1D , s8d
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f2 = 3f1 − 2a. s9d

To give a concrete example, we choosea=0, u=p corre-
sponding to a 180° rotation about theX axis of the Bloch
sphere. This gives us

f1 = arccosS−
1

4
D ,

f2 = 3f1,

and a fidelity

F = 1 −
5

1024
p6e6 + Ose8d,

which agrees with the findings inf5g.
It can be readily seen that ifn copies ofWesf1,f2d are

carried out one after the other, then the condition that
udBB/deue=0=0,

⇒
1

2
Q + nsR+ Sd = 0,

and alsoPsed=ef 1
2Q+nsR+Sdg+Ose3d. This defines the gen-

eral Wn pulses, introduced inf2g as

f1 = a −
1

2
arccosS u2

8n2p2 − 1D ,

f2 = 3f1 − 2a,

and shows that they all perform with a fidelity 1−Ose6d. We
note that it is only necessary to show the sequence works for
one angle—say,a=0—with other axes accounted for by
phase shifting each pulse by some anglea.

Other sixth-order pulse sequences. We now look at
whether there are other types of pulse sequences similar to
those above which can achieve the same fidelity. The most
general three-pulse sequence is

Wesf1,f2,f3d = Resz,f1dResh,f2dResg,f3d.

As before we define axesA, B, andC in theXY plane of the
Bloch sphere by the anglesf1, f2, anda, respectively. The
first condition to satisfy is that the pulse sequence must be
symmetric so that it can be reduced using the symmetric
BCH formula, thus keeping the fidelity for the total pulse
sequence sixth order ine. This means we needz=g and
f1=f3. Also to satisfy the condition thatWesf1,f2d=I, we
require

2g + h = 4mp, m= 1,2, . . . . s10d

We are then left with sequences of the form

Wesf1,f2d = Resg,f1dRe
„2s2mp − gd,f2…R

esg,f1d.

Finally, we let the first derivative of the total pulse sequence
with respect toe equal zero ate=0 and obtain the constraint

0 =
u

2
C + gA + s2mp − gde−isg/2dABeisg/2dA

⇒ sing sinsf2 − f1d

= 0,

giving g=pp, h=2qp with p+q=2m andp,q=1,2, . . . . The
most general three-pulse sequences areRespp ,f1d
Res2qp ,f2d Respp ,f1d with f1, f2 determined from

u

2p
C + pA+ qApBAp = 0.

For evenp,

p sinf1 + q sinf2 =
− u

2p
sinsad,

p cosf1 + q cosf2 =
− u

2p
cossad,

meaning that eitherf1=a−arcsinfsq/pdsinsf2−adg or f2

=a+arcsinfsp/qdsinsa−f1dg. Hence p/qø1 since −1
ø sp/qdsinsa−f1dø1 ∀a. Similarily, q/pø1—i.e., q=p
and f1+f2=2a. The same is true for oddp except 3f1
−f2=2a.

We are left with the general three-pulse sequences

Wm
e sf1,f2d = Resmp,f1dRes2mp,f2dResmp,f1d.

The Wn family is obtained from repeating theW1
esf1,f2d

sequencen times. Whenm=2, the “passband” Wimperis se-
quence f3,6g is recovered. Moreover, these are the only
three-pulse sequences which achieve this sixth-order fidelity.
The first three of these composite sequences are plotted in
Fig. 1. In other three-pulse sequences, the first-order term in
the fidelity always disappears due to the fact that by collaps-
ing the entire pulse sequence using the BCH formula to

BBsed = e−ius1+ed/2Wesf1,f2d = eP1sed,

the fidelity isF=1+1
4TrhfP1sedg2j+¯ and the leading term

in P1sed is Osed.

FIG. 1. Fidelity of composite pulse sequences forsad the three-
pulse sequencesssolidd and sbd the five-pulse sequencessdashedd,
with coefficients for the sixth-order term of the fidelity given in
Table I. The fidelity of the single error-prone pulse is also shown
sdotted lined.
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So there are no pulse sequences constructed from three
pulses which achieve this sixth-order dependence for the fi-
delity for the resulting rotation other than the above family
of pulse sequences. There is, however, the option of creating
a five-pulse sequence by introducing a third axis. The general
form for such a sequence is

Resz,f1dResh,f2dResg,f3dResm,f4dResn,f5d.

We define the axesA, B, C, and D in the XY plane of the
Bloch sphere by the anglesf1, f2, f3, anda, respectively.D
is now the axis around which we wish to rotate byu. Again,
we will require z=n, h=m and f1=f5, f2=f4 in order to
keep symmetry in the sequence and hence the sixth-order
fidelity dependence. In order that the pulse sequence be the
identity whene=0, we need to satisfy 2z+2h+g=4mp, m
=1,2, . . . . Thefirst derivative of the total pulse sequence is
zero ate=0 whenz=pp, h=qp for positive integersp and
q. We arrive at general five-pulse sequences of the form

Wpqr
e = Respp,f1dResqp,f2dRes2rp,f3d

3Resqp,f2dRespp,f1d,

wherep+q+r =2m andf1, f2, andf3 are determined from

u

2p
D + pA+ qApBAp + rApBqCBqAp = 0. s11d

One solution to find five-pulse sequences is atp=q=r, analo-
gously to the three-pulse sequence case. In this casep
=2m/3 and, as it must remain an integer,m must be a mul-
tiple of 3 with now p=2,4,6. . . .Equations11d is satisfied
for p=2 whenf1=0, f2=arccosfsu−4pd /8pg andf3=−f2

for a rotation around theX axis. However, while the fidelity
displays a sixth-order dependence on the fractional error, the
coefficient of the leading term, shown in Table I is so much
larger that the sequence is only better than the error-prone
pulse for small values ofe s,0.2d. The situation does not

improve for higher values ofp and so these sequences are of
no real practical use.

Another five-pulse sequence which achieves the same
sixth-order dependence for the fidelity is found by setting
p=1, q=2, and r =1. Equations11d is now satisfied when
f1=arccosfsu−4pd /4pg, f2=2f1, and f3=3f1 for a rota-
tion around theX axis sa=pd. As before, other axes may be
accounted for by phase shifting each pulse by the appropriate
angle. The fidelity of this sequence is much better than the
previous five-pulse sequence and is quite close to that of the
PB1 sequence as seen in Fig. 1. Other sequences can be
constructed by varyingp, q, andr.

Conclusion. We have presented an analysis of the com-
posite pulse sequences presented by Jones and co-workers
f2,6g to combat systematic pulse-length errors in single-qubit
rotations. We have derived an explicit form for the fidelity
and shown how it is possible to set up other three-pulse
sequences which achieve the same order error dependence
for the fidelity. We have shown that there are also five-pulse
sequences which do achieve the sixth-order dependence of
the fidelity on the error.
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TABLE I. The coefficientsC in the fidelity expansionF=1
−Ce6 for six composite pulse sequences which compensate for an
error-pronep pulse around theX axis.

Three-pulse C Five-pulse C

W1
esBB1d 4.7 W121

e 72.3

W2
esPB1d 59.1 W112

e 190.6

W3
e 283.4 W222

e 877.8
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