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A simple model describing depolarization channels with zero-bandwidth environment is presented and
exactly solved. The environment is modeled by Lorentzian, telegraphic, and Gaussian zero-bandwidth noises.
Such channels can go beyond the standard Markov dynamics and therefore can illustrate the influence of
memory effects of the noisy communication channel on the transmitted information. To quantify the distur-
bance of quantum states the entanglement fidelity between arbitrary input and output states is investigated.
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I. INTRODUCTION

One of the most important features concerning quantum
communication is the capacity or the fidelity of quantum
information transmitted in noisy quantum channelsf1g. The
key factor limiting the possibilities of communication using
quantum states is an environment-induced noise. Uncon-
trolled interaction between the environmentsEd, and the
transmitted quantum state can essentially affect the state and
in consequence lower the communication capacity of the in-
formation channelf2,3g.

For qubits, a well known class of quantum noisy channels
consists of depolarizing channelsf4g. Input information of
such channels is stored in a density operator%̂in. Such chan-
nels can be characterized by a probabilityp that the quantum
information is distorted, and with a probability 1−p that the
information remains intact. In the simplest case of a single
qubit transmitted through the noisy channel the influence of
noise is usually decomposed into three interaction channels.
Bit error channel ŝx flipping the values of bits:
u0l° u1l , u1l° u0l; phase error channelŝz flipping the phase:
u0l° u0l , u1l°−u1l; and phase and bit error channelŝy flip-
ping both:u0l° i u1l , u1l°−i u0l.

The influence of these interaction channels can be written
as an incoherent combination of three unbiased terms gener-
ating bit flip errors and phase flip errors in the form given by
f5g

%̂out = s1 − pd%̂in +
p

3
sŝx%̂inŝx + ŝy%̂inŝy + ŝz%̂inŝzd. s1d

This depolarizing channel is just an example of a general
quantum channel characterized by a trace-preserving, linear
map F : %̂in° %̂out. The influence of the environment on the
quantum state%̂in can be represented in terms of a Kraus

decomposition:Fs%̂ind=orK̂r%̂inK̂r
†, whereorK̂r

†K̂r = 1̂ f6g.

The unbiased depolarizing channel given by Eq.s1d, cor-
responds toK̂0=Î1−p1̂, K̂1=Îp/3ŝx, K̂2=Îp/3ŝy, and K̂3
=Îp/3ŝz.

It is not difficult to derive the expression corresponding to
Eq. s1d, from a unitary evolution involving an extended Hil-
bert spaceH ^ HE, of the input qubit and an additional qubit
sEd, consisting the environment degree of freedom. Although
mathematically correct, such a derivation has no simple or
direct physical realization in terms of a realistic noise. In fact
in most known cases, the environment is much more com-
plex, and the additional fact that the three interaction chan-
nels corresponding to bit error, flip error, and phase error do
not commute leaves the incoherent addition of these chan-
nels in the formulas1d questionable.

A more realistic approach to depolarization channels with
bit errors requires a better understanding of the physics in-
volved in the system-environment interactions. We shall as-
sume that the system-environment interaction is character-
ized by a model HamiltonianH. A unitary evolution of this
combined system leads to a Kraus decomposition described
by a time dependent mapFt : %̂in° %̂std. This means that one
should have a time-dependentpstd such that at the input time
t=0,ps0d=0. Because of this the general property of the

map, Ftut=0= 1̂, expresses the continuity at the origin and
hence for all time.

In general the problem of finding the evolution of the state
interacting with the environment is very difficult, therefore
the environment-induced noise is modeled using various
simplified approaches including several assumptions such as
the Markov property. In such case it is assumed that the
evolution of the state at a given instant is fully determined by
the state at that instant, so the process has no “memory” of
its past. The Markov property means the quantum channel is
such that for an infinitesimal time interval:psDtd.Dt. In this
case the channel map generates a completely positive dy-
namical semigroup:Ft +Ft8=Ft+t8 for t ,t8ù0, which defines
a Markovian dynamics.

As it is well known, for such Markovian maps we can
transform the time-dependent Kraus decompositions1d into a
local Lindblad equationf7g
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d%̂std
dt

= L̂%̂std, s2d

with the initial condition%̂s0d=%̂in, and where the Lindblad

superoperatorL̂ can be derived from the Kraus operators.
In this paper we present a simple model describing an

evolution of a quantum state interacting with the environ-
ment and study various properties of the affected state. A
physical picture behind the algebra can be for example a
randomly fluctuating magnetic field acting on an electron’s
magnetic moment, a thermally fluctuating birefringence of a
single mode fiber transmitting a polarization state of a single
photon or any other fluctuating environment influencing the
considered quantum system.

Using our model we will justify the assumptions1d and
determine the conditions for its validity. We will show that
the disturbed output state has the forms1d in the infinite
interaction time limit only if the disturbance is unbiased and
acts identically in all bases. In the general case the evolution
leads to a different final state. It will also turn out that the
simple model leads to a nontrivial evolution not obeying the
Markov property. Therefore, our simple approach will lead
us out of the no-memory approximation regime. Our model
shows that in many cases one cannot fairly neglect the
memory effects of the interaction and consequently the Mar-
kov property is not always validf8,9g.

The memory effects have already been a subject of inter-
est in a completely different contextf10g, where the authors
have studied properties of communication channels where
the influence of the noise onto the consecutively transmitted
states was correlated. In this paper we will be interested in
studying memory effects affecting a single state of a trans-
mitted quantum system.

The paper is organized as follows: in Sec. II we present
the model of a qubit in a presence of an external noise. In
Sec. III we show that if the environment of the channel con-
sists of zero-bandwidth noises one can calculate exactly ex-
pressions determining the evolution of a single qubit in such
channel. Section IV contains several examples of zero-
bandwidth noises that can affect the input state. We show
that in general the decoherence channel cannot be regarded
as an incoherent superposition of independent interactions.
Special cases involving Markovian and exactly soluble non-
Markovian dynamics are derived. In Sec. V the efficacy of
the quantum channel is quantified by the fidelity between the
output state and the input state. An appropriate measure for
assessing the fidelity of a mixed input state is the entangle-
ment fidelity f11g, which is the maximum fidelity of states
being purifications of the input mixed stater and the output
stateFsrd. Finally Sec. VI concludes the paper.

II. INTERACTION MODEL

The interaction of a qubit with an environment inducing
random bit errors will be described by the following Hamil-
tonian

Ĥ = r · ŝ = xŝx + yŝy + zŝz, s3d

where the three componentsr i =sx,y,zd will be uncontrolled
“noisy” parameters characterizing the fluctuations of the en-
vironment.

We will assume thatr i are independent random variables.
This situation is a simplification of a generally very difficult
problem withr istd being time-dependent stochastic processes
with arbitrary autocorrelations:kr istdr jst8dl=di jDist ,t8d. In
these applications, the autocorrelation functionsDist ,t8d,
have usually a Fourier limited spectrum with an effective
bandwidthg characterizing the environment noise. Even for
the simplest form of the autocorrelations, the exact solution
of the full time-dependent problem involving more that one
r istd noise is not known. However our simple noise model
can illustrate several properties of various completely posi-
tive maps.

In the proposed scenario, the evolution of a single qubit
given by the von Neumann equation has the following form:

d%̂

dt
= io

i

r ifŝi,%̂g = L̂0%̂. s4d

The appearing Liouville superoperatorL̂0 describes a unitary
rotation of a qubit defined by the coefficientsr i. The solution
involves a stochastic averaging with respect to the environ-
ment. As a result it can be written in the following compact
and formal form:

%̂std = kTee0
t dsL̂0ssdl%̂in. s5d

There is no useful formula that can handle the chronologi-
cal time-ordering of three Pauli matrices, and allows an exact
stochastic averaging over the environment noises. There are
however special cases when the exact solution of Eq.s5d can
be obtained. We know of three cases. Case one involves an
arbitrary stochastic noise and only oner i. In this case the
chronological ordering plays no role. In case two, fluctua-
tions are Gaussian and the bandwidth characterizing the en-
vironment noise is infiniteg=` swhite noised. In this case an
exact average of Eq.s5d exists, and a Lindbland equations2d
for the channel map can be derived. Case three, the one
investigated in this paper, corresponds to arbitrary random
fluctuations ofr i with the environment described by a zero-
bandwidth environment noise:g=0. In this case all autocor-
relationsDist ,t8d, become time-independent, the chronologi-
cal product plays no role, and an exact averaging over the
environment with arbitrary statistics can be performed.

III. EXACT SOLUTION WITH ZERO BANDWIDTH

In order to find the evolution of a state under a time-

independent LiouvillianL̂0, we first find its eigenstates:

L̂0A · ŝ = ir iAjfŝi,ŝ jg = − 2r iAjei jkŝk = lA · ŝ. s6d

Hence we obtain a set of equations:
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− 2r iAjei jk = lAk. s7d

The solutions exist only for a set of eigenvaluesl
P h0,2ir ,−2ir j, wherer =Îx2+y2+z2. For this set of eigen-
values we find the corresponding eigenvectors: forl0=0 we
have A0=r , and for l±= ±2ir we have A±=s7iyr
−xz, ± ixr −yz,x2+y2d.

In order to determine the evolution of an arbitrary initial
state

%̂in =
1

2
s1̂ + a · ŝd, s8d

it is helpful to decompose it into the calculated eigenvectors.
Pauli operatorsŝi written in the calculated eigenbasis have
the following form:

ŝx = S x

r2A0 −
xzsA+ + A−d − iyrsA+ − A−d

2r2sx2 + y2d D · ŝ,

ŝy = S y

r2A0 −
yzsA+ + A−d − ixrsA+ − A−d

2r2sx2 + y2d D · ŝ,

ŝz = S z

r2A0 +
A+ + A−

2r2 D · ŝ. s9d

At this point it is easy to find the action of the evolution

operator expsL̂0td on the given input state. We simply mul-
tiply the eigenvectors appearing in our decomposition by the
proper factors expsltd with corresponding eigenvaluesl.
This yields

eL̂0t%̂in =
1

2
F1̂ + axS x

r2A0 −
xzse2irtA+ + e−2irtA−d − iyrse2irtA+ − e−2irtA−d

2r2sx2 + y2d D · ŝ

+ ayS y

r2A0 −
yzse2irtA+ + e−2irtA−d + ixrse2irtA+ − e−2irtA−d

2r2sx2 + y2d D · ŝ + azS z

r2A0 +
e2irtA+ + e−2irtA−

2r2 D · ŝG . s10d

The above formula expresses the state of the qubit evolv-
ing under the action of the Liouvillian defined by the arbi-
trary vectorr .

In our model of the noisy channel, the interaction between
the environment and the qubit can be described by a ran-
domly chosen vectorr . Therefore, to model the evolution of
the qubit under the influence of the environment-induced
noise we will average the obtained output state over all pos-
sible realizations of the dynamics characterized by arbitrary
vectorsr . For simplicity we will be interested in an averaged
evolution of the qubit with an even inr probability distribu-
tion psr d=ps−r d. In this case a nonvanishing contribution to
the averaged output state will come only from the symmetric
part of the expressions10d:

heL̂0t%̂injsym=
1

2
F1̂ + axŝxSx2

r2 +
y2 + z2

r2 cos 2rtD
+ ayŝySy2

r2 +
x2 + z2

r2 cos 2rtD
+ azŝzSz2

r2 +
x2 + y2

r2 cos 2rtDG . s11d

From the above formula it follows that the initial states8d
evolves into an averaged output state

%̂outstd =
1

2
f1̂ + aiListdŝig . s12d

The dynamics of the output state is completely described at
any time by a set of time-dependent functionsListd, which
have the following form:

Listd = 1 − 2E d3r psr dS1 −
r i

2

r2Dsin2 rt . s13d

The output state can be also equivalently represented in

terms of Kraus operatorsK̂r:

%̂outstd = o
r

K̂rstd%̂inK̂r
†std, s14d

wheref9g

K̂0 =
1

2
1̂Î1 + Lx + Ly + Lz = 1̂ÎE d3r psr dcos2rt ,
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K̂1 =
1

2
ŝx

Î1 + Lx − Ly − Lz = ŝxÎE d3r psr d
x2

r2sin2rt ,

K̂2 =
1

2
ŝy

Î1 − Lx + Ly − Lz = ŝyÎE d3r psr d
y2

r2sin2rt ,

K̂3 =
1

2
ŝz

Î1 − Lx − Ly + Lz = ŝzÎE d3r psr d
z2

r2sin2rt .

s15d

These exact expressions for the Kraus operators are the
main result of our investigations. Before we discuss various
statistical models, we note that an unbiased incoherent addi-
tion of bit-error channels in most cases is not justified. The
formula above shows that the time-dependentListd functions
couple in a highly nontrivial way the three channels. The
simplified expressions1d does not reflect this complicated
relation between various bit-error channels.

IV. EXAMPLES OF A NOISE

A. Markov noise

Consider a simple case of a completely positive map de-
termined by a Lorentzian probability distribution

psr d =
1

3p
S G/2

x2 + G2/4
dsyddszd + dsxd

G/2

y2 + G2/4
dszd

+ dsxddsyd
G/2

z2 + G2/4
D s16d

characterized by a widthG. The corresponding Kraus opera-
tors s15d in this case read

K̂0 = 1̂Î1 + exps− Gtd
2

,

K̂1 = ŝxÎ1 − exps− Gtd
2

,

K̂2 = ŝyÎ1 − exps− Gtd
2

,

K̂3 = ŝzÎ1 − exps− Gtd
2

. s17d

The resulting dynamics of such a channel is

%̂std =
1 + exps− Gtd

2
%̂s0d +

1 − exps− Gtd
6

3 fŝx%̂s0dŝx + ŝy%̂s0dŝy + ŝz%̂s0dŝzg. s18d

Let us note that this expression is equivalent to Eq.s1d if the
probability is time-dependent i.e.,

pstd =
1 − exps− Gtd

2
. s19d

In the steady stateps`d= 1
2, the quantum channel reduces to a

very simple expressionf5g:

%̂out =
1

2
S%̂in +

1

3
ŝx%̂inŝx +

1

3
ŝy%̂inŝy +

1

3
ŝz%̂inŝzD .

s20d

One can easily check that the infinitesimal time evolution

of the last three Kraus operators isK̂isDtd.ÎDtŝi. This be-
havior is typical for a diffusion process and consequently the
state evolution clearly obeys the Markov no-memory prop-
erty, and as a consequence has the form of the Lindblad
equations2d:

d%̂

dt
= L%̂std = −

G

2
F%̂ −

1

3
sŝx%̂ŝx + ŝy%̂ŝy + ŝz%̂ŝzdG .

s21d

B. Telegraphic non-Markov noise

Now, let us assume that the noise introduced to the system
is a random telegraphic noisef12g, so that the disturbance of
the qubit induced by the environment is discrete, and jumps
between two values ±a. For concreteness we consider the
following probability distribution:

psr d =
1

2
fdsx − ad + dsx + adgdsyddszd. s22d

In this case the Kraus operatorss15d equal

K̂0 = 1̂Îcos2at,

K̂1 = ŝx
Îsin2at,

K̂2 = K̂3 = 0 s23d

and the disturbed qubit at instantt is in the state

%̂std = cos2at%̂s0d + sin2atŝx%̂s0dŝx. s24d

The periodic result is very straightforward, however it re-
veals something interesting. Although our model is quite
simple, it leads to nontrivial dynamics, which becomes ap-
parent when we analyze the evolution of the density operator
d%̂ /dt. One can easily find that the time evolution is given by
a nonlocal in time Lindblad equation:

d%̂std
dt

= −
a2

2
E

0

t

dsf%̂ssd − ŝx%̂ssdŝxg. s25d

This shows that the time dynamics of%̂std at the given in-
stantt depends not only on the state at this instant, but also
on the state at all earlier times. This behavior can be seen
already from the form of the Kraus operator, which for the

infinitesimal time evolves asK̂1sDtd.Dtŝx and such an evo-
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lution characterizes non-Markov processes with zero band-
width f9g.

From this example we conclude that our model in general
does not obey the “no-memory” approximation and the evo-
lution of the state is non-Markovian. One could also think of
studying multidimensional telegraphic noise, however in this
case the analysis becomes much more complicated and there
is no simple, linear integral kernel as the one in Eq.s25d.

C. Gaussian noise

Although in general the expressionss15d are not analyti-
cally integrable, one can find explicitly the Kraus operators
in the asymptotic steady-state limitt→`. In this limit the
square of rapidly oscillating trigonometric functions appear-
ing in the integralss15d can be approximated by their aver-
age value1

2. In the simplest case of an arbitrary, spherically
symmetric probability distributionpsrd the coefficientski of

the Kraus operatorssdefined via the relationK̂i =kiŝid equal
k0=1/Î2, k1=k2=k3=1/Î6 and consequently the output
quantum state reads as in Eq.s20d.

This result reproduces the steady-state Markov limit jus-
tifying its validity. However it is valid only when the prob-
ability distribution psr d is spherically symmetric, i.e., the
three channels are unbiased. In general the input state
evolves to a different limit.

In Fig. 1 we have shown the numerically calculated evo-

lution of the Kraus operator’s coefficients for a Gaussian
probability distribution

psr d =
1

Îp3dx
2dy

2dz
2
expS−

x2

dx
2 −

y2

dy
2 −

z2

dz
2D s26d

for the following two cases: when the probabilitypsrd is
spherically symmetric withdx=dy=dz=1 supper plotd and for
the asymmetric distribution withdx=1, dy=2, dz=3 slower
plotd. It is seen that after some characteristic time, the state
becomes stationary, however the limit depends on the char-
acteristics of the probability distributionpsr d. The example
discussed above provides an illustration of unbiased and bi-
ased Gaussian depolarization channels.

V. FIDELITY FOR MIXED INPUT STATES

In order to judge the quality of a communication channel
and the role of the introduced noise one needs a tool to
investigate the state disturbance during the transmission. To
quantify the influence of the external noise onto the transmit-
ted quantum state we use an entanglement fidelity measure
defined as the following overlap between the input and out-
put density matrixf4g:

Fs%̂in,%̂outd = sTrhÎ%̂in
1/2%̂out%̂in

1/2jd2
. s27d

This fidelity is in general very difficult or impossible to cal-
culate. For an arbitrary input state of a single qubit given by
Eq. s8d, and with an arbitrary spherically symmetric prob-
ability distributionpsrd characterizing the external noise this
fidelity can be calculated exactly and is equal to

Fs%̂in,%̂outd =
1

2
„j + Îxs1 − a2d… , s28d

where j=1+ax
2Lx+ay

2Ly+az
2Lz and x=1−ax

2Lx
2−ay

2Ly
2

−az
2Lz

2. For pure statessa=1d the formula simplifies toF
=j /2. On the other hand it is not very surprising that the
maximally mixed statesa=0d remains unchanged under the
influence of the noise, while the communication fidelity de-
creases with increasing purity of the input state.

Using the same approach one may study also the evolu-
tion of multidimensional systems. Of course the general ex-
pressions become very complicated, even when we consider
a two-qubit Hilbert space, however it is possible to find some
compact solutions for special cases of pure states.

Consider an arbitrary two-qubit initial pure state:

uCinl = au ll l + bu l↔ l + cu ↔l l + du ↔↔ l. s29d

Using the same approach as above, one can calculate that for
the independent disturbance of each mode with the same
type of noise characterized by the spherically symmetric
probability distributionpsrd the fidelity of the transformation
is

FsuClin,%̂outd = sTrhÎuCinlkCinu%̂outuCinlkCinujd2

= kCinu%̂outuCinl

= S1 + L

2
D2

− 4L
1 − L

2
ubc− adu2. s30d

FIG. 1. Kraus operator’s coefficientski sdefined via the relation

K̂i =kiŝid evolving in dimensionless time for a Gaussian probability
distributionpsr d=s1/Îp3dx

2dy
2dz

2dexps−x2/dx
2−y2/dy

2−z2/dz
2d, where

on the upper figuredx=dy=dz=1 and on the lowerdx=1, dy=2, and
dz=3.
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What is interesting in the above result is that the fidelity is
the highest for separable statessfor example fora=b=0 and
any c,dd and it drops down when the input state becomes
more entangled.

Another compact result can be found for the following
two-mode mixed input state:

%̂in =
1

2
Su ll lkll u + u ↔↔ lk↔↔ ud

+
m

2
su ll lk↔↔ u + u ↔↔ lkll ud. s31d

With a similar analysis one obtains the fidelity measure given
by

Fs%̂in,%̂outd =
1

4
f1 + Lz

2 + m2sLx
2 + Ly

2d + Î1 − m2

3 Îs1 + Lz
2d2 − m2sLx

2 + Ly
2d2g . s32d

In Fig. 2 we have plotted the dynamics of fidelity for several
parametersm and the unbiased Gaussian probability distri-

bution psrd=p−3/2e−r2
. We find a not very surprising result,

that the transformation fidelity is a decreasing function of the
purity of the input state. Form=0 swhich of course does not
yet correspond to the maximally mixed stated the fidelity is
the highest, while for the pure statesm=1d the fidelity is the
lowest.

VI. CONCLUSIONS

Uncontrolled interaction between the environment and the
transmitted quantum state can essentially affect the state and
in consequence lower the communication capacity of an in-
formation channel. Several ideas has been put forth to over-
come this problem. One of the most promising is the use of
so-called decoherence-free subspacesf13,14g. This idea can
be applied when the noise present in the system is correlated
between consecutive uses of the communication channel
f10g; however this is not always possible and therefore one
needs a careful study of the properties of various types of
noise and their influence on the quantum state.

In this paper we have introduced a dynamical model of
interaction between the quantum state and its environment
and shown that although based on simple assumptions, it
leads to nontrivial solutions. Using the model we have ana-
lyzed properties of zero-bandwidth noise with Lorentzian,
telegraphic, and Gaussian distributions and have shown that
only the first of them obeys the Markov property, while the
others exhibit memory effects and are non-Markovian. Our
approach allowed us to solve a simplified version of a gen-
eral problem when the noise is an arbitrary time-dependent
stochastic process, whose solution is not known. We have
calculated transformation fidelities for a collection of input
states and analyzed their dynamics according to their en-
tanglement or purity.
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