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Depolarization channels with zero-bandwidth noises
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A simple model describing depolarization channels with zero-bandwidth environment is presented and
exactly solved. The environment is modeled by Lorentzian, telegraphic, and Gaussian zero-bandwidth noises.
Such channels can go beyond the standard Markov dynamics and therefore can illustrate the influence of
memory effects of the noisy communication channel on the transmitted information. To quantify the distur-
bance of quantum states the entanglement fidelity between arbitrary input and output states is investigated.
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I. INTRODUCTION The unbiased depolarizing channel given by 8g, cor-
One of the most important features concerning quanturh€SPONds 10Ke=v1-pl, Ky=\p/30y, Ko=Vp/37y, and Kg

=vp/30,.

It is not difficult to derive the expression corresponding to
Eqg. (1), from a unitary evolution involving an extended Hil-
bert spacé{ ® Hg, of the input qubit and an additional qubit

communication is the capacity or the fidelity of quantum
information transmitted in noisy quantum channjgll$ The
key factor limiting the possibilities of communication using

quantum states is an environment-induced noise. Uncort’E),consisting the environment degree of freedom. Although

trolled .|ntgract|on between the enV|r.or|1|me(rE), ar?d the mathematically correct, such a derivation has no simple or
transmitted quantum state can essentially affect the state angtect physical realization in terms of a realistic noise. In fact

in consequence lower the communication capacity of the iny, most known cases, the environment is much more com-
formation channef2,3]. _ plex, and the additional fact that the three interaction chan-
For qubits, a well known class of quantum noisy channels\e|s corresponding to bit error, flip error, and phase error do
consists of depolarizing channgl]. Input information of  not commute leaves the incoherent addition of these chan-
such channels is stored in a density opergigr Such chan- nels in the formula1) questionable.
nels can be characterized by a probabifitthat the quantum A more realistic approach to depolarization channels with
information is distorted, and with a probability p-that the  bit errors requires a better understanding of the physics in-
information remains intact. In the simplest case of a singlevolved in the system-environment interactions. We shall as-
qubit transmitted through the noisy channel the influence ofume that the system-environment interaction is character-
noise is usually decomposed into three interaction channelized by a model Hamiltoniai. A unitary evolution of this
Bit error channel o, flipping the values of bits: combined system leads to a Kraus decomposition described
|0y—|1),|1)—|0); phase error channél, flipping the phase: by a time dependent map,: 0;,— 0(t). This means that one
|0)—|0),[1)—~|1); and phase and bit error chanriglflip-  should have a time-dependegit) such that at the input time
ping both:[0)—i[1),[1)—=i|0). ~ t=0,p(0)=0. Because of this the general property of the
The influence of these interaction channels can be ertterﬁqap, CDt|t:O:ja expresses the continuity at the origin and
as an |_ncqherent combination (_)f three u_nb|ased terms gensiace for all time.
ating bit flip errors and phase flip errors in the form given by ™, soneral the problem of finding the evolution of the state

[5] interacting with the environment is very difficult, therefore
P the environment-induced noise is modeled using various
Oout=(1-p)Oin+ 5(&x@in(}x+ 0,0in0y + 0,0in0,). (1)  simplified approaches including several assumptions such as
the Markov property. In such case it is assumed that the
This depolarizing channel is just an example of a generaqevolution of the state at a given instant is fully det“ermined E)y
quantum channel characterized by a trace-preserving, line&f€ State at that instant, so the process has no “memory” of
map®: 9, o The influence of the environment on the its past. The Ma_rkgv_ property means the quantum channel is
quantum stated;, can be represented in terms of a KrausSUCh that for an infinitesimal time intervad{At) = At. Inth!s
. AN DA Of T case the channel map generates a completely positive dy-
decompositiont®(Qin) ==K, €ink;, whereZ,K K, =1 [6] namical semigroupd;oc ®; =d, for t,t’ =0, which defines
a Markovian dynamics.
As it is well known, for such Markovian maps we can
*Electronic address: Andrzej.Dragan@fuw.edu.pl transform the time-dependent Kraus decompositigrinto a
"Electronic address: wodkiew@fuw.edu.pl local Lindblad equatiofi7]
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de _

=Lo(t) 2 H=r . &=xa,+ yo + 205, (3
dt ’

o

where the three components=(x,y,z) will be uncontrolled
“noisy” parameters characterizing the fluctuations of the en-

with the initial condition@(0)=9;,, and where the Lindblad Vironment.

superoperatof’ can be derived from the Kraus operators We will assume that; are independent random variables.
In this paper we present a simple model describing ar']l'hls situation is a simplification of a generally very difficult

evolution of a quantum state interacting with the environ-Problem withri(t) being time.-dependent, stochastic Processes
ment and study various properties of the affected state. A(V'th arbltrqry .autocorrelatlons{ri(t)rj(-t )>:5iJAi_(t’t )- /In
physical picture behind the algebra can be for example &'€Se applications, the autocorrelation functiohgt,t’),
randomly fluctuating magnetic field acting on an electron’shave usually a Fourier limited spectrum with an effective
magnetic moment, a thermally fluctuating birefringence of dP@ndwidthy characterizing the environment noise. Even for
single mode fiber transmitting a polarization state of a singléh® simplest form of the autocorrelations, the exact solution
photon or any other fluctuating environment influencing the®f the full time-dependent problem involving more that one
considered quantum system. ri(t) noise is not known. Hovyever our simple noise mode!
Using our model we will justify the assumptiql) and ~ ¢an illustrate several properties of various completely posi-
determine the conditions for its validity. We will show that tivé maps. _ _ _ _
the disturbed output state has the fotf) in the infinite I the proposed scenario, the evolution of a single qubit
interaction time limit only if the disturbance is unbiased anddiven by the von Neumann equation has the following form:
acts identically in all bases. In the general case the evolution R
leads to a different final state. It will also turn out that the do _ S 150.8] = £gd 4
simple model leads to a nontrivial evolution not obeying the dt = i riloi. 1= Log. (4)
Markov property. Therefore, our simple approach will lead

us out of the' no-memory approximation regime. Our mOdeI'I'he appearing Liouville superopera’rbg describes a unitary
shows that in many cases one cannot fairly neglect the

memory effects of the interaction and consequently the Mar.[Otatlon of a qubit defined by the coefficiemtsThe solution

. : involves a stochastic averaging with respect to the environ-
kov property is not always valifB,9]. ; . . .
. . _ment. As a result it can be written in the following compact
The memory effects have already been a subject of mter{;md formal form:
est in a completely different conteikt0], where the authors '
have studied properties of communication channels where ~ e (h A
the influence of the noise onto the consecutively transmitted 0(t) = (Teoa9)p, . 5

states was correlated. In this paper we will be interested in Thare is no useful formula that can handle the chronologi-
studying memory effects affecting a single state of a transg| time-ordering of three Pauli matrices, and allows an exact

m'ttid quantum system. ollows: | stochastic averaging over the environment noises. There are
The paper is organized as follows: in Sec. Il we presenf,,ever special cases when the exact solution ofBcan
the model of a qubit in a presence of an external noise. lipe gptained. We know of three cases. Case one involves an

Sec. Il we show that if the environment of the channel Con'arbitrary stochastic noise and only one In this case the

sists of zero-bandwidth noises one can calculate exactly ®thronological ordering plays no role. In case two, fluctua-

pressions determining the evolution of a single qubit in suchjong are Gaussian and the bandwidth characterizing the en-
channel. Section IV contains several examples of zeroyionment noise is infinitey=cc (white noise. In this case an

bano!width noises that can affect the input state. We Sho"éxact average of Ed5) exists, and a Lindbland equati¢?)
that in general the decoherence channel cannot be regardgfl ihe channel map can be derived. Case three, the one

as an incoherent superposition of independent interactionﬁ.lvestigated in this paper, corresponds to arbitrary random
Special cases involving Markovian and exactly soluble nongcyations ofr; with the environment described by a zero-
Markovian dynamics are derived. In Sec. V the efficacy ofy o qwidth envilronment noise:=0. In this case all autocor-
the quantum channel is quantified by the fidelity between th‘?elationsAi(t,t’), become time-independent, the chronologi-

output state anq th_e input state. An appropri_ate measure f(&ral product plays no role, and an exact averaging over the
assessing the fidelity of a mixed input state is the entangle '

ment fidelity [11], which is the maximum fidelity of states environment with arbitrary statistics can be performed
being purifications of the input mixed stateand the output

state®(p). Finally Sec. VI concludes the paper. I1l. EXACT SOLUTION WITH ZERO BANDWIDTH
In order to find the evolution of a state under a time-
II. INTERACTION MODEL independent LiouvillianZ,, we first find its eigenstates:
The interaction of a qubit with an environment inducing ZZOA ~o=irAlo,0]= - 2riAjEo = A - 0. (6)
random bit errors will be described by the following Hamil-
tonian Hence we obtain a set of equations:
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= 2riA € = M. (7) . ( X o XZA +A)-iyr(A, - A-)) R
T\ 0 2232 +y?) e

The solutions exist only for a set of eigenvalues
e{0,2r,-2ir}, wherer=x?+y?+7°. For this set of eigen- _
values we find the corresponding eigenvectors:\gr0 we 5= (XA _YZAL A —ixr(A, - A-)) P
have Ag=r, and for A\,=+2ir we have A,=(Fiyr Yoo 2r2(x2 +y?) '
—XZ, £IXr —yz,X°+Yy?).

In order to determine the evolution of an arbitrary initial
state

R z A, +A_ R
;= (ﬁAo++27) -0 9

bo=(0+a-d), ®

At this point it is easy to find the action of the evolution
operator explyt) on the given input state. We simply mul-

it is helpful to decompose it into the calculated eigenvectorstiPly the eigenvectors appearing in our decomposition by the
Pauli operatorsy; written in the calculated eigenbasis have Proper factors ex@t) with corresponding eigenvalues.

the following form: This yields

~ 1!~ e2irtA++e—2irtA_ —ivr e2irtA+_e—2irtA_
eaotemzé[“aX(r_szo_ xz( ) —iyr( )\ &

2r2(x% +y?)
y yZ(eZirtA+ + e—ZiFtA_) + ixr(eZil’tA+ _ e—ZiI‘tA_) R z e2i|’tA+ + e—2irtA_ R
* ay( FAO - 2r2(x2 +y?) o FAO ¥ 2r2 o) (10

The above formula expresses the state of the qubit evolM-rom the above formula it follows that the initial stai®
ing under the action of the Liouvillian defined by the arbi- evolves into an averaged output state
trary vectorr.

In our model of the noisy channel, the interaction between . 1r- .
the environment and the qubit can be described by a ran- Qoul®) = 5[1+aiAi(t)Ui]' (12)
domly chosen vector. Therefore, to model the evolution of
the qubit under the influence of the environment-inducedrhe dynamics of the output state is completely described at
noise we will average the obtained output state over all posany time by a set of time-dependent functiokgt), which
sible realizations of the dynamics characterized by arbitrarfave the following form:
vectorsr. For simplicity we will be interested in an averaged

evolution of the qubit with an even in probability distribu- riZ .
tion p(r)=p(-r). In this case a nonvanishing contribution to A =1- Zf d’rp(r)| 1 ~ 2 sire rt. (13
the averaged output state will come only from the symmetric
part of the expressio(LO): The output state can be also equivalently represented in
terms of Kraus operatof,:
N 1] - 2 y2+ Z2 )
olp. = — gl —+ 70— N ~ . A~
e 2ntom 2{1 i aX“X< A Goul) = X K (DinK/ (1), (14)
r
(P 2
*ay0y r2 * r2 cos 4t where[9]
0 Y 2 ) 11 1
+ -+ — . ~ N~
807\ 2t Tz cosat (1D KO:E]lvl +A A +A,=1 fdsr p(r)cosrt,

012322-3



A. DRAGAN AND K. WODKIEWICZ PHYSICAL REVIEW A 71, 012322(2005

1-exp-TIt)

> (19

sl — 2
Ky= a1 +Ax—Ay-Az=ox\/J o*r p(r)%smzrt, p(t) =

In the steady statp(oo):é, the quantum channel reduces to a
very simple expressiofb]:

~ 1,\ Y . A~ 2 .
K,= anv'l ~Act Ay - A, =6y \/f dr p(r)%smzrt,
@out: 5<éin + é&x@in&x + é&yéin&y + é&zéina'z> .
I D re—— zZ
Kg= =0, N1 -A— A+ A, =0, d® p(r)=sirfrt. (20)
2 Y r2
One can easily check that the infinitesimal time evolution

(15) of the last three Kraus operatorsKs(At) = yAtg;. This be-

These exact expressions for the Kraus operators are theavior is typical for a diffusion process and consequently the
main result of our investigations. Before we discuss varioustate evolution clearly obeys the Markov no-memory prop-
statistical models, we note that an unbiased incoherent adderty, and as a consequence has the form of the Lindblad
tion of bit-error channels in most cases is not justified. Theequation(2):
formula above shows that the time-dependégiit) functions R
couple in a highly nontrivial way the three channels. The d_Q: P =_£ P PP

. o . . . Lo(t) e (0,00 + oyeoy* 0,007 |.

simplified expression(1) does not reflect this complicated dt 2 3
relation between various bit-error channels. (21)

IV. EXAMPLES OF A NOISE

. B. Telegraphic non-Markov noise
A. Markov noise

. . . Now, let us assume that the noise introduced to the system
Consider a simple case of a completely positive map dejg 5 random telegraphic noi§&2], so that the disturbance of

termined by a Lorentzian probability distribution the qubit induced by the environment is discrete, and jumps
/2 /2 between two values a& For concreteness we consider the
= — i following probability distribution:
p(r) 37T<x2 1274200 + 0N 5,02 ap Y
1
/2 p(r)==[dx—a) + 8(x+a)]ly) &z). (22)
+ O 16 2
<x>5(y>22+rz/4) (16)

In this case the Kraus operatdikb) equal

characterized by a width. The corresponding Kraus opera-
g

tors (15) in this case read }A<0=JA1\,'co at,
< i /1+eX2F{—Ft), Rlz&xvym’
K,=Kg=0 (23
~  [l-exg-T1) . . ? . : .
K1= 0% 5, and the disturbed qubit at instanis in the state
0(t) = cogatg(0) + sirfato,@(0)o,. (24)
Ko =& /LF(_FU The periodic result is very straightforward, however it re-
2=y 2 ' veals something interesting. Although our model is quite
simple, it leads to nontrivial dynamics, which becomes ap-
A 1-exg-T1) parent when we analyze the evolution of the density operator
K=o\ ————. (17)  do/dt. One can easily find that the time evolution is given by
2 a nonlocal in time Lindblad equation:
The resulting dynamics of such a channel is doty a (' . R
ot Ef dgo(s) = 0x0(9) 7. (25
o) = 1+exg-TIt) 5(0) + 1-exg-TI1) 0
2 6 This shows that the time dynamics @ft) at the given in-

AACNA A A NA A Ao stantt depends not only on the state at this instant, but also
X + + .
(00000 + 0y0(0)ay + 5200 (18) on the state at all earlier times. This behavior can be seen

Let us note that this expression is equivalent to @yjif the ~ already from the form of the Kraus operator, which for the
probability is time-dependent i.e., infinitesimal time evolves ak;(At) = Ato, and such an evo-
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1 lution of the Kraus operator’s coefficients for a Gaussian
probability distribution
08 ko 2 2 22
(r)=;ex;<—x——y———> (26)
0.6 \/’/ p N A 2 &£ &
0.4 ky, ks, ks for the following two cases: when the probabilipfr) is
spherically symmetric witll,=d,=d,=1 (upper plo} and for
0.2 the asymmetric distribution withl,=1, d,=2, d,=3 (lower
plot). It is seen that after some characteristic time, the state
0 0.5 1 15 2 25 3 becomes stationary, however the limit depends on the char-
t acteristics of the probability distributiop(r). The example

discussed above provides an illustration of unbiased and bi-
ased Gaussian depolarization channels.

0.8 V. FIDELITY FOR MIXED INPUT STATES

In order to judge the quality of a communication channel
and the role of the introduced noise one needs a tool to
investigate the state disturbance during the transmission. To
quantify the influence of the external noise onto the transmit-
ted quantum state we use an entanglement fidelity measure
defined as the following overlap between the input and out-

0 05 1 15 3 put density matri{4]:

t ~ oA 12~ = 2
F(@im@oud = (Tr{V0H00ui )" (27)
FIG. 1. Kraus operator’s coefficienks (defined via the relation

f(i:ki&i) evolving in dimensionless time for a Gaussian probability culate. Eor an arbitrary input state of a sinale qubit aiven b
distribution p(r) = (1/+73c2d22) exp(~x2/ d2 - y2/ d2~ 22/ d?), where ' . y inp asingle qubit g y
. R A y . Eg. (8), and with an arbitrary spherically symmetric prob-
on the upper figurel,=d,=d,=1 and on the lowed,=1, d,=2, and - o S - -
d.=3. ability distributionp(r) characterizing the external noise this
z fidelity can be calculated exactly and is equal to

0.6

0.4

0.2 ks

This fidelity is in general very difficult or impossible to cal-

lution characterizes non-Markov processes with zero band- " 1
P Fl@m o = 5+ x(1-a), (28)

width [9].

From this example we conclude that our model in general ) , 5 02 2.2
does not obey the “no-memory” approximation and the evowhere &=1+aA+ajAy+ayA, and y=1-aAl-ajAy
lution of the state is non-Markovian. One could also think of ~8A2. For pure statesa=1) the formula simplifies taF
studying multidimensional telegraphic noise, however in this=§/2. On the other hand it is not very surprising that the
case the analysis becomes much more complicated and theR@ximally mixed statéa=0) remains unchanged under the
is no simple, linear integral kernel as the one in E25). influence of the noise, while the communication fidelity de-

creases with increasing purity of the input state.
Using the same approach one may study also the evolu-
C. Gaussian noise tion of multidimensional systems. Of course the general ex-
pressions become very complicated, even when we consider

Although in general the expressio(ik5) are not analyti-  a two-qubit Hilbert space, however it is possible to find some
cally integrable, one can find explicitly the Kraus operatorscompact solutions for special cases of pure states.
in the asymptotic steady-state lintit>. In this limit the Consider an arbitrary two-qubit initial pure state:
square of rapidly oscillating trigopnometric functions appear-
ing in the integralg15) can be approximated by their aver- Wiy =al [])+b|[=)+c|=])+d <) (29
age value;. In the simplest case of an arbitrary, spherically Using the same approach as above, one can calculate that for
symmetric probability distributiom(r) the coefficients; of  the independent disturbance of each mode with the same
the Kraus operator@efined via the relatio;=k;o;) equal  type of noise characterized by the spherically symmetric
k0:1/\§§, kl:kzzkszl/v'é and consequently the output Probability distributionp(r) the fidelity of the transformation

guantum state reads as in Eg0). is
This result reproduces the steady-state Markov limit jus- " I = 2
tifying its validity. However it is valid only when the prob- F(W)in, 0w = (TN Wi (Winl@oud Wi (W })
ability distribution p(r) is spherically symmetric, i.e., the = (Wil Ooud Vin)
three channels are unbiased. In general the input state )
evolves to a different limit. = ( 1 +A) - 4Aﬂ|bc— ad?. (30
In Fig. 1 we have shown the numerically calculated evo- 2 2 '
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bution p(r)=m3%"". We find a not very surprising result,
that the transformation fidelity is a decreasing function of the

0.8 purity of the input state. Fam=0 (which of course does not
yet correspond to the maximally mixed statbe fidelity is
Foe the highest, while for the pure stam=1) the fidelity is the
lowest.
0.4

VI. CONCLUSIONS

Uncontrolled interaction between the environment and the
t transmitted quantum state can essentially affect the state and
in consequence lower the communication capacity of an in-
FIG. 2. Fidelity measure as a function of dimensionless time formation channel. Several ideas has been put forth to over-
for the input statedi,=5(11 1)1 ] |+|< <X—<)+m/2)(11)  come this problem. One of the most promising is the use of
X(e> e [+[ = X[ ]]) for several values of the parameter  so-called decoherence-free subspddés14. This idea can
From bottom to top, respectivelyn=1, m=0.9,m=0.7,m=0.4,  pe applied when the noise present in the system is correlated
andm=0. between consecutive uses of the communication channel
[10]; however this is not always possible and therefore one
What is interesting in the above result is that the fidelity isneeds a careful study of the properties of various types of
the highest for separable statésr example fora=b=0 and  noise and their influence on the quantum state.
any c,d) and it drops down when the input state becomes In this paper we have introduced a dynamical model of

more entangled. interaction between the quantum state and its environment
Another compact result can be found for the following and shown that although based on simple assumptions, it
two-mode mixed input state: leads to nontrivial solutions. Using the model we have ana-
lyzed properties of zero-bandwidth noise with Lorentzian,
Oin= }<| AT +] oo Yoo ) telegraphic, and Gaussian distributions and have shown that
2 only the first of them obeys the Markov property, while the

m others exhibit memory effects and are non-Markovian. Our

+ (| I N [+ == XTT). (31  approach allowed us to solve a simplified version of a gen-
2 eral problem when the noise is an arbitrary time-dependent
With a similar analysis one obtains the fidelity measure giverstochastic process, whose solution is not known. We have

by calculated transformation fidelities for a collection of input
states and analyzed their dynamics according to their en-

A A 1 — tanglement or purity.
F(OinCow) = Z[l +A§+ mz(A>2< + As) +\1-m?
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