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We investigate multiparticle entanglement purification schemes which allow one to purify all two colorable
graph states, a class of states which includes, e.g., cluster states, Greenberger-Horne-Zeilinger states, and code
words of various error correction codes. The schemes include both recurrence protocols and hashing protocols.
We analyze these schemes under realistic conditions and observe for a generic error model that the threshold
value for imperfect local operations depends on the structure of the corresponding interaction graph, but is
otherwise independent of the number of parties. The qualitative behavior can be understood from an analyti-
cally solvable model which deals only with a restricted class of errors. We compare direct multiparticle
entanglement purification protocols with schemes based on bipartite entanglement purification and show that
the direct multiparticle entanglement purification is more efficient and the achievable fidelity of the purified
states is larger. We also show that the purification protocol allows one to produce private entanglement, an
important aspect when using the produced entangled states for secure applications. Finally we discuss an
experimental realization of a multiparty purification protocol in optical lattices which is issued to improve the
fidelity of cluster states created in such systems.
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l. INTRODUCTION unitary operations to states of the fof®N+|1)®N, the so
In recent years a number of surprising, unexpected applicd/léd Greenberger-Home-ZeilingéBHZ) states[10-13.
cations of entangled states have been developed. In the BRIy quite recently, we have introducg¢d4] multiparticle
partite case, teleportatid], superdense codiri@], and en-  €ntanglement purification protocolIEPP'S which are ca-
tanglement based quantum cryptograpBlare well-known pablg of'punfylng allltwo cplorable graph states, a class of
examples. In the multipartite case it was shown that multinultiqubit states which will be defined below and which
particle entangled statéES’s) allow one not only to ac- includes, for instance, GHZ states, cluster states, and code-

complish several tasks in multiparty communicationwords of error correction codes. In this paper, we provide a

scenarios—such as secret sharing or secure function evalu%(?talled analysis of these protocols and provide addition ma-

tion [4,5/—but also to improve the precision of frequency terial, including a hashing protocol for this class of states and

measurements, leading to higher frequency standids a comparison of multiparticle entanglement purification with
' 9 9 Ireq y ’ Rrotocols based on bipartite entanglement purification.
Furthermore, many error correction codes are based o

) ; , The paper is organized as follows. In Sec. Il, we review
MES’s, and certain MES's—the so-called cluster state§he concept of graph states, fix some notation, and highlight

[8]—have even been shown to constitute a universal rez nymber of useful properties of these states. Section Ill is
source for quantum computation when assisted by local megpncerned with multiparticle entanglement purification pro-
surements only9]. tocols. On the one hand, we review the recurrence protocol
All these applications require the use of certain bipartiteintroduced in Ref[14] in Sec. Ill A and analyze in detail its
or multipartite entangled pure states. In reality, howeverproperties. We investigate the purification regime and the
those states will not be available with unit fidelity. On the convergence, as well as the efficiency of the procedure. We
one hand, the operations required to create the states will h@ovide both analytic analysis for certain low-rank states and
noisy. On the other hand, the MES'’s interact with the envi-a numerical analysis for generic states. On the other hand, we
ronment and will be subjected to decoherence or the particlestroduce in Sec. Il B a hashing protocol which is capable of
constituting the entangled state have to be sent through noigurifying two colorable graph states with a finite yield. In
guantum channels in a communication scenario with distanBec. IV we analyze numerically the recurrence protocol for
parties. Thus in practice only mixed states rather than purdifferent target states—in particular cluster states and GHZ
states are available and it is a central problem to establisstates—under realistic conditions using a generic error model
methods to increase the quality of the states by some meansf. local control operations. We determine the purification
In principle, entanglement purification provides a methodregime—i.e., the minimum required and maximal reachable
to accomplish this task. Efficient protocols to obtain a fewfidelity—as well as the threshold value for noise in local
high-fidelity entangled states from several low-fidelity en-operations below which the purification protocol can be suc-
tangled states by using local operations and classical contessfully applied. An analytic treatment for a restricted error
munication are known. Most purification protocols for qubits model is carried out in Sec. V, recovering essentially the
introduced so far are only capable of purifying a specific typesame behavior as for the generic error model. In Sec. VI,
of states—namely, states which are equivalent up to locaiultiparticle entanglement purification protocols are com-
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pared with protocols based on bipartite entanglement purifiuniquely defined by the eigenvalue equations and form a
cation. We analyze both the case of noiseless local operatiommsis inH =(C2)*N—i.e.,

as well as noisy local operations. We find in the former case

that direct multiparticle entanglement purification is more 184
efficient than any scheme based on bipartite purification. In

the latter case, the reachable fidelity is higher. In Sec. VIl we 1
are concerned with security aspects of our protocols and

show that the purified entanglement is private. Section VIl by
deals with a number of possible applications of the purifica-

tion protocols. A possible experimental implementation\ye remark that apart from the description of graph states by
based on neutral ato_ms in an optical !attlce is discussed D set of commuting correlation observables, one can also
Sec. IX. We summarize and conclude in Sec. X. give an equivalent description of the state in terms of an
“interaction graph'18,15]. To be specific, consider the inter-
Il. GRAPH STATES: BASIC PRINCIPLES AND action Hamiltonian
PROPERTIES

2— e
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A. Graph states = oz )2e oz )2, @)
In this section, we review the concept of graph statesyhich acts on particlek and| and corresponds, up to local
describe some of their properties, and fix the notation. Graphnitary operations, to an Ising interaction. We consider the
states have first been introduced in Rif5], generalizing initial state|) where all particles are prepared in the state

the notion of cluster states as introduced in R8f. A de-  |+) with [+)=1/y2(|0)+|1)—i.e., |#)=|+)*N. For a fixed
tailed investiggtion .of their entangleme_nt properties has regraph g, the corresponding graph stag®,,..,) is obtained
cently been given in the paper by Hedt al. [19]. Graph by applying on the stathy) the interaction Hamiltoniaity
states occur in various contexts in quantum informatiorfor time t= to all those pairs of particles whose vertices in
theory, in which multi-party quantum correlations play a cen-the corresponding graph are connected by edges—that is,
tral role. Examples are multi-party quantum communication,
measuremgnt-bas_ed quantum computation, and quantum er- Woo.0) = 1 e mHu| + )N, (5)
ror correction. Using terminology of standard quantum me- (KI)eE
chanics textbooks, a graph state can be described as the com- . . )
mon eigenstate of a complete set of commuting observables. NOté that graph states constitute a large family of multi-
In quantum error correction, the set of commuting observParticle entangled states with various ent(aglg)gllzement proper-
ables is also referred to as the stabilizer group of the statdi®S- To be specific, for a fixed we have 20U different
Note, however, that for the purpose of quantum error correcdr@Phs, although not all of them are inequivalent and corre-
tion, the stabilizer is usually not complete, since degeneratgPond to different kinds of entanglemefgee Sec. Il )
subspaces are used as code spaces. The graph codes infrBroughout the paper, we will mainly consider two-colorable
duced in Ref[18] take account of this fact, and can be re- _graphs, wh|clh.a're graphs for which a pgrtltlon of the vertices
garded as an application of graph states in the specific co?© two disjoint sets VAUVg=V  with Na=|Val,Ng
text of quantum error correction. =|Vg|,N=Na+Ng exists suc_h that no vertices W|t_h|n one set
Consider a graplg=(V,E) which is a set of verticey/ ~ &€ connected by edgésquivalently, a two-coloring of the

connected in a specific way by eddesThe edges specify a graph with respect to its vertices eyisThe states arising

neighborhood relation between vertices. Associated with angolrn SIUCh tvvho-colorable ,gra.phT, dWh'Ch V\ée C?I! two-
graphg is a set ofN=|V| commuting correlation operators 0'0rabi€ grapn State@CGS'9, include a number of inter-
esting multiparticle entangled states—e.g., GHZ states, clus-

K;= o TT o¥. (1) ter states, or codewords of certain error correction codes. We
{kj}eE remark that it was recently shown that two-colorable graph

states are in fact equivalent to the so-called Calderbank-

Shor-Stean€CS9 stateq 16]. That is, any state that can be

written as a two-colorable graph state can also be writign

to local unitary transformationsas a CSS state and vice

versa.

That is, to any vertex corresponds a correlation operakqr
which is given by the spin-1/2 Pauli operaigyon vertexj,
o, on all neighboring vertices gf—i.e., all verticesk which
are connected tpby edges—and the identity operator on the
remaining vertices. Graph states associated with

Wﬂlﬂszw)’ u; 10,1}, are the joint eigenstates of the set of
Hermitian operatorgK;|j e V} which fulfill the eigenvalue B. Examples
equations

As a first example, consider tiparticle GHZ state. The
2) graph corresponding to ad-particle GHZ state is given by
N vertices{1,2,... N} and edged1,k}, ke{2,3,... N}.
For notational convenience we will omit the indéxwhen-  This graph can easily be seen to be two-colorable by consid-
ever there is no danger of confusiod}lfﬂlﬂz...#Nk ering the sety/,={1} andVg={2,3, ... N}. The correspond-
=¥ .- Note that the graph statéblfﬂm...ﬂN)g} are  ing two-colorable graph statt . is given by

Kj|\lr/.L1;L2“~,u,N>g = (_ 1)Mj|\I,:U«1,U«2"‘MN>g O J .

byl
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(Q) (b) (€) O sy ) = - DAY ) ®

(i) —
O-YJ |q}/’-jﬂN.l-‘R> I( 1)#J|\P,U-]MN I‘R> (9)

where u, B = T ,ukz ,u,k‘ N denotes the bitwise complement

FIG. 1. Graphs wittN=7 corresponding tda) GHZ state,(b) ~ With 0=1,1=0. Equatlon(7) implies that
linear cluster state, an@) seven-qubit Steane code.
i u n@) seven-qubi W) = TL10%2 - BN 0), (10)
|\Ir00”0>:1/\;’5(|02>® [09°N1+[1,) ® |19°NY), ()  Where o9=1. This property follows from the eigenvalue
equations2), while Eq.(8) follows from
where{|0,,]1,} [{|0y,|10}] is the eigenbasis af, [o,] re-

pu() (J)
spectively, with|0,)=1/v2(|0,)+|1,)). W" g "R> (= DMK, W””‘N MRJ>
The graph corresponding to @&opern linear cluster state = (- 1)Mjo<k1) (k) . .. (k|Nj|>|\I, )
of length N is given byN vertices{1,2,... N} and edges z HitN Ry
{k,k+1}, ke{1,2,... N-1}; i.e., all neighboring vertices =(-1) J|qf#MNMR> (12)
are connected by edges. In this case, the ¥gthvg] are
given by all odd[even vertices, respectively, which shows Finally, to prove Eq(9) one uses thaztr(')—lo(” (') together

that the graph is two-colorable. The corresponding two-with Egs.(7) and(8).
colorable graph states for arbitraly are rather difficult to
write down explicitly, as the minimum number of terms re-
quired to specify the state in any product basis grows expo-
nentially with N [15]. This is reflected by the fact that the ~ While different multiparticle entangled graph states are
amount of entanglement of these states, as quantified by tissociated with different graphs, it is not obvious that states
Schmidt measurg17], grows linearly with N. For our  arising from different “interaction” graphs lead to states with
present purposes an explicit expansion is not required, sinddfferent entanglement properties. In fact, it turns out that
the description in terms of the correlation operafdtg. (2)]  local unitary operations allow one to change from some
is complete and all calculations can be performed using th@raph state to some other. The classification of graph states
corresponding eigenvalue equations. This is one of the maitito subclasses that are invariant under local unitary transfor-
advantages of théabstract definition of graph states as mations is a complex problem, which is not solved in gen-
eigenstates of a set of commuting correlation operators, angral. Progress among these lines is reported in R&€s20.
it allows for a simplified analytical and numerical treatmentWe emphazise that the results we obtain below for certain
of protocols operating on graph states. This parallels th@raph states, in particular for all two-colorable graph states,
treatment of quantum error correcting codes in terms of th@re also valid for graph states which are local unitary equiva-
stabilizer formalisn{18]. lent to these graphs. This implies that the entanglement pu-
As a final example, consider a graph which consists ofification protocols discussed below are applicable to some
seven vertices of a cube. The graph states associated wigtiaph states which do not arise from a two-colorable graph.
such a graph are equivalent, up to local unitaries, to the codd=or instance, the GHZ state discussed in Sec. Il B associated
words of the seven-qubit Steane ca@ig, 1, 3 CSS codp  With a graph with edgefl ,k} Ok is locally unitarily equiva-
The graphs associated with these examples are illustrated i@nt to a state associated with the fully connected graph—
Fig. 1. i.e., with edgedk, I}, Ok<I. While the first graph is clearly
two-colorable, the second is not.

D. Local equivalence of graph states

C. Useful properties of graph states

. . E. Mixed states and depolarization
For any fixed grapl§ one can verify a number of useful P

relations between graph states following from E2). For Let us now consider an arbitrary gragtwith N vertices
any vertexj we divide the vertices into three distinct sets: V={V1,V,,...,V\} and N spatially distinct parties, each
vertex j, the setN; which contains all neighboring vertices holding one of theN particles belonging to a general mixed
of j—i.e., aII vertices connected to j, state p. We consider the N-particle graph states
N, —{keV|{k j} € E}—and the seR which contains the re- {|¥,, ., ., )¢} associated withg and introduce the multi-
mammg vertices. We use the correspondlng multmdpgs index = uuy -+ . Since these states form a basisHn
and PR and the indexy; to label the graph states, where the density operatgs can be expressed as
I, ,ukl,ukz g PR M i with  {k,j} € E, 0= 3 N o)

{i}, j} ¢ E. One readlly verlfles that for eaghthe following

relations are fulfilled:

(12)

In the following, we will show that one can depolariz¢o a
o[ y= |0 ) @ statepg which is diagonal in the graph state basis by a se-
S it Ry quence of local operations and classical communicdtien
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operations acting on each particle individugllywithout ing the diagonal coefficients. That is, without loss of gener-
changing the diagonal coefficients. That is, givenMEq. ality, we can consider mixed statpsdiagonal in the graph-
(12)] one can create by means of local operations and clastate basis

sical communication the state

p= 2 AP\ PRSP P 14
o= 2 NV, (13) g o TR
K’ We have introduced the shorthand notatiope,
With N =N\, 4 = Mg iy iy for all eigenvalues associated with the verti-

This can easily be seen using the eigenvalue equédion  ces in the sel/, and similarly for ug.We assume that the
Consider two graph statg¥,, ,..,) and|¥, , ..., ) which  parties sharé/ copies of thisN-particle mixed state. In the
differ in at least one bit—say, the firgt;=0—while »;=1.  following we establish for every two-colorable gragha
We have that KW, ., )=(+D[Wo,,.,) and |ocal purification protocol which is capable of creating the
Ko W1, -0 ) =(=D[¥y,,..,. ). Note that the operation corre- pure statdW); as output state, given the initial staieful-
sponding toK; is local—i.e., involves only operations on fills certain requirementée.qg., has sufficiently high fidelity
individual particles. If the parties thus jointly perform with Note that we have used the shorthand notafien00- - -0,
probability p=1/2 theoperations corresponding Ky, while  i.e. |¥o)g=[Ws.0)g-
with probabilityp=1/2 thestate is left untouched, the result-
ing density operatofp=1/2(p+K,pK]) will have no off-
diagonal elements of the fordnlfoﬂz...MN> <‘I'1,,2...VN|, while In this section we review the purification protocol intro-
the diagonal elements remain unchanged. In a similar wayuced in Ref[14] and analyze its properties. We consider
all off-diagonal elements can be eliminated in a totalNof two subprotocolsP1 and P2, each of which acts on two
rounds by probabilistically applying the local operations cor-identical copiesp;=p,=p andp;,=p; ® p,.
responding toK;, j=1,2,... N, to the state resulting from
the previous round.

In summary, for any graph one can depolarize the giate  In a first step, all parties which belong to the Sgtapply
to a mixed statep; diagonal in the associated graph statelocal controlledNoT (CNOT) operations[21] to their par-
basis. The corresponding sequence(jmfobabilistio local  ticles, with the particle belonging tp, as sourcep; as tar-
operations is determined by the correlation operakqras- ~ get. Similarly, all parties belonging to s&z apply local
sociated with the grapB. This ensures that we can restrict CNOT operations to their particles, but with the particle be-
ourselves to mixed states diagonal in the graph state basis iBnging to p; as sourcep, as target. Making use of the
the following analysis. properties of graph states, pointed out in Sec. Il C, together

with

A. Recurrence scheme

1. Protocol PL

IIl. MULTIPARTICLE ENTANGLEMENT PURIFICATION Uenor=121®@1+0,@1+1® 0x-0,® 03), (19

PROTOCOLS one readily checks that the action of such multilatenabT
operations is given by

Ny — [

In the following, we will analyze in detail the multipar-
ticle entanglement purification protocol introduced in Ref. k5
[14]. This protocol is a recurrencelike scheme which oper-
ates on two copies of a given state simultaneously and mayhere u,® v, denotes bitwise addition modulo 2. For in-
be viewed as a generalization of the purification protocol forstance, ifu=wiuops, A VA= 11 D vy, o ® vy, us® vs.

GHZ states introduced in Ref12] to arbitrary two-colorable The second step of protocBlL consists of a measurement
graph states. We will also introduce a multiparty hashingof all particles ofp,, thereby destroying one of the two cop-
protocol—based on the protocol presented in R&8] for  ies of the initial state. The particles belonging to ¥gtare
GHZ states—where joint manipulations of a large number oimeasured in the eigenbagi®),,|1),} of oy, while particles
copies are involved. In both cases, the goal is to produce fewelonging to seVg are measured in the eigenba8§®,,|1),}
states with high fidelity from a large number of states withof ¢, The measurements in sei, [Vg] yield results
Iow. fidelity. While th(_a f|r§t protocol is particularly useful to (-1)& [(-1)%], respectively, with &, Ge{0,1. If the
purify states of low fidelity, the second protocol turns out tojeasurement outcomes  fulfill (&+3pjjceddmod2=0

be very efficient for states sufficiently close to the desireq]j_which implies u, @ v, =0—the first state is kept. Oth-
output state. We investigate the conditions under which the,yise  also the first state is discarded and protBddfailed.
protocols can be applied and also discuss their efficiencies), .ase the resulting stafeis kept, one finds that it is again

In the following, we consider an arbitrary but fixed two- 4i500na] in the graph-state basis, with new coefficients
colorable graphG with verticesV=V,U Vg, Na=|Va|, Ng

=|Vg|, andN=N,+Ng spatially distinct parties, each holding ~ _
one of theN particles that belong to a general mixed state Nyare™ > i)‘VA’”B)‘YA#B’ a7
Using the depolarization procedure discussed in the previous (v 1)l 1p=7s]

section, we can transform the stagteto a standard form whereK is a normalization constant such thafpr=1, indi-
diagonal in the associated graph state basis, without changating the probability of success of the protocol. We note that

N A N Hparg® VB>|\I,"A€B Mp ”B>’ (16)
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one may also keep measurement outcomes other (fan jected to bit flip errorgo,), which can also be described as a
+2jieegkmod2=00j which would increase the success collection of phase flip errors in sét, (see Sec. Il & We

probability of the protocol. In this case, however, it is notremark that this situation is equivalent to a more natural
clear whether the modified protocol is still capable of puri-scenario where only phase flip errors occur on all locations

fying the desired state. and one considers a state which is up to local unitary opera-
tions equivalent tp 4. Such a situation may, for instance,
2. Protocol P occur when each of the particles of a perfect TCGS is sub-
jected to decoherence described by a dephasing quantum

Protocol P2 is defined in a similar way and can be ob-
tained from protocoP1 by exchanging the roles of sé¥s
and Vg. The action of the multilateratNOT operation is in
this case given by

W )|

channel.

From the discussion in the previous section, it is clear that
the iterative application of protoc®1 is sufficient to purify
states of the form Ed20), as only information abouyt, has
\I,VA"’B@”B>' (18) to be extracted. A single application of protodel leads

) — W ) . . b
st Vopre) = Vo) again to a state of the form,, with new coefficients

which leads to the new coefficients

3 3 Ko =\, /K. 2y
Nare™ o )\VE@ i} }R)\VA"}’B)\”A'VB’ (19 WhereK:EﬂA)\f‘Avo is a normalization constant which gives
AENTEACERTTA the probability of success of the protocol. That is, the largest
for the case in which the protocél2 was successful. coefficient is amplified with respect to the other ones. It fol-
lows that iteration of the protocol allows one to produce pure
3. Total purification protocol graph statesW,o) with arbitrary high accuracy, given that

The total entanglement purification protocol is composedh® COefficienig is larger than all other coefficients,, o.
of P1 andP2. It consists in an iterative application of sub- That is, the condition that suc_cessful_purlf[catlon is possible
protocolsP1 andP2, always using two identical copies, ob- '€@dShoo> A, ol ua# 0. If this condition is fulfilled, the
tained in the previous round, as input states. It turns out tha@rotocol converges towards the attracting fixed point given
for certain input states the convergence of the protocol aby Aoo=1. If not, we choose the largest coefficient—say,
well as the purification regime can be improved by using an\y,0c—and map it onto\, o via local unitary operations. We
adaptive scheme. That is, instead of using a strictly alternatemark that the family of statgs, includes states up to rank
ing application of protocol$1 andP2, one allows for two  2VA, which—depending on the corresponding graph—can be
(or more  subsequent  applications  of  the as high as 2.
same protocol and may use arbitrary sequences such asAs a concrete example, consider the one parameter family
P1-P1-P1-P2-P1-P2-P2-etc. pa(F) with Noo=F, N, 0=(1-F)/(2"-1) for pa#0,

We remark that the basic idea of the protocol is similar towhere F is the fidelity of the desired state. Application of
the standard recurrence protocfl®,11] for the purification  protocol P1 keeps the structure of those states and leads to
of Bell states. Information about the first staigis trans- 5
ferred to the second stajg by means of the multilateral E= F _
CNOT operations and revealed by the measurement. The gain F2+(1-F)%(2%-1)
in information about the first state eventually corresponds to_ ~ . . . N
an increase of the entanglement of this state. This informalNiS map has==1 as attracting fixed point fof =1/2%.
tion transfer becomes evident from E4.6), where we re- Th‘g probab2|I|tyNof success for a single step is givengby
mark that the relevant information is encodeguig, ug. One =F5+(1-F)%/(2%-1).
sees that while protocd?1 is capable to reveal information
about u,, the protocolP2 reveals information aboytg. In
case of a successful purification, the typical action of the While for the restricted family of states, discussed in
total protocol is as follows: The protocdl increase the the previous section an analytic treatment of the protocol is
weight of all coefficientsAO,MB, while P2 amplifies coeffi- possible, the situation is more complicated in the general
cients,,, o. In total, this leads to the amplification af. case. For full-rank mixed states, an iterative application of
both protocolsP1 andP2 is required to reveal information
about u, and ug, respectively. In this case, the action of
) T ] _ each protocol is described by a more complicated nonlinear
To gain some analytical insight into this procedure, Wemapping[see Eqgs(17) and(19)] of a large number of inde-

(22)

5. Purification regime and convergence

4. Binarylike mixtures

consider the example of mixed states of the form pendent variablegin total 2Y-1) which makes an analytic
S\ ¥ 20 treatment of the protocol very difficult. We have not been
pa= . MA~0| a0 "A'O|' (20 able to determine boundaries of the purification regime and
A

the convergence properties of the protocol analytically in the
These states arise in(aypothetical scenario were all par- general case. For a large family of states, arising from dif-
ticles within setV, are only subjected to phase flip errors ferent noise models, we have, however, investigated the pu-
(described byw,), while all particles within seW/g are sub- rification regime and convergence properties numerically.
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FIG. 2. (a) Minimal value of fidelity F,,+[°] and parameter
Omin X [*] for linear cluster statgsGHZ stateg for different number FIG. 3. The required initial fidelity for linear cluster states as a
of particlesN and perfect local operations. function of the numbeN of parties. The dotted curve is an expo-

nential fit to the exact valuegircles.

As a first example, we consider noisy TCGS arising natu-
rally in a multiparty communication scenario where each ofderstood as follows: Consider only bit flip errors described
the N particles constituting¥,) is sent through a noisy by oy. If the degree of the graph is high, a certain vertex is
quantum channel. We consider depolarizing channels witsonnected to a large number of neighboring vertices. When-

noise parameteq described by ever a bit flip error in one of the neighboring vertices occurs,
this is equivalent to a phase flip erf@escribed byr,) at the
Ep=0ap+(1-0q)/2l® tr(p), (23)  vertex in question as can be seen from the discussion in Sec.

Il C. That is, a large number of independent errors affect a
single vertex(and thus a specific indey;) and these errors
accumulate, leading to a threshold value increasing with the
p(Q) = E1E; -+ EN| TN (W (24)  degree of the grapf22]. We remark that whenever=gmin,
our protocol successfully converges towards the fixed point
We point out thagj=1 corresponds to perfect transmission— specified by\go=1.
i.e., no decoherence—whilg=0 leads to a completely de- Note that the different behavior of GHZ states and graph
polarized state. We have numerically investigated the threststates with fixed degree is not reflected by the minimal re-
old value gy, until which our multiparticle entanglement quired fidelity Fin= (¥ olp(amin)|¥o0) Which is in both
purification protocol can be successfully applied. Fpr cases decreasing exponentially with the size of the sytem
= Qmin, We have that the purification protocol can be successkor linear cluster states and GHZ statEs,, is plotted in
fully applied, while forq< gy, the protocol fails. The results Fig. 2 for different numbers of particlesl. These observa-
of this numerical investigation are summarized in Fig. 2 fortions suggest that the fidelity is for a multiparticle system not
linear cluster states and GHZ states of different sizes. Whilg very sensitive measure to judge the properties of multipar-
for linear cluster states one observes that the threshold valugle entangled states in the presence of decoherence. From
Omin IS essentially independent of the number of partidés, the exponential decrease of the minimal required fidelity, one
the situation for GHZ states is different. For GHZ states theyould be tempted to conclude that the requirement to purify
threshold valueqgy,, increases with the number of qubits. states becomes less stringent with increasing size of the sys-
That is, the tolerable amount of white noise per particlesem. This is, however, certainly not true, as the tolerable

decreases with increasimgand thus it becomes more diffi- amount of white noise per particle may even decrease with
cult to purify large scale GHZ states. We have also analyzeghe size of the system—e.g., for GHZ states.

other two-colorable graph states and found that the threshold e have also considered mixed states of the form

value does in general not depend on the size of the syidtem

but is determined by the maximal degree of the correspond- p(X) = X[ Wl (Wo| + (1 —x)/2M, (25

ing graph. For specific families of states, the degree of the

graph may, however, depend on the number of vertices. Ane., mixtures of the desired state with a completely depolar-
example is given by théN-particle GHZ state, where the ized state. We observe that the situation is similar as in the
degree of the corresponding graphNs-1; i.e., the degree case of local white noise; i.€5min= Xmin+ (1 =Xmin) /2" de-
scales with the size of the system. Indeed, it can be showereases exponentially witN. For x= x.,;,, the protocol suc-
analytically [23] that the value ofg such that GHZ states cessfully converges and produces perfect two-colorable
become nondistillabléby any protocol increases with in- graph states. The threshold valBg;, is plotted for linear
creasingN. For families of graph states of fixed degree andcluster states of different sizes in Fig. 3. For2 andn=3,
arbitrary size, however, one can show that the states remathe minimum required fidelity coincides with the values
distillable if q= q., whereq.; only depends on the degree found for the purification of GHZ statg¢42]. The reason for

of the graph. This different behavior can be intuitively un- this coincidence is that the two- and three-party linear cluster

where the channel is acting on parti&leThe resulting mul-
tipartite state is of the form
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states ardup to local unitary operationequal to two- and subgraph states. Extremal cases of this procedure are, on the
three-qubit GHZ states and that the cluster purification proene hand, the purification of pairs and creation of the re-
tocol is (in these two casg¢®quivalent to the GHZ purifica- quired target state by means of teleportation and, on the other
tion protocol. hand, direct multiparty purification, each of which having its
For more general states, the purification regimes as welbwn advantages and disadvantages. The optimal choice of
as the convergence of the protocol is difficult to determinethe size of the subgraph will depend on the required task.

due to the large number of parameters. Optimization can be performed with respect to the yield, the
N _ achievable fidelity, and the purification regime and will be
6. Efficiency and yield treated elsewhere.
The recurrence scheme presented in the previous section
is capable of purifying a large class of possible input states. B. Hashing and breeding

As in the bipartite case, however, the protocol approaches
unit fidelity (and thus successful perfect distillatjoonly in
the asymptotic limit; i.e., a large number of iterations of the

protocol is required. Since any step of the protocol only suc ; N
ceeds with certain probability and, in addition, one pair iS[10]) achieve this aim. In these protocols, the local operators

consumed in each step regardless of the measurement o@tgtjomtly on a large n.umbeM of copies of an initial statg,
comes, the recurrence protocol has—strictly speaking—zer}[)"here M._mc' In brief, they use entgnglement—enher
yield. Here, the yield of the protocol is defined as the numbepresent in pure form (bree_:dlng or in no%'/v' form
of copies of the state which are, on average, required téhashmg_—to re_veal(nonlqca} mf(_)rmfatlon aboup S This
produce a single copy of the desirgalire output state. For information gain results in purification of a certain suben-

practical purposes it is often sufficient to produce outputsfClmble ofM’ copies. The yield in the case of hashing is

states with a fidelity larger than a certain threshold value an ven by M’/M, while in the case of breeding one has tq
thus a finite, possibly small number of iteration steps suf- ake into account that entangled pure states consumed during

fices. The efficiency of the procedure achieving this task CaﬁheTrrJ]uriIi]catr:qn prOCfdunehhav% to be givenl_ba((:jk.b M
be easily evaluated. For a single iteration of the entangle- € hashing protocol has been generalized by Maneva

ment purification protocol one obtains that the average num"Zlnd Smolin[13] to a multipartite setting. They showed that

ber of copies required to obtain a single copy of the outpuf;ertaln multiparty entangled states—namely, GHZ states—

state is given by 24, whereK is the probability of success can be purified. To be sp'ecific, the .protocol' introducegd in
of the p?otocol{see, e.g. Eq(17) fopr protocgl P1]. The Ref.[13] allows one to purify states diagonal in the basis of

efficiency of this purification step is thus given Ky 2. Note GHZ states .With a nonzero yield, pr_ovided_ the initial_ fidelity
that if the fidelity of the initial state approaches unity, we ?r]: t:];ehst:;]\te Ir? suff|0|tentl31 h:‘gl\r/lll In this sc(ajcgon,lyve W'"bShOW
have thatk — 1. The yield of the total procedure is obtained al' % tas mgfpro 0co g I aneval an me N g:gn € tger:-
by multiplying the efficiencies of the individual purification craiizec 10 purily @ much 1arger ciass of possible outpu

steps. In Sec. VI, the efficiency of multiparticle entanglementStateS' In particular, we V.V'" present for each two-co_lorable
purification protocol will be compared to the efficiency of graph state a protocol which is capable to produce this graph

protocols based on bipartite entanglement purification. state as an output state with nonzero yield, provided the ini-

We remark that the yield of the purification protocol de- tial fidelity is sufficiently high. The main point is to realize

creasesesponentalywih e number fpaten, as e 17 1 ST oaleh e 1 R ot e
probability of success for each purification st&psee, e.g., lar way to two-colorable graph states. In fact, EG$) and

418) which describe the action of certain multilate@ioT

where the success probability mav be very smilis pos- Qperations on two graph states already show how informa-
( b y may y s b tion about an unknown graph state can be transferred from

sible to use an alternative purification method which essen- A .
tially consists in a cut and reconnect procedure. That is, gne copy to another. T_h|s information can be_revealed by
given TCGS is split up by means of local measurements intgeasurements. In particular, the whole bit striag of a
several(smalle) subgraph states. These subgraph states ar%ngl'e copy of a twq-colorable graph Std@ﬂm{@ can'be
then purified independently and finally these subgraph statedPt@ined by performing a local measurement in the eigenba-
are reconnected. Since the subgraphs are smaller, the yieif Ofox of all particles in sev,, while all particles in seVg

for the purification of each subgraph state is higher. Thet'® measured in the elgenb%ssa;f The measurements in
reconnection is deterministic and may, e.g., be performed b$€tSVa [Ve] yield results(-1)% [(=1)4], respectively, with
means of Bell-type measurements, where subgraphs are chi: &€ 10, 1. The value of the bif;, j € V,, is given by

sen in such a way that each of them is itself a two-colorable _
graph (and hence distillable by our protogahnd the sub- M= (fj * kz §k>m°d2’ (26)
graphs overlap at the reconnection poifgs that the Bell- fjteE

type measurements are in fact local operatioAs several which follows from the eigenvalue equatié®). That is, the
(nonoverlappiny subgraph states can be produced from ameasurements allow one to simultaneously determine the ei-
single copy of the initial graph state, the yield of the totalgenvalues of all correlation operatd{gfor j € V. In a simi-
procedure is essentially determined by the yield to purify thdar way, by exchanging the role &, andVg, one can obtain

It is interesting from a principal point of view to obtain
purification protocols which have nonzero yield. In the bi-
partite case, the hashing and breeding proto¢sée Ref.
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the bit stringug. Note, however, that bit stringg, and ug
cannot be determined simultaneously ycal measure-
ments.

1
0.9
0.8
Given these tools, the hashit@nd breedingprotocol can W07
now be implemented in the usual manner. That is, givMen EO_G
copies of a mixed statp diagonal in the graph state basis % 0.5
(which can always be achieved by applying the depolariza- ir 0.4t
tion procedure described in Sec. Il,E 0.3
0.2
p= 2 )\”A'”B|\P/“A'”B><‘P’"A"‘B|' (27) 0.1 5 _
LN )
8.92 094 096 0.98 1
one chooses a random subsetoopies and determines the Error parameter p
parity of each bitu;. This can be accomplished by applying
multilateralcNOT operations between the finst—1 copies of FIG. 4. Maximal reachable fidelit§,, and minimal required

the set and thetth copy. The corresponding measurement offidelity F,, plotted against the error paramepeflocal operations
the mth copy allows one to determine the parity of the wholefor density operators arising from single-qubit white noise. Curves
bit string u4 of the m—1 remaining copies. The procedure is from top to bottom correspond to linear cluster states vihth
repeated for many of these randomly chosen subsets, and #2,4,6,8, 10particles.

a similar way the parity ofug is determined for other ran-

dom subsets. It is now straightforward to calculate the num- IV. IMPERFECT LOCAL OPERATIONS

ber of required repetitions of the above procedure to deter-

mine completely all relevant information of the remaining Until now, we have assumed that local operations—in
( particular cNOT operations—are perfect. In practice, how-

copies. To this aim, we define the coefficieladgg), a? as X , ,
follows: ) ever, these operations as well as measurements will be im-

' perfect. We now investigate the influence of errors in the
local operations on the multiparticle entanglement purifica-
tion protocol. We will consider an error model where imper-
fect local two-qubit operations are described by the com-
For instance, forN=3 we have thatal”=3,\qq,a"  Pletely positive map
=3, Ay While a=3; ;o and a”+a’=1. The entropy +

. . ! J J =U. . A 2

s@®,a") is given by Eu,p = Ul &80l Vjk (32)

(uj) —
A= X Ny (28)

MKF

where&,, & are given by Eq(23) with error parametep.
That is, an imperfect operation is described by first applying
égcal white noise with probability1—p) independently of
the qubits, followed by the perfect unitary operation. Such an
error model allows us to analyze the protocol upNie 13,
involving 2N=26 qubits. For smaller number of particles, we
have also investigated more general error models—e.g., two-
—1_ (0) A(D\\7 _ 0) A(1) qubit correlated white noise—and also errors in the measure-
D=1 = max.y,[{S(a787)}1] - maXey [{S(@ a0} ment process, observing essentially the same behavior as for
(30)  this simple model.
We have numerically investigated the dependence of the
For mixed states of the form E(5), which are mixtures of  minimal required fidelity and the maximal reachable fidelity
a pure graph state with the maximally mixed state, we haveor linear cluster states of different length on error param-
thata}o)z(l +X)/2, a}l)z(l—x)/2Dj. The yield of the proto-  etersp (see Fig. 4 We remark that whenever the fidelity of
col is in this case given by the initial stateg(which is obtained from a perfect cluster state
by applying local white noise with a certain noise parameter
fulfills Fpin<F=<Fa. the entanglement purification proto-
col converges towards a state Wkt F,,. That is, for any
given error parametqs, F,, andF,,, determine the purifi-
Note that the yield of the hashing protocol approaches oneation regime where our protocol can be successfully applied
for any state diagonal in the graph state basis which fulfillsn order to increase the fidelity of the state. As can be seen
Ao— 1, independent of the specific form of the state. In parfrom Fig. 4, the purification regime becomes broader with
ticular, this implies that if a given mixed state has sufficientlyincreasingN. In particular, the minimal value gf such that
high fidelity F, the hashing protocdcombined with the de- a finite purification regime remains—i.e., the threshold value
polarization procedujeallows one to extract pure two- ppi, until which our MEPP can be successfully applied—is
colorable graph states with nonzero yield, and the yield aptalmos) independent of the number of partidswhich can
proaches 1 foF — 1. be seen from Fig. 5. It even seems that for a larger number of

S@a”.a") =-a” log, a” - a" log, a" (29)
and determines the number of copies which has to be me
sured in order to obtain bik;. Following the reasoning of
Refs.[10,13, we can now determine the yield of the hashing
protocol and find

1+x 1-X
D=1- —— . (31
2 2
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becomes exceedingly difficult with increasihg In the limit
of largeN, nearly noiseless local operations are required. On

e 1 protocol allows one to increase the quality of the state. While

E£0.99 we find that for closed linear cluster states the threshold
* . . .

o 0.98 . o " value p.;; essentially remains constant, independent of the

% 0.97 . size of the system, for GHZ states we show that even for this

> 0.96 * restricted kind of errors, the threshold value increases with

0095 , N, approaching 1 in the limit of larg8&l. This implies that

Eggg * . = purification of GHZ states with large number of particles

7]

£0.92

— 0.91

the contrary, the requirements on local operations for the

0°92 3 4 5 6 7 8 9 10 purification of cluster states is independent of the number of
Number of particles N particles,N.
FIG. 5. Threshold value for errors in local operatiqng,, for A. GHZ states

GHZ stateq*) and linear cluster statéx) with a different number

of particles,N. We start by investigating the properties of binarylike mix-

tures of GHZ states. Recall that the corresponding graph of a
i , o GHZ state is given by the edgés,k}, ke {2,3,... N}, and
partlcles_ the tolgrgblelamou_nt o_f noise per operation is Iarge(/Az{Vl}, Vg={V,,Vs, ... Vi}. We consider states of the
Performing a similar investigation for GHZ states, we f|ndforrn

on the contrary that the threshold valpg;, increaseswith
increasingN (Fig. 5); i.e., it becomes more difficult to purify pAX) =Xy X Wool + (1 —x)/21VA, (35
GHZ states with a large number of particlés,

wherely, =[WooXWool+[W10XW1 0| As pointed out in Sec.

Il C, the action of a bit-flip erroir, on any of the particles

V. PURIFICATION REGIME FOR BINARYLIKE 2,3,... Non graph states can equivalently be described by a

MIXTURES phase flip errofo, on particle 1. In particular, we have that
As in the case of perfect local control operations, it isfor — j=2,3,... N, M®[Woo)(Wo e =p[Wo o) (Wogl +(1
possible to treat binarylike mixturgs, of the form Eq.(20) —p)/2}l\,A and aIsoM}B)}lVA:}lVA. It readily follows that the

analytically when considering a restricted error model whichaction of the purification protocd?1 which involves imper-
keeps the structure of these states. Note that considering suétt unitary operations on two copies of the input sjaiéx)
an error model with this restricted kind of errors allows onecan equivalently be described by the action of the perfect
to obtain a lower bound on the threshold value for moreprotocol P1 on two copies of the statep  (x’)
general error models. To this aim, we consider the Com'EM(zB)MéB)~"Mf\‘B)pA(X). One finds that
pletely positive magCPM) M; given by

1-p Pax’) = p(xpN); (36)

Mip=pp+— (p+ oy pal)), (33 that is, the state is still of the form of E435) with new
coefficientx’ =xpN~1. The action of the perfect protocéll
which corresponds to a bit-flip channel acting on qubiVe  on pAX') is given by Eq.(21) with Ngo=x"+(1-x')/2,
model imperfect local unitary operations by the following ), ;=(1-x’)/2, yielding
CPM: '

- 1 -xph1\2
Euyp = Uil MMyp]Uf, (39) Noo= (XpN'l + T) IK. (37)

where M; is given by Eq.(33) if qubit j belongs to the set The purification protocol was successtul if the fidelity of the
Vg and the identity otherwise. That is, we assume that opera-

. . . . : resulting state\q, is larger than the one of the initial state
tions on particles in se¥, are perfect, while an imperfect N .

. - . , : (X), F=N\go=x+(1-x)/2. That is,
unitary operation acting on two qubits held by a party in se '

Vg is described by first applying a probabilistic bit-flip chan- L1 —xpN1\2
nel on the qubits, followed by the ideal unitary operation. xp" +T) 1-x
Such an error model ensures that the structure of binarylike =R T =X+ ,
mixtures[Eq. (20)] is maintained. In principle, one could in (XpN—1+ 1-xp ) +<1 -xp" ) 2
addition also consider phase flip errors for all particles in set 2 2
V,—which would still maintain the structure of binary (39)
mixtures—however, the analysis is more complex and no
additional insight is gained. which can be rewritten as

In the following, we will investigate the purification re- 2pN1— 1 = x2p2ND) | (39)

gime for GHZ states and closed linear cluster states, initially
of the formp 4(F). That is, we will determine the threshold On the one hand, for a fixed noise level of local operations
value pg;; until which a single instance of our purification (given by the error parametep) Eq. (39) allows one
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to obtain the maximal reachable fidelithf, .= Xmax* (1 Pl = MMy Myp(X), (43
—Xmax | 2—that is, the fixed point of the protocol. One finds

[ NT Ay (N1 where M is defined in Eq(33) for ke Vg and is given b
Xmax= V(2P = DIpNE. (40) the identrty operation iﬂ(gvA. It is reIaE':iver str?iightfor)-/
On the other hand, one can also determine the thresholdard to determing/,. Using thatM M- - Myly, =ly,, it
value for the error parametgx; p.;—i.e., the minimum re- only remains to determine the action #8ff;M,:-- My on
quired reliability of the local operations that purification is the cluster stateV )(W|. Since the action ofr, on particlek
possible. Fof2pN~'-1) <0, inequality(39) can certainly not  of a cluster state can be equivalently describedrpppera-

be fulfilled, independent of. Thus, independent of the initial tions on the neighboring particlds-1 andk+1, we have
quality of the state, the protocol is not capable to increase ththat the resulting staté1; M- -- MW (¥, is again diag-
fidelity if p<<pc.. A lower bound on the threshold valgg;;  onal in the graph state basis, where only some of the coeffi-

is thus given by cientsa,, o are nonzero. A straightforward calculation shows
1\ VN-D) that forM odd one obtains a total of2* nonzero terms with
Perit = <§> , (41)  corresponding coefficientsy}, where O<sk<(M-1)/2 and

ay appeardy,  times, where

which increases for increasing. That is, even if we con-

sider only a restricted kind of errors on particles within set

Vg, the requirements on the quality of local operations be- by = K =MULKI(M = K)!]. (44)
come more stringent if the number of particldsncreases.

This is in agreement with the numerical results found for theWe
more general white noise error model discussed in the pre-
vious section.

have thaiy, is given by

a = g1 - M + M1 - )X, (45)

B. Closed linear cluster states

: losed i | \f/vhereao corresponds tdW o) (Wy|.
We now turn our attention to closed linear cluster states of 1. ¢ he statg), is diagonal in the graph state basis

sizeN=2M, specified by a graph witN vertices and edges ., - / - :

{k,(k+ )mocN}. The setsV, [Vg] are given by all odd with coeff|C|ents>\MA’O. These coefficients are given by
[even vertices, respectively. As in the case of GHZ states we 1

determine not only the minimal required and maximal reach- oK1 — WMk Mk1 — K] 4 =X

able fidelity, but also the threshold values for local opera- Me=Xa (1 -+ gL 0y oM (46)
tions. We find that the tolerable amount of noise per imper-

fect two-qubit operation essentially remains constant

independent of the number of particles involved and is for N = 1-x (47)
large N given by p.;=~0.4976. That is, the purification pro- M™ oM

tocol is also for large number of particles remarkable robust

_against_the influenc_e of impgrfect Ioc_al qperations, which i, here O<k=(M-1)/2. Each of the coefficients] appears
Interesting f_or p033|b_le practical applications. by « times, while the coefficient;, appears ! times. Note
We consider density operators of the form that\§ corresponds ta,—i.e., determines the fidelity of the
1-x statepy.
pA(X) = XWX W +W1VA1 (42) The action of the(perfec} purification protocolP1 is
given by Eq.(21) and can be determined straightforwardly.
wherelVAEEMA|\IfﬂAVO><\IfMA,O|. We have thap 4(x) has rank In particular, the fidelityF of the resulting state after a suc-
2Na=2M and the fidelityF of the state with respect {0y  cessful purification step is given by
is given byF=x+(1-x)/2". For simplicity, we will assume
M odd in our analysis. A similar analysis can be performed X = (AT (48)
for M even. We will consider the purification protocBll, 0 o
which is sufficient to purify these kind of states. We analyze .
a single instance of the purification protod®l and deter- with
mine the conditions under which an increase of the fidélity
is possible. Recall that imperfect local unitary operations are
modeled by Eq(34). It turns out to be convenient to use the = > byxA)2+2" ()2 (49)
parameteiq=(1+p)/2 to describe the quality of imperfect k=0
local operationgsee Eq(33)]. ) o . ) )
As in the case of GHZ states, the action of the imperfecfl'he |mperfec£ purification protocol is capable of increasing
protocol P1 on two copies of the staje,(x) can be equiva- the fidelity if \g>\o, Where\o=x+(1-x)/2M. To evaluate
lently described by the action of theerfect(error freg@ pro-  the sums appearing in EG19) one only needs to realize the
tocol P1 on two copies of an input stajg,. We have that following identity:

(M-1)/2
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(M-1)/2

2 [oy (1 - )" ™*+ by g" (1 - 9)]
k=0

M
= by (1 - M. (50)
k=0

The resulting binomial sums can then be easily evaluated and

one finds, e.g.,
M 2™
Mg (1 - =(1-q 1+ —— .
S by (0(1 — )M = ( )M q
k=0 1-q

(M-1)/2

2 bM,k = 2M_1.
k=0

(51)

It turns out to be useful to define the functioAs= A(q), B
=B(qg), andC=C(q) given by

1
A=g"+1-gM -5

2M”
1
BZZ_M'
2 M 1
c:<1—q>2M{1+(1%q” - o +[2aL -,

(52)

After some algebra, one finds thEEx?C+B and Xo:[xA
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FIG. 6. Threshold value,; for imperfect local operations as a
function of number of the particled)=N/2, for M odd.

towards ;= 0.7469 [ pi = 0.4938 (see Fig. 6. That is,
independent of the size of the cluster state, the tolerable
amount of noise for local operations specified dyemains
(approximately constant and approaches a finite vatiig

#1. This is in contrast to the behavior of GHZ states but
confirms the numerical results found for the more general
error model of white noise.

C. Other graph states

We have also numerically investigated other graph states
and determined the corresponding threshold value. Here we
have not only considered a single purification step as in the
previous subsections, but analyzed the convergence of the
whole purification procedure. In addition to bit flip errors in

+BJ2/T. The condition that a single successful application ofS€t Ve, we have also considered phase flip errors in\4et

the imperfect purification protocd?1 lead to an increase of

the fidelity is thus given by

[xA+BJ?

= x(1-B) +B.
x2C+B ( )

(53

here. This error model has still the property that states be-
longing to the familyp 4 [Eq. (20)] remain within this family
throughout the procedure and the purification protoedl
alone is sufficient to achieve purification.

For instance, we considered two-dimensiof2) cluster
states corresponding to 2D lattices of different sizes. Note

The corresponding purification regime can be determined byt 4 closed cluster state corresponds to periodic boundary

solving the resulting quadratic equationXnOne obtains

_BC-A2x A
= Tc@-y 9
with
A=(A?2-BC)2+4C(1-B)[2AB-B(1-B)].  (55)

That is, forx_<x<x, a successful purificatiofresulting in
an increase of the fidelity of the stais possibly. Recall that
X_, X, are functions ofg, so Eq.(54) determines the purifi-
cation regime for any fixed error parametgr(1+p)/2. For
instance, ifq=0.9, a single application of the protocBll
increases the fidelitfF =x+(1-x)/2V? in the range 203N

conditions, while in an open cluster state the qubits at the
border have fewer neighbors. We have investigated 2D clus-
ter states which are closed indirection but open ory di-
rection on lattices of size4 3 and 6x 3 and found threshold
valuesp'#*¥=0.764 andp/®“?=0.758. For open 2D cluster
states with 4 4 and 5x 3 we find p**¥=0.764 andp>*?
=0.778, while for a completely closedd4 cluster state we
havep's*¥=0.768.

We have also considered families of graph staggy
specified by two parametef$ and k, where the number of
vertices is given by B and k specifies the degree of the
graph. The seW, is given by all odd vertice4 ,3, ..., N

-1, while the seVj consists of all even vertices 4, ..., AN.

<x=<27000N That is, for eactN there exists a finite regime The edges of the graph are given byj,j+1}{j,]
where entanglement purification is possible. The threshola 3}, ...{j,j+2k-1}0j odd and the addition is understood

valueqg;; (respectivelypgi) until which successful purifica-

moduloN. That is, each vertex iW, is connected to the next

tion is possible for some input states can be determined bk vertices inVg. The graph is translational invariant and has

(numerically solving the polynomial equatioh=0. One
finds that the threshold valwg,;; [ pic] Slightly varies oveiN
in the interval 0.700% = 0.7491 and converges for larde

degreek.
We find that the threshold value is largely independent of
both N and k. For instance, we have f0B(03, G104,

012319-11



ASCHAUER, DUR, AND BRIEGEL PHYSICAL REVIEW A71, 012319(2005

G0, G010 that pnin=0.762. Altogether, in the investi- -1 particles of arN-particle GHZ state, generatéatally by
gated regime N=10, 2<k=<N we find that the threshold party 1, to the remainin§i—-1 parties. The average number
value varies only between 0.788,,;,<0.772. of copies of the initial state that are required to generate
GHZ states with a certain fidelity turns out to be smaller for
direct multiparticle entanglement purification, thereby indi-
cating that such protocols can be more efficient than methods
based on bipartite entanglement purification.

In this section, we compare direct multiparticle entangle- _However, the scenario considered by Mugdal. in Ref.
ment purification protocols with protocols based on bipartitel12] iS @ restricted one. For instance, it is assumed that bi-
entanglement purification. For a large class of states we shoRA"tité entangled states are generated from a single copy of
the following: (i) In the case of perfect local operatiorsy the |n|F|aI multlpartlcle_ statg, and only a single copy of an
protocol based onbipartite entanglement purification is lesd-Particle GHZ state is generated from the produced bipar-
efficient—in terms of the yield—than a certain direct multi- it¢ €ntangled pairs using a specific procedure based on tele-
particle entanglement purification protocol, afi in the portatlon.. .Fur_thermore, only a s_pecmc blpart'lte entangle-
presence of imperfect local operations, direct multiparticleMent purification protocol is considered. We will now show
entanglement purification protocols can perform better thadhat for a large class of states, indety method which is at
protocols based on bipartite entanglement purification. That®Me point based on bipartite entanglement purification is
is, a wider range of states can be purified and the achievablgSs  efficient than direct multiparticle ~entanglement
fidelity of multipartite protocols is higher than with methods Purification—e.g., using multipartite generalizations of hash-
based on best know[i28] bipartite entanglement purification g or breeding. We emphasize that we do not specify the
protocols combined with teleportation. Whili justifies and ~ Method how bipartite entanglement purification is employed,
motivates the investigation of multiparticle entanglement pu10r do we restrict ourselves to a specific way of combining
rification protocols from a principal point of viewij) makes the _rgsultmg p|part|te entangled pairs to obtain the desired
these protocols also interesting from a practical point ofPurified multiparticle entangled state.
view. To this aim, we consider the most general method to pu-

In principle, bipartite entanglement purification seems to'ify multipartite entangled states which is based on bipartite
be sufficient to purify also multipartite entangled states. Fof€ntanglement purification. The only assumption is that at
instance, the following method accomplishes the desire§®Me point some klnd_ of bipartite entanglgment purification
task: all but two particles of énoisy) multiparticle entangled 1S used and thus maximally entangled pairs shared between
state are measured and the resultingisy bipartite en-  Palrs of parties are generateq. These pairs are t_hen _used to
tangled state is purified, thereby creating @righly) en- generatépossibly several copléisn_f the desired multiparticle -
tangled pair shared between two parties. This procedure gntangled state. We_allow for joint manlpulatlt_)n of an arbi-
applied to several such pairs of parties, and the resultind@y number of copies of the state at any point of the pro-
pairs of highly entangled states can be uged., by means c_e.dur_e, and for the most general blpart_lte.entanglement pu-
of teleportatiop to generate the desired multiparticle en- fification protocol. Using the asymptotic inequivalence of
tangled state with high fidelity. However, as we shall segnultiparticle GHZ states and singlets, this is already suffi-
below, such a procedure may be quite inefficient and it is nofi€nt to show that such protocols can be less efficient than,
obvious that all multipartite entangled states which can bé&-9- multipartite breeding or hashing.
purified by direct multipartite entanglement purification are '\\//IVe start withM copies of anN-party entangled statg,

also purificable using the procedure sketched above. p®", which are manipulated by means of local operations
and classical communication. This procedure involves bipar-

tite entanglement purification and thus results in the genera-
A. Noiseless local operations tion of m,, copies of maximally entangled pairs in the singlet

In this section we compare the efficiency of direct multi- State W)y shared between partids and |. With help of
particle entanglement purification protocols with methods@nother sequence of local operations assisted by classical
based on bipartite entanglement purification. In R&2], it  communication these pairs are then transformed htcop-
was shown that in a restrictg@but rather naturalscenario, ies of the desired multiparticle entangled stage The total
where bipartite entanglement purification is combined withprocedure can be summarized as follows:
teleportation, direct multiparticle entanglement purification
is more efficient for purifyingN-particle GHZ states. In the ~ _ ~
scenario considered in RefL2], N-2 particles of a single pM — k®;||‘1’ DT ™ — [ (x| *M. (56)
copy of anN-particle entangled mixed state are measured
and the resulting bipartite entangled mixed state is purified -
by means of a bipartite recurrence protocol. Highly en-The yield of this procedure is given byi/M. In the follow-
tangled pairs of particles shared between different pairs oihg, we consider tripartite systerhs=3 and analyze the spe-
parties created in this way are then used to generate—bgial case where the input statds pure and in fact identical
means of teleportation—the desireparticle GHZ state. To to the desired output state. That is, we considety)(x|
be specific, pairs between party 1 and e {2,3,... N}, are  where|y) is a three-particle GHZ state; i.¢y) is local uni-
generated and a GHZ state is, e.g., created by telepddting tary equivalent to 1y2(]000+|111)).

VI. BIPARTITE vs MULTIPARTITE ENTANGLEMENT
PURIFICATION PROTOCOLS
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We make use of the following facts which were used intipartite entanglement purification protocol—which in this
Ref. [24] to prove the irreversibility of the entanglement case consists of doing nothing—has yield 1. This already
transformation between singlets and GHZ statgsThe en-  shows that for a certain input state, direct multipartite en-
tropy of the reduced density operator with respect to théanglement purification is more efficient than any method
systeml, 1=1,2,3 canonly decrease under local operations based on bipartite entanglement purification. One can, how-
and classical communication, afid) the average increase in ever, easily prove a similar statement for a large class of
the relative entropy of entanglement of the syst@&nand input states.

(3) is smaller than or equal to the average decrease in the Consider the class of mixed statpswhich can be ob-
entanglement of system 1 with the joint systé2h and(3)  tained from GHZ stategy)(x| by a deterministic local
for any local protocol24]. Note that(ii) is valid only for  protocol—i.e., by a sequence of local operations and classi-
pure stateg24]. If we consider a density operatar;,; cal communication(LOCC). These states include, for in-
=|W)X¥| corresponding to a pure state which is t:gnsformed;tance, density operators of the form
E;Vaentr?éz;grary local protocol to an ensembfg, o, we o(F) = Fl)x| + (1 ~F)or, (64)

~k where o is either an arbitrary separable density operator

Sloy) = 2 pS@Y), (57) (e.g.,%l) or any (classical mixture of GHZ states.

k On the one hand, we have that for all such states the yield
whereS(o,) =-tr(o log, o) with the reduced density opera- of any procedure based on bipartite entanglement purifica-
tor with respect to system by, =tr,5(01,5), and similar for  tion to obtain GHZ states is less than or equal to 2/3. One
entropies of reduced density operator with respect to syste@an easily prove this by contradiction. Assume that a such a
2,3, while(ii) reads procedureM with yield larger than 2/3 would exist. In this

case, one could first transform initial pure GHZ states in a
> PE (%) — Ei(029) < Sloy) - 2 pSG@).  (58)  deterministic way by LOCC to the staje and apply M
k k afterwards, thereby obtaining a yield for the conversion of
In these formulask, (s denotes the relative entropy of GHZ states to GHZ states by a protocol based on bipartite

entanglement of the reduced density operatar= tr; (o129, entqnglement purification larger than 2/3 This.clearly con-
tradicts Eq.(63), so such a procedure is impossible.

E (039 = min S(0,4p29), (59 On the other hand, we have that a multiparticle entangle-
P23Sep ment purification protocol exists which allows one to purify
where the minimum is taken over all separable density opstates of the formp(F) with high yield, givenF is suffi-
eratorsp,; and ciently large. In particular, a procedure consisting of depo-
larization of p(F) to a GHZ-diagonal staté¢see Sec. Il [E
S(024lp29) = tr(023100; 723) ~ (0231092 p29)  (60)  |eads to a state where the hashing protocol introduced in Ref.
is the relative entropy ofr,; with respect to a bipartite state [13] (@lso discussed in Sec. Il)Bcan be successfully ap-
prs. For o=|x)x| we have thatS(o;)=S(0,)=S(05)=1, Plied. The yield of this protocol exceeds 2/3 for a wide range
E, (09 =0 [since tq(|x)(x|) is separablg while, e.g., foro of F in fact apprqaches 1 fcﬁf—>'1. That' is, fqr a'large class.
=[W), (| one finds S(ay)=S(0p)=1, S(a5)=0, E (075 of input states, direct multiparticle purification is more effi-
=1, E,(0,9) =E, (059 =0 and similarly by for singletsrshared cient _than any protocol based on bipartite entanglement pu-
between partieg,|. rification.
We apply now Eq(57) to the second part of the process

(56) and findm;,+m;3=M and similarly for other reduced B. Imperfect local operations

density operators—i.emy,+my=M, my3+my3=M. Com- It is also interesting to compare multiparticle entangle-

bining these inequalities we obtain ment purification protocols with protocols based on bipartite
~ entanglement purification under realistic conditions—i.e., in
M < 2/3(my, + Myz+ Myg). (61)  the case where also local operations performed to manipulate

entangled states are imperfect and give rise to errors. While
above argumentation regarding the yield is based ofiidee
alized assumption of perfect manipulation of an arbitrary
(Mo + M3+ My < M. (62) large number of copies of a given state—and the analysis is
. i performed in full generality—we will be concerned with
Combining Eqs(61) and(62) one finds practically implementable protocols in this section. That is,
M < 2/3M we consider entanglement purification protocols which oper-
=< . (63 . ,
ate in each round of the protocol only on a restricted number
That is, for input states which are pure GHZ states, the yieldf copies of the state. We remark here that in the presence of
of any procedure based on bipartite entanglement purificatmperfect local operations, protocols which operate on a
tion to obtain again GHZ states is less than or equal to 2/3arge number of states simultaneously are very sensitive to
This quantifies the amount of irreversability in the transfor-errors in local operations and therefore may become imprac-
mation of GHZ states to singlets and back. Clearly, the multical anyway. The fact that imperfect local operations are

When applying Eq(58) to the first part of the proce<56)
we obtainm,;< M —m,;,—my5 or, equivalently,
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involved in the purification procedure necessarily implies 1
that no maximally entangled pure states can be created by 0.95
any entanglement purification protocol and the correspond-
ing yield—defined as the average number of maximally en-
tangled pure states produced per copypefis 0. This sug-
gests to use an adopted definition of the yield—e.g., to
accept all output states which have a fidelity larger than some
threshold valueF,. As we are only concerned with recur-
rencelike entanglement purification protocols throughout this

o
©

0.85

Fidelity F..,
o
0]

section—which produce only a single copy of a state as 0.65

output—one can directly use the fidelity of this output state 0.6 ‘ : : ' - '

as a criterion whether the protocol has created the desired 0.94 0.95 0.96 0.97 0.98 0.99 1

state or not. The yield is then defined as the average number Error parameter p

of produced stateg, per copy ofp with fidelity larger than

Fo—i.e., F,={(x|plx)=F,, where|y) is the desiredpure FIG. 7. Achievable fidelity of a linear cluster state withe4

output state. Note that when considering general entangléising direct multiparty entanglement purificatigsolid line) and
ment purification protocols, such a definition might not beconservative upper bound_for methods based on bipartite entangle-
adequate as several copies of output states might be ement purification(dashed ling for different errors in local opera-
tangled themselves. Such a definition implies that Fgr  1ONSP:
= Fq,—i.e., the desired output fidelity is larger than the fixed
point of the protocol—the protocol will have yield 0. tanglement purification with the upper bound for the method
We compare the recurrence protocol for multiparticle en-based on bipartite entanglement purification described above
tanglement purification discussed in Sec. lll A with a schemeand observed thdt\F is considerable larger as can be seen
based on the bipartite entanglement purification protocol inin Fig. 7. This implies that under realistic conditions—i.e.,
troduced in Ref[11]. In the latter case, the protocol of Ref. when considering imperfect local operations—direct multi-
[11] is first used to create bipartite entangled states, whictparticle entanglement purification schemes are advantageous
are then used to create a multiparticle entangled state bys compared to schemes based on bipartite entanglement pu-
some means—e.g., by teleportation. As we are interestetfication. In particular, if the given goal is to produce mul-
only in the properties of the entanglement purification proto-iparticle entangled states with a given fidelity, this can be
col, we have not specified the means by which bipartite enachievable using multiparticle purification, while the scheme
tangled states are combined to create a multiparticle erPased on bipartite purification fails to perform this task. That
tangled state. We have rather conservatively assumed thig the yield of the multipartite protocol is nonzero, while the
this process—although it necessarily involves joint local op-yield of the scheme based on bipartite entanglement purifi-
erations on two qubits which may again be imperfect—iscation is zero. Note that also in regimes where both schemes
error free, and the only source of errors results from the fachave nonzero yield, direct multipartite purification performs
that no maximally entangled bipartite states can be created ipetter than the scheme based on bipartite purificdtl@h
the case of imperfect local operations. The achievable fidel- If one considers the restricted scenario where a single
ity of the states is specified by the fixed point of the purifi-copy of a multiparticle mixed state is manipulated to create
cation protocol and is thus independent of the input statebipartite states by means of measurements performed on the
That is, our analysis is valid for a(istillable) input states remaining particle, it might also happen that the bipartite
under this protocol. Note that the protocol of Riifl] is the ~ state created in such a way is no longdistillable) en-
up to now best known bipartite entanglement purificationtangled, although the initial multiparticle state can be dis-
protocol with respect to the maximal reachable fidelity for atilled by the multiparticle recurrence protoddl2]. That is,
given noise level of imperfect local operations. for these input states the yield for any such scheme based on
For instance, if GHZ states witN=3 particles should be bipartite entanglement purification is zero, while the multi-
created, this involves at least two bipartite entangled stategartite entanglement purification protocol has nonzero yield.
e.g., shared between partiésaindB [A andC], respectively. This is, e.g., the case for three-qubit input states of the form
The mixed state,g corresponding to the fixed point of the
bipartite entanglement purification of R¢L1] is diagonal in p(X) =X|GHZ)}GHZ| + (1 -x)/8l, (65
the Bell basis and can be described/big(|D*)ag(P*|) with
|d*y=1/12(]00)+|11)), where Mg is a map acting orB  with 1/5<x<1/3. Any measurement performed by one of
only. A similar description exists fop,c in terms of a map the parties on the stajgx) produces a bipartite state of the
M_ acting onC only. The optimal case is that local opera- form o(x)=x'|®)}®|+(1-x")/41 with x’=X. It can easily be
tions in A introduce no further errors and create out of twochecked thatr(x) is separable fox=<1/3, while p(x) is (dis-
maximally entangled bipartite states a GHZ state. Siktg tillable) entangled fox>1/5 if one allows for multiparticle
M commute with all operations performedAstthe fidelity — entanglement purification. That is, the minimal required fi-
of the resulting state is upper bounded by the fidelity of thedelity such that drestricted scheme based on bipartite pu-
state Mo Mc(|GHZ)ag(GHZ]|). We have compared the rification can be successfully applied is larger than the one
maximal reachable fidelityF}a> for our multiparticle en- for schemes based on multipartite entanglement purification.
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VIl. PRIVATE MULTIPARTICLE ENTANGLEMENT in a pure state. Note that it is natpriori clear that the lab

A h i th . fon. iti ¢ .bldemon’s knowledge would suffice for the prediction, since
'S We have seen In n€ previous section, LIS not possioig, protocol includes measurements, and by introducing er-

to d!St'" perfect cluster states using noisy apparatus. For blFors, the measurement outcomes will be changed, possibly

partite protocols, however, it was shown in REZ7] that leading to different choices by communicating parties, who

even using noisy apparatus it is possible to digéilymptoti- might throw away qubits which they should have kept and
cally) private Bell pairs—i.e., Bell pairs which are only en- vice versa

tangled \.N'trt]. the a[zparatbu(s;e., Ihe_trl]aboratotrrl]es) gf the ¢ From the list of errors, the lab demons calculate the so-
communication parties, but not with any other degree Ol o arror flags An error flag as a piece of classical infor-
freedom. In a cryptographic scenario, this means that th

) X ) . ation, which is “attached” to each copy of the cluster state.
states of the pairs of particles are actively disentangled frorrﬂ1 the case of a-qubit cluster state, we neetclassical bits

any eavesdropper who has, in the worst case, created th%>_ Q) Q) N .
pairs, allowing her in principle to entangle them with addi-»" =1 -+ Ay {0, 1}" for the error flag. Here, the index
tional degrees of freedom which he or she controls. j denotes the number of the cluster state in the ensemble of

In this section, we show that this is also possible with thedll cluster states. Initially, before the first step of theapurifi-
cluster purification protocol: if the parties only have imper- cation process, all error flags are set to zero—ix!,
fect apparatus which they use to purify cluster states, they(0,...,0 for all j. Whenever theth lab demon applies a
will not be able to create perfect cluster states; however, thphase flip operatiofio,) to theith qubit of cluster statg, in
final state will be disentangled from all channel degrees othe error flagj theith bit is flipped—i.e.,
freedom.

The proof is analogous to the proof of REZ7]. Inafirst AP =\Y, ..AD, . AD) XD =D, AP, . \D),
step, the noise which the apparatus introduces during the (67)
purification process is replaced by a simple toy model, the
lab demon The lab demon corresponds to an intelligent!f he applied an amplitude flip operatidr,), the adjacent
source of noise, which uses a classical random number gehits of the error flagassociated with the neighbors of qubit
erator in order to apply spin- and phase-flip operations orin the clustey are flipped—i.e.,
qubits, according to a given probability distributibp,. The

action of the lab demon is thus the average of the “flipped” A= (I, A - O
uantum states: I ,
g =AY, L AADADAD D). (68)
Pab.. — Pan= > Uf)ff(yb)ﬁab...af)ﬂ(yb)- (66) In both purification subprotocolB1l andP2, two cluster
wr states are combined, one of whi¢probabilistically sur-

pvives. The error flag vector of the remaining state is then
given by a function of the both error flags of the input cluster
states. This function is called théag update functiorfor
I;i)]rotocoIPl andP2, respectively.

Here,p,p is a density operator of a quantum system, whic

includes two qubitse andb which are located at one specific

party; however, it will include other qubits. The lab demon

acts on the two qubits at the same time, since the quantu

operations in the purification protocols are two qubit opera-

tions; for that reason it would be an oversimplification if we ]

assumed that the noise acting on two qubits is uncorrelated. The error flags of the first and second cluster state are
The labs demon keep notes on which Pauli operators wer@Ven by the vectorgx, «y, ... ,kn) and (A, Xz, ... \\y), re-

applied to which qubits in which step of the purification Spectively. For the subprotocéll, the flaf update function

process. As we will show, mere knowledge of this list will, in maps these 2classical bits ontm classical bits—i.e.,

the asymptotic limit, suffice to perfectly predict the state of fu {0, 12— {0, 11"

the purified quantum systems. In other words, from the lab flup-1+ B

demon’s point of view, all purified quantum systems end upwith

A. Flag update function

(Kl@ )\1,K2,K3@ )\3,K4, ) if KZKEB)\ZK:ODI(!

(0,0,...,0 otherwise. (69)

(Klv cen ,Kn,)\l, cen ,)\n) —> {

The first line of the definition takes into account how errorslent to applying a different pattern of error operatiggien

are .propaga_tted throug_h tkodlOT operation. This means, that by the new error flag vectok’ =fy,,(<,\)] after the cNOT
having applied a certain pattern of error operatitgigen by  operation. The second line in the definition is the so-called
the error flag vectojsbeforethe cNOT operation is equiva- reset rule(see[28]).
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It is necessary to introduce the reset rule; otherwise, thés described by a matrix multiplication from the left and a
security proof does not work. The reset rule is found by themodification of the error flags is described by a matrix mul-
following heuristics, which is equivalent to the heuristics tiplication from the right.
used for the bipartite protocol: Applying a one-qubit depolarizing channel is thus for-

The flag update function is only used if in the protocol themally equivalent to a superoperator acting on the matrix of
first cluster state is kept. This is the case if the values of althe diagonal vectors. To be specific, an error operation on
even eigenvalues of the second cluster state are equal tubiti results in flips of the cluster bit-1, i, ori+1, re-
zero—i.e.u,® v, =u, ® vy=-+-=0. If this is the case and, at spectively(see Sec. Il € Simultaneously, bii—1, i, ori
the same time, at least one of the “new” error flags associatetl1 of the error flag is flippefEqs.(67) and(68)]. The result
with the even qubits of the second cluster state has the valusf applying the error operatarg) is thus(for v=x,y,2)

“1,” then the errors in the history of the protocol have

summed up in such a way that the first cluster state is kept. MY =5 'May, (71)
This is the case even though it would have been discarded if _ _ _ S

there had not been introduced any errors. In that case, the MY =G VG M EI VG (72
error flag of the remaining cluster state is getse} to

(0,0....,0). Note that this coincidence of the two before- MS):?&Q"D’&Q)?&Q”)M?rff'l)'&ﬁ(i)?r)((”l). (73)

mentioned conditions happens infrequently; in fact, in the ,

course of the purification process, the probability for thisHere,"&f(') is theith cluster bit flip operator, which looks in

coincidence converges to zero. the cluster basis like the Pauli operatgy in the computa-
For the subprotocoP2, the flag update function can be tional basis. Under the action of the depolarizing channel on

constructed by exchanging even and odd numbers. Using thigubiti, the matrixM is thus transformed into a convex com-

method, an error flag can be calculated for each cluster statgnation of matriceS\/Ig):

in each step of the purification process. By construction, the _

error flags only depend on the errors introduced by the lab M—fM+ > MY (74)

demons. v=1,2,3

The application of th&NoT operations and the following
measurement can be implemented by the following algo-
rithm. M is the matrix of the diagonal elements of the sub-

Using the error flag of each cluster state, it is now posdensity matrices before the subprotoé is applied, and
sible to divide the ensemble of all cluster states ifts@- M’ is the resulting matrix. The algorithm calculates for all
ensembles. The state of the subensemble, which belongs g@mbinations of cluster states the results of theT opera-
the error flag\, is labeledp™. It is convenient to normalize tions. We check the result of the measurement of cluster state
the density operators of the subensembles to the relative fré; if the results are such that the first cluster state is kept, we
quency of the respective error flags, so that(inermalized  calculate its stat¢¥y,) and perform for all combinations of
total density operator is just the sum of the density operatorsrror flags theﬁfollowing stepgi) calculate the value of the

of the subensembles. Using this convention, we define thaew error flag\’, using the flag update function, afit) add
conditional fidelity \

B. Conditional fidelity

i to the matrix eIemenM)kf,’ the joint probability that cluster
Feond=">" (| p™|Wy); (70)  state one was in the stat#) with error flagk andthat the

N cluster state two was in the stgt;) with error flag)t. The

here, the statil;)=|w ) denotes the cluster state. The result of this algorithm is the new matrM’, which contains
cond’itional fidelﬁ is zglr’ﬁ.el\ansure for thmurity of the clus:[er the (non-normalizedi states of all subensembles after one
y y step in the purification process.

states from the lab demons point of view: since the lab de- For the subprotocdP2, a similar algorithm can be given.

mons know the error flags of all cluster states, they can USEs a result, we find that the conditional fidelity converges to

;T;egfﬁig]i:?r;r:;)e;q%?:f\?vz?] ;irc]ieeli%;]"snedn;glio?]t[rggt C,:EZterunity in the course of the protocol, while the usual fidelity
' ' converges to some valle"® (see Fig. 8.

usual fidelity, which is just the overlap of the total density
operator with the cluster stat¢¥;), is given by F
=(Wolprotal Po) = (Fo|=xp™ W)

In order to investigate the behavior of the conditional fi- In this section, we discuss some possible applications of
delity in the course of the purification process, it is necessarpur multiparticle entanglement purification protocols. Given
to calculate the states of all' 8ubensembles in each step of the fact that the produced entanglement is private, one may
the purification process. Again, it is useful to note that allbe able to use multiparty entangled states produced in this
subensembles are diagonal in the cluster basis; the stateswéy for secure communication and computation—e.g., secret
all subensembles is thus given by a redXk2"-matrix M.  sharing or secure function evaluation. However, a careful
The columns of this matrix are the vectors of the diagonaknalysis of the protocol in the presence of a number of dis-
elements of the density matrices describing the subentrustful parties is required before a final conclusion can be
sembles. Using this convention, physical action on the qubitglirawn.

VIIl. APPLICATIONS
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= 1r sis of o,. By concatenating this procedure—i.e., appending
L|§ 095} — Fooa new cubes on each of the vertices and performing the corre-
L -~ F sponding measurement—one obtains the graph correspond-

~ 0.9 ; .
L ing to the encoding states for concatenatsd code. When

.§‘°'85' jeerTTTTTTTIITITIIIII IO postponing thes, measurements, we have in fact that the
© 981/ .- resulting graph state is still two-colorable. Note that the mea-
Sorst surement implements the encoding procedure; i.e., informa-
L 0.7 L2 . . . . . tion which is initially represented in the state of the qubit of
012 3 4567 8 910 a single vertex is encoded into the qubits of seven new ver-

number of steps tices. . .
We find that the entire encoding circuit which serves to

FIG. 8. The fidelity and the conditional fidelity as a function of €ncode a given qubit into a certaiconcatenatedcode of a

the number of steps in the purification protocol. larger number of qubits can be replaced by the following
simple procedure. One first creates the graph state corre-
A. Purification of concatenated error correcting css codes sponding to a cube, where each vertex of the cube may have

. L . another cube appendédnd so on when dealing with more

A more direct application of the protocol is in the context ., catenation levels Note that the vertices of new cubes
of quantum error correction. There exist quantum @ITor COMyhich are appended are not yet measured. The qubit to be
rection codes which correspond to graph states. In parthulaéncoded is then measured together with the paiglef the
Schlingemann and Wern¢t8] have shown that for certain first cube in the Bell basis. A sequence of measurements in
graph states coding into an error correcting code can bge eigenbasis of, completes the encoding procedure: one
achieved via a singléBell) measurement. That is, a certain giarts with the vertices of the cube at concatenation level one,
graph statg¥) serves as “encoding state” and an unknowngo|iowed by the vertices of the cubes at concatenation level
state|¢)=a|0)+ /1) (which contains the quantum informa- 2 etc., until only qubits at the highest concatenation level are
tion which should be encodgdan be encoded by perform- |eft. That is, the quantum information of the initial qubine
ing “teleportation,” whergW) plays the role of the channel |qgical bit) is now encoded into“7physical qubits, wheré
(singled in the original teleportation scheme. The result of giyes the number of concatenation levels. In case all opera-
this procedure is an encoded stai®), +5|1),, where the tions involved in this procedure are perfect, this results in an
codewords|0) ,|1) are two orthogonal graph states corre- grror-free encoding. However, given that operations used in
sponding to the same graghwhich is directly related to the the manipulation and creation of the states are imperfect, the
original graphG. We remark that¥); completely determines encoding will not be perfect. In particular, the main difficulty
the kind of encoding, in particular the properties of the cor-in the procedure described above is the creation of the mul-
responding error correcting code. In particuldr); can be tiparticle entangled graph state corresponding to the graph
chosen in such a way that it corresponds to a concatenatetith (appendel cubes. Since this graph is two-colorable,
code with several concatenation levels. one can apply our entanglement purification protocol to im-

The basic idea here is to use multiparty entanglement puprove the fidelity of this state—and hence improve the
rification to purify the encoding staté¥);. That is, the re- achievable fidelity of encoding.
source for encoding is purified and then used to encode the o )
desired quantum informational. We emphasize that indepen- B. Purification of algorithms
dent of the kind of code use(h particular, independent of We also note that graph states are an algorithmic resource.
the number of concatenation levels when using a concatn the same way as a cluster state is a universal resource for
enated codg the final encoding takes place by performing ameasurement based quantum computation, certain graph
singleBell measurement. That is, a measurement in the basstates are a specific resource for a given quantum algorithm
{|®)} with |®;)=1® o7|]®*). As in the original teleportation [15]. That is, a quantum algorithite.g., a quantum fourier
scheme, one can perform local unitary operations dependinigansformation can be implemented by consuming an algo-
on the measurement outcome such that the resulting state fighmic specific resource—the graph state in question—by
for all possible measurement outcomes given &), performing local measurement only. Again, in the presence
+4|1),. of imperfect operations the corresponding graph state may

Many of graphs corresponding to error correcting codegiot be available with unit fidelity. However, our entangle-
are two-colorable which ensures that our entanglement puriment purification protocol allows one to increase the fidelity
fication protocol can be successfully applied. In particularof the graph state and hence the fidelity of the implementa-
all css codes are equivalent to two-colorable graph stategion of the algorithm. This opens up new possibilities for the
[16]. For instance, the graph corresponding to the severuse of EPP in quantum computatif?6] and for fault toler-
qubit Steane codpa css(7, 1, 3 codd is given by a cube ant computation26]. Important issues in this context are
(see Fig. 1, which is clearly two-colorable. Note that also fault tolerance and error correction, which will be discussed
the concatenated code of this kind may correspond to a twdn more detail in a forthcoming publicatidi26].
colorable graph state. In fact, the corresponding graph at the
next concatenation level can be obtained by appending to
each vertex of the cube another cube with seven new vertices In this section, we propose an experimental realization of
and measuring the vertices of the initial cube in the eigenbamultiparticle entanglement purification protocols using neu-

IX. EXPERIMENTAL REALIZATION
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tral atoms trapped in optical lattic¢29-33. We show that in they direction. The final measurement of the cluster states
multiparticle entanglement purification protocols can be usedh rows 4-1, 4 leaves us—in the case the measurement
in such systems to increase the fidelity of cluster states. Iwas successful—with linear cluster states of improved fidel-
particular, we consider the purification of 1D cluster states inty at rows 4+1, 4+2, which can further be purified by
a 2D lattice, which can be straightforwardly generalized toapplying protocolP2 in a similar way. Note that iterations of
the purification of 2D cluster states in a 3D lattice. We showthe protocol may involve lattice shifts over longer distances.
on the one hand that the effect of decoherence can be over-
come by using a scheme based emtanglement pumping
On the other hand, we find that implementing the standard
recurrence scheme allows one to increase the achievable fi- We now analyze the purification protocol sketched above
delity of cluster states. This result is quite remarkable, as then the case where the operations involved in the procedure
same imperfect operations are involved in the creation of thare imperfect. Specifically, we consider the interactions be-
cluster state and in the purification process. tween neighboring atoms—and thus also the resultingT
operations—to be imperfect. There are various possible
sources of imperfections, ranging from imperfection in the
laser manipulation of the internal states of the atoms to fluc-
Consider a two-dimensional X N optical lattice filled  tuations in the desired interaction time. We will consider a
with one atom per lattice site. Internal states of the atoms—sjmple model to describe imperfections in the gates. As in
which constitute the qubits—can be manipulated by meange previous discussion, we describe imperfect operations by
of laser pulses. While in the present experimental setup adg completely positive map which consists of first applying a
dressing individual atoms is still a problem, there are prOpOSpartia”y dep0|arizing channel with error parametet‘o the
als to overcome this limitation—for example, by expandingindividual particles followed by the perfect operatifsee
the lattice or by using reloading techniques into lattices withdiscussion in Sec. IV, in particular E¢32)]. To be consis-
larger spacing. In the following we will assume that indi- tent, we assume that treameimperfect operations are in-
vidual addressing of the atoms is possible. Interactions beyolved in the creation of the cluster state and in the purifi-
tween neighboring atoms take place, e.g., by state selectivebation procedure. In the procedure sketched above, both
shifting the lattice, leading to a state-dependent collisionaprocesses—the creation of cluster states and the implemen-
phase arising from controlled cold collisiof20-33 The in-  tation of gates in the purification—are physically imple-
teraction Hamiltonian describing a lattice shift in thelirec-  mented by the same procedure and thus our assumption that
tion is given by both processes suffer from same imperfections is reasonable
in such systems. In particular, cluster states are created by
He=4g)> 1-o* )2 @ (1-o% )2, (75  shifting the lattice along the direction, while interactions
(k) between neighboring atoms resulting inc8OT operation
(used for entanglement purificatipare implemented by a
lattice shift along they direction.

B. Improved fidelity

A. Physical implementation

where(k, ) labels thex,y) coordinate of the atom. Note that

fqr fg(t),dt:”’ such an interaction pro_duc.ebcoples of one- We now compare the fidelity of 1D cluster states created
dimensional cluster states along theélirection of the lattice directly in the lattice by simply shifting it along thedirec-

. 2
when applied to states of the f0m>+|1})®N - These states  tion with the achievable fidelity when using the above puri-
can than be purified by using lattice shifts along yheirec-  fication procedure. Up to local unitary operations, the gate
tion as follows. In a first step, we want tsimultaneously  operation involved in the creation of the cluster state is given
implement protocoP1 to the linear cluster states in rowk 2 by
and 2+1. We have thaH, is equivalent up to local unitary
operations to the Ising Hamiltonian U = ex%— itg(t)z U(zk'l) ® U(zkﬂyl)) =11 e_itg(t)(r;k,l)®a(zk+1,l)'
(k) (k1)
Hi=90 > of @ o™ (76) (77)
(k1)

On the one hand, applying, for fg(t)dt=/2, followed by
the local unitary operatiorr, applied to particlesk,4l),
(k,41+1) before and after another application bf; for

i.e., corresponds to a sequential application of phase gates to
neighboring particles. Note that we hafg(t)dt=/2 in this
case and that initially all atoms are prepared in state
- 1/42(|0y+|1)). Assuming that each of these phase gates is
Jo(tydt=m/2, results in an effective interactiod, which  jnnerfect and modeled by E¢32), one readily obtains the
performs phase gates between rowsa@d 2+1, while the  figelity of the resulting state. The results for0.99 for dif-
interaction between rowsl21 and 2+2 is canceled. By ferent sizes of the cluster state are summarized in Table I.
means of local operations performed before and after the The maximal achievable fidelitfqy Of the recurrence
application ofH|, one can convert each of these phase gateprotocol implemented in an optical lattice when considering
into a cNOT gate with the freedom of choosing source andimperfect CNOT operations can be readily determined. We
target for each pair of particles independently. This allowsassume that the state created by the lattice shift along the
one to implement protocd1 simultaneously tdN/2 pairs of  direction is used as input state for the purification protocol.
linear cluster states with a total of two sweeps of the latticeAs one can see from Table |, the achievable fidelity can be
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TABLE I. Fidelity F of the linear cluster state of siz¢created  create the states are also used in the purification procedure.
using imperfect operations with error paramete0.99 and achiev-  However, entanglement pumping may still be usedntin-
able fidelity F,,ox When using entanglement purification with noisy tain high fidelity cluster states in the presence of

operations of the same quality. decoherence—i.e., to stabilize these states. In optical lattice
systems the implementation of entanglement pumping is
N=2 F=0.9900 Fone=0.9889 even simpler than the implementation of the standard recur-
rence scheme. The production of the linear cluster gigte
N=3 F=0.9753 Fmac=0.9836 can be accomplished by a lattice shift along xhéirection.
N=4 F=0.9608 Frax=0.9785 The state to be purified should in this procedure not partici-
N=5 E=0.9465 Frmax=0.9734 pate on fche interaction. One possibility to achigve this is by
N=6 F=0.9324 Fra=0.9681 transferring the state of the neutral atoms to internal states

which are trapped in an independent lattice potential which is
not moving. Another option is to apply two lattice shifts

intercepted by local unitary operations on this copy of the
significantly enhanced by the purification procedure, al-state which are chosen in such a way that the interaction
though the operations involved in the creation of the clustefancels. This is similar to the procedure described in Sec.

state and in the purification procedure have the same fidelit}X A to implementCNOT gates between certain pairs of at-
oms, while no interaction takes place between certain other

pairs. Note that a implementation of the entanglement pump-
C. Entanglement pumping ing protocol for anN-particle linear cluster state only re-
quires aN X 2 lattice.
In the discussion of the entanglement purification protocol
in the previous paragraph, we assumed that the original re-
currence protocol is applied. In particular, this involves in X. SUMMARY AND CONCLUSIONS
each step of the protocol a manipulation of two identical
copies of the state obtained in the preceding round of the In this paper we have analyzed in detail entanglement
protocol. A modified protocol which is called “entanglement purification protocolqrecurrence schemes and hashing pro-
pumping” operates always on one copy of the state to béocolg which are capable of purifying arbitrary two-
purified (whose fidelity increases during the progemsd on  colorable graph states. For the recurrence schemes, we found
a second state of some standard form. The fidelity of thehat (i) the purification regime of the protocol for graph
second state is always the same throughout the procedurstates does depend on the degree of the graph, but is inde-
That is, the input state at stageof the protocol is given by pendent of the number of particlés [that is, the resulting
pP=pr-1® po, Wherep,_; is the state obtained in the previous statep arising from a perfect cluster state due to channel
round, whilep, is the initial state. Note that also in this case, noise(local decoherengecan be successfully distilled using
protocolsP1 andP2 are iteratively applied. the protocol as far as the decoherence per particle is below a
On the one hand, entanglement pumping offers the advarcertain threshold value which depends on the degree of the
tage to use always states of a certain standard form whicgraph, but is independent &f], and(ii) in the case ohoisy
may be easy to produce; e.g., they may arise from sendinglacal control operationswe observe that the corresponding
locally prepared cluster states through noisy quantum charthreshold for local control operations such that the protocol
nels to several parties. The possibility to produce these statesan be successfully applied is for cluster stasd similar
on demand reduces the required storage capabilities of the&ates where the degree of the corresponding graph does not
whole procedure, as only two copies of the state have to bdepend onN) is independent of the size of the system. In
stored simultaneously when using entanglement pumping;ontrast, the requirements to purify GHZ states become more
while the application of the standard recurrence protocoktringent for increasingl. We have thati) and (ii) together
typically requires simultaneous storage of hundreds of copiesuggest that our protocol may be used for practical applica-
of the state. On the other hand, entanglement pumping ha®ns to purify certain states, e.g., in the context of purifica-
the disadvantage that even in the case of noiseless local ofien of quantum algorithms or concatenated quantum error
erations no maximally entangled pure states can be prazorrection codes. We have also shown that the entanglement
duced. lterative application of the protocol only allows onecreated by our purification protocol is private, an important
to increase the fidelity of the state by a certain amount. Byfeature for possible applications for secure communication
applying a nested entanglement pumping schénteoduced and computation. We have compared multiparty entangle-
in Ref.[25]) one can overcome this limitation. A few nesting ment purification protocols with protocols based on bipartite
levels—which correspond to the number of extra copies oentanglement purification and found that direct multiparticle
the state which need to be stored simultaneously—typicallgntanglement purification is not only more efficient, but also
suffice to reach fidelities close to those achievable with thehe achievable fidelity of the state is larger. Finally we pro-
standard recurrence protocol. posed a possible experimental implementation of the proto-
It turns out that entanglement pumping—in contrast to thecol based on neutral atoms in an optical lattice. This scheme
standard recurrence scheme—does not allow one to increaalows one to increase the fidelity of cluster states created in
the fidelity of cluster states if the noisy operations used tesuch systems.
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