
Multiparticle entanglement purification for two-colorable graph states

H. Aschauer,1 W. Dür,2 and H.-J. Briegel1,2,3

1Sektion Physik, Ludwig-Maximilians-Universität München, Theresienstr. 37, D-80333 München, Germany
2Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria

3Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Innsbruck, Austria
sReceived 7 July 2004; published 14 January 2005d

We investigate multiparticle entanglement purification schemes which allow one to purify all two colorable
graph states, a class of states which includes, e.g., cluster states, Greenberger-Horne-Zeilinger states, and code
words of various error correction codes. The schemes include both recurrence protocols and hashing protocols.
We analyze these schemes under realistic conditions and observe for a generic error model that the threshold
value for imperfect local operations depends on the structure of the corresponding interaction graph, but is
otherwise independent of the number of parties. The qualitative behavior can be understood from an analyti-
cally solvable model which deals only with a restricted class of errors. We compare direct multiparticle
entanglement purification protocols with schemes based on bipartite entanglement purification and show that
the direct multiparticle entanglement purification is more efficient and the achievable fidelity of the purified
states is larger. We also show that the purification protocol allows one to produce private entanglement, an
important aspect when using the produced entangled states for secure applications. Finally we discuss an
experimental realization of a multiparty purification protocol in optical lattices which is issued to improve the
fidelity of cluster states created in such systems.
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I. INTRODUCTION

In recent years a number of surprising, unexpected appli-
cations of entangled states have been developed. In the bi-
partite case, teleportationf1g, superdense codingf2g, and en-
tanglement based quantum cryptographyf3g are well-known
examples. In the multipartite case it was shown that multi-
particle entangled statessMES’sd allow one not only to ac-
complish several tasks in multiparty communication
scenarios—such as secret sharing or secure function evalua-
tion f4,5g—but also to improve the precision of frequency
measurements, leading to higher frequency standardsf6,7g.
Furthermore, many error correction codes are based on
MES’s, and certain MES’s—the so-called cluster states
f8g—have even been shown to constitute a universal re-
source for quantum computation when assisted by local mea-
surements onlyf9g.

All these applications require the use of certain bipartite
or multipartite entangled pure states. In reality, however,
those states will not be available with unit fidelity. On the
one hand, the operations required to create the states will be
noisy. On the other hand, the MES’s interact with the envi-
ronment and will be subjected to decoherence or the particles
constituting the entangled state have to be sent through noisy
quantum channels in a communication scenario with distant
parties. Thus in practice only mixed states rather than pure
states are available and it is a central problem to establish
methods to increase the quality of the states by some means.

In principle, entanglement purification provides a method
to accomplish this task. Efficient protocols to obtain a few
high-fidelity entangled states from several low-fidelity en-
tangled states by using local operations and classical com-
munication are known. Most purification protocols for qubits
introduced so far are only capable of purifying a specific type
of states—namely, states which are equivalent up to local

unitary operations to states of the formu0l^N+ u1l^N, the so
called Greenberger-Horne-ZeilingersGHZd statesf10–13g.
Only quite recently, we have introducedf14g multiparticle
entanglement purification protocolssMEPP’sd which are ca-
pable of purifying all two colorable graph states, a class of
multiqubit states which will be defined below and which
includes, for instance, GHZ states, cluster states, and code-
words of error correction codes. In this paper, we provide a
detailed analysis of these protocols and provide addition ma-
terial, including a hashing protocol for this class of states and
a comparison of multiparticle entanglement purification with
protocols based on bipartite entanglement purification.

The paper is organized as follows. In Sec. II, we review
the concept of graph states, fix some notation, and highlight
a number of useful properties of these states. Section III is
concerned with multiparticle entanglement purification pro-
tocols. On the one hand, we review the recurrence protocol
introduced in Ref.f14g in Sec. III A and analyze in detail its
properties. We investigate the purification regime and the
convergence, as well as the efficiency of the procedure. We
provide both analytic analysis for certain low-rank states and
a numerical analysis for generic states. On the other hand, we
introduce in Sec. III B a hashing protocol which is capable of
purifying two colorable graph states with a finite yield. In
Sec. IV we analyze numerically the recurrence protocol for
different target states—in particular cluster states and GHZ
states—under realistic conditions using a generic error model
of local control operations. We determine the purification
regime—i.e., the minimum required and maximal reachable
fidelity—as well as the threshold value for noise in local
operations below which the purification protocol can be suc-
cessfully applied. An analytic treatment for a restricted error
model is carried out in Sec. V, recovering essentially the
same behavior as for the generic error model. In Sec. VI,
multiparticle entanglement purification protocols are com-

PHYSICAL REVIEW A 71, 012319s2005d

1050-2947/2005/71s1d/012319s20d/$23.00 ©2005 The American Physical Society012319-1



pared with protocols based on bipartite entanglement purifi-
cation. We analyze both the case of noiseless local operations
as well as noisy local operations. We find in the former case
that direct multiparticle entanglement purification is more
efficient than any scheme based on bipartite purification. In
the latter case, the reachable fidelity is higher. In Sec. VII we
are concerned with security aspects of our protocols and
show that the purified entanglement is private. Section VIII
deals with a number of possible applications of the purifica-
tion protocols. A possible experimental implementation
based on neutral atoms in an optical lattice is discussed in
Sec. IX. We summarize and conclude in Sec. X.

II. GRAPH STATES: BASIC PRINCIPLES AND
PROPERTIES

A. Graph states

In this section, we review the concept of graph states,
describe some of their properties, and fix the notation. Graph
states have first been introduced in Ref.f15g, generalizing
the notion of cluster states as introduced in Ref.f8g. A de-
tailed investigation of their entanglement properties has re-
cently been given in the paper by Heinet al. f19g. Graph
states occur in various contexts in quantum information
theory, in which multi-party quantum correlations play a cen-
tral role. Examples are multi-party quantum communication,
measurement-based quantum computation, and quantum er-
ror correction. Using terminology of standard quantum me-
chanics textbooks, a graph state can be described as the com-
mon eigenstate of a complete set of commuting observables.
In quantum error correction, the set of commuting observ-
ables is also referred to as the stabilizer group of the state.
Note, however, that for the purpose of quantum error correc-
tion, the stabilizer is usually not complete, since degenerate
subspaces are used as code spaces. The graph codes intro-
duced in Ref.f18g take account of this fact, and can be re-
garded as an application of graph states in the specific con-
text of quantum error correction.

Consider a graphG=sV,Ed which is a set of verticesV
connected in a specific way by edgesE. The edges specify a
neighborhood relation between vertices. Associated with any
graphG is a set ofN= uVu commuting correlation operators

Kj = sx
s jd p

hk,jjPE

sz
skd. s1d

That is, to any vertexj corresponds a correlation operatorKj
which is given by the spin-1/2 Pauli operatorsx on vertexj ,
sz on all neighboring vertices ofj—i.e., all verticesk which
are connected toj by edges—and the identity operator on the
remaining vertices. Graph states associated withG,
uCm1m2¯mN

l, m j P h0,1j, are the joint eigenstates of the set of
Hermitian operatorshKj u j PVj which fulfill the eigenvalue
equations

KjuCm1m2¯mN
lG = s− 1dm juCm1m2¯mN

lG ∀ j . s2d

For notational convenience we will omit the indexG when-
ever there is no danger of confusion,uCm1m2¯mN

lG
;uCm1m2¯mN

l. Note that the graph stateshuCm1m2¯mN
lGj are

uniquely defined by the eigenvalue equations and form a
basis inH=sC2d^N—i.e.,

ukCm1m2¯mN
uCn1n2¯nN

lu2 = dm1n1
dm2n2

¯ dmNnN
,

o
m1,m2,. . .,mN=0

1

uCm1m2¯mN
lkCm1m2¯mN

u = 1. s3d

We remark that apart from the description of graph states by
a set of commuting correlation observables, one can also
give an equivalent description of the state in terms of an
“interaction graph”f8,15g. To be specific, consider the inter-
action Hamiltonian

Hkl = s1skd − sz
skdd/2 ^ s1sld − sz

sldd/2, s4d

which acts on particlesk and l and corresponds, up to local
unitary operations, to an Ising interaction. We consider the
initial state ucl where all particles are prepared in the state
u1l with u+l=1/Î2su0l+ u1ld—i.e., ucl= u+l^N. For a fixed
graphG, the corresponding graph stateuC00̄ 0l is obtained
by applying on the stateucl the interaction HamiltonianHkl
for time t=p to all those pairs of particles whose vertices in
the corresponding graph are connected by edges—that is,

uC00̄ 0l = p
sk,ldPE

e−ipHklu + l^N. s5d

Note that graph states constitute a large family of multi-
particle entangled states with various entanglement proper-
ties. To be specific, for a fixedN we have 2NsN−1d/2 different
graphs, although not all of them are inequivalent and corre-
spond to different kinds of entanglementssee Sec. II Dd.
Throughout the paper, we will mainly consider two-colorable
graphs, which are graphs for which a partition of the vertices
into two disjoint sets VAøVB=V with NA;uVAu ,NB
;uVBu ,N=NA+NB exists such that no vertices within one set
are connected by edgessequivalently, a two-coloring of the
graph with respect to its vertices existd. The states arising
from such two-colorable graphs, which we call two-
colorable graph statessTCGS’sd, include a number of inter-
esting multiparticle entangled states—e.g., GHZ states, clus-
ter states, or codewords of certain error correction codes. We
remark that it was recently shown that two-colorable graph
states are in fact equivalent to the so-called Calderbank-
Shor-SteanesCSSd statesf16g. That is, any state that can be
written as a two-colorable graph state can also be writtensup
to local unitary transformationsd as a CSS state and vice
versa.

B. Examples

As a first example, consider theN-particle GHZ state. The
graph corresponding to anN-particle GHZ state is given by
N vertices h1,2, . . . ,Nj and edgesh1,kj, kP h2,3, . . . ,Nj.
This graph can easily be seen to be two-colorable by consid-
ering the setsVA=h1j andVB=h2,3, . . . ,Nj. The correspond-
ing two-colorable graph stateuC00̄ 0l is given by
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uC00̄ 0l = 1/Î2su0zl ^ u0xl^N−1 + u1zl ^ u1xl^N−1d, s6d

wherehu0zl , u1zlj fhu0xl , u1xljg is the eigenbasis ofsz fsxg re-
spectively, withu0xl=1/Î2su0zl+ u1zld.

The graph corresponding to ansopend linear cluster state
of length N is given by N verticesh1,2, . . . ,Nj and edges
hk,k+1j, kP h1,2, . . . ,N−1j; i.e., all neighboring vertices
are connected by edges. In this case, the setsVA fVBg are
given by all oddfeveng vertices, respectively, which shows
that the graph is two-colorable. The corresponding two-
colorable graph states for arbitraryN are rather difficult to
write down explicitly, as the minimum number of terms re-
quired to specify the state in any product basis grows expo-
nentially with N f15g. This is reflected by the fact that the
amount of entanglement of these states, as quantified by the
Schmidt measuref17g, grows linearly with N. For our
present purposes an explicit expansion is not required, since
the description in terms of the correlation operatorsfEq. s2dg
is complete and all calculations can be performed using the
corresponding eigenvalue equations. This is one of the main
advantages of thesabstractd definition of graph states as
eigenstates of a set of commuting correlation operators, and
it allows for a simplified analytical and numerical treatment
of protocols operating on graph states. This parallels the
treatment of quantum error correcting codes in terms of the
stabilizer formalismf18g.

As a final example, consider a graph which consists of
seven vertices of a cube. The graph states associated with
such a graph are equivalent, up to local unitaries, to the code-
words of the seven-qubit Steane codesf7, 1, 3g CSS coded.
The graphs associated with these examples are illustrated in
Fig. 1.

C. Useful properties of graph states

For any fixed graphG one can verify a number of useful
relations between graph states following from Eq.s2d. For
any vertex j we divide the vertices into three distinct sets:
vertex j , the setNj which contains all neighboring vertices
of j—i.e., all vertices connected to j ,
Nj =hkPVu hk, jjPEj—and the setRj which contains the re-
maining vertices. We use the corresponding multindicesmNj
and mRj

and the indexm j to label the graph states, where
mNj

;mk1
mk2

¯mkuNj u
, mRj

=mi1
mi2

¯mi uRj u
with hkl , jjPE,

hi l , jj¹E. One readily verifies that for eachj the following
relations are fulfilled:

sz
s jduCm jmNj

mRj
l = uCm̄ jmNj

mRj
l, s7d

sx
s jduCm jmNj

mRj
l = s− 1dm juCm jm̄Nj

mRj
l, s8d

sy
s jduCm jmNj

mRj
l = is− 1dm̄ juCm̄ jm̄Nj

mRj
l, s9d

where m̄Nj
=m̄k1

m̄k2
¯ m̄kuNj u

denotes the bitwise complement

with 0̄=1, 1̄=0. Equations7d implies that

uCm1m2¯mN
l = sz

m1sz
m2
¯ sz

mNuC00̄ 0l, s10d

where sz
0=1. This property follows from the eigenvalue

equationss2d, while Eq. s8d follows from

sx
s jduCm jmNj

mRj
l = s− 1dm jsx

s jdKjuCm jmNj
mRj

l

= s− 1dm jsz
sk1dsz

sk2d
¯ sz

skuNj u
duCm jmNj

mRj
l

= s− 1dm juCm jm̄Nj
mRj

l. s11d

Finally, to prove Eq.s9d one uses thatsy
s jd= isx

s jdsz
s jd together

with Eqs.s7d and s8d.

D. Local equivalence of graph states

While different multiparticle entangled graph states are
associated with different graphs, it is not obvious that states
arising from different “interaction” graphs lead to states with
different entanglement properties. In fact, it turns out that
local unitary operations allow one to change from some
graph state to some other. The classification of graph states
into subclasses that are invariant under local unitary transfor-
mations is a complex problem, which is not solved in gen-
eral. Progress among these lines is reported in Refs.f19,20g.
We emphazise that the results we obtain below for certain
graph states, in particular for all two-colorable graph states,
are also valid for graph states which are local unitary equiva-
lent to these graphs. This implies that the entanglement pu-
rification protocols discussed below are applicable to some
graph states which do not arise from a two-colorable graph.
For instance, the GHZ state discussed in Sec. II B associated
with a graph with edgesh1,kj∀k is locally unitarily equiva-
lent to a state associated with the fully connected graph—
i.e., with edgeshk, lj , ∀k, l. While the first graph is clearly
two-colorable, the second is not.

E. Mixed states and depolarization

Let us now consider an arbitrary graphG with N vertices
V=hV1,V2, . . . ,VNj and N spatially distinct parties, each
holding one of theN particles belonging to a general mixed
state r. We consider the N-particle graph states
huCm1m2¯mN

lGj associated withG and introduce the multi-
index m;m1m2¯mN. Since these states form a basis inH,
the density operatorr can be expressed as

r = o
m,n

lm,nuCmlGkCnu. s12d

In the following, we will show that one can depolarizer to a
staterG which is diagonal in the graph state basis by a se-
quence of local operations and classical communicationsi.e.,

FIG. 1. Graphs withN=7 corresponding tosad GHZ state,sbd
linear cluster state, andscd seven-qubit Steane code.
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operations acting on each particle individuallyd, without
changing the diagonal coefficients. That is, givenr fEq.
s12dg one can create by means of local operations and clas-
sical communication the state

rG = o
m

lmuCmlkCmu, s13d

with lm;lm,m.
This can easily be seen using the eigenvalue equations2d.

Consider two graph statesuCm1m2¯mN
l and uCn1n2¯nN

l which
differ in at least one bit—say, the firstm1=0—while n1=1.
We have that K1uC0m2¯mN

l=s+1duC0m2¯mN
l and

K1uC1n2¯nN
l=s−1duC1n2¯nN

l. Note that the operation corre-
sponding toK1 is local—i.e., involves only operations on
individual particles. If the parties thus jointly perform with
probabilityp=1/2 theoperations corresponding toK1, while
with probabilityp=1/2 thestate is left untouched, the result-
ing density operatorr̃=1/2sr+K1rK1

†d will have no off-
diagonal elements of the formuC0m2¯mN

l kC1n2¯nN
u, while

the diagonal elements remain unchanged. In a similar way,
all off-diagonal elements can be eliminated in a total ofN
rounds by probabilistically applying the local operations cor-
responding toKj, j =1,2, . . . ,N, to the state resulting from
the previous round.

In summary, for any graph one can depolarize the stater
to a mixed staterG diagonal in the associated graph state
basis. The corresponding sequence ofsprobabilisticd local
operations is determined by the correlation operatorsKj as-
sociated with the graphG. This ensures that we can restrict
ourselves to mixed states diagonal in the graph state basis in
the following analysis.

III. MULTIPARTICLE ENTANGLEMENT PURIFICATION
PROTOCOLS

In the following, we will analyze in detail the multipar-
ticle entanglement purification protocol introduced in Ref.
f14g. This protocol is a recurrencelike scheme which oper-
ates on two copies of a given state simultaneously and may
be viewed as a generalization of the purification protocol for
GHZ states introduced in Ref.f12g to arbitrary two-colorable
graph states. We will also introduce a multiparty hashing
protocol—based on the protocol presented in Ref.f13g for
GHZ states—where joint manipulations of a large number of
copies are involved. In both cases, the goal is to produce few
states with high fidelity from a large number of states with
low fidelity. While the first protocol is particularly useful to
purify states of low fidelity, the second protocol turns out to
be very efficient for states sufficiently close to the desired
output state. We investigate the conditions under which the
protocols can be applied and also discuss their efficiencies.

In the following, we consider an arbitrary but fixed two-
colorable graphG with verticesV=VAøVB, NA;uVAu, NB
;uVBu, andN=NA+NB spatially distinct parties, each holding
one of theN particles that belong to a general mixed stater.
Using the depolarization procedure discussed in the previous
section, we can transform the stater to a standard form
diagonal in the associated graph state basis, without chang-

ing the diagonal coefficients. That is, without loss of gener-
ality, we can consider mixed statesr diagonal in the graph-
state basis

r = o
mA,mB

lmA,mB
uCmA,mB

lkCmA,mB
u. s14d

We have introduced the shorthand notationmA
;mi1

mi2
¯miNA

for all eigenvalues associated with the verti-

ces in the setVA and similarly for mB.We assume that the
parties shareM copies of thisN-particle mixed stater. In the
following we establish for every two-colorable graphG a
local purification protocol which is capable of creating the
pure stateuC0lG as output state, given the initial stater ful-
fills certain requirementsse.g., has sufficiently high fidelityd.
Note that we have used the shorthand notation0;00¯0,
i.e. uC0lG;uC00̄ 0lG.

A. Recurrence scheme

In this section we review the purification protocol intro-
duced in Ref.f14g and analyze its properties. We consider
two subprotocolsP1 and P2, each of which acts on two
identical copiesr1=r2=r andr12;r1 ^ r2.

1. Protocol P1

In a first step, all parties which belong to the setVA apply
local controlled-NOT sCNOTd operationsf21g to their par-
ticles, with the particle belonging tor2 as source,r1 as tar-
get. Similarly, all parties belonging to setVB apply local
CNOT operations to their particles, but with the particle be-
longing to r1 as source,r2 as target. Making use of the
properties of graph states, pointed out in Sec. II C, together
with

UCNOT = 1/2s1 ^ 1 + sz ^ 1 + 1 ^ sx − sz ^ sxd, s15d

one readily checks that the action of such multilateralCNOT

operations is given by

uCmA,mB
luCnA,nB

l → uCmA,mB%nB
luCnA%mA,nB

l, s16d

where mA % nA denotes bitwise addition modulo 2. For in-
stance, ifm=m1m2m5, mA % nA=m1 % n1, m2 % n2, m5 % n5.

The second step of protocolP1 consists of a measurement
of all particles ofr2, thereby destroying one of the two cop-
ies of the initial state. The particles belonging to setVA are
measured in the eigenbasishu0lx, u1lxj of sx, while particles
belonging to setVB are measured in the eigenbasishu0lz, u1lzj
of sz. The measurements in setsVA fVBg yield results
s−1dj j fs−1dzkg, respectively, with j j, zkP h0,1j. If the
measurement outcomes fulfill sj j +ohk,jjPEzkdmod2=0
∀ j—which impliesmA % nA=0—the first state is kept. Oth-
erwise, also the first state is discarded and protocolP1 failed.
In case the resulting stater̃ is kept, one finds that it is again
diagonal in the graph-state basis, with new coefficients

l̃gA,gB
= o

hsnB,mBdunB%mB=gBj

1

2K
lgA,nB

lgA,mB
, s17d

whereK is a normalization constant such that trsr̃d=1, indi-
cating the probability of success of the protocol. We note that
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one may also keep measurement outcomes other thansj j

+ohk,jjPEzkdmod2=0 ∀ j which would increase the success
probability of the protocol. In this case, however, it is not
clear whether the modified protocol is still capable of puri-
fying the desired state.

2. Protocol P2

Protocol P2 is defined in a similar way and can be ob-
tained from protocolP1 by exchanging the roles of setsVA
and VB. The action of the multilateralCNOT operation is in
this case given by

uCmA,mB
luCnA,nB

l → uCmA%nA,mB
luCnA,nB%mB

l. s18d

which leads to the new coefficients

l̃gA,gB
8 = o

hsnA,mAdunA%mA=gAj

1

2K
lnA,gB

lmA,gB
, s19d

for the case in which the protocolP2 was successful.

3. Total purification protocol

The total entanglement purification protocol is composed
of P1 andP2. It consists in an iterative application of sub-
protocolsP1 andP2, always using two identical copies, ob-
tained in the previous round, as input states. It turns out that
for certain input states the convergence of the protocol as
well as the purification regime can be improved by using an
adaptive scheme. That is, instead of using a strictly alternat-
ing application of protocolsP1 andP2, one allows for two
sor mored subsequent applications of the
same protocol and may use arbitrary sequences such as
P1-P1-P1-P2-P1-P2-P2-etc.

We remark that the basic idea of the protocol is similar to
the standard recurrence protocolsf10,11g for the purification
of Bell states. Information about the first stater1 is trans-
ferred to the second stater2 by means of the multilateral
CNOT operations and revealed by the measurement. The gain
in information about the first state eventually corresponds to
an increase of the entanglement of this state. This informa-
tion transfer becomes evident from Eq.s16d, where we re-
mark that the relevant information is encoded inmA, mB. One
sees that while protocolP1 is capable to reveal information
aboutmA, the protocolP2 reveals information aboutmB. In
case of a successful purification, the typical action of the
total protocol is as follows: The protocolP1 increase the
weight of all coefficientsl0,mB

, while P2 amplifies coeffi-
cientslmA,0. In total, this leads to the amplification ofl0,0.

4. Binarylike mixtures

To gain some analytical insight into this procedure, we
consider the example of mixed states of the form

rA ; o
mA

lmA,0uCmA,0lkCmA,0u. s20d

These states arise in ashypotheticald scenario were all par-
ticles within setVA are only subjected to phase flip errors
sdescribed byszd, while all particles within setVB are sub-

jected to bit flip errorsssxd, which can also be described as a
collection of phase flip errors in setVA ssee Sec. II Cd. We
remark that this situation is equivalent to a more natural
scenario where only phase flip errors occur on all locations
and one considers a state which is up to local unitary opera-
tions equivalent torA. Such a situation may, for instance,
occur when each of the particles of a perfect TCGS is sub-
jected to decoherence described by a dephasing quantum
channel.

From the discussion in the previous section, it is clear that
the iterative application of protocolP1 is sufficient to purify
states of the form Eq.s20d, as only information aboutmA has
to be extracted. A single application of protocolP1 leads
again to a state of the formrA, with new coefficients

l̃mA,0 = lmA,0
2 /K, s21d

whereK=omA
lmA,0

2 is a normalization constant which gives
the probability of success of the protocol. That is, the largest
coefficient is amplified with respect to the other ones. It fol-
lows that iteration of the protocol allows one to produce pure
graph statesuC0,0l with arbitrary high accuracy, given that
the coefficientl0,0 is larger than all other coefficientslmA,0.
That is, the condition that successful purification is possible
readsl0,0.lmA,0∀mAÞ0. If this condition is fulfilled, the
protocol converges towards the attracting fixed point given
by l0,0=1. If not, we choose the largest coefficient—say,
lmA,0—and map it ontol0,0 via local unitary operations. We
remark that the family of statesrA includes states up to rank
2NA, which—depending on the corresponding graph—can be
as high as 2N−1.

As a concrete example, consider the one parameter family
rAsFd with l0,0=F, lmA,0=s1−Fd / s2NA−1d for mAÞ0,
where F is the fidelity of the desired state. Application of
protocolP1 keeps the structure of those states and leads to

F̃ =
F2

F2 + s1 − Fd2/s2NA − 1d
. s22d

This map hasF̃=1 as attracting fixed point forFù1/2NA.
The probability of success for a single step is given byp
=F2+s1−Fd2/ s2NA−1d.

5. Purification regime and convergence

While for the restricted family of statesrA discussed in
the previous section an analytic treatment of the protocol is
possible, the situation is more complicated in the general
case. For full-rank mixed states, an iterative application of
both protocolsP1 andP2 is required to reveal information
about mA and mB, respectively. In this case, the action of
each protocol is described by a more complicated nonlinear
mappingfsee Eqs.s17d ands19dg of a large number of inde-
pendent variablessin total 2N−1d which makes an analytic
treatment of the protocol very difficult. We have not been
able to determine boundaries of the purification regime and
the convergence properties of the protocol analytically in the
general case. For a large family of states, arising from dif-
ferent noise models, we have, however, investigated the pu-
rification regime and convergence properties numerically.
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As a first example, we consider noisy TCGS arising natu-
rally in a multiparty communication scenario where each of
the N particles constitutinguC0l is sent through a noisy
quantum channel. We consider depolarizing channels with
noise parameterq described by

Ekr = qr + s1 − qd/21k ^ trksrd, s23d

where the channel is acting on particlek. The resulting mul-
tipartite state is of the form

rsqd = E1E2 ¯ ENuC0lkC0u. s24d

We point out thatq=1 corresponds to perfect transmission—
i.e., no decoherence—whileq=0 leads to a completely de-
polarized state. We have numerically investigated the thresh-
old value qmin until which our multiparticle entanglement
purification protocol can be successfully applied. Forq
ùqmin, we have that the purification protocol can be success-
fully applied, while forq,qmin the protocol fails. The results
of this numerical investigation are summarized in Fig. 2 for
linear cluster states and GHZ states of different sizes. While
for linear cluster states one observes that the threshold value
qmin is essentially independent of the number of particles,N,
the situation for GHZ states is different. For GHZ states the
threshold valueqmin increases with the number of qubits.
That is, the tolerable amount of white noise per particles
decreases with increasingN and thus it becomes more diffi-
cult to purify large scale GHZ states. We have also analyzed
other two-colorable graph states and found that the threshold
value does in general not depend on the size of the systemN,
but is determined by the maximal degree of the correspond-
ing graph. For specific families of states, the degree of the
graph may, however, depend on the number of vertices. An
example is given by theN-particle GHZ state, where the
degree of the corresponding graph isN−1; i.e., the degree
scales with the size of the system. Indeed, it can be shown
analytically f23g that the value ofq such that GHZ states
become nondistillablesby any protocold increases with in-
creasingN. For families of graph states of fixed degree and
arbitrary size, however, one can show that the states remain
distillable if qùqcrit, whereqcrit only depends on the degree
of the graph. This different behavior can be intuitively un-

derstood as follows: Consider only bit flip errors described
by sx. If the degree of the graph is high, a certain vertex is
connected to a large number of neighboring vertices. When-
ever a bit flip error in one of the neighboring vertices occurs,
this is equivalent to a phase flip errorsdescribed byszd at the
vertex in question as can be seen from the discussion in Sec.
II C. That is, a large number of independent errors affect a
single vertexsand thus a specific indexm jd and these errors
accumulate, leading to a threshold value increasing with the
degree of the graphf22g. We remark that wheneverqùqmin,
our protocol successfully converges towards the fixed point
specified byl0,0=1.

Note that the different behavior of GHZ states and graph
states with fixed degree is not reflected by the minimal re-
quired fidelity Fmin;kC0,0ursqminduC0,0l which is in both
cases decreasing exponentially with the size of the systemN.
For linear cluster states and GHZ states,Fmin is plotted in
Fig. 2 for different numbers of particles,N. These observa-
tions suggest that the fidelity is for a multiparticle system not
a very sensitive measure to judge the properties of multipar-
ticle entangled states in the presence of decoherence. From
the exponential decrease of the minimal required fidelity, one
would be tempted to conclude that the requirement to purify
states becomes less stringent with increasing size of the sys-
tem. This is, however, certainly not true, as the tolerable
amount of white noise per particle may even decrease with
the size of the system—e.g., for GHZ states.

We have also considered mixed states of the form

rsxd = xuC0lkC0u + s1 − xd/2N1, s25d

i.e., mixtures of the desired state with a completely depolar-
ized state. We observe that the situation is similar as in the
case of local white noise; i.e.,Fmin;xmin+s1−xmind /2N de-
creases exponentially withN. For xùxmin, the protocol suc-
cessfully converges and produces perfect two-colorable
graph states. The threshold valueFmin is plotted for linear
cluster states of different sizes in Fig. 3. Forn=2 andn=3,
the minimum required fidelity coincides with the values
found for the purification of GHZ statesf12g. The reason for
this coincidence is that the two- and three-party linear cluster

FIG. 2. sad Minimal value of fidelity Fmin+f+g and parameter
qmin3 fpg for linear cluster statesfGHZ statesg for different number
of particlesN and perfect local operations.

FIG. 3. The required initial fidelity for linear cluster states as a
function of the numberN of parties. The dotted curve is an expo-
nential fit to the exact valuesscirclesd.
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states aresup to local unitary operationsd equal to two- and
three-qubit GHZ states and that the cluster purification pro-
tocol is sin these two casesd equivalent to the GHZ purifica-
tion protocol.

For more general states, the purification regimes as well
as the convergence of the protocol is difficult to determine
due to the large number of parameters.

6. Efficiency and yield

The recurrence scheme presented in the previous section
is capable of purifying a large class of possible input states.
As in the bipartite case, however, the protocol approaches
unit fidelity sand thus successful perfect distillationd only in
the asymptotic limit; i.e., a large number of iterations of the
protocol is required. Since any step of the protocol only suc-
ceeds with certain probability and, in addition, one pair is
consumed in each step regardless of the measurement out-
comes, the recurrence protocol has—strictly speaking—zero
yield. Here, the yield of the protocol is defined as the number
of copies of the state which are, on average, required to
produce a single copy of the desiredspured output state. For
practical purposes it is often sufficient to produce output
states with a fidelity larger than a certain threshold value and
thus a finite, possibly small number of iteration steps suf-
fices. The efficiency of the procedure achieving this task can
be easily evaluated. For a single iteration of the entangle-
ment purification protocol one obtains that the average num-
ber of copies required to obtain a single copy of the output
state is given by 2/K, whereK is the probability of success
of the protocolfsee, e.g., Eq.s17d for protocol P1g. The
efficiency of this purification step is thus given byK /2. Note
that if the fidelity of the initial state approaches unity, we
have thatK→1. The yield of the total procedure is obtained
by multiplying the efficiencies of the individual purification
steps. In Sec. VI, the efficiency of multiparticle entanglement
purification protocol will be compared to the efficiency of
protocols based on bipartite entanglement purification.

We remark that the yield of the purification protocol de-
creasessexponentiallyd with the number of partiesN, as the
probability of success for each purification step,K fsee, e.g.,
Eq. s17dg, decreases withN. To overcome practical difficul-
ties for states consisting of a large number of particles
swhere the success probability may be very smalld, it is pos-
sible to use an alternative purification method which essen-
tially consists in a cut and reconnect procedure. That is, a
given TCGS is split up by means of local measurements into
severalssmallerd subgraph states. These subgraph states are
then purified independently and finally these subgraph states
are reconnected. Since the subgraphs are smaller, the yield
for the purification of each subgraph state is higher. The
reconnection is deterministic and may, e.g., be performed by
means of Bell-type measurements, where subgraphs are cho-
sen in such a way that each of them is itself a two-colorable
graph sand hence distillable by our protocold and the sub-
graphs overlap at the reconnection pointssso that the Bell-
type measurements are in fact local operationsd. As several
snonoverlappingd subgraph states can be produced from a
single copy of the initial graph state, the yield of the total
procedure is essentially determined by the yield to purify the

subgraph states. Extremal cases of this procedure are, on the
one hand, the purification of pairs and creation of the re-
quired target state by means of teleportation and, on the other
hand, direct multiparty purification, each of which having its
own advantages and disadvantages. The optimal choice of
the size of the subgraph will depend on the required task.
Optimization can be performed with respect to the yield, the
achievable fidelity, and the purification regime and will be
treated elsewhere.

B. Hashing and breeding

It is interesting from a principal point of view to obtain
purification protocols which have nonzero yield. In the bi-
partite case, the hashing and breeding protocolsssee Ref.
f10gd achieve this aim. In these protocols, the local operators
act jointly on a large numberM of copies of an initial stater,
where M→`. In brief, they use entanglement—either
present in pure form sbreedingd or in noisy form
shashingd—to revealsnonlocald information aboutr^M. This
information gain results in purification of a certain suben-
samble ofM8 copies. The yield in the case of hashing is
given by M8 /M, while in the case of breeding one has to
take into account that entangled pure states consumed during
the purification procedure have to be given back.

The hashing protocol has been generalized by Maneva
and Smolinf13g to a multipartite setting. They showed that
certain multiparty entangled states—namely, GHZ states—
can be purified. To be specific, the protocol introduced in
Ref. f13g allows one to purify states diagonal in the basis of
GHZ states with a nonzero yield, provided the initial fidelity
of the state is sufficiently high. In this section, we will show
that the hashing protocol of Maneva and Smolin can be gen-
eralized to purify a much larger class of possible output
states. In particular, we will present for each two-colorable
graph state a protocol which is capable to produce this graph
state as an output state with nonzero yield, provided the ini-
tial fidelity is sufficiently high. The main point is to realize
that the stabilizer formalism used in Ref.f13g to construct a
purification protocol for GHZ states can be applied in a simi-
lar way to two-colorable graph states. In fact, Eqs.s16d and
s18d which describe the action of certain multilateralCNOT

operations on two graph states already show how informa-
tion about an unknown graph state can be transferred from
one copy to another. This information can be revealed by
measurements. In particular, the whole bit stringmA of a
single copy of a two-colorable graph stateuCmA,mB

l can be
obtained by performing a local measurement in the eigenba-
sis ofsx of all particles in setVA, while all particles in setVB
are measured in the eigenbasis ofsz. The measurements in
setsVA fVBg yield resultss−1dj j fs−1dzkg, respectively, with
j j, zkP h0,1j. The value of the bitm j, j PVA, is given by

m j = Sj j + o
hk,jjPE

zkDmod2, s26d

which follows from the eigenvalue equations2d. That is, the
measurements allow one to simultaneously determine the ei-
genvalues of all correlation operatorsKj for j PVA. In a simi-
lar way, by exchanging the role ofVA andVB, one can obtain
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the bit stringmB. Note, however, that bit stringsmA andmB
cannot be determined simultaneously bylocal measure-
ments.

Given these tools, the hashingsand breedingd protocol can
now be implemented in the usual manner. That is, givenM
copies of a mixed stater diagonal in the graph state basis
swhich can always be achieved by applying the depolariza-
tion procedure described in Sec. II Ed,

r = o
mA,mB

lmA,mB
uCmA,mB

lkCmA,mB
u, s27d

one chooses a random subset ofm copies and determines the
parity of each bitm j. This can be accomplished by applying
multilateralCNOT operations between the firstm−1 copies of
the set and themth copy. The corresponding measurement of
themth copy allows one to determine the parity of the whole
bit stringmA of them−1 remaining copies. The procedure is
repeated for many of these randomly chosen subsets, and in
a similar way the parity ofmB is determined for other ran-
dom subsets. It is now straightforward to calculate the num-
ber of required repetitions of the above procedure to deter-
mine completely all relevant information of the remaining
copies. To this aim, we define the coefficientsaj

s0d, aj
s1d as

follows:

aj
sm jd = o

mkÞm j

lm1m2¯m j¯mN
. s28d

For instance, for N=3 we have thata1
s0d=ok,ll0kl ,a1

s1d

=ok,ll1kl while a3
s0d=oi,jli j 0 and aj

s0d+aj
s1d=1. The entropy

Ssaj
s0d ,aj

s1dd is given by

Ssaj
s0d,aj

s1dd = − aj
s0d log2 aj

s0d − aj
s1d log2 aj

s1d s29d

and determines the number of copies which has to be mea-
sured in order to obtain bitm j. Following the reasoning of
Refs.f10,13g, we can now determine the yield of the hashing
protocol and find

D = 1 − maxjPVA
fhSsaj

s0d,aj
s1ddjg − maxkPVB

fhSsak
s0d,ak

s1ddjg.

s30d

For mixed states of the form Eq.s25d, which are mixtures of
a pure graph state with the maximally mixed state, we have
thataj

s0d=s1+xd /2, aj
s1d=s1−xd /2∀ j . The yield of the proto-

col is in this case given by

D = 1 − 2SS1 + x

2
,
1 − x

2
D . s31d

Note that the yield of the hashing protocol approaches one
for any state diagonal in the graph state basis which fulfills
l0→1, independent of the specific form of the state. In par-
ticular, this implies that if a given mixed state has sufficiently
high fidelity F, the hashing protocolscombined with the de-
polarization procedured allows one to extract pure two-
colorable graph states with nonzero yield, and the yield ap-
proaches 1 forF→1.

IV. IMPERFECT LOCAL OPERATIONS

Until now, we have assumed that local operations—in
particular CNOT operations—are perfect. In practice, how-
ever, these operations as well as measurements will be im-
perfect. We now investigate the influence of errors in the
local operations on the multiparticle entanglement purifica-
tion protocol. We will consider an error model where imper-
fect local two-qubit operations are described by the com-
pletely positive map

EUjk
r = UjkfE jEkrgUjk

† , s32d

whereEk, E j are given by Eq.s23d with error parameterp.
That is, an imperfect operation is described by first applying
local white noise with probabilitys1−pd independently of
the qubits, followed by the perfect unitary operation. Such an
error model allows us to analyze the protocol up toN=13,
involving 2N=26 qubits. For smaller number of particles, we
have also investigated more general error models—e.g., two-
qubit correlated white noise—and also errors in the measure-
ment process, observing essentially the same behavior as for
this simple model.

We have numerically investigated the dependence of the
minimal required fidelity and the maximal reachable fidelity
for linear cluster states of different length on error param-
etersp ssee Fig. 4d. We remark that whenever the fidelity of
the initial stateswhich is obtained from a perfect cluster state
by applying local white noise with a certain noise parameterd
fulfills FminøFøFmax, the entanglement purification proto-
col converges towards a state withF=Fmax. That is, for any
given error parameterp, Fmin andFmax determine the purifi-
cation regime where our protocol can be successfully applied
in order to increase the fidelity of the state. As can be seen
from Fig. 4, the purification regime becomes broader with
increasingN. In particular, the minimal value ofp such that
a finite purification regime remains—i.e., the threshold value
pmin until which our MEPP can be successfully applied—is
salmostd independent of the number of partiesN which can
be seen from Fig. 5. It even seems that for a larger number of

FIG. 4. Maximal reachable fidelityFmax and minimal required
fidelity Fmin plotted against the error parameterp slocal operationsd
for density operators arising from single-qubit white noise. Curves
from top to bottom correspond to linear cluster states withN
=2,4,6,8,10particles.
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particles the tolerable amount of noise per operation is larger.
Performing a similar investigation for GHZ states, we find
on the contrary that the threshold valuepmin increaseswith
increasingN sFig. 5d; i.e., it becomes more difficult to purify
GHZ states with a large number of particles,N.

V. PURIFICATION REGIME FOR BINARYLIKE
MIXTURES

As in the case of perfect local control operations, it is
possible to treat binarylike mixturesrA of the form Eq.s20d
analytically when considering a restricted error model which
keeps the structure of these states. Note that considering such
an error model with this restricted kind of errors allows one
to obtain a lower bound on the threshold value for more
general error models. To this aim, we consider the com-
pletely positive mapsCPMd M j given by

M jr = pr +
1 − p

2
sr + sx

s jdrsx
s jdd, s33d

which corresponds to a bit-flip channel acting on qubitj . We
model imperfect local unitary operations by the following
CPM:

EUjk
r = UjkfM jMkrgUjk

† , s34d

whereM j is given by Eq.s33d if qubit j belongs to the set
VB and the identity otherwise. That is, we assume that opera-
tions on particles in setVA are perfect, while an imperfect
unitary operation acting on two qubits held by a party in set
VB is described by first applying a probabilistic bit-flip chan-
nel on the qubits, followed by the ideal unitary operation.
Such an error model ensures that the structure of binarylike
mixturesfEq. s20dg is maintained. In principle, one could in
addition also consider phase flip errors for all particles in set
VA—which would still maintain the structure of binary
mixtures—however, the analysis is more complex and no
additional insight is gained.

In the following, we will investigate the purification re-
gime for GHZ states and closed linear cluster states, initially
of the formrAsFd. That is, we will determine the threshold
value pcrit until which a single instance of our purification

protocol allows one to increase the quality of the state. While
we find that for closed linear cluster states the threshold
value pcrit essentially remains constant, independent of the
size of the system, for GHZ states we show that even for this
restricted kind of errors, the threshold value increases with
N, approaching 1 in the limit of largeN. This implies that
purification of GHZ states with large number of particles
becomes exceedingly difficult with increasingN. In the limit
of largeN, nearly noiseless local operations are required. On
the contrary, the requirements on local operations for the
purification of cluster states is independent of the number of
particles,N.

A. GHZ states

We start by investigating the properties of binarylike mix-
tures of GHZ states. Recall that the corresponding graph of a
GHZ state is given by the edgesh1,kj, kP h2,3, . . . ,Nj, and
VA=hV1j, VB=hV2,V3, . . . ,VNj. We consider states of the
form

rAsxd = xuC0,0lkC0,0u + s1 − xd/21VA
, s35d

where1VA
= uC0,0lkC0,0u+ uC1,0lkC1,0u. As pointed out in Sec.

II C, the action of a bit-flip errorsx on any of the particles
2,3, . . . ,N on graph states can equivalently be described by a
phase flip errorsz on particle 1. In particular, we have that
for j =2,3, . . . ,N, M j

sBduC0,0lkC0,0u=puC0,0lkC0,0u+s1
−pd /21VA

and alsoM j
sBd1VA

=1VA
. It readily follows that the

action of the purification protocolP1 which involves imper-
fect unitary operations on two copies of the input staterAsxd
can equivalently be described by the action of the perfect
protocol P1 on two copies of the stater̃Asx8d
;M2

sBdM3
sBd

¯MN
sBdrAsxd. One finds that

r̃Asx8d = rsxpN−1d; s36d

that is, the state is still of the form of Eq.s35d with new
coefficientx8=xpN−1. The action of the perfect protocolP1
on r̃Asx8d is given by Eq. s21d with l0,0=x8+s1−x8d /2,
l1,0=s1−x8d /2, yielding

l̃0,0 = SxpN−1 +
1 − xpN−1

2
D2

/K. s37d

The purification protocol was successful if the fidelity of the

resulting statel̃0,0 is larger than the one of the initial state
rsxd, F;l0,0=x+s1−xd /2. That is,

SxpN−1 +
1 − xpN−1

2
D2

SxpN−1 +
1 − xpN−1

2
D2

+ S1 − xpN−1

2
D2 ù x +

1 − x

2
,

s38d

which can be rewritten as

2pN−1 − 1 ù x2p2sN−1d. s39d

On the one hand, for a fixed noise level of local operations
sgiven by the error parameterpd Eq. s39d allows one

FIG. 5. Threshold value for errors in local operationspmin for
GHZ statesspd and linear cluster statess3d with a different number
of particles,N.
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to obtain the maximal reachable fidelityFmax;xmax+s1
−xmaxd /2—that is, the fixed point of the protocol. One finds

xmax= Îs2pN−1 − 1d/psN−1d. s40d

On the other hand, one can also determine the threshold
value for the error parameterp, pcrit—i.e., the minimum re-
quired reliability of the local operations that purification is
possible. Fors2pN−1−1d,0, inequalitys39d can certainly not
be fulfilled, independent ofx. Thus, independent of the initial
quality of the state, the protocol is not capable to increase the
fidelity if p,pcrit. A lower bound on the threshold valuepcrit
is thus given by

pcrit = S1

2
D1/sN−1d

, s41d

which increases for increasingN. That is, even if we con-
sider only a restricted kind of errors on particles within set
VB, the requirements on the quality of local operations be-
come more stringent if the number of particlesN increases.
This is in agreement with the numerical results found for the
more general white noise error model discussed in the pre-
vious section.

B. Closed linear cluster states

We now turn our attention to closed linear cluster states of
sizeN;2M, specified by a graph withN vertices and edges
hk,sk+1dmodNj. The setsVA fVBg are given by all odd
feveng vertices, respectively. As in the case of GHZ states we
determine not only the minimal required and maximal reach-
able fidelity, but also the threshold values for local opera-
tions. We find that the tolerable amount of noise per imper-
fect two-qubit operation essentially remains constant
independent of the number of particles involved and is for
largeN given bypcrit<0.4976. That is, the purification pro-
tocol is also for large number of particles remarkable robust
against the influence of imperfect local operations, which is
interesting for possible practical applications.

We consider density operators of the form

rAsxd ; xuC0,0lkC0,0u +
1 − x

2NA
1VA

, s42d

where1VA
;omA

uCmA,0lkCmA,0u. We have thatrAsxd has rank
2NA=2M and the fidelityF of the state with respect touC0,0l
is given byF=x+s1−xd /2M. For simplicity, we will assume
M odd in our analysis. A similar analysis can be performed
for M even. We will consider the purification protocolP1,
which is sufficient to purify these kind of states. We analyze
a single instance of the purification protocolP1 and deter-
mine the conditions under which an increase of the fidelityF
is possible. Recall that imperfect local unitary operations are
modeled by Eq.s34d. It turns out to be convenient to use the
parameterq;s1+pd /2 to describe the quality of imperfect
local operationsfsee Eq.s33dg.

As in the case of GHZ states, the action of the imperfect
protocolP1 on two copies of the staterAsxd can be equiva-
lently described by the action of theperfectserror freed pro-
tocol P1 on two copies of an input staterA8 . We have that

rA8 ; M1M2 ¯ MNrAsxd, s43d

whereMk is defined in Eq.s33d for kPVB and is given by
the identity operation ifkPVA. It is relatively straightfor-
ward to determinerA8 . Using thatM1M2¯MN1VA

=1VA
, it

only remains to determine the action ofM1M2¯MN on
the cluster stateuC0lkC0u. Since the action ofsx on particlek
of a cluster state can be equivalently described bysz opera-
tions on the neighboring particlesk−1 and k+1, we have
that the resulting stateM1M2¯MNuC0lkC0u is again diag-
onal in the graph state basis, where only some of the coeffi-
cientsamA,0 are nonzero. A straightforward calculation shows
that forM odd one obtains a total of 2M−1 nonzero terms with
corresponding coefficientshakj, where 0økø sM −1d /2 and
ak appearsbM,k times, where

bM,k ; SM

k
D = M!/fk!sM − kd!g. s44d

We have thatak is given by

ak ; qks1 − qdM−k + qM−ks1 − qdk, s45d

wherea0 corresponds touC0lkC0u.
That is, the staterA8 is diagonal in the graph state basis

with coefficientslmA,08 . These coefficients are given by

lk8 = xfqks1 − qdM−k + qM−ks1 − qdkg +
1 − x

2M , s46d

lM8 =
1 − x

2M , s47d

where 0økø sM −1d /2. Each of the coefficientslk8 appears
bM,k times, while the coefficientlM8 appears 2M−1 times. Note
thatl08 corresponds tol08—i.e., determines the fidelity of the
staterA8 .

The action of thesperfectd purification protocolP1 is
given by Eq.s21d and can be determined straightforwardly.
In particular, the fidelityF of the resulting state after a suc-
cessful purification step is given by

l̃0 = sl08d
2/G, s48d

with

G = o
k=0

sM−1d/2

bM,kslk8d
2 + 2M−1slM8 d2. s49d

The imperfect purification protocol is capable of increasing

the fidelity if l̃0.l0, wherel0=x+s1−xd /2M. To evaluate
the sums appearing in Eq.s49d one only needs to realize the
following identity:
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o
k=0

sM−1d/2

fbM,kq
ks1 − qdM−k + bM,kq

M−ks1 − qdkg

= o
k=0

M

bM,kq
ks1 − qdM−k. s50d

The resulting binomial sums can then be easily evaluated and
one finds, e.g.,

o
k=0

M

bM,kq
2ks1 − qd2M−2k = s1 − qd2MF1 +S q

1 − q
D2GM

,

o
k=0

sM−1d/2

bM,k = 2M−1. s51d

It turns out to be useful to define the functionsA;Asqd, B
;Bsqd, andC;Csqd given by

A = qM + s1 − qdM −
1

2M ,

B =
1

2M ,

C = s1 − qd2MF1 +S q

1 − q
D2GM

−
1

2M + f2qs1 − qdgM .

s52d

After some algebra, one finds thatG=x2C+B and l̃0=fxA
+Bg2/G. The condition that a single successful application of
the imperfect purification protocolP1 lead to an increase of
the fidelity is thus given by

fxA+ Bg2

x2C + B
ù xs1 − Bd + B. s53d

The corresponding purification regime can be determined by
solving the resulting quadratic equation inx. One obtains

x± =
BC− A2 ± ÎD

CsB − 1d
, s54d

with

D = sA2 − BCd2 + 4Cs1 − Bdf2AB− Bs1 − Bdg. s55d

That is, forx−øxøx+ a successful purificationsresulting in
an increase of the fidelity of the stated is possibly. Recall that
x−, x+ are functions ofq, so Eq.s54d determines the purifi-
cation regime for any fixed error parameterq=s1+pd /2. For
instance, ifq=0.9, a single application of the protocolP1
increases the fidelityF;x+s1−xd /2N/2 in the range 2−0.33N

øxø2−0.009N. That is, for eachN there exists a finite regime
where entanglement purification is possible. The threshold
valueqcrit srespectively,pcritd until which successful purifica-
tion is possible for some input states can be determined by
snumericallyd solving the polynomial equationD=0. One
finds that the threshold valueqcrit fpcritg slightly varies overN
in the interval 0.7001øqø0.7491 and converges for largeN

towardsqcrit<0.7469 fpcrit<0.4938g ssee Fig. 6d. That is,
independent of the size of the cluster state, the tolerable
amount of noise for local operations specified byq remains
sapproximatelyd constant and approaches a finite valueqcrit

`

Þ1. This is in contrast to the behavior of GHZ states but
confirms the numerical results found for the more general
error model of white noise.

C. Other graph states

We have also numerically investigated other graph states
and determined the corresponding threshold value. Here we
have not only considered a single purification step as in the
previous subsections, but analyzed the convergence of the
whole purification procedure. In addition to bit flip errors in
set VB, we have also considered phase flip errors in setVA
here. This error model has still the property that states be-
longing to the familyrA fEq. s20dg remain within this family
throughout the procedure and the purification protocolP1
alone is sufficient to achieve purification.

For instance, we considered two-dimensionals2Dd cluster
states corresponding to 2D lattices of different sizes. Note
that a closed cluster state corresponds to periodic boundary
conditions, while in an open cluster state the qubits at the
border have fewer neighbors. We have investigated 2D clus-
ter states which are closed inx direction but open ony di-
rection on lattices of size 433 and 633 and found threshold
valuespmin

s433d=0.764 andpmin
s633d=0.758. For open 2D cluster

states with 434 and 533 we find pmin
s434d=0.764 andpmin

s533d

=0.778, while for a completely closed 434 cluster state we
havepmin

s434d=0.768.
We have also considered families of graph statesGsN,kd

specified by two parametersN and k, where the number of
vertices is given by 2N and k specifies the degree of the
graph. The setVA is given by all odd vertices1,3, . . . ,2N
−1, while the setVB consists of all even vertices2,4, . . . ,2N.
The edges of the graph are given byh j , j +1j ,h j , j
+3j , . . .h j , j +2k−1j∀ j odd and the addition is understood
moduloN. That is, each vertex inVA is connected to the next
k vertices inVB. The graph is translational invariant and has
degreek.

We find that the threshold value is largely independent of
both N and k. For instance, we have forGs10,3d, Gs10,4d,

FIG. 6. Threshold valueqcrit for imperfect local operations as a
function of number of the particles,M =N/2, for M odd.
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Gs10,5d, Gs10,10d that pmin=0.762. Altogether, in the investi-
gated regime 3øNø10, 2økøN we find that the threshold
value varies only between 0.768øpminø0.772.

VI. BIPARTITE vs MULTIPARTITE ENTANGLEMENT
PURIFICATION PROTOCOLS

In this section, we compare direct multiparticle entangle-
ment purification protocols with protocols based on bipartite
entanglement purification. For a large class of states we show
the following: sid In the case of perfect local operations,any
protocol based onbipartite entanglement purification is less
efficient—in terms of the yield—than a certain direct multi-
particle entanglement purification protocol, andsii d in the
presence of imperfect local operations, direct multiparticle
entanglement purification protocols can perform better than
protocols based on bipartite entanglement purification. That
is, a wider range of states can be purified and the achievable
fidelity of multipartite protocols is higher than with methods
based on best knownf28g bipartite entanglement purification
protocols combined with teleportation. Whilesid justifies and
motivates the investigation of multiparticle entanglement pu-
rification protocols from a principal point of view,sii d makes
these protocols also interesting from a practical point of
view.

In principle, bipartite entanglement purification seems to
be sufficient to purify also multipartite entangled states. For
instance, the following method accomplishes the desired
task: all but two particles of asnoisyd multiparticle entangled
state are measured and the resultingsnoisyd bipartite en-
tangled state is purified, thereby creating anshighlyd en-
tangled pair shared between two parties. This procedure is
applied to several such pairs of parties, and the resulting
pairs of highly entangled states can be usedse.g., by means
of teleportationd to generate the desired multiparticle en-
tangled state with high fidelity. However, as we shall see
below, such a procedure may be quite inefficient and it is not
obvious that all multipartite entangled states which can be
purified by direct multipartite entanglement purification are
also purificable using the procedure sketched above.

A. Noiseless local operations

In this section we compare the efficiency of direct multi-
particle entanglement purification protocols with methods
based on bipartite entanglement purification. In Ref.f12g, it
was shown that in a restrictedsbut rather naturald scenario,
where bipartite entanglement purification is combined with
teleportation, direct multiparticle entanglement purification
is more efficient for purifyingN-particle GHZ states. In the
scenario considered in Ref.f12g, N−2 particles of a single
copy of anN-particle entangled mixed state are measured
and the resulting bipartite entangled mixed state is purified
by means of a bipartite recurrence protocol. Highly en-
tangled pairs of particles shared between different pairs of
parties created in this way are then used to generate—by
means of teleportation—the desiredN-particle GHZ state. To
be specific, pairs between party 1 andk, kP h2,3, . . . ,Nj, are
generated and a GHZ state is, e.g., created by teleportingN

−1 particles of anN-particle GHZ state, generatedlocally by
party 1, to the remainingN−1 parties. The average number
of copies of the initial stater that are required to generate
GHZ states with a certain fidelity turns out to be smaller for
direct multiparticle entanglement purification, thereby indi-
cating that such protocols can be more efficient than methods
based on bipartite entanglement purification.

However, the scenario considered by Muraoet al. in Ref.
f12g is a restricted one. For instance, it is assumed that bi-
partite entangled states are generated from a single copy of
the initial multiparticle stater, and only a single copy of an
N-particle GHZ state is generated from the produced bipar-
tite entangled pairs using a specific procedure based on tele-
portation. Furthermore, only a specific bipartite entangle-
ment purification protocol is considered. We will now show
that for a large class of states, indeedanymethod which is at
some point based on bipartite entanglement purification is
less efficient than direct multiparticle entanglement
purification—e.g., using multipartite generalizations of hash-
ing or breeding. We emphasize that we do not specify the
method how bipartite entanglement purification is employed,
nor do we restrict ourselves to a specific way of combining
the resulting bipartite entangled pairs to obtain the desired
spurifiedd multiparticle entangled state.

To this aim, we consider the most general method to pu-
rify multipartite entangled states which is based on bipartite
entanglement purification. The only assumption is that at
some point some kind of bipartite entanglement purification
is used and thus maximally entangled pairs shared between
pairs of parties are generated. These pairs are then used to
generatespossibly several copiesd of the desired multiparticle
entangled state. We allow for joint manipulation of an arbi-
trary number of copies of the state at any point of the pro-
cedure, and for the most general bipartite entanglement pu-
rification protocol. Using the asymptotic inequivalence of
multiparticle GHZ states and singlets, this is already suffi-
cient to show that such protocols can be less efficient than,
e.g., multipartite breeding or hashing.

We start withM copies of anN-party entangled stater,
r^M, which are manipulated by means of local operations
and classical communication. This procedure involves bipar-
tite entanglement purification and thus results in the genera-
tion of mkl copies of maximally entangled pairs in the singlet
state uC−lkl shared between partiesk and l. With help of
another sequence of local operations assisted by classical

communication these pairs are then transformed intoM̃ cop-
ies of the desired multiparticle entangled stateuxl. The total
procedure can be summarized as follows:

r^M → ^
k,l

uC−lklkC−u^mkl → uxlkxu^M̃ . s56d

The yield of this procedure is given byM̃ /M. In the follow-
ing, we consider tripartite systemsN=3 and analyze the spe-
cial case where the input stater is pure and in fact identical
to the desired output state. That is, we considerr= uxlkxu
whereuxl is a three-particle GHZ state; i.e.,uxl is local uni-
tary equivalent to 1/Î2su000l+ u111ld.
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We make use of the following facts which were used in
Ref. f24g to prove the irreversibility of the entanglement
transformation between singlets and GHZ states:sid The en-
tropy of the reduced density operator with respect to the
systeml, l =1,2,3 canonly decrease under local operations
and classical communication, andsii d the average increase in
the relative entropy of entanglement of the systems2d and
s3d is smaller than or equal to the average decrease in the
entanglement of system 1 with the joint systems2d and s3d
for any local protocolf24g. Note thatsii d is valid only for
pure statesf24g. If we consider a density operators123
;uClkCu corresponding to a pure state which is transformed
by an arbitrary local protocol to an ensemblehpk,s̃123

skd j we
have thatsid

Sss1d ù o
k

pkSss̃1
skdd, s57d

whereSss1d=−trss1 log2 s1d with the reduced density opera-
tor with respect to system 1,s1; tr23ss123d, and similar for
entropies of reduced density operator with respect to system
2,3, while sii d reads

o
k

pkErss̃23
skdd − Erss23d ø Sss1d − o

k

pkSss̃1
skdd. s58d

In these formulas,Erss23d denotes the relative entropy of
entanglement of the reduced density operators23; tr1ss123d,

Erss23d = min
r23sep

Sss23ir23d, s59d

where the minimum is taken over all separable density op-
eratorsr23 and

Sss23ir23d ; trss23 log2 s23d − trss23 log2 r23d s60d

is the relative entropy ofs23 with respect to a bipartite state
r23. For s= uxlkxu we have thatSss1d=Sss2d=Sss3d=1,
Erss23d=0 fsince tr1suxlkxud is separableg, while, e.g., fors
= uC−l12kC−u one finds Sss1d=Sss2d=1, Sss3d=0, Erss12d
=1, Erss13d=Erss23d=0 and similarly by for singlets shared
between partiesk, l.

We apply now Eq.s57d to the second part of the process

s56d and findm12+m13ùM̃ and similarly for other reduced

density operators—i.e.,m12+m23ùM̃, m13+m23ùM̃. Com-
bining these inequalities we obtain

M̃ ø 2/3sm12 + m13 + m23d. s61d

When applying Eq.s58d to the first part of the processs56d
we obtainm23øM −m12−m13 or, equivalently,

sm12 + m13 + m23d ø M . s62d

Combining Eqs.s61d and s62d one finds

M̃ ø 2/3M . s63d

That is, for input states which are pure GHZ states, the yield
of any procedure based on bipartite entanglement purifica-
tion to obtain again GHZ states is less than or equal to 2/3.
This quantifies the amount of irreversability in the transfor-
mation of GHZ states to singlets and back. Clearly, the mul-

tipartite entanglement purification protocol—which in this
case consists of doing nothing—has yield 1. This already
shows that for a certain input state, direct multipartite en-
tanglement purification is more efficient than any method
based on bipartite entanglement purification. One can, how-
ever, easily prove a similar statement for a large class of
input states.

Consider the class of mixed statesr which can be ob-
tained from GHZ statesuxlkxu by a deterministic local
protocol—i.e., by a sequence of local operations and classi-
cal communicationsLOCCd. These states include, for in-
stance, density operators of the form

rsFd = Fuxlkxu + s1 − Fds, s64d

where s is either an arbitrary separable density operator
se.g., 1

81d or any sclassicald mixture of GHZ states.
On the one hand, we have that for all such states the yield

of any procedure based on bipartite entanglement purifica-
tion to obtain GHZ states is less than or equal to 2/3. One
can easily prove this by contradiction. Assume that a such a
procedureM with yield larger than 2/3 would exist. In this
case, one could first transform initial pure GHZ states in a
deterministic way by LOCC to the stater and applyM
afterwards, thereby obtaining a yield for the conversion of
GHZ states to GHZ states by a protocol based on bipartite
entanglement purification larger than 2/3. This clearly con-
tradicts Eq.s63d, so such a procedure is impossible.

On the other hand, we have that a multiparticle entangle-
ment purification protocol exists which allows one to purify
states of the formrsFd with high yield, givenF is suffi-
ciently large. In particular, a procedure consisting of depo-
larization of rsFd to a GHZ-diagonal statessee Sec. II Ed
leads to a state where the hashing protocol introduced in Ref.
f13g salso discussed in Sec. III Bd can be successfully ap-
plied. The yield of this protocol exceeds 2/3 for a wide range
of F, in fact approaches 1 forF→1. That is, for a large class
of input states, direct multiparticle purification is more effi-
cient than any protocol based on bipartite entanglement pu-
rification.

B. Imperfect local operations

It is also interesting to compare multiparticle entangle-
ment purification protocols with protocols based on bipartite
entanglement purification under realistic conditions—i.e., in
the case where also local operations performed to manipulate
entangled states are imperfect and give rise to errors. While
above argumentation regarding the yield is based on theside-
alizedd assumption of perfect manipulation of an arbitrary
large number of copies of a given state—and the analysis is
performed in full generality—we will be concerned with
practically implementable protocols in this section. That is,
we consider entanglement purification protocols which oper-
ate in each round of the protocol only on a restricted number
of copies of the state. We remark here that in the presence of
imperfect local operations, protocols which operate on a
large number of states simultaneously are very sensitive to
errors in local operations and therefore may become imprac-
tical anyway. The fact that imperfect local operations are
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involved in the purification procedure necessarily implies
that no maximally entangled pure states can be created by
any entanglement purification protocol and the correspond-
ing yield—defined as the average number of maximally en-
tangled pure states produced per copy ofr—is 0. This sug-
gests to use an adopted definition of the yield—e.g., to
accept all output states which have a fidelity larger than some
threshold valueF0. As we are only concerned with recur-
rencelike entanglement purification protocols throughout this
section—which produce only a single copy of a state as
output—one can directly use the fidelity of this output state
as a criterion whether the protocol has created the desired
state or not. The yield is then defined as the average number
of produced statesrk per copy ofr with fidelity larger than
F0—i.e., Fk;kxuruxlùF0, where uxl is the desiredspured
output state. Note that when considering general entangle-
ment purification protocols, such a definition might not be
adequate as several copies of output states might be en-
tangled themselves. Such a definition implies that forF0
ùFfix—i.e., the desired output fidelity is larger than the fixed
point of the protocol—the protocol will have yield 0.

We compare the recurrence protocol for multiparticle en-
tanglement purification discussed in Sec. III A with a scheme
based on the bipartite entanglement purification protocol in-
troduced in Ref.f11g. In the latter case, the protocol of Ref.
f11g is first used to create bipartite entangled states, which
are then used to create a multiparticle entangled state by
some means—e.g., by teleportation. As we are interested
only in the properties of the entanglement purification proto-
col, we have not specified the means by which bipartite en-
tangled states are combined to create a multiparticle en-
tangled state. We have rather conservatively assumed that
this process—although it necessarily involves joint local op-
erations on two qubits which may again be imperfect—is
error free, and the only source of errors results from the fact
that no maximally entangled bipartite states can be created in
the case of imperfect local operations. The achievable fidel-
ity of the states is specified by the fixed point of the purifi-
cation protocol and is thus independent of the input state.
That is, our analysis is valid for allsdistillabled input states
under this protocol. Note that the protocol of Ref.f11g is the
up to now best known bipartite entanglement purification
protocol with respect to the maximal reachable fidelity for a
given noise level of imperfect local operations.

For instance, if GHZ states withN=3 particles should be
created, this involves at least two bipartite entangled states,
e.g., shared between partiesA andB fA andCg, respectively.
The mixed staterAB corresponding to the fixed point of the
bipartite entanglement purification of Ref.f11g is diagonal in
the Bell basis and can be described byMBsuF+lABkF+ud with
uF+l=1/Î2su00l+ u11ld, where MB is a map acting onB
only. A similar description exists forrAC in terms of a map
MC acting onC only. The optimal case is that local opera-
tions in A introduce no further errors and create out of two
maximally entangled bipartite states a GHZ state. SinceMB,
MC commute with all operations performed atA, the fidelity
of the resulting state is upper bounded by the fidelity of the
state MB+MCsuGHZlABCkGHZud. We have compared the
maximal reachable fidelityFmax

MP for our multiparticle en-

tanglement purification with the upper bound for the method
based on bipartite entanglement purification described above
and observed thatFmax

MP is considerable larger as can be seen
in Fig. 7. This implies that under realistic conditions—i.e.,
when considering imperfect local operations—direct multi-
particle entanglement purification schemes are advantageous
as compared to schemes based on bipartite entanglement pu-
rification. In particular, if the given goal is to produce mul-
tiparticle entangled states with a given fidelity, this can be
achievable using multiparticle purification, while the scheme
based on bipartite purification fails to perform this task. That
is, the yield of the multipartite protocol is nonzero, while the
yield of the scheme based on bipartite entanglement purifi-
cation is zero. Note that also in regimes where both schemes
have nonzero yield, direct multipartite purification performs
better than the scheme based on bipartite purificationf12g.

If one considers the restricted scenario where a single
copy of a multiparticle mixed state is manipulated to create
bipartite states by means of measurements performed on the
remaining particle, it might also happen that the bipartite
state created in such a way is no longersdistillabled en-
tangled, although the initial multiparticle state can be dis-
tilled by the multiparticle recurrence protocolf12g. That is,
for these input states the yield for any such scheme based on
bipartite entanglement purification is zero, while the multi-
partite entanglement purification protocol has nonzero yield.
This is, e.g., the case for three-qubit input states of the form

rsxd = xuGHZlkGHZu + s1 − xd/81, s65d

with 1/5øxø1/3. Any measurement performed by one of
the parties on the statersxd produces a bipartite state of the
form ssxd=x8uFlkFu+s1−x8d /41 with x8=x. It can easily be
checked thatssxd is separable forxø1/3, whilersxd is sdis-
tillabled entangled forx.1/5 if one allows for multiparticle
entanglement purification. That is, the minimal required fi-
delity such that asrestrictedd scheme based on bipartite pu-
rification can be successfully applied is larger than the one
for schemes based on multipartite entanglement purification.

FIG. 7. Achievable fidelity of a linear cluster state withN=4
using direct multiparty entanglement purificationssolid lined and
conservative upper bound for methods based on bipartite entangle-
ment purificationsdashed lined for different errors in local opera-
tions p.
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VII. PRIVATE MULTIPARTICLE ENTANGLEMENT

As we have seen in the previous section, it is not possible
to distill perfect cluster states using noisy apparatus. For bi-
partite protocols, however, it was shown in Ref.f27g that
even using noisy apparatus it is possible to distillsasymptoti-
callyd private Bell pairs—i.e., Bell pairs which are only en-
tangled with the apparatussi.e., the “laboratories”d of the
communication parties, but not with any other degree of
freedom. In a cryptographic scenario, this means that the
states of the pairs of particles are actively disentangled from
any eavesdropper who has, in the worst case, created the
pairs, allowing her in principle to entangle them with addi-
tional degrees of freedom which he or she controls.

In this section, we show that this is also possible with the
cluster purification protocol: if the parties only have imper-
fect apparatus which they use to purify cluster states, they
will not be able to create perfect cluster states; however, the
final state will be disentangled from all channel degrees of
freedom.

The proof is analogous to the proof of Ref.f27g. In a first
step, the noise which the apparatus introduces during the
purification process is replaced by a simple toy model, the
lab demon. The lab demon corresponds to an intelligent
source of noise, which uses a classical random number gen-
erator in order to apply spin- and phase-flip operations on
qubits, according to a given probability distributionfmn. The
action of the lab demon is thus the average of the “flipped”
quantum states:

rab. . . → rab8 = o
mn

sm
sadsn

sbdrab. . .sm
sadsn

sbd. s66d

Here,rab. . . is a density operator of a quantum system, which
includes two qubitsa andb which are located at one specific
party; however, it will include other qubits. The lab demon
acts on the two qubits at the same time, since the quantum
operations in the purification protocols are two qubit opera-
tions; for that reason it would be an oversimplification if we
assumed that the noise acting on two qubits is uncorrelated.

The labs demon keep notes on which Pauli operators were
applied to which qubits in which step of the purification
process. As we will show, mere knowledge of this list will, in
the asymptotic limit, suffice to perfectly predict the state of
the purified quantum systems. In other words, from the lab
demon’s point of view, all purified quantum systems end up

in a pure state. Note that it is nota priori clear that the lab
demon’s knowledge would suffice for the prediction, since
the protocol includes measurements, and by introducing er-
rors, the measurement outcomes will be changed, possibly
leading to different choices by communicating parties, who
might throw away qubits which they should have kept and
vice versa.

From the list of errors, the lab demons calculate the so-
callederror flags. An error flag as a piece of classical infor-
mation, which is “attached” to each copy of the cluster state.
In the case of an-qubit cluster state, we needn classical bits

lW s jd=sl1
s jd , . . . ,ln

s jddP h0,1jn for the error flag. Here, the index
j denotes the number of the cluster state in the ensemble of
all cluster states. Initially, before the first step of the purifi-

cation process, all error flags are set to zero—i.e.,lW s jd

=s0, . . . ,0d for all j . Whenever theith lab demon applies a
phase flip operationsszd to the ith qubit of cluster statej , in
the error flagj the ith bit is flipped—i.e.,

lW s jd = sl1
s jd, . . .li

s jd, . . . ,ln
s jdd → lW8s jd = sl1

s jd, . . . l̄i
s jd, . . .ln

s jdd.

s67d

If he applied an amplitude flip operationssxd, the adjacent
bits of the error flagsassociated with the neighbors of qubiti
in the clusterd are flipped—i.e.,

lW s jd = sl1
s jd, . . .li−1

s jd li
s jdli+1

s jd , . . . ,ln
s jdd → lW8s jd

= sl1
s jd, . . . l̄i−1

s jd ,li
s jd,l̄i+1

s jd , . . .ln
s jdd. s68d

In both purification subprotocolsP1 andP2, two cluster
states are combined, one of whichsprobabilisticallyd sur-
vives. The error flag vector of the remaining state is then
given by a function of the both error flags of the input cluster
states. This function is called theflag update functionfor
protocolP1 andP2, respectively.

A. Flag update function

The error flags of the first and second cluster state are
given by the vectorssk1,k2, . . . ,knd and sl1,l2, . . . ,lnd, re-
spectively. For the subprotocolP1, the flaf update function
maps these 2n classical bits onton classical bits—i.e.,

f flup:h0,1j2n → h0,1jn,

with

sk1, . . . ,kn,l1, . . . ,lnd ° Hsk1 % l1,k2,k3 % l3,k4, . . . d if k2k % l2k = 0 ∀ k,

s0,0, . . . ,0d otherwise.
J s69d

The first line of the definition takes into account how errors
are propagated through theCNOT operation. This means, that
having applied a certain pattern of error operationssgiven by
the error flag vectorsd before the CNOT operation is equiva-

lent to applying a different pattern of error operationsfgiven
by the new error flag vectorkW8= f flupskW ,lW dg after the CNOT

operation. The second line in the definition is the so-called
reset rulesseef28gd.
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It is necessary to introduce the reset rule; otherwise, the
security proof does not work. The reset rule is found by the
following heuristics, which is equivalent to the heuristics
used for the bipartite protocol:

The flag update function is only used if in the protocol the
first cluster state is kept. This is the case if the values of all
even eigenvalues of the second cluster state are equal to
zero—i.e.,m2 % n2=m4 % n4=¯ =0. If this is the case and, at
the same time, at least one of the “new” error flags associated
with the even qubits of the second cluster state has the value
“1,” then the errors in the history of the protocol have
summed up in such a way that the first cluster state is kept.
This is the case even though it would have been discarded if
there had not been introduced any errors. In that case, the
error flag of the remaining cluster state is setsresetd to
s0,0,…,0d. Note that this coincidence of the two before-
mentioned conditions happens infrequently; in fact, in the
course of the purification process, the probability for this
coincidence converges to zero.

For the subprotocolP2, the flag update function can be
constructed by exchanging even and odd numbers. Using this
method, an error flag can be calculated for each cluster state
in each step of the purification process. By construction, the
error flags only depend on the errors introduced by the lab
demons.

B. Conditional fidelity

Using the error flag of each cluster state, it is now pos-
sible to divide the ensemble of all cluster states into 2n sub-
ensembles. The state of the subensemble, which belongs to

the error flaglW , is labeledrslW d. It is convenient to normalize
the density operators of the subensembles to the relative fre-
quency of the respective error flags, so that thesnormalizedd
total density operator is just the sum of the density operators
of the subensembles. Using this convention, we define the
conditional fidelity

Fcond= o
lW

kClW urslW duClWl; s70d

here, the stateuClWl= uCl1,. . .,ln
l denotes the cluster state. The

conditional fidelity is a measure for thepurity of the cluster
states from the lab demons point of view: since the lab de-
mons know the error flags of all cluster states, they can use
this information to transform the ensemble of all cluster
states into an ensemble with fidelityFcond. In contrast, the
usual fidelity, which is just the overlap of the total density
operator with the cluster stateuC1l, is given by F

=kC0urtotaluC0l;kC0uolWr
slW duC0l.

In order to investigate the behavior of the conditional fi-
delity in the course of the purification process, it is necessary
to calculate the states of all 2n subensembles in each step of
the purification process. Again, it is useful to note that all
subensembles are diagonal in the cluster basis; the states of
all subensembles is thus given by a real 2n32n-matrix M.
The columns of this matrix are the vectors of the diagonal
elements of the density matrices describing the suben-
sembles. Using this convention, physical action on the qubits

is described by a matrix multiplication from the left and a
modification of the error flags is described by a matrix mul-
tiplication from the right.

Applying a one-qubit depolarizing channel is thus for-
mally equivalent to a superoperator acting on the matrix of
the diagonal vectors. To be specific, an error operation on
qubit i results in flips of the cluster biti −1, i, or i +1, re-
spectively ssee Sec. II Cd. Simultaneously, biti −1, i, or i
+1 of the error flag is flippedfEqs.s67d ands68dg. The result
of applying the error operatorsn

sid is thussfor n=x,y,zd

Mz
sid = s̃x

sidMs̃x
sid, s71d

Mx
sid = s̃x

si−1ds̃x
si+1dMs̃x

si−1ds̃x
si+1d, s72d

My
sid = s̃x

si−1ds̃x
sids̃x

si+1dMs̃x
si−1ds̃x

sids̃x
si+1d. s73d

Here, s̃x
sid is the ith cluster bit flip operator, which looks in

the cluster basis like the Pauli operatorsx in the computa-
tional basis. Under the action of the depolarizing channel on
qubit i, the matrixM is thus transformed into a convex com-
bination of matricesMz

sid:

M → f0M + o
n=1,2,3

fnMn
sid. s74d

The application of theCNOT operations and the following
measurement can be implemented by the following algo-
rithm. M is the matrix of the diagonal elements of the sub-
density matrices before the subprotocolP1 is applied, and
M8 is the resulting matrix. The algorithm calculates for all
combinations of cluster states the results of theCNOT opera-
tions. We check the result of the measurement of cluster state
2; if the results are such that the first cluster state is kept, we
calculate its stateuCkW8l and perform for all combinations of
error flags the following steps:sid calculate the value of the

new error flaglW8, using the flag update function, andsii d add

to the matrix elementM
kW8

lW8 the joint probability that cluster
state one was in the stateuCkWl with error flagkW and that the

cluster state two was in the stateuClWl with error flaglW . The
result of this algorithm is the new matrixM8, which contains
the snon-normalizedd states of all subensembles after one
step in the purification process.

For the subprotocolP2, a similar algorithm can be given.
As a result, we find that the conditional fidelity converges to
unity in the course of the protocol, while the usual fidelity
converges to some valueFmax ssee Fig. 8d.

VIII. APPLICATIONS

In this section, we discuss some possible applications of
our multiparticle entanglement purification protocols. Given
the fact that the produced entanglement is private, one may
be able to use multiparty entangled states produced in this
way for secure communication and computation—e.g., secret
sharing or secure function evaluation. However, a careful
analysis of the protocol in the presence of a number of dis-
trustful parties is required before a final conclusion can be
drawn.
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A. Purification of concatenated error correcting CSS codes

A more direct application of the protocol is in the context
of quantum error correction. There exist quantum error cor-
rection codes which correspond to graph states. In particular,
Schlingemann and Wernerf18g have shown that for certain
graph states coding into an error correcting code can be
achieved via a singlesBelld measurement. That is, a certain
graph stateuClG serves as “encoding state” and an unknown
stateuwl=au0l+bu1l swhich contains the quantum informa-
tion which should be encodedd can be encoded by perform-
ing “teleportation,” whereuCl plays the role of the channel
ssingletd in the original teleportation scheme. The result of
this procedure is an encoded stateau0lL+bu1lL, where the
codewordsu0lL , u1lL are two orthogonal graph states corre-

sponding to the same graphG̃ which is directly related to the
original graphG. We remark thatuClG completely determines
the kind of encoding, in particular the properties of the cor-
responding error correcting code. In particular,uClG can be
chosen in such a way that it corresponds to a concatenated
code with several concatenation levels.

The basic idea here is to use multiparty entanglement pu-
rification to purify the encoding statesuClG. That is, the re-
source for encoding is purified and then used to encode the
desired quantum informational. We emphasize that indepen-
dent of the kind of code usedsin particular, independent of
the number of concatenation levels when using a concat-
enated coded, the final encoding takes place by performing a
singleBell measurement. That is, a measurement in the basis
huFilj with uFil=1 ^ siuF+l. As in the original teleportation
scheme, one can perform local unitary operations depending
on the measurement outcome such that the resulting state is
for all possible measurement outcomes given byau0lL
+bu1lL.

Many of graphs corresponding to error correcting codes
are two-colorable which ensures that our entanglement puri-
fication protocol can be successfully applied. In particular,
all CSS codes are equivalent to two-colorable graph states
f16g. For instance, the graph corresponding to the seven-
qubit Steane codefa CSS s7, 1, 3d codeg is given by a cube
ssee Fig. 1d, which is clearly two-colorable. Note that also
the concatenated code of this kind may correspond to a two-
colorable graph state. In fact, the corresponding graph at the
next concatenation level can be obtained by appending to
each vertex of the cube another cube with seven new vertices
and measuring the vertices of the initial cube in the eigenba-

sis of sx. By concatenating this procedure—i.e., appending
new cubes on each of the vertices and performing the corre-
sponding measurement—one obtains the graph correspond-
ing to the encoding states for concatenatedCSScode. When
postponing thesx measurements, we have in fact that the
resulting graph state is still two-colorable. Note that the mea-
surement implements the encoding procedure; i.e., informa-
tion which is initially represented in the state of the qubit of
a single vertex is encoded into the qubits of seven new ver-
tices.

We find that the entire encoding circuit which serves to
encode a given qubit into a certainsconcatenatedd code of a
larger number of qubits can be replaced by the following
simple procedure. One first creates the graph state corre-
sponding to a cube, where each vertex of the cube may have
another cube appendedsand so on when dealing with more
concatenation levelsd. Note that the vertices of new cubes
which are appended are not yet measured. The qubit to be
encoded is then measured together with the particleV1 of the
first cube in the Bell basis. A sequence of measurements in
the eigenbasis ofsx completes the encoding procedure: one
starts with the vertices of the cube at concatenation level one,
followed by the vertices of the cubes at concatenation level
2, etc., until only qubits at the highest concatenation level are
left. That is, the quantum information of the initial qubitsone
logical bitd is now encoded into 7k physical qubits, wherek
gives the number of concatenation levels. In case all opera-
tions involved in this procedure are perfect, this results in an
error-free encoding. However, given that operations used in
the manipulation and creation of the states are imperfect, the
encoding will not be perfect. In particular, the main difficulty
in the procedure described above is the creation of the mul-
tiparticle entangled graph state corresponding to the graph
with sappendedd cubes. Since this graph is two-colorable,
one can apply our entanglement purification protocol to im-
prove the fidelity of this state—and hence improve the
achievable fidelity of encoding.

B. Purification of algorithms

We also note that graph states are an algorithmic resource.
In the same way as a cluster state is a universal resource for
measurement based quantum computation, certain graph
states are a specific resource for a given quantum algorithm
f15g. That is, a quantum algorithmse.g., a quantum fourier
transformationd can be implemented by consuming an algo-
rithmic specific resource—the graph state in question—by
performing local measurement only. Again, in the presence
of imperfect operations the corresponding graph state may
not be available with unit fidelity. However, our entangle-
ment purification protocol allows one to increase the fidelity
of the graph state and hence the fidelity of the implementa-
tion of the algorithm. This opens up new possibilities for the
use of EPP in quantum computationf25g and for fault toler-
ant computationf26g. Important issues in this context are
fault tolerance and error correction, which will be discussed
in more detail in a forthcoming publicationf26g.

IX. EXPERIMENTAL REALIZATION

In this section, we propose an experimental realization of
multiparticle entanglement purification protocols using neu-

FIG. 8. The fidelity and the conditional fidelity as a function of
the number of steps in the purification protocol.
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tral atoms trapped in optical latticesf29–33g. We show that
multiparticle entanglement purification protocols can be used
in such systems to increase the fidelity of cluster states. In
particular, we consider the purification of 1D cluster states in
a 2D lattice, which can be straightforwardly generalized to
the purification of 2D cluster states in a 3D lattice. We show
on the one hand that the effect of decoherence can be over-
come by using a scheme based onentanglement pumping.
On the other hand, we find that implementing the standard
recurrence scheme allows one to increase the achievable fi-
delity of cluster states. This result is quite remarkable, as the
same imperfect operations are involved in the creation of the
cluster state and in the purification process.

A. Physical implementation

Consider a two-dimensionalN3N optical lattice filled
with one atom per lattice site. Internal states of the atoms—
which constitute the qubits—can be manipulated by means
of laser pulses. While in the present experimental setup ad-
dressing individual atoms is still a problem, there are propos-
als to overcome this limitation—for example, by expanding
the lattice or by using reloading techniques into lattices with
larger spacing. In the following we will assume that indi-
vidual addressing of the atoms is possible. Interactions be-
tween neighboring atoms take place, e.g., by state selectively
shifting the lattice, leading to a state-dependent collisional
phase arising from controlled cold collisions.f29–33g The in-
teraction Hamiltonian describing a lattice shift in thex direc-
tion is given by

Hx = 4gstdo
sk,ld

s1 − sz
sk,ldd/2 ^ s1 − sz

sk+1,ldd/2, s75d

wheresk, ld labels thesx,yd coordinate of the atom. Note that
for egstddt=p, such an interaction producesN copies of one-
dimensional cluster states along thex direction of the lattice
when applied to states of the formsu0l+ u1ld^N2

. These states
can than be purified by using lattice shifts along they direc-
tion as follows. In a first step, we want tossimultaneouslyd
implement protocolP1 to the linear cluster states in rows 2l
and 2l +1. We have thatHy is equivalent up to local unitary
operations to the Ising Hamiltonian

HI = gstdo
sk,ld

sz
sk,ld

^ sz
sk,l+1d. s76d

On the one hand, applyingHI for egstddt=p /2, followed by
the local unitary operationsx applied to particlessk,4ld,
sk,4l +1d before and after another application ofHI for

egstddt=p /2, results in an effective interactionH̃I which
performs phase gates between rows 2l and 2l +1, while the
interaction between rows 2l +1 and 2l +2 is canceled. By
means of local operations performed before and after the

application ofH̃I, one can convert each of these phase gates
into a CNOT gate with the freedom of choosing source and
target for each pair of particles independently. This allows
one to implement protocolP1 simultaneously toN/2 pairs of
linear cluster states with a total of two sweeps of the lattice

in they direction. The final measurement of the cluster states
in rows 4l −1, 4l leaves us—in the case the measurement
was successful—with linear cluster states of improved fidel-
ity at rows 4l +1, 4l +2, which can further be purified by
applying protocolP2 in a similar way. Note that iterations of
the protocol may involve lattice shifts over longer distances.

B. Improved fidelity

We now analyze the purification protocol sketched above
in the case where the operations involved in the procedure
are imperfect. Specifically, we consider the interactions be-
tween neighboring atoms—and thus also the resultingCNOT

operations—to be imperfect. There are various possible
sources of imperfections, ranging from imperfection in the
laser manipulation of the internal states of the atoms to fluc-
tuations in the desired interaction time. We will consider a
simple model to describe imperfections in the gates. As in
the previous discussion, we describe imperfect operations by
a completely positive map which consists of first applying a
partially depolarizing channel with error parameterp to the
individual particles followed by the perfect operationfsee
discussion in Sec. IV, in particular Eq.s32dg. To be consis-
tent, we assume that thesameimperfect operations are in-
volved in the creation of the cluster state and in the purifi-
cation procedure. In the procedure sketched above, both
processes—the creation of cluster states and the implemen-
tation of gates in the purification—are physically imple-
mented by the same procedure and thus our assumption that
both processes suffer from same imperfections is reasonable
in such systems. In particular, cluster states are created by
shifting the lattice along thex direction, while interactions
between neighboring atoms resulting in aCNOT operation
sused for entanglement purificationd are implemented by a
lattice shift along they direction.

We now compare the fidelity of 1D cluster states created
directly in the lattice by simply shifting it along thex direc-
tion with the achievable fidelity when using the above puri-
fication procedure. Up to local unitary operations, the gate
operation involved in the creation of the cluster state is given
by

Ustd = expS− itgstdo
sk,ld

sz
sk,ld

^ sz
sk+1,ldD = p

sk,ld
e−itgstdsz

sk,ld
^sz

sk+1,ld
,

s77d

i.e., corresponds to a sequential application of phase gates to
neighboring particles. Note that we haveegstddt=p /2 in this
case and that initially all atoms are prepared in state
1/Î2su0l+ u1ld. Assuming that each of these phase gates is
imperfect and modeled by Eq.s32d, one readily obtains the
fidelity of the resulting state. The results forp=0.99 for dif-
ferent sizes of the cluster state are summarized in Table I.

The maximal achievable fidelityFmax of the recurrence
protocol implemented in an optical lattice when considering
imperfect CNOT operations can be readily determined. We
assume that the state created by the lattice shift along thex
direction is used as input state for the purification protocol.
As one can see from Table I, the achievable fidelity can be

ASCHAUER, DÜR, AND BRIEGEL PHYSICAL REVIEW A71, 012319s2005d

012319-18



significantly enhanced by the purification procedure, al-
though the operations involved in the creation of the cluster
state and in the purification procedure have the same fidelity.

C. Entanglement pumping

In the discussion of the entanglement purification protocol
in the previous paragraph, we assumed that the original re-
currence protocol is applied. In particular, this involves in
each step of the protocol a manipulation of two identical
copies of the state obtained in the preceding round of the
protocol. A modified protocol which is called “entanglement
pumping” operates always on one copy of the state to be
purified swhose fidelity increases during the processd and on
a second state of some standard form. The fidelity of the
second state is always the same throughout the procedure.
That is, the input state at stagek of the protocol is given by
r=rk−1 ^ r0, whererk−1 is the state obtained in the previous
round, whiler0 is the initial state. Note that also in this case,
protocolsP1 andP2 are iteratively applied.

On the one hand, entanglement pumping offers the advan-
tage to use always states of a certain standard form which
may be easy to produce; e.g., they may arise from sending a
locally prepared cluster states through noisy quantum chan-
nels to several parties. The possibility to produce these states
on demand reduces the required storage capabilities of the
whole procedure, as only two copies of the state have to be
stored simultaneously when using entanglement pumping,
while the application of the standard recurrence protocol
typically requires simultaneous storage of hundreds of copies
of the state. On the other hand, entanglement pumping has
the disadvantage that even in the case of noiseless local op-
erations no maximally entangled pure states can be pro-
duced. Iterative application of the protocol only allows one
to increase the fidelity of the state by a certain amount. By
applying a nested entanglement pumping schemesintroduced
in Ref. f25gd one can overcome this limitation. A few nesting
levels—which correspond to the number of extra copies of
the state which need to be stored simultaneously—typically
suffice to reach fidelities close to those achievable with the
standard recurrence protocol.

It turns out that entanglement pumping—in contrast to the
standard recurrence scheme—does not allow one to increase
the fidelity of cluster states if the noisy operations used to

create the states are also used in the purification procedure.
However, entanglement pumping may still be used tomain-
tain high fidelity cluster states in the presence of
decoherence—i.e., to stabilize these states. In optical lattice
systems the implementation of entanglement pumping is
even simpler than the implementation of the standard recur-
rence scheme. The production of the linear cluster stater0
can be accomplished by a lattice shift along thex direction.
The state to be purified should in this procedure not partici-
pate on the interaction. One possibility to achieve this is by
transferring the state of the neutral atoms to internal states
which are trapped in an independent lattice potential which is
not moving. Another option is to apply two lattice shifts
intercepted by local unitary operations on this copy of the
state which are chosen in such a way that the interaction
cancels. This is similar to the procedure described in Sec.
IX A to implement CNOT gates between certain pairs of at-
oms, while no interaction takes place between certain other
pairs. Note that a implementation of the entanglement pump-
ing protocol for anN-particle linear cluster state only re-
quires aN32 lattice.

X. SUMMARY AND CONCLUSIONS

In this paper we have analyzed in detail entanglement
purification protocolssrecurrence schemes and hashing pro-
tocolsd which are capable of purifying arbitrary two-
colorable graph states. For the recurrence schemes, we found
that sid the purification regime of the protocol for graph
states does depend on the degree of the graph, but is inde-
pendent of the number of particlesN fthat is, the resulting
stater arising from a perfect cluster state due to channel
noiseslocal decoherenced can be successfully distilled using
the protocol as far as the decoherence per particle is below a
certain threshold value which depends on the degree of the
graph, but is independent ofNg, andsii d in the case ofnoisy
local control operations, we observe that the corresponding
threshold for local control operations such that the protocol
can be successfully applied is for cluster statessand similar
states where the degree of the corresponding graph does not
depend onNd is independent of the size of the system. In
contrast, the requirements to purify GHZ states become more
stringent for increasingN. We have thatsid and sii d together
suggest that our protocol may be used for practical applica-
tions to purify certain states, e.g., in the context of purifica-
tion of quantum algorithms or concatenated quantum error
correction codes. We have also shown that the entanglement
created by our purification protocol is private, an important
feature for possible applications for secure communication
and computation. We have compared multiparty entangle-
ment purification protocols with protocols based on bipartite
entanglement purification and found that direct multiparticle
entanglement purification is not only more efficient, but also
the achievable fidelity of the state is larger. Finally we pro-
posed a possible experimental implementation of the proto-
col based on neutral atoms in an optical lattice. This scheme
allows one to increase the fidelity of cluster states created in
such systems.

TABLE I. Fidelity F of the linear cluster state of sizeN created
using imperfect operations with error parameterp=0.99 and achiev-
able fidelityFmax when using entanglement purification with noisy
operations of the same quality.

N=2 F=0.9900 Fmax=0.9889

N=3 F=0.9753 Fmax=0.9836

N=4 F=0.9608 Fmax=0.9785

N=5 F=0.9465 Fmax=0.9734

N=6 F=0.9324 Fmax=0.9681
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We are confident that multiparticle entanglement purifica-
tion will prove a useful tool in various branches of quantum
information, ranging from measurement-based quantum
computation over quantum error correction to applications in
quantum security and quantum communication.

Note added. After completion of this work, we have
learned about similar results on a hashing method to purify
CSS states by Kai Chen and Hoi-Kwong Lof34g.
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