
Family of concurrence monotones and its applications

Gilad Gour*
Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2J1

and Department of Mathematics, University of California/San Diego, La Jolla, California 92093-0112, USA
sReceived 20 August 2004; published 13 January 2005d

We extend the definition of concurrence into a family of entanglement monotones, which we call concur-
rence monotones. We discuss their properties and advantages as computational manageable measures of en-
tanglement, and show that for pure bipartite states all measures of entanglement can be written as functions of
the concurrence monotones. We then show that the concurrence monotones provide bounds on quantum
information tasks. As an example, we discuss their applications to remote entanglement distributionssREDd
such as entanglement swapping and remote preparation of bipartite entangled statessRPBESd. We prove a
powerful theorem which states what kind ofspossibly mixedd bipartite states or distributions of bipartite states
cannot be remotely prepared. The theorem establishes an upper bound on the amount ofG-concurrencesone
member in the concurrence familyd that can be created between two single-qudit nodes of quantum networks
by means of tripartite RED. For pure bipartite states the bound on theG-concurrence can always be saturated
by RPBES.
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I. INTRODUCTION

Entanglement is one of the main ingredients of nonintui-
tive quantum phenomena. Besides being of interest from a
fundamental point of view, entanglement has been identified
as a nonlocal resource for quantum information processing
f1g. In particular, shared bipartite entanglement is a crucial
resource for many quantum information tasks such as tele-
portationf2g, quantum cryptographyf3g, entanglement swap-
ping f4g, and remote state preparationsRSPd f5–8g that are
employed in quantum information protocols.

One of the remarkable discoveries on bipartite entangle-
ment is that for pure states, there is a unique and single
measure of entanglement, called entropy of entanglement
f9g, that quantifies,asymptotically, the nonlocal resources of
a large number of copies of a pure bipartite state. However,
the generalizations of the entropy of entanglement to mixed
states yields, even asymptotically, more than one measure of
entanglement, such as entanglement of formation and distil-
lation f10g. Despite the enormous efforts that have been
made in the past years, mixed entanglement lacks a complete
quantificationf11g.

For a finite number of shared pure states, the entropy of
entanglement is not sufficient, and more measures of en-
tanglement are required to quantify completely the nonlocal
resources. These are calledentanglement monotonesf12g
since they behave monotonically under local transformations
of the system. The family of entanglement monotonesEk
sk=0,1,2, . . . ,d−1d introduced in f13g were first defined
over the set of pure states as

Eksucld = o
i=k

d−1

li , s1d

where l0ùl1ù ¯ ùld−1 are the Schmidt numbers of the
sd3dd-dimensional bipartite stateucl, and then extended to

mixed states by means of the convex roof extension. For a
pure stateucl these measures of entanglement quantifycom-
pletely the nonlocal resource since all the Schmidt coeffi-
cients of ucl are determined by them. The entanglement
monotones defined in Eq.s1d play a central role in transfor-
mations of pure states by local operations and classical com-
municationssLOCCd f13–15g. Moreover, each member of
the family may quantify the possibility to perform a particu-
lar task in quantum information processingsfor example,
E2=1−l0 quantifies the possibility to perform faithful tele-
portation with partially entangled statesf16gd.

Nevertheless, the family of entanglement monotones
Eksrd is not enough to quantify completely the entanglement
of a bipartite mixed stater. Furthermore, it will be argued
here, that ifr is a sd3dd-dimensional mixed state withd
.4, in general, it is impossible to find analytical expression
si.e., an explicit formula like inf17,18gd for Eksrd sas well as
for the entanglement of formation and other measures of en-
tanglementd. Thus, we are motivated to look for other sets of
monotones which are more computationally manageable.

Such a computationally manageable measure of entangle-
ment is theconcurrence. The concurrence as a measure of
entanglement was first introduced inf17,18g for an entangled
pair of qubits and later on generalized to higher dimensions
f19,20g sthere are other generalizations of concurrence which
we will not discuss heref21gd. Already inf17,18g the impor-
tance of the concurrence monotone was recognized and the
entanglement of formation of a mixed entangled pair of qu-
bits was calculated explicitly in terms of the concurrence. In
higher dimensions there is not yet an explicit formula for the
generalized concurrencef19g, but lower bounds have been
found f20g. Recently, it has been shownf22g that the concur-
rence plays also a major role in remote entanglement distri-
butions sREDd protocols such as entanglement swapping
sESd and remote preparation of bipartite entangled states
sRPBESd.

In this paper we introduce a family of entanglement*Electronic address: ggour@math.ucsd.edu
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monotones which we callconcurrence monotones. We dis-
cuss its properties and show that for pure statesall measures
of entanglement can be written as functions of the concur-
rence monotones. We show that these concurrence mono-
tones can serve as a powerful tool to rule out the possibility
of certain tasks in quantum information processing. In par-
ticular, we find an upper bound on the entanglement that can
be produced by tripartite RED protocols and show that the
protocol given inf22g for RPBES saturates the bound. The
measure of entanglement is taken to be one of the members
in the concurrence family, which we give the name
G-concurrence, since for pure states theG-concurrence is the
geometric meanof the Schmidt numbers. In addition, we
provide an operational interpretation of theG-concurrence as
a type of entanglement capacity.

This paper is organized as follows. In Sec. II we define
the family of concurrence monotones and then discuss its
importance and advantages. In Sec. III we discuss its appli-
cations to RED protocols and in Sec. IV we summarize our
results and conclusions.

II. DEFINITION OF CONCURRENCE MONOTONES

In the following, we will use the definition of concurrence
as given inf17,18g for the s232d-dimensional case, and its
generalization to higher dimensions as given inf19g ssee also
f20gd. The concurrence of a pure bipartite normalized state
ucl is defined as

Csucld ;Î d

d − 1
s1 − Trr̂r

2d, s2d

where the reduced density matrixr̂r is obtained by tracing
over one subsystem. In the definition above we added the
factorÎd/ sd−1d so that 0øCsucldø1. Ford=2 Eq.s2d also
coincides with the definition given inf17,18g by means of
the “spin flip” transformation. The concurrence of a mixed
state,r̂, is then defined as the average concurrence of the
pure states of the decomposition, minimized over all decom-
positions ofr̂ sthe convex roofd:

Csr̂d = min o
i

piCsucild Sr̂ = o
i

piucilkciuD . s3d

In the following definition of the family of concurrence
monotones, the concurrence defined in Eqs.s2d and s3d is
denoted byC2 since it is the second member of the family.

Definition 1. sad Consider asd3dd-dimensional bipartite
pure stateucl with Schmidt numbersl;sl0,l1, . . . ,ld−1d.
The d concurrence monotones,Cksucld sk=1,2, . . . ,dd, of
the stateucl are defined as followsssee alsof23,24g for simi-
lar definitionsd:

Cksucld ; S Sksl0,l1 . . . ,ld−1d
Sks1/d,1/d, . . . ,1/ddD

1/k

, s4d

where Sksld is the kth elementary symmetric function of
l0,l1, . . . ,ld−1. That is,

S1sld = o
i

li, S2sld = o
i, j

lil j ,

S3sld = o
i, j,k

lil jlk, . . . ,Sdsld = p
i=0

d−1

li . s5d

sbd Consider asd3dd-dimensional bipartite mixed stater.
The d concurrence monotones,Cksrd, of the stater are then
defined as the averageCk of the pure states of the decompo-
sition, minimized over all decompositions ofr sthe convex
roofd:

Cksrd = min o
i

piCksucild Sr = o
i

piucilkciuD . s6d

The functionsSksld andfSksldg1/k are Schur-concavessee
pp. 78,79 inf25gd. Moreover,

Sksld ø Sks1/d,1/d, . . . ,1/dd =
1

dkSd

k
D , s7d

since the vectors1/d,1 /d, . . . ,1 /dd is majorized byall vec-
tors l=sl0, . . . ,ld−1d with non-negative components that
sum to 1. Thus, 0øCksucldø1 andCksucld=1 only when all
the Schmidt numbers ofucl equal to 1/d si.e., ucl is a maxi-
mally entangled stated.

Equations4d together with the convex roof extension of
Ck to mixed statesfsee Eq.s6dg defines an entanglement
monotone for eachk. To see that, first note that

Cksucld = fksTrBuclkcud, s8d

where the trace is taken over one subsystemssay Bob’s sys-
temd and fkssd;fSk(lssd) /Sks1/d, . . . ,1 /ddg1/k flssd is the
vector of eigenvalues of the density matrixsg. According to
theorem 2 inf12g Ck is an entanglement monotone iffkssd is
a unitarily invariant, concave function ofs. The concavity of
fkssd follows from two facts. Firstssee p. 79 inf25gd, for any
two vectorsx andy with xi ,yi ù0 si =0,1, . . . ,d−1d

fSksx + ydg1/k ù fSksxdg1/k + fSksydg1/k. s9d

Second, for two Hermitian matricesA and B, lsA+Bd
alsAd+lsBd ssee p. 245 inf25gd. Thus, given two density
matricess1 ands2 we haves0ø tø1d

fkfts1 + s1 − tds2g = FSkfl„ts1 + s1 − tds2…g
Sks1/d, . . . ,1/dd G1/k

ù FSkflsts1d + l„s1 − tds2…g
Sks1/d, . . . ,1/dd G1/k

ù F Skflsts1dg
Sks1/d, . . . ,1/ddG1/k

+ FSkfl„s1 − tds2…g
Sks1/d, . . . ,1/dd G1/k

= tfkss1d + s1 − tdfkss2d. s10d

Thus Eqs.s4d and s6d define entanglement monotones.
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Advantages of concurrence monotones

There are several advantages and applications for these
particular measures of entanglement. First, the family of con-
currence monotones as defined in Eqs.s4d and s6d is com-
plete in the sense that all the Schmidt coefficients of a given
pure state can be determined by thed concurrence mono-
tones. To see that, let us define the characteristic polynomial
flsxd=sx−l0dsx−l2d¯ sx−ld−1d whose singular values are
the Schmidt numbers. It is easy to see thatflsxd can be
written as

flsxd = o
k=0

d
s− 1dk

dk Sd

k
Dxd−kfCksldgk, s11d

whereCk=0sld;1 andCk=1sld;oili =1. Hence, the singular
values of flsxd si.e., the Schmidt numbersd are determined
completely by the concurrence monotonesCk.

Furthermore, consider a puresd3dd-dimensional state

ucl = o
i j

aij uilAu jlB, s12d

where uilA and u jlB are somed-dimensional bases in Alice
and Bob systems, respectively. The Schmidt numbers are the
nonzero eigenvalues of the matrixA†A sor AA†d, where the
matrix elements ofA are aij . Thus, in general, ford.4,
according to Abel’s impossibility theoremsalso Galoisd there
is no analytical expression for the Schmidt numbers in terms
of aij . The advantage of our family of concurrence mono-
tones is that one can always express analyticallyCksucld in
terms ofaij :

Cksucld = d3TrBskd

Sd

k
D 4

1/k

, s13d

whereBskd is thekth compound of the matrixA†A ssee p. 502
in f25g for the definition of compound matricesd. Such an
explicit formulasin terms ofaijd is not available for most of
the measures of entanglement discussed in literaturesinclud-
ing the entropy of entanglement,a-entropy or Renyi entropy,
and the family of entanglement monotones given inf13gd.

As an example, consider the entropy of entanglement
Esucld=−Trrr log rr, where rr ;TrBuclkcu is the reduced
density matrix. Ifucl is given in terms ofaij as above, then in
order to calculate the entropy of entanglement, one must be
able to writerr in its diagonal form. However, ford.4, in
general, it is impossible to solve the equationflsxd=0 ana-
lytically fflsxd is defined in Eq.s11dg.

For dø4 the entropy of entanglement can be expressed in
terms of the concurrence monotones. Ford=2, the solution
to the quadratic equationflsxd=0 is simple and the entropy
of entanglement is given by

Esucld = hS1 +Î1 − fC2sucldg2

2
D , s14d

where hsxd=−x log x−s1−xdlogs1−xd. This formula holds
for mixed states where the concurrence for mixed states is

defined in Eq.s6d and the LHS is replaced by the entangle-
ment of formationf18g.

For d=3, the solutions to the cubic equationflsxd=0 are
more complicatedsalthough possibled and the entropy of en-
tanglement is given by

Esucld = HS1

3
+

2

3
Î1 − fC2sucldg2 cossu/3d,

1

3
+

2

3
Î1 − fC2sucldg2 cos„su + 2pd/3…D ,

cosu ;
1 − 3

2fC2sucldg2 + 1
2fC3sucldg3

„1 − fC2sucldg2
…

3/2 , s15d

where Hsx,yd=−x log x−y log y−s1−x−ydlogs1−x−yd.
Similarly, for k=4, it is possible to find the solutions to the
quartic equationflsxd=0 and express the entropy of en-
tanglement in terms of the concurrence monotones.

The analytical expression forCksucld in terms of the re-
duced density matrixrr ;TrBuclkcu is given by

Cksucld = d3 1

Sd

k
D o

hNmj
s− 1dk−om=1

k Nmp
m=1

k
1

Nm!
STrrr

m

m
DNm4

1/k

,

s16d

where the sum is taken over all the non-negative integers
N1,N2, . . . ,Nk that satisfy the constraintN1+2N2+¯ +kNk
=k. This expressionssee alsof26,27gd follows directly from
multinomial formulas given inf28g. As an example, fork
=2,3,4, Eq.s16d gives

C2sucld =Î d

d − 1
s1 − Trrr

2d,

C3sucld = F d2

sd − 1dsd − 2d
s1 − 3Trrr

2 + 2Trrr
3dG1/3

,

C4sucld = F d3

sd − 1dsd − 2dsd − 3d
f1 − 6Trrr

2 + 8Trrr
3 − 6Trrr

4

+ 3sTrrr
2d2gG1/4

. s17d

We can see that fork=2 Eq.s16d is reduced to the expression
for the concurrence given inf19g. Note also thatCksucld=0 if
k is greater than the Schmidt number ofucl.

The G-concurrence monotone

The last member of the familyCk=d is of a particular
importance and we denote it byGd since it is thegeometric
meanof the Schmidt numbers

Gdsucld ; Ck=dsucld = dsl0l1 ¯ ld−1d1/d. s18d

Note that for d=2 the G-concurrence coincides with the
original definition of concurrence given by Hill and Wootters
f17g.

FAMILY OF CONCURRENCE MONOTONES AND ITS… PHYSICAL REVIEW A 71, 012318s2005d

012318-3



The G-concurrence has several interesting features.
A computational manageable measure of entanglement:

for the d3d bipartite pure stateucl in Eq. s12d, the
G-concurrence is given simply byf29g fcf. Eq. s13dg

Gdsucld = dfDetsA†Adg1/d, s19d

where the matrix elements ofA areaij .
Multiplicativity: first, given ad13d1 sd23d2d bipartite

entangled state,uc1l suc2ld, we have

Gd1d2
suc1l ^ uc2ld = Gd1

suc1ldGd2
suc2ld. s20d

Note that although in both sides of the equation above we
take the geometric means of the Schmidt numbers of the
relevant states,Gd1d2

=Ck=d1d2
is not the samemeasure of

entanglement asGd1
=Ck=d1

f30g. Second, given a bipartite
state uclPHA ^ HB, a complex numberc and operators

scomplex matricesd ÂPHA and B̂PHB we havef31g

Gdscucld = ucu2Gdsucld, s21d

GdsÂ ^ B̂ucld = uDetsÂdu2/duDetsB̂du2/dGdsucld, s22d

where we have used Eq.s19d.
A lower bound:the G-concurrence monotone provides a

lower bound for all the other concurrence monotones. First,
for purebipartite states we have the inequalitiesscf. p.224 in
f25gd

fC2sucldg2 ù fC3sucldg3 ù ¯ ù fCdsucldgd ; fGdsucldgd.

s23d

Second, given amixedbipartite stater we havef32g

Gdsrd ø Cksrd ∀ k = 1,2, . . . ,d. s24d

Note that the relations in Eqs.s23d ands24d may be useful in
finding lower bounds on measures of entanglement such as
entanglement of formation. In addition, as we will see in the
following section, theG-concurrence monotone plays a cen-
tral role in tripartite RED protocols.

III. REMOTE ENTANGLEMENT DISTRIBUTION

As mentioned in the Introduction, shared bipartite en-
tanglement is a crucial shared resource for many quantum
information tasks such as teleportationf2g, entanglement
swappingf4g, and remote state preparationsRSPd f5–8g that
are employed in quantum information protocols.

Remote preparation of bipartite entangled statesf22g
sRPBESd is another important quantum information task in
which a quantum networksQNetd have a single supplier
snamed “Sapna”d who shares entangled states with nodes via
quantum channels, then performs LOCC to produce pairwise
entangled states between any two nodes, say, Alice and Bob.
A crucial feature of RPBES is that Alice and Bob end up
sharing aunique bipartite entangled state. A more general
scheme, in which Alice and Bob end up sharing adistribu-
tion of entangled states is called remote entanglement distri-
bution f22g sREDd.

The scheme for tripartite RED, introduced inf22g, com-
mences with a four-way shared state,r̂1234= r̂12^ r̂34 with
r̂12 and r̂34 bipartite entangled states, and with Sapnasthe
supplierd holding shares 2 and 3, and Alice and Bob holding
shares 1 and 4, respectively. Each share has a corresponding
d-dimensional Hilbert space. The three parties Alice, Bob,
and Sapna perform LOCC to create a set of outcomes

O ; hŝ14
j = Tr23ŝ1234

j ,Qj ; j = 1, . . . ,sj, s25d

with Qj the probability that Alice and Bob share the mixed
stateŝ14

j which is obtained by reducing the four-way shared
stateŝ1234

j over Sapna’s shares. In general RED, the states
hŝ14

j j may be inequivalent under LOCC whereas in RBESP
the statesŝ14

j shared by Alice and Bob must be equivalent
under LOCC, so Alice and Bob can always transformŝ14

j

into a unique entangled statesi.e., independent onjd via
LOCC.

In this section, we address the issue of which distributions
of states,O, can or cannot be created via LOCC by Alice,
Bob, and Sapna. TheG-concurrence monotone plays a major
role in the following theorem that establishes which distribu-
tions of states cannot be produced by RED.

Theorem 1.If Alice, Bob and Sapna perform LOCC on
the initial 4-qudit stater̂12^ r̂34 with O fin Eq. s25dg the
resultant distribution of states shared between Alice and Bob,
then

G14 ; o
j=1

s

QjGdsŝ14
j d ø G12G34, s26d

with G12;Gdsr̂12d andG34;Gdsr̂34d.
sIn the next subsection we will show that the equality in

the above equation can always be achieved by RBESP ifr̂12
and r̂34 are pure.d

Proof. Let us writer̂12 and r̂34 in their optimal decompo-
sitions

r̂12 = o
l=0

d2−1

plucsldl12kcsldu, r̂34 = o
l=0

d2−1

qluxsldl34kxsldu. s27d

We can always choose optimal decompositions with no more
thend2 elementsf33g. The statesucsldl12 anduxsldl34 are given
in their Schmidt decomposition:

ucsldl12 = o
k=0

d−1

Îlk
slduksldksldl12,

uxsldl34 = o
k=0

d−1

Îhk
slduksldksldl34, s28d

with lk
sld and hk

sld the Schmidt coefficients ofucsldl12 and
uxsldl34, respectively. The indexl in the stateshuksldlij repre-
sentsd2 different bases for each systemi =1,2,3,4.Note
that in this notation
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G12 = do
l=0

d2−1

plsl0
sldl1

sld
¯ ld−1

sld d1/d,

G34 = do
l=0

d2−1

qlsh0
sldh1

sld
¯ hd−1

sld d1/d. s29d

Since the entanglement between Alice and Bob remains
zero unless Sapna perform a measurement, we assume that
the first measurement is performed by Sapna and is described

by the Kraus operatorsM̂s jd and their components

Mmm8,kk8
s j ,ll8d ; 23km

sldm8sl8duM̂s jduksldk8sl8dl23, s30d

with k, k8, m, m8=0,1 andl, l8=1,2,3,4.
The probability to obtain an outcomej is thus

Qj ; TrsM̂s jdr̂12 ^ r̂23M̂
s jd†d = o

l=0

d2−1

o
l8=0

d2−1

plql8N
s j ,ll8d, s31d

with Ns j ,ll8d;om,m8rmm8
s j ,ll8d and

rmm8
s j ,ll8d ; o

k,k8

lk
sldhk8

sl8duMkk8,mm8
s j ,ll8d u2. s32d

The density matrix shared between Alice, Bob, and Sapna
after outcomej occurs is

ŝ1234
j =

1

Qj
o
l,l8

plql8N
s j ,ll8duFs j ,ll8dl1234kFs j ,ll8du, s33d

where

uFs j ,ll8dl1234=
1

ÎNs j ,ll8d
o
k,k8

o
m,m8

Îlk
sldhk8

sl8d

3Mkk8,mm8
s j ,ll8d uksldk8sl8dl14umsldm8sl8dl23. s34d

Tracing over Sapna’s subsystems yields

ŝ14
j =

1

Qj
o
l,l8

o
m,m8

plql8rmm8
s j ,ll8dufmm8

s j ,ll8dl14kfmm8
s j ,ll8du, s35d

where

ufmm8
s j ,ll8dl14 ;

1

Îrmm8
s j ,ll8d

o
k,k8

Îlk
sldhk8

sl8dMkk8,mm8
s j ,ll8d uksldk8sl8dl14.

s36d

From the definition of theG-concurrence for mixed states
si.e., the convex roof extensiond, it follows thatGdsŝ14

j d can-
not exceed the average of theG-concurrence over the de-
composition in Eq.s35d. Thus

Gdsŝ14
j d ø

1

Qj
o
l,l8

o
m,m8

plql8rmm8
s j ,ll8dGsufmm8

s j ,ll8dl14d. s37d

Using Eq.s19d we find

Gsufmm8
s j ,ll8dl14d =

dspk=0

d−1
lk

sldhk
sl8dd1/duDetsMmm8

s j ,ll8ddu2/d

rmm8
s j ,ll8d

,

s38d

where thed2 elements of each matrixM
mm8
s j ,ll8d are M

kk8,mm8
s j ,ll8d .

Thus, substituting this result in Eq.s37d yields

G14 ; o
j=1

s

QjGsŝ14
j d ø do

l,l8

plql8Sp
k=0

d−1

lk
sldhk

sl8dD1/d

3 o
j

o
m,m8

uDetsMmm8
s j ,ll8ddu2/d. s39d

Now, from the geometric-arithmetic inequality we have

o
m,m8

uDetsMmm8
s j ,ll8ddu2/d ø

1

d
o

m,m8

TrsMmm8
s j ,ll8d†Mmm8

s j ,ll8dd

=
1

d
TrsM̂s jd†M̂s jdd. s40d

Hence, from Eq.s39d and Eq.s29d we get

G14 ø
1

d2G12G34o
j

TrsM̂s jd†M̂s jdd. s41d

Thus, from the completeness relation,o jM̂
s jd†M̂s jd= I, we ob-

tain Eq.s26d.
Consider now the following LOCC: after Sapna’s first

measurement, she sends the resultj to Alice and Bob. Based
on this result, Alice then performs a measurement repre-

sented by the Kraus operatorsÂj
skd and sends the resultk to

Bob and Sapna. Based on the resultsj , k from Sapna and
Alice, Bob performs a measurement represented by the

Kraus operatorsB̂jk
snd and send the resultn to Sapna. In the

last step of this scheme, Sapna performs a second measure-

ment with Kraus operators denoted byF̂jkn
s jd and send the

result i to Alice and Bob. The final distribution of entangled
states shared between Alice and Bob is denoted by
hNjkni ,s14

jknij, whereNjkni is the probability for outcomej , k,

n, i and ŝ14
jkni=Tr23ŝ1234

jkni with

ŝ1234
jkni =

1

Njkni
sÂj

skd
^ F̂jkn

sid M̂s jd
^ B̂jk

snddfr̂12 ^ r̂34g

3sÂj
skd

^ F̂jkn
sid M̂s jd

^ B̂jk
sndd†. s42d

Since theG-concurrence of any bipartite state satisfies Eq.
s22d, the analog of Eq.s41d for this LOCC protocol is there-
fore

G14 ; o
j ,k,n,i

NjkniGsŝ14
jknid ø

1

d2G12G34o
j ,k

uDetsÂj
skddu2/d

3 o
n

uDetsB̂jk
snddu2/do

i

TrsM̂s jd†F̂jkn
sid†F̂jkn

sid M̂s jdd. s43d

Moreover, from the geometric-arithmetic inequality we
have
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o
n

uDetsB̂jk
snddu2/d ø

1

d
o
n

TrB̂jk
snd†B̂jk

snd = 1 s44d

and a similar relation forÂj
skd. These results, together with the

completeness relationoiF̂ jkn
sid†F̂jkn

sid =1, lead us back to Eq.
s41d. As we can see, all operations that are performed by
Alice, Bob, and Sapna after the first measurement by Sapna
cannot increase the bound onC14. j

Theorem 1 concerns one supplier and two nodes, but in
fact applies to one supplier andany pair of nodes; thus the
result of theorem 1 is applicable to an arbitrarily large QNet
with one supplier and many nodes. In fact theorem 1 can be
extended to more than one supplier, as stated in the following
corollary.

Corollary. Consider an align chain ofN mixed bipartite
states, r0,1, r1,2, . . . ,rN−1,N, where the staterk−1,k sk
=1,2, . . . ,Nd is shared between partyk−1 and partyk. If the
N+1 parties perform LOCC on the initial stater0,1^ r1,2
^ ¯ ^ rN−1,N with the resultant distribution of states be-
tween party 0 andN denoted byhPj ,ŝ0N

j j sPj is the probabil-
ity to have the stateŝ0N

j d, then

G0N ; o
j

PjGdsŝ0N
j d ø G01G12¯ GN−1N, s45d

with Gk−1 k;Gdsrk−1,kd sk=1,2, . . . ,Nd.
Theorem 1 and its corollary suggest an operational inter-

pretation of theG-concurrence as a form ofentanglement
capacity. In the following subsection we show that if both
r̂12 and r̂23 are sd3dd-dimensionalpure states, then the
equality in Eqs.s26d and s45d can always be achieved.

An optimal protocol for RPBES

In this section we show that by LOCC Sapna can prepare
a bipartite pure state between Alice and Bob withany value
of the concurrence monotoneG which is less or equal to
G12G34. For this purpose, we introduce the protocol for
RBESP that has been first introduced inf22g. In this protocol
the supplier Sapna shares the initialsd3dd-dimensional pure
statesucl12=ok=0

d−1Îlkukkl12 and uxl34=ok=0
d−1Îhkukkl34 swhich

are expressed in the Schmidt decompositiond with Alice and
Bob, respectively.

The steps of the protocol are as follows.
sid Sapna performs a projective measurement

P̂s j ,j8d = uPs j ,j8dl23kPs j ,j8du, j , j8 = 0,1, . . . ,d − 1, s46d

with

uPs j ,j8dl23 ;
1

d
o

m,m8=0

d−1

eifs2p/d2dsdj+j8dsdm+m8d+umm8gumm8l23,

s47d

with umm8PR chosen freely. Note that thed2 statesuPs j ,j8dl23
are orthonormal, regardless of the choice ofumm8.

sii d After the outcomesj , j8 have been obtained, the state
of the system can be written asuPs j ,j8dl23ufs j ,j8dl14, where

ufs j ,j8dl14 = o
m=0

d−1

o
m8=0

d−1

Îlmhm8

3e−ifs2p/d2dsdj+j8dsdm+m8d+umm8gumm8l14. s48d

siii d Sapna sends the resultsj and j8 to Bob s2 log2 d bits
of informationd and the resultj8 slog2 d bits of informationd
to Alice. Bob then performs the unitary operation

Ûb
s j ,j8dum8l4 = expSi

2p

d2 sdj + j8dm8Dum8l4, s49d

and Alice performs the unitary operation

Ûa
s j8duml1 = expSi

2p

d
j8mDuml1. s50d

sivd The final state shared between Alice and Bob is

uFl14 = o
m=0

d−1

o
m8=0

d−1

exps− iumm8dÎlmhm8umm8l14 s51d

swhich is separable forumm8=0d.
We will show now that by choosing the phasesumm8 ap-

propriately, Sapna can prepare the stateuFl14 with any value
of GsuFl14d in the rangef0,G12G34g. For this purpose, we
define the squaresd3dd complex matrixA with elements
amm8=Îlmhm8exps−iumm8d. Thus

GsuFl14d = dfDetsA†Adg1/d = G12G34fDetsV†Vdg1/d, s52d

whereG12=dsl0l1¯ld−1d1/d G34=dsh0h1¯hd−1d1/d and the
matrix elements ofV are vmm8=exps−iumm8d /Îd. Note that
for the choiceumm8=2pmm8 /d the matrixV is unitary and
thereforeGsuFl14d=G12G34. For other choices ofumm8, Sapna
can prepare the final stateuFl14 with any value of the
G-concurrence monotone in the rangef0,G12G34g.

It is important to emphasize here that the choiceumm8
=2pmm8 /d maximizesonly the G-concurrence. In fact, for
other measures of entanglement the values ofumm8 that maxi-
mize the entanglement depend explicitly on the Schmidt
numberslm andhm. For example, the concurrence monotone
Ck=2 of the final stateuFl14 is

C2suFl14d = 2H o
k.k8

o
m.m8

lklk8hmhm8

3ueisukm+uk8m8d − eisukm8+uk8mdu2J1/2
. s53d

Thus, in this case we see that the values ofukm that maximize
C2suFl14d depend explicitly on the Schmidt coefficientslk

andhm.

IV. SUMMARY AND CONCLUSIONS

In summary, we have introduced a family of entanglement
monotones that extend the definition of concurrence. We
have shown that for a finite number of copies of pure states
si.e., the deterministic cased the family characterizes com-
pletely the nonlocal resource. We have also discussed the
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advantage of the concurrence monotones over other mea-
sures of entanglementssuch as the entropy of entanglement,
the Renyi entropies, etc.d and showed that for a given bipar-
tite state,ucl=oi jaij uilu jl, the concurrence monotones can al-
ways be expressed analytically in terms of the coefficients
aij . We also gave an analytical expression of the concurrence
monotonessfor pure statesd in terms of the reduced density
matrix fsee Eq.s16dg.

We then discussed a particular member of the family
which we called theG-concurrence. TheG-concurrence for
pure states is defined as the geometric mean of the Schmidt
numbers. It has several unique properties that make it ex-
tremely useful. In particular, we have proved a powerful
theorem that establishes an upper bound on the amount of
G-concurrence that can be created between two single-qudit
nodes of quantum networks by means of RED. The theorem
also suggests an operational interpretation of the
G-concurrence as a type of entanglement capacity. We have
proved that it is always possible to saturate the
G-concurrence bound in the theorem if both of the entangled
states are pure, and also suggested an operational interpreta-

tion of theG-concurrence as a type of entanglement capacity.
An open question is left if it is possible to saturate the bound
when the states are mixed.

The concurrence monotones are defined in terms of the
symmetric functions of the Schmidt numbersfsee Eq.s5dg.
These symmetric functions have many interesting math-
ematical properties which were not introduced heressome of
the properties can be found inf25gd and which are related to
the field of majorization. Thus we believe that further inves-
tigations of these monotones will contribute to our under-
standing of entanglement.
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