PHYSICAL REVIEW A 71, 012318(2005

Family of concurrence monotones and its applications
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We extend the definition of concurrence into a family of entanglement monotones, which we call concur-
rence monotones. We discuss their properties and advantages as computational manageable measures of en-
tanglement, and show that for pure bipartite states all measures of entanglement can be written as functions of
the concurrence monotones. We then show that the concurrence monotones provide bounds on quantum
information tasks. As an example, we discuss their applications to remote entanglement distritREDhs
such as entanglement swapping and remote preparation of bipartite entangledRPRES. We prove a
powerful theorem which states what kind (pssibly mixedl bipartite states or distributions of bipartite states
cannot be remotely prepared. The theorem establishes an upper bound on the an@uaphofirrencegone
member in the concurrence familthat can be created between two single-qudit nodes of quantum networks
by means of tripartite RED. For pure bipartite states the bound ofstbencurrence can always be saturated

by RPBES.
DOI: 10.1103/PhysRevA.71.012318 PACS nuntber03.67.Hk, 03.65.Ud
[. INTRODUCTION mixed states by means of the convex roof extension. For a

Entanglement is one of the main ingredients of nonintui-PUre Statey) these measures of entanglement quartifyn-
tive quantum phenomena. Besides being of interest from aletely the nonlocal resource since all the Schmidt coeffi-
fundamental point of view, entanglement has been identifiegi€nts of [) are determined by them. The entanglement
as a nonlocal resource for quantum information processingionotones defined in Eql) play a central role in transfor-
[1]. In particular, shared bipartite entanglement is a cruciamations of pure states by local operations and classical com-
resource for many quantum information tasks such as telenunications(LOCC) [13-15. Moreover, each member of
portation[2], quantum cryptographid], entanglement swap- the family may quantify the possibility to perform a particu-
ping [4], and remote state preparati6RSP [5-8] that are lar task in quantum information processififpr example,
employed in quantum information protocols. E,=1-\q quantifies the possibility to perform faithful tele-

One of the remarkable discoveries on bipartite entangleportation with partially entangled statgs6]).
ment is that for pure states, there is a unique and single Nevertheless, the family of entanglement monotones
measure of entanglement, called entropy of entanglemerg,(p) is not enough to quantify completely the entanglement
[9], that quantifiesasymptotically the nonlocal resources of of g bipartite mixed state. Furthermore, it will be argued
a large number of copies of a pure bipartite state. Howeverhere, that ifp is a (dx d)-dimensional mixed state witt

the generalizations of the entropy of entanglement to mixed, 4 ‘i, general, it is impossible to find analytical expression
states yields, even asymptotically, more than one measure of ," explicit formula like if17,18) for E,(p) (as well as
entanglement, such as entanglement of formation and disti?' .t,h tanal t of f ti ’ d thk f en-
lation [10]. Despite the enormous efforts that have bee orhe entangiement ot formaton and other measures ot en

made in the past years, mixed entanglement lacks a comple nglement Thl.JS' we are motivated to look for other sets of
quantification[11]. monotones which are more computationally manageable.

For a finite number of shared pure states, the entropy of SUch a computationally manageable measure of entangle-
tanglement are required to quantify completely the nonlocafntanglement was first introduced[it7, 18 for an entangled
resources. These are callehtanglement monotond42] pair of qubits and later on generalized to higher dimensions
since they behave monotonically under local transformation19,20 (there are other generalizations of concurrence which
of the system. The family of entanglement monotoligs we will not discuss herg21]). Already in[17,1§ the impor-
(k=0,1,2,...d-1) introduced in[13] were first defined tance of the concurrence monotone was recognized and the

over the set of pure states as entanglement of formation of a mixed entangled pair of qu-
d-1 bits was calculated explicitly in terms of the concurrence. In
Ed|y) = s \, (1) higher Qimensions there is not yet an explicit formula for the

i generalized concurrendd9], but lower bounds have been

) found[20]. Recently, it has been shoW®2] that the concur-
where\g=\;=---=\qy, are the Schmidt numbers of the rence plays also a major role in remote entanglement distri-
(dx d)-dimensional bipartite states), and then extended to pytions (RED) protocols such as entanglement swapping

(ES and remote preparation of bipartite entangled states
(RPBES.
*Electronic address: ggour@math.ucsd.edu In this paper we introduce a family of entanglement
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monotones WhI.Ch we caltoncurrence monotone$Ve dis- SM=2N, SM=D NN,
cuss its properties and show that for pure stateseasures i
of entanglement can be written as functions of the concur-

i<j

rence monotones. We show that these concurrence mono- d-1
tones can serve as a powerful tool to rule out the possibility S0\ = SO SN = T\ (5)
of certain tasks in quantum information processing. In par- i<j<k e oo

ticular, we find an upper bound on the entanglement that can
be produced by tripartite RED protocols and show that théb) Consider a(dx d)-dimensional bipartite mixed staje
protocol given in[22] for RPBES saturates the bound. The Thed concurrence monotone§,(p), of the statep are then
measure of entanglement is taken to be one of the membe¢efined as the avera@g of the pure states of the decompo-
in the concurrence family, which we give the namesition, minimized over all decompositions pf(the convex
G-concurrence, since for pure states @weoncurrence is the roof):
geometric mearof the Schmidt numbers. In addition, we
provide an operational interpretation of tBeconcurrence as Ci(p) = min X piCll4)) (p => pi|¢i>(¢i|)- (6)
a type of entanglement capacity. i i

This paper is organized as follows. In Sec. Il we defin_e The functionsS(\) and[S(\)]** are Schur-concavisee
the family of concurrence monotones and then discuss 'tﬁp. 78,79 in[25]). Moreover,
importance and advantages. In Sec. Il we discuss its appli-
cations to RED protocols and in Sec. IV we summarize our 1 (d)

results and conclusions. S(M) < §(1/d,1/d, ..., 14) = J‘ k/’

since the vectofl/d,1/d,...,1/d) is majorized byall vec-
Il. DEFINITION OF CONCURRENCE MONOTONES tors A=(\g, ... ,\g-y) With non-negative components that

In the following, we will use the definition of concurrence SUM to 1. Thus, & Cy(|y)) <1 andCy(|#))=1 only when all
as given in[17,1§ for the (2 2)-dimensional case, and its the Schmidt numbers df) equal to 14 (i.e., |¢) is a maxi-

generalization to higher dimensions as givefilig] (see also  Mally entangled staje

[20]). The concurrence of a pure bipartite normalized state Equation(4) together with the convex roof extension of
i) is defined as Cy to mixed statedsee Eq.(6)] defines an entanglement

monotone for eack. To see that, first note that

Cll) = 5 1= TiiD), @ Cull) = F(Trel (), ®

where the trace is taken over one subsystsay Bob’s sys-
where the reduced density matiix is obtained by tracing tem) and f (o) =[S(\(0))/S(1/d, ..., 1/d)]** [\(0) is the
over one subsystem. In the definition above we added theector of eigenvalues of the density matti}. According to
factor\d/(d-1) so that 6= C(|¢)) <1. Ford=2 Eq.(2) also  theorem 2 if{12] C, is an entanglement monotonefif o) is
coincides with the definition given ifl7,18 by means of a unitarily invariant, concave function of The concavity of
the “spin flip” transformation. The concurrence of a mixed f, (o) follows from two facts. Firstsee p. 79 in25]), for any
state,p, is then defined as the average concurrence of thevo vectorsx andy with x;,y;=0 (i=0,1, ... d-1)
pure states of the decomposition, minimized over all decom-
positions ofp (the convex roof [Sx+y) Y% =[S0 1Y%+ [Sd(y) ]V (9)

o . Second, for two Hermitian matriced and B, A(A+B)
Clp) = mm; piC(¥i)) (p—§ pi|¢‘><¢i|>' ) <\(A)+\(B) (see p. 245 if25]). Thus, given two density
matriceso; and o, we have(0<t<1)

()

In the following definition of the family of concurrence

monotones, the concurrence defined in E@.and (3) is foltoy + (1L —t)oy] = {&D\(taﬁ (1 —t)(Tz)]]l/k

denoted byC, since it is the second member of the family. S(1/d, ...,14d)
Definition 1.(a) Consider ad X d)-dimensional bipartite _ 1k

pure stately) with Schmidt numbers.= (Ao, Ay, ... Ng-1). = {S‘D\gzll)/;r A((llﬂt))%)]}

The d concurrence monotone€,(|¢)) (k=1,2,...d), of
the statdy) are defined as followgsee alsd23,24] for simi- _ [ S\ (toy)] }”k
= —/d)

lar definitions: S(d, .1
o >)_( Shohs - Agt) )”k @ +[SK[A((1—t)az)]]”k
19 = S(1/d,1/d, ..., 16)) S(1/d, ..., 14)
=tf +(1-t)f . 10
where S(\) is the kth elementary symmetric function of doy) + (1 =Ofdo) (10
NoyA1s ... Ng-1. Thatis, Thus Egs(4) and(6) define entanglement monotones.
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Advantages of concurrence monotones
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defined in Eq.(6) and the LHS is replaced by the entangle-

There are several advantages and applications for thedgent of formatior18].

particular measures of entanglement. First, the family of con-

currence monotones as defined in E@y.and (6) is com-

For d=3, the solutions to the cubic equatiff(x)=0 are
more complicatedalthough possibleand the entropy of en-

pletein the sense that all the Schmidt coefficients of a giverf@nglement is given by

pure state can be determined by ttheconcurrence mono-

tones. To see that, let us define the characteristic polynomial
fL(X) =(X=Ng)(X—=N\5)- - (X—Ngq-1) Whose singular values are

the Schmidt numbers. It is easy to see tligix) can be
written as

d
(k)xd-k[ck<x>]k, (11
whereC,_o(\) =1 andCy_;(\) =2;\;=1. Hence, the singular
values offy(x) (i.e., the Schmidt numbersare determined
completely by the concurrence monotorgs

Furthermore, consider a putd X d)-dimensional state

) =2 al)alis, (12)
ij

where|i), and |j)g are somed-dimensional bases in Alice

and Bob systems, respectively. The Schmidt numbers are theCk(W)) =d

nonzero eigenvalues of the matiA (or AA"), where the
matrix elements ofA are g;. Thus, in general, fod>4,
according to Abel's impossibility theorefalso Galoi$ there

is no analytical expression for the Schmidt numbers in term
of a;. The advantage of our family of concurrence mono

tones is that one can always express analyticalji)) in
terms ofay:

TrB(k) 1/k

Culp)) =d W : (13

k

whereB® is thekth compound of the matriA’A (see p. 502
in [25] for the definition of compound matricesSuch an
explicit formula(in terms ofg;) is not available for most of
the measures of entanglement discussed in literdinickid-
ing the entropy of entanglemeni;entropy or Renyi entropy,
and the family of entanglement monotones givenlifl]).

As an example, consider the entropy of entanglement

E(|#))==Trp, log p,, where p,=Trg|#){4{ is the reduced
density matrix. Ifl) is given in terms ofy; as above, thenin
order to calculate the entropy of entanglement, one must
able to writep, in its diagonal form. However, fod>4, in
general, it is impossible to solve the equatiqiix) =0 ana-
lytically [f,(x) is defined in Eq(11)].

Ford=4 the entropy of entanglement can be expressed in

terms of the concurrence monotones. Ber2, the solution
to the quadratic equatiof}(x)=0 is simple and the entropy
of entanglement is given by

1+11 —[cz<|¢>>]2)

(14)

E(y) = h( >

where h(x)=—xlog x—(1-x)log(1-x). This formula holds

1 2 —
E(|p) = H(g + 5\"1 ~[Co|4))]? cog 613),

L 2 TP cos(0+ 2013)|.

g L3ICAM P+ 5GP
A-[C P2

where H(x,y)=—xlogx-ylogy-(1-x-y)log(1-x-vy).
Similarly, for k=4, it is possible to find the solutions to the
quartic equationf,(x)=0 and express the entropy of en-
tanglement in terms of the concurrence monotones.

The analytical expression fdZ,(|¢)) in terms of the re-
duced density matriy, = Trg|#){¢ is given by

(15

k Ny | LK
LS e L(Trpr”‘)
d SN\ m ’
( ){Nm} m=1 " m
k
(16)

Where the sum is taken over all the non-negative integers

N1,N,, ... Ny that satisfy the constrairtl; + 2N, +- - - + kN,
=k. This expressiorisee alsd26,27) follows directly from
multinomial formulas given if28]. As an example, fok
=2,3,4, Eq.(16) gives

d
Colly) =4/ -1 Tip?),

2

(d=1)(d-2)

1/3

Cslly) = [ (1-3Tm? + 2Trp,3)] :

3

(d-1)(d-2)(d-3)

Culp) = { [1-6T?+8Trp? - 6Trp!

1/4
+ 3(Trp§)2]] . (17)

b\Elile can see that fde=2 Eq.(16) is reduced to the expression

for the concurrence given {119]. Note also tha€Cy(|i)) =0 if
k is greater than the Schmidt number|gj.
The G-concurrence monotone

The last member of the family,_4 is of a particular
importance and we denote it lfy, since it is thegeometric
meanof the Schmidt numbers

Ga(|#) = Cieg(| ) =d(Nhy - -+ Ng-n) M. (18)

Note that ford=2 the G-concurrence coincides with the
original definition of concurrence given by Hill and Wootters

for mixed states where the concurrence for mixed states igL7].
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The G-concurrence has several interesting features. The scheme for tripartite RED, introduced [i&2], com-

A computational manageable measure of entanglemenmences with a four-way shared stafgpss=p1>® p3s With
for the dxd bipartite pure stately) in Eq. (12), the p;, and ps, bipartite entangled states, and with Saggtiee
G-concurrence is given simply H29] [cf. Eq. (13)] supplie) holding shares 2 and 3, and Alice and Bob holding
shares 1 and 4, respectively. Each share has a corresponding

_  A\7L/d
Gy(|#)) = d[Det ATA) T, (19 d-dimensional Hilbert space. The three parties Alice, Bob,
where the matrix elements &f are ;. and Sapna perform LOCC to create a set of outcomes
Multiplicativity: first, given ad;xd; (d,xd,) bipartite » N .
entangled statéi;) (|4)), we have O={014=Try0123,Q:j =1, ... s}, (25)
Gy,a,([#) ® [1h)) = Gy, (|$91)) Gy, (| 42)). (200 with Q; the probability that Alice and Bob share the mixed

. . . stateo’, which is obtained by reducing the four-way shared
Note that aIthough in both sides of the equation above W%tatec‘r‘1234 over Sapna’s shares. In general RED, the states
take the geometric means of the Schmidt numbers of th%-m} may be inequivalent under LOCC whereas in RBESP
relevant states(q,q,=Cicq,g, IS N0t the samemeasure of statesy), shared by Alice and Bob must be equivalent
entanglement aq, =Cieq, [30]. Second, given a bipartite 46| 0CC, so Alice and Bob can always transfodty
state [¢) e Ha® Hg, a complex numberc and operators jnig 4 unique entangled statée., independent of) via
(complex matricesA e Hp andB e Hg we have[31] LOCC.
In this section, we address the issue of which distributions
— 2 1
Golcly) = |clGyll¢), (22) of states,O, can or cannot be created via LOCC by Alice,
o R R Bob, and Sapna. Th&-concurrence monotone plays a major
Gd(A ® B|y)) = |Det(A)|“|Det(B)|*“Gy(|y)), (22  role in the following theorem that establishes which distribu-
tions of states cannot be produced by RED.
where we have used E(19). _ Theorem 1If Alice, Bob and Sapna perform LOCC on
A lower bound:the G-concurrence monotone provides a iha initial 4-qudit stated;,® pas With O [in Eq. (25)] the

lower bound for all the other concurrence monotones. Firstog itant distribution of states shared between Alice and Bob,
for pure bipartite states we have the inequalities p.224 in then

[25])

[ColgN P = [Calyn P = -+ = [Cylly)]* = [Gally)]".
(23

S

Gu= 2> Qde((}ju) < G163, (26)
=1

Second, given anixedbipartite statep we have[32] With Gyy=Gy(p1s) andGas=Gy(pas
127 Vd\P1 34— 2d\P34)-

Gylp)=Cup O k=1,2,...d. (24 (In the next subsection we will show that the equality in

: . . the above equation can always be achieved by RBESB if
Note that the relations in Eq&23) and(24) may be useful in and ps, are pure.

finding lower bounds on measures of entanglement S.UCh S proof. Let us writep,, and ps, in their optimal decompo-
entanglement of formation. In addition, as we will see in theSitions
following section, theG-concurrence monotone plays a cen-

tral role in tripartite RED protocols. -1 ?-1

p12= 2 PP, paa= 2 alxMax. (27
1=0 1=0
I1l. REMOTE ENTANGLEMENT DISTRIBUTION

As mentioned in the Introduction, shared bipartite en-We can always choose optimal decompositions with no more

tanglement is a crucial shared resource for many quanturffiend” element§33]. The stategy/")1, and|x"V)s, are given

information tasks such as teleportatif®], entanglement in their Schmidt decomposition:

swapping[4], and remote state preparatiRSP [5—8] that

are employed in quantum information protocols.
Remote preparation of bipartite entangled staft2g] [#)12= 2 \’W|k(l)k(l)>121

(RPBES is another important quantum information task in k=0

which a quantum networKkQNef have a single supplier

(named “Sapng”who shares entangled states with nodes via d-1 i

quantum channels, then performs LOCC to produce pairwise IXMaa= 2 VKO, (28)

entangled states between any two nodes, say, Alice and Bob. k=0

A crucial feature of RPBES is that Alice and Bob end up

sharing aunique bipartite entangled state. A more generalwith \\” and 7’ the Schmidt coefficients ofy/");, and

d-1

scheme, in which Alice and Bob end up sharindistribu- Ix")s4 respectively. The indekin the stateg|k");} repre-
tion of entangled states is called remote entanglement distrsentsd? different bases for each systeim1,2,3,4.Note
bution[22] (RED). that in this notation
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d?-1

Gip=d E p|(>\8)7\9) ... )\gzl)l/d'
=0

@1

Gas= dE cI|(77o 7]“) ﬂg)l)l/d-
1=0

(29)

PHYSICAL REVIEW A 71, 012318(2005

Since the entanglement between Alice and Bob remains

zero unless Sapna perform a measurement, we assume that
the first measurement is performed by Sapna and is described

by the Kraus operators1) and their components

MO = 2omm CIROKOK )5 (30)
with k, k', m, m"=0,1 andl, 1'=1,2,3,4.
The probability to obtain an outconjes thus
-1 d%-1
Q=TrMVp,® ppeMI) = X 3 pg NI, (31)
I=0 |’z
, o I
with NGO =3 o fim> and
r) = A7 MG I, (32)
Kk’

. 1 B O
G| by 14 = R :
mm’
(38)
where thed? elements of each matrlx/l(J - are Mf(’k',' n)w
Thus, substituting this result in E¢B7) ylelds
d-1 1/d
Guu= E Q]G(O']M) <d> p|Q|r<H A7 )>
11’ k=0

x2S Detm )2, (39)

i mm

Now, from the geometric-arithmetic inequality we have

2 |Det(M (il ))|2/d< | 2 Tr(ng]’)TM;{l:{))

The density matrix shared between Alice, Bob, and Sapna

after outcomg occurs is

Thoga= — E P N UID) o (@] (33)
Ik
where
|‘I’(J ot )1234= Wkﬁk, E, \/)\m E')
XM(kj;ilrl,n)m|k(|)k'(|,)>14|m(l)m'(|,)>23- (34)
Tracing over Sapna’s subsystems yields
Thy= Qj% Eﬂ P rJ” (] ; )>14<<f’(J "L (39
where
k!
(36)

From the definition of theG-concurrence for mixed states
(i.e., the convex roof extensirit follows thatG4(o},) can-
not exceed the average of ti&concurrence over the de-
composition in Eq(35). Thus

Guel) = =3 S partG(gl . (37)

I mm’

Using Eq.(19) we find

mm mm
1 onn
= aTr(MU)TM(l)). (40)
Hence, from Eq(39) and Eq.(29) we get
1 NP
Gus ¥G12G342 Tr(MPTM®). (41)
Thus, from the completeness relat@r]M(l M@ =1, we ob-
tain Eq.(26).

Consider now the following LOCC: after Sapna’s first
measurement, she sends the reptit Alice and Bob. Based
on this result, Alice then performs a measurement repre-
sented by the Kraus operat ) and sends the resultto
Bob and Sapna. Based on the resylt& from Sapna and
Alice, Bob performs a measurement represented by the
Kraus operatorﬁf[(‘) and send the resutt to Sapna. In the
last step of this scheme, Sapna performs a second measure-
ment with Kraus operators denoted kn and send the
resulti to Alice and Bob. The final distribution of entangled
states shared between Alice and Bob is denoted by
{N]kn,,cr14 '} WhereNJknI is the probability for outcome, k,

n, i and oY =Tr,60, with
1 - D .
(A}k) ® FJ(;()HM(J) ® Bj(E))[pM ® paal
jkni
X (A @ FiyMD @ BY)'. (42)
Since theG-concurrence of any bipartite state satisfies Eq.

(22), the analog of Eq(41) for this LOCC protocol is there-
fore

jkni _
0J1234

Gua= 2 NjnG(o km)\ G12G34E |Det(A(k))|2/d

jkn,i

x 2 [DetB)[Z4X TrMITFQIFD MD). (43)
n i

Moreover, from the geometric-arithmetic inequality we
have
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R 1 R R d-1 d-1
2/d T — i
> [Det(BR) P < az TrBY Bl =1 (44) 160 ,= S S N
n n m=0 y/ =0
and a similar relation foA*. These results, together with the X eril @) i @mm) ot ), (48)

completeness reIatioEiF}mFEL)n: , lead us back to Eq.

(41). As we can see, all operations that are performed b)éf

Alice, Bob, and Sapna after the first measurement by Sapnt%

cannot increase the bound @3, |
Theorem 1 concerns one supplier and two nodes, but in G 27, N

fact applies to one supplier arahy pair of nodes; thus the Up"/[m"), = ex g di+iom Im")a, (49

result of theorem 1 is applicable to an arbitrarily large QNet

with one supplier and many nodes. In fact theorem 1 can band Alice performs the unitary operation

extended to more than one supplier, as stated in the following 5

corollary. _ _ _ _ o 04" my, = exr(i—wj ’m)|m)1. (50)
Corollary. Consider an align chain dfl mixed bipartite d

states, pp 1, P12 ---.Pn-1n Where the statep,_;y (K

=1,2,... N) is shared between parky1 and partyk. If the

(iii) Sapna sends the resujtandj’ to Bob (2 log, d bits
information and the resulf’ (log, d bits of informatior)
Alice. Bob then performs the unitary operation

(iv) The final state shared between Alice and Bob is

N+1 parties perform LOCC on the initial stajg ,® p; » a1 dl _

® - ®py1n With the resultant distribution of states be- F)1a= 20 20 eXpl= i ) VA7 [MM) 1y (51)
tween party 0 anéll denoted by{P;, ot} (P; is the probabil- m=0 m'=0

ity to have the statér,), then (which is separable o, =0).

N We will show now that by choosing the phasés,, ap-
Gon = 2 PiGq(0on) < Go1G1z** Gn-1n, (45) propriately, Sapna can prepare the st&e, with any value
! of G(|F).4) in the range[0,G;,G3,]. For this purpose, we
with Gy_; =Gq(pr-1x) (k=1,2,... N). define the squaréd X d) complex matrixA with elements
Theorem 1 and its corollary suggest an operational interamnyy = VAm 7 €XP(—i Gpny). Thus

pretation of theG-concurrence as a form antanglement _ Fral/d -
capacity In the following subsection we show that if both G(|F)14) = d[Det(A'A) [ = G1,G5{ Det(V'V) ], (52)

p12 and py3 are (dxd)-dimensionalpure states, then the whereG,,=d(Aoh;- - -Ag-1)*d Gas=d(707;- - - 74-1) " and the

equality in Eqs(26) and(45) can always be achieved. matrix elements oV are v,y =exp(—if,y)/Vd. Note that
for the choiceby=27mmm /d the matrixV is unitary and
An optimal protocol for RPBES thereforeG(|F),4) =G,,G34 For other choices of,,,y, Sapna

In this section we show that by LOCC Sapna can prepar%%n prepare the final stat#);, with any value of the

a bipartite pure state between Alice and Bob watly value concurrence monotone in the rani@s Gi,Gaal. .
of the concurrence monotor@ which is less or equal to It IS important to emphasize here that the chotgy

G,Gss For this purpose, we introduce the protocol for =2mmm /d maximizesonly the G-concurrence. In fact, for
RBESP that has been first introduced 22). In this protocol ~ Other measures of entanglement the valuegf that maxi-
the supplier Sapna shares the initidi d)-dimensional pure Mize the entanglement depend explicitly on the Schmidt

states =3d-1 A7 and =41 o, (which numbers\, apd Dme FOr exgmple, the concurrence monotone
[¥12% 2o kK 1X030= 01 7KK ( Cyo, Of the final statdF),, is

are expressed in the Schmidt decomposjtieith Alice and
Bob, respectively. -
The steps of the protocol are as follows. CallF)1d 2{ k>2k, mgm , N T

(i) Sapna performs a projective measurement
% |ei(9km+9k’m’) _ ei(okm,+gk,m)|2}1/2. (53)

ﬁ)(]vj’):|P(J'yl',)>23<|:)(j'l")|’ j,j’=O,1, .d-1, (46)
with Thus, in this case we see that the valueggfthat maximize
- C,(|F)14) depend explicitly on the Schmidt coefficientsg
- 1« o , and 7,
PG, = 5 > gll@mld®)(dj+j")(dmm )+0mnf]|mn”()23, 7Im
m,m’=0
(47) IV. SUMMARY AND CONCLUSIONS

, i) In summary, we have introduced a family of entanglement
with 6y € R chosen freely. Note that th state§P' )23 monotones that extend the definition of concurrence. We

are orthonormal, regardless of the choicefify. have shown that for a finite number of copies of pure states
(i) After the outcomesg, j’ have been obtained, the state (j.e., the deterministic casehe family characterizes com-
of the system can be written #U:17)),4 401"y, . where pletely the nonlocal resource. We have also discussed the
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advantage of the concurrence monotones over other me#en of theG-concurrence as a type of entanglement capacity.
sures of entanglemeliguch as the entropy of entanglement, An open question is left if it is possible to saturate the bound
the Renyi entropies, efcand showed that for a given bipar- when the states are mixed.

tite state,|y)=3;a;i)[j), the concurrence monotones can al-  The concurrence monotones are defined in terms of the
ways be expressed analytically in terms of the coefficientgymmetric functions of the Schmidt numbdeee Eq.(5)].

a;j. We also gave an analytical expression of the concurrencghese symmetric functions have many interesting math-
mon_otones(for pure statesin terms of the reduced density ematical properties which were not introduced his@me of
matrix [see Eq(16)]. the properties can be found j@5]) and which are related to

hWﬁ then ﬁiizcu;;gd a particular ?}‘émber of the ffam"ythe field of majorization. Thus we believe that further inves-
which we called théS-concurrence. Thé&-concurrence for té ations of these monotones will contribute to our under-

pure states is defined as the geometric mean of the Sc_hmi anding of entanglement.
numbers. It has several unique properties that make it ex-
tremely useful. In particular, we have proved a powerful
theorem that establishes an upper bound on the amount o_f ACKNOWLEDGMENTS
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