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The utilization of ad-level partially entangled state, shared by two parties wishing to communicate classical
information without errors over a noiseless quantum channel, is discussed. We analytically construct determin-
istic dense coding schemes for certain classes of nonmaximally entangled states, and numerically obtain
schemes in the general case. We study the dependency of the maximal alphabet size of such schemes on the
partially entangled state shared by the two parties. Surprisinglyd fo2 it is possible to have deterministic
dense coding with less than one ebit. In this case the number of alphabet letters that can be communicated by
a single particle is betweeth and 2. In general, we numerically find that the maximal alphabet size is any
integer in the rangfd, d?] with the possible exception aP-1. We also find that states with less entanglement
can have a greater deterministic communication capacity than other more entangled states.
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I. INTRODUCTION Our results suggest that for a dimensibr 2, determin-

Dense coding, originally introduced by Bennett andistic dense codi_ng processes Which utilize partially entf'ingled
Wiesner[1], is the surprising utilization of entanglement to States are possible for any maximal alphabet Bizg(y) in
enhance the capacity of a quantum communication channéhe rangeld,d’] with the possible exception af-1. Since
Two parties, Alice and Bob, communicate by sending a spinthe total dimension of Alice and Bob's state ds<d, this
2 particle (a qubi over a noiseless quantum channel. As noappears to be an interesting boundary effect. The maximal
more than two spin states can be perfectly distinguishedalphabet sizéNp,,=d? is only possible with maximally en-
Alice can encode only one of two different letters, say 0 or 1tangled states. Using numerical methods, the existence of all
within each particle she sends. This is no better than using walues excepti®~1 has been fully verified fod=3 (see Fig.
classical communication channel. However, Bennett and) and d=4, and partially ford=5,...,7. Analytically, we
Wiesner have shown that if Alice and Bob each have ondiave been able to construct dense coding schemes for an
particle of a maximally entangled pair, it is possible for thealphabet size that is a multiple df(i.e., kd, k=2, ... d-1),
sender Alice to transform the two-particle state into four or-and for an alphabet size of+ 1.
thogonal states by acting locally on her particle. After send- We have foundboth analytically and numericaliythat
ing Bob her half of the pair, he will be able to distinguish the there are states with less than one ebit of entanglement that
four different states perfectly by measuring the pair of parcan be used for deterministic dense coding, although in this
ticles collectively. Surprisingly, this enables the transmissiorcase the maximal alphabet size is less thanwhered is the
of one of four letters by sending a single qubit, provided thadimension. Therefore, our method is not equivalent to the
the two parties share initial entanglement. trivial approach wherein deterministic concentration trans-

Numerous aspects of dense coding have been studiethrms a nonmaximal state, which must have more than one
Among these are generalizations to pairs of entanglletbel  ebit of entanglement, into a single efiltl], to be used in the
systemg[1], to continuous variableg2], and to settings in- standard dense coding scheme.

volving more than two partigg]. Other workg4—6] studied In addition, we find that entanglement, while playing an
dense coding in the asymptotic limit, where many copies of amportant role in the communication capacity, does not com-
partially entangled state are used. pletely determinéN,,,(#). We numerically find that one can

In this paper we consider the case of pure nonmaximahave two states with the property that the less entangled one
entanglement between two separadddvel systems. We are is in fact better for deterministic communication. That is, we
not interested in the asymptotic channel capacity, but rathezan haveN,.{#1) > Nmad ) While S(¢q) <S(i). This is
in the deterministicprocedure, where the parties wish to dis- perhaps also interesting in light §7] where it was shown
tinguish without errors messages encoded by acting only othat states with less entanglement sometimes have a greater
a singled-level particle. We use exact and numerical meth-probability of being distinguished by separated parties who
ods to study the relation between a state whose entangle- can only communicate classically. A related situation has
ment is given by its entrop$(), andNy.(#), the maximal  been reported i8] wherein nonmaximal states, rather than
size of the alphabet which can be perfectly communicated. limaximal, were needed to perform certain remote operations.
other words,N,(#) denotes the maximal number of or-  This paper is organized as follows. We first review deter-
thogonal states that can be generated by means of a unitanyinistic dense coding with maximally entanglddevel sys-
transformation acting locally on Alice’s part of the given tems. Then we proceed to formulate the problem considered
entangled state. in this paper. Section IV treats the two-dimensional case ana-
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K T RS Zlk) = &2k, (3)
- : ‘ It can easily be verified thgdi/,)=(U%,®1g)| ¢ form an
047 orthogonal basis of the two-qudit Hilbert space. After encod-
ing the letter(m,n), Alice sends her particle to Bob through
0.3 the quantum channel. Bob performs a projective measure-
- ment of the two-particle state divs,,»} to decode the mes-
o2l nAli_r,limaI.ent. : sage. . .
: forN =7 A few remarks are in order here. First, we note that for
mdximal ent. ' qubits (d=2), this basis is just the well known Bell basis:

| max

1 1
[0 = =(|00) +[12)),  [thop) = =(/00) - [11)),
V2 V2

1 1
lo = =(110+|0D), [¢np)=—7=(10)-[0D). (4)
V2 V2

FIG. 1. Numerical mapping df,a{#), the maximal number of ) o )
orthogonal unitaries with respect {g) over the domain of pure Second, trying to understand intuitively the difference be-
states of two qutritsy)=1Ao|00)+ N4/ 11+\V1-No-A,|22). The  tween the classical and quantum cases, we note thatifte

horizontal axis is\o and the vertical axis iS\;. The region of Operators may be regarded as “classical,” in the sense that
interest is defined b; <\o, Ng+A;=<1, and\;=(1-\p)/2. This  they correspond to the possibility of sendithgistinct values
region was found to be divided into five subregions characterize®f a classical dit. The rotate operators may be regarded as the
by different values oN,,,(#). Contour lines of the entanglement, quantum enhancement, which enables the local realization of
S(¢), are plotted in the background. It is evident ta#) does not  d? orthogonal two-qudit states.
determine Ny,o(#). There are many states)) and |¢) having
S(h) > S(p), but Npma ) <Nma ). States with minimal entangle-
ment, admitting at leasl orthogonal unitariesN=4,5,6,7, are
indicated in the figure. Note that no region with eight unitaries was
found. The only case where nine unitaries exist is the maximally \\e now introduce the main problem this paper addresses.
entangled state\o=\,=1/3). Instead of using a maximally entangled state, we consider an
arbitrary bipartite pure state. This can be written in the
lytically and shows that nonmaximal states cannot be used t8chmidt representatiof®] as

IIl. DETERMINISTIC DENSE CODING
WITH NONMAXIMAL ENTANGLEMENT

distinguish perfectly more than two letters. In Sec. V we 41 d-1
present exact forms for two different kinds of deterministic _ Nl . _
dense coding schemes in dimensiahs 2. In Sec. VI our | % WAiliDa ® [i)s, g‘))" L (5)

numerical results are presented and discussed. Finally, we . _ _
summarize the results in Sec. VII. whereli)s (Ji)g) are the Schmidt basis for systei(B).

We are interested in a maximally sized set of local unitary
operators{U}Nm=(*)"! that transform|y) into orthogonal
states. That is, for all &i,j <Npa{1) we have

We consider a bipartite qudit pure state. That is, a system At A
composed of twal-level separated subsystems. This system (WU @ 1g) (U] @ 1)) = & (6)
is initially prepared in a maximally entangled state Substituting the statés) into (6) yields

Il. DENSE CODING WITH MAXIMAL ENTANGLEMENT

d-1

1 S _ 1 d-1
|¢oo>—GiZO|I>A® [ 1 8= 2 WNKUTU KD = X Nk IUTU, k)
k,1=0 k=0
where A (B) denotes Alice’s(Bob’s) subsystem. Alice en- :Tr(AUiTU]-) 7)

codes an alphabet of size, which we denote as
{(m,m}% 1, using a sefUh,} of local unitary operations on where A is adxd diagonal matrix of the Schmidt coeffi-
particle A. There are many possib[@0] realizations of this  cients of[¢) (A=)\y). Note that the matrice$; are unitary
set of operators. An elegant, and undoubtedly the most corin the usual sensJ{U;=1), but the orthogonality of opera-
mon, construction is tors is now defined with respect to a nontrivial weight vector
Cmienn (the Schmidt coefficienjsrather than the usual trace. For the
Umn= (X)M(2)", 2 rest of this paper orthogonality of operators should be under-
where X, the shift operator, andZ, the rotate operator, are Stood in this sense. . _
defined by In this paper our goal is to study the effect of the partially
entangled statg)) on N,.{(1), the maximal size of the set of

X|k) = [(k+ Dmoda)» unitaries satisfying(7). In other words, we would like to
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understand and characterize the relatigp, (). A. The geometric approach

~ We first note that for any choice ¢f), there always ex- Regarding the shift operators as “classical,” and the rotate
ists a set of at least such unitaries. This is the set of shift operators as the quantum enhancement, one may try to gen-
opgrators introduced i_n t.he.previous s_ecti_on. Let us explicitlys glize the maximal dense coding scheme by constructing
verify that orthogonality is indeed maintained: rotations, ophaseoperators, suitable for the given nonmaxi-
X & 1)(XM @ 1 mal entanglemenl(.RecaII that the shift operators need not
(A o) (X2 @ 1g)|) be changed since they are orthogonal with respect to any
=> VNG + Mmoda)|( + Mmoda)il]) = Sym- (8) sta’;e) In analogy to(3), we are looking for a se{Zn}ﬁ;(l)
] defined by

That this set is always orthogonal should not surprise us as it zli= ei(;jn“-> (11)

corresponds to the possibility of encodidglistinct values in " '

a single dit in the classical case. where 0<j<d, 0sn<k=<d, and 6]” are real phases whose
choice will be discussed shortly. The orthogonality require-

ment dictates that
IV. THE TWO-DIMENSIONAL CASE

i ideri i O = (W ZiZul 1) =
We begin by considering the case of partially entangled “mn nem
qubits (d=2). We shall show that for all nonmaximally en-
tangled states, onli¥,.{(1) =2 unitaries can be constructed. (12)

This means thatleterministicdense coding with partial en- A ¢et ofk such operators for a given stdt® can be used to

tanglement is not possible o< 3 dimensions; partially en- .o siructN=kd orthogonal operatorfin the sense of7)],
tangled qubits have no advantage over pure product states Rhmely, U,.=(X)™Z,), where 0<m<d and O<n<k=d
1 mn n/» U

classical bits. ) _ In this construction the total number of operators is a mul-

For convenience, and without loss of ge”fﬁrf‘_“ty' W€ 3Stiple of d. In the classical or nonentangled case, it is d,
sume tba} 1 E{U‘}; we param_etrlze_U—e' . _Cosﬂ and in the maximal case it $X d. As we will show in the
+isinf(o-n), whereq are the Pauli matrices, amfdis a unit ) 15ing sections, this scheme is not an optimal one in the
vector. Sincel e {Uj}, it follows from Eq.(7) that for all 1 sense that there are other schemes using the same partially
#U e{Ui}, Tr(A1U)=0. That is, entangled statéy) with an alphabet size ORjq,>N=kd.

_ N This is why we denote the alphabet sikiéy) rather than
0= (o +A1)COSO+i(ho = Ay, SN © Nimax /). However,N() is a lower bound oNma,(1).

which determinesf=#/2 andn,=0. Suppose we want to To examine the relation between the initial state and
have a set of three unitari¢s,U;,U,}. Uy o) must therefore  N(y), let us consider the simple case where we look Kor

> Ny = 3 @G
i j

be of the formU, ;) =i(ayXy 2+ ayy1(2)- Again, applying Eq. =2 phase operators. Again, we assume tha{z}, so that
(7) with i=1 andj=2, U; andU, must satisfy Eq. (12) reduces ta2\;€%=0. In other words, we are faced
+ with the geometric task of forming a polygon usidgectors
0=Tr(AUUp) = (Ao + ) (XX + Y1Yo) of lengths {\g,\y, ... Ag_1}. This can always be accom-
+i(hg= Ny)(XyY2 = YiXo). (100  plished if the longest vector is shorter than the sum of the

others. Assuming that thg's are given in descending order,
For nonmaximal entanglement we havg-\;#0, and the  this condition is simply\,=< 1/2. For the rest of the paper we
normalization condition setso+A,=1. In addition we have  wjll assume that the Schmidt coefficients are indeed given in
X7+y;=%X5+y5=1. Combining all these restrictions, Ed.0) descending order.
has no solutions. This proves that in the two-dimensional For the genera”zation th>2 phase Opera’[ors Satisfying
case, for a nonmaximally entangled stafg, Nyaf(#) =2. (12), we have no simple geometric interpretation. Similar
phase factors were also used independently in the context of
deterministic teleportation schemg#4]. It can be shown
V. HIGHER DIMENSIONS, EXACT SOLUTIONS that such phases can only be founaj& 1/k. However, it is
In this section we show deterministic dense codingnot known that this requirement is sufficient. As an example,
schemes for some classes of partia”y entang|ed statds in'_for states in four dimensions whose Schmidt coefficients sat-

>2 dimensions. First, we present a geometric approach fd6fy 1/3=Ng=\;=X+\; (d=4), we can construcN=3
constructing dense coding schemes with an alphabet size of4=12 operators by using products of the four shift opera-
N=kd, wherek=d is an integer. The partially entangled tors, and the three phase operators defined by the phases
states on which these schemes are based have all Schmif§t=0, 61'=2mwm/3, ¢;'=65'=47m/3, where O=m<3.
coefficients not greater than i./Next, we present a nongeo-  In order to provg15] that\o<1/k is a necessary condi-
metric approach for the explicit construction of deterministiction for the existence okd phases satisfying Eq12), we
dense coding schemes with an alphabet sizd40f. These define akxd matrix V, whose elements arvnjz\ffjéa?.
schemes utilize_ the partially entangled stafe/)  From Eq.(12) it follows thatVV' is thek-dimensional iden-
=\(d-1)/d|00)+/(1/d)|11)+0=%ii). Note that these are tity matrix. Therefore, thed-dimensional Hermitian matrix
states with less than one ebit of entanglementdfor2. V'V hask eigenvalues equal to 1, anld-k eigenvalues equal
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to zero. Note also that the diagonal elements of this matrix 42

are given by(V'V);;=k\;. We now use a part of the Schur- ukoy=- |O>+ Z e?mkIa-)]j 4 1),

Horn theoreni16] which states that the vector of the diago-

nal elements of a Hermitian matrix is majorized by the vec-

tor of its eigenvalues. Therefore, in our case, the vector 5|1):|1>. (16)

(k\g,k\1, ... ,k\y 1) is majorized by the vector of eigenval-
ues (1, 1,.., 1, 0,..,0). In particular, this proves that The effect ofU on all other baS|s vectors is restricted only

Aol 17K by the un|tar|ty requwemermd UK=1. Let us verify explic-

We note that states withy=<1/k have entanglemers itly that {Ud} is indeed an orthogonal séwe omit the sub-
= |og,k ebits. Furthermore, all such states are majorized by &criptd):
maximally entangled state of Ialevel system reS|d|ng in a d-1 1
d-dimensional Hilbert spacg(1/k)=\ i) +0=%ii)], and Tr(AUK'UY = —=(0| Uk*u')|0>+ =1 U"TU')|1>
thus can be converted to it by local operations and classical d d
communicatiorj11,12. For this “maximally” entangled state 1 -2
a construction similar ta3) trivially yields kd orthogonal = (1 +dY, e?mi(=kind-1
states. Note, however, that in order to concentfajedeter- dd-1) =1
ministically into a maximally entangle#-level state, one 1 1 ¢2
must use both local operations and classical communications = _2 g2mi(-kj/(d-1)
[13], whereas in our construction only local operations are - 15
used. The additional communication required to convert non- d-2
maximally entangled states into maximally entangled ones, - mi(1-K)j/(d-1) —

Les ma’ LS e = 8 17

would reduce the net gain in communication. d-1;5

o
Q.

B. A nongeometric approach and also

As we have already mentioned, the geometric approach, d-1 1
although guided by the appealing separation into “classical” Tr(A -1-U% = —=(0|UN0) + =(1|UX 1)
and quantum encoding operators, is not necessarily optimal. d d
Consider, for example, the state d-1 1

2 1 T d d-
[ys) = \[§|00>+ \[§|11>+0|22> (13

in d=3 dimensions. Sincé,=2/3>1/2, using the geo-
metric approach we can only use the three operators d-1 L

2 i 1 —
{1_,X,X +. This, however, dogs not mean that the max_lmal _ AUNoy +=2UMD =0. (18
size of a set of orthogonal unitaries is just three. In fact, if we d

abandon the phase and shift operators, we find the larger set . . .
{1,X,U3,U§}, where ﬂns construction can be further generalized to cases where

No=d/N=(m-1)/m for some integem. Note that all these

R
d_ 1

Tr(AXTUY) = <o|x*u'<|o> + <1|xTuk| 1)

—_

1 V3 states have less than one ebit of entanglement, and that for
T2 0 Y large d, \p=(d—1)/d=1, which means that the entangle-
_ ment required for having more than the “classicalinitar-
Us= Or 10 (14) ies approaches zero.
ERP.
2 2 VI. NUMERICAL ANALYSIS OF THE GENERAL CASE

is a rotation by 2r/3 within the subspace spanned by In the general case, we were unable to find a parametri-
{|0),]2)}. This set consists of four orthogonal unitari@sth  zation of Eq.(7) which leads to an exact solution. Numerical
respect tdis)). As will be discussed in the next section, our results are, however, obtainable. We first describe the nu-
numerical results suggest thak) is the state with minimal merical methods we have used, and some considerations re-
entanglement imd=3 dimensions admitting more than three garding the reliability and accuracy of these results. Next, we
orthogonal unitaries. Note that the above construction is bypresent and discuss the numerical results we have obtained.
no means unique. It can be generalized to an arbitrary dimen-

siond as follows. The partially entangled state is A. Numerical methods and considerations

d-1

. jd-1 To study this problem numerically, we have used standard

|Y0) = V ¢ 00) + \/7|11> * OE i) (19 numerical multivariate root-finding routines. These routines
try to converge to a solution, starting from a givarsually

The set ofd+1 orthogonal unitaries igly, X}U{U K19-2. random point in the domain of parameters. The process ei-
where ther results in a set of values of the unknown parameters that
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is a root of the given multivariate functiofwith a certain
controlled erroy, or fails to converge. Generally with such 1r | = numeric data 0924 ... =
routines, a failure to converge means that the procedure go ——— capacity bound :
stuck in a local minimum, and that another trial with a dif-
ferent starting point may converge to a root. A consistent
failure to converge over a sufficient number of trials suggestss 0.6126
that the specified function has no roots. With our problem, £ 0.6 05794 . mw
for a given statdy) and a chosen alphabet size Mf it is '
possible to express the set of equationgérinas a multivari-
ate root-finding problem. The unknown parameters we wish
to solve are those describing the unitaffelghy . Since the _
number of these parameters is quite lafde-1 parameters 0.2r - ]
per unitary, restarting the numerical procedure with random ‘
starting points a sufficient number of times in order to deter- .
mine that there is no solution is not feasible. However, we 3 4 5 6
noticed that for any choice dff) and N only one of two N
cases occurs. Either the procedure finds a solution for any -5 5 minimal entanglementn etrits) required to construdy

given starting point(not necessarily the same solution for ,nogonal unitaries as a function of in the three-dimensional
different starting points, but it always finds a solutioor N0 ¢ase. Numerical results are shown as black squares connected by
solution is found for all given starting points. This was gotted lines. These entanglement values were extracted from the
checked for many choices of pure states and sizes of alph@jinimally entangled states indicated in Fig. . symbols con-
bets, using 100 random starting points for each choice. Thigected by solid lines indicate the channel capacity bound.

fact indicates that the two cases differ substantially in the ] )
number and density of solutions. Therefore, when performMent measurgthe von Neumann entropys an asymptotic -
ing a systematic, high-resolution mapping of the domain ofduantity, while the process we consider here can be carried
pure states and sizes of alphabet we used a single randdPt deterministically with a single entangled par.

starting point to determine whether dense coding is possible AN Intriguing observation is that we did not find partially
for a choice ofl) andN or not. For a small set of values of entangled pure states for which it is possible to construct a

|y andN which are of special interest, and will be describedmaximal set of eight orthogonal unitarigsut we did find all

. ) ; steps withN,5= 7). Similarly, we have not found any pure
Iat_er on, we did use several starting points to enhance .thgtate ind=4 dimensions, admitting the construction of a
reliability of our results. To confirm our results we have veri-

. . e maximal set of 15 orthogonal unitari¢and again, we did
fied that in all cases where we know that deterministic dens@ 4 g steps withN <%4) This Ieags to tﬁe conjecture
max— .

cpdmg is p_ossmleél.e., _maX|maI _entanglemer_n and the caseShat there are no states which admit a maximal saf2efl
discussed in the previous sectjpthe numerical procedure orthogonal unitaries id dimensions. We have proved this to
indeed found a solution. Furthermore, the fact that our repe the case in two dimensions, but, due to the increasing size
sults, which will be described in detail shortly, demonstrateof the numerical problems, we have only been able to check
the existence of well defined regions with smooth boundarieshis conjecture numerically fod=3,4. This was done by
indicates that the our numerical analysis captured the trugpplying the numerical procedure to states which are nearly
properties of this system, and not some random artifacts. maximally entangled. When trying to firaf—2 unitaries, the
procedure gets as close to a root as desired. However, when
. trying to find d®>-1 unitary operators, there seems to be a
B. Numerical results positive finite minimum. The value of this minimum is small,
Using the method described above, we have mapped t|1iepending on how close the state is to a maximally entangled
entire domain of pure states in three dimensions and somgate. It might be that states which allow -1 orthogonal
regions of the domain of pure states up to dimensiery. ~ Unitaries are very special and were not discovered by our
The increasing nature of both the number of parameters délumerical techniques, or only exist in higher dimensions.
scribing the unitaries, and the size of the domain of puré—mwev_er, at th_e very least, the situation and solution space is
: e - ramatically different foN=d?-1.
states, makes an exhaustive mapping in high dimensions eflr . Y : .
tremely time consuming. Figure 1 graphically presents th Itis glso interesting to extract from the nl_JmerlcaI results
results for the three-dimensional case. It is evident that on gtm!nlmt_sll_lhentangllement neces_lsafry fo(; ?amhgl;:r_tho%%na]!_ d
can have two stateby) and |¢) having S(¢) > S(¢) but Unitaries. These values are easily found from Fig. 1 by find-

N N Naivel | ing the points with minimal entanglement within each re-
mal ) <Nmay(). Naively, one may expect more entangle- gio These points are indicated in Fig. 1. In Fig. 2 we com-

ment to mean greater deterministic communication capaci%are this quantity with the lower bound of the amount of
yet this is not so. Such cases were also found in our partigdntanglement derived from the asymptotic channel capacity

mappings of higher dimensions and have led us to concludgs), which, when measured in units of dits, is given by
that in finite dimensional system$\,.(#), the maximal C=1+S0) (19

number of orthogonal unitaries, does not depend directly on
the entanglement, but on some other function of the Schmidrherefore, the entanglement is bounded from below by
coefficientsk;. We attribute this to the fact that the entangle- S(y) =logy N-1 edits. It is evident that only wheN is a

~"0.6309 = log,2 .
(1 ebit)

S(N) [etrit
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multiple of d is this bound achieved by our deterministic ~ TABLE I. Values of \, for states with minimal entanglement,
schemes. As expected, this shows that from an asymptotigich that there exidl (row index orthogonal unitary transforma-
point of view, motivated by the information capacity of the tions in d (column index dimensions. Numerical data and conjec-
communication protocol, the deterministic procedure istured behavior are shown. The estimated accuracy of the values is
which does achieve the bound. or numerically verified, appear in boldface, while for other values
While analyzing the numerical results for the three-We have only been able to verify local optimality. Note that all

dimensional case we have noticed that the digje[see Eq values correspond to less than one ebit of entanglement.
(13)], for which a specific construction was presented in the
previous section, seems to be the state with minimal en-
tanglement that admits four orthogonal unitaries. This can be 3
seen in Fig. 1. In addition, for dimensiomns=4,...,7, we
. - ! 4 2/4 2/3
find that among all states for which the numerical procedure 5 3/5 3/4
yielded d+1 orthogonal unitaries, the stateyy)
=\/(d=1)7d|00)+\[(1/d)|11)+0=Ljii) [see Eq(15)] is the 6 3/6 4/6 4/5

7

8

9

3 4 5 6 7 . d

one with minimal entanglement. t=3,4,5 wehave estab- 47 SIT 516
lished the optimality of,) by applying the numerical pro- 4/8 5/8 6/8 6/7
cedure to all pure stategy) with entanglementS(|)) 5/9 6/9 7/9

< 9(|44y)) over a grid of Schmidt coefficients with resolution 10 5/10 6/10 7/10
0.01. Indeed, the numerical procedure fowahdl orthogonal 11 6/11 7/11
unitaries only forl¢;). Near the optimal state we employed a 12 6/12 7/12
higher mapping resolution of the order of #@o locate the 5 7/13

optimum accurately. In dimensior$=6,7 we established
the local optimality of|yy) with the same accuracy. How-
ever, establishing it as a global minimum takes a prohibitive

14 7/14

amount of computation. We therefore conjecture that thed+1 d-1/d
state with minimal entanglement, admitting at ledstl or-  d+2 d/d+2
thogonal unitaries ird dimensions, igyy). : :

In a similar manner, we examined the minimally en- 2d-1 d/2d-1
tangled states for which the numerical procedure found a oq d/2d

construction of at leadtl orthogonal unitaries in dimensions
d=3,...,7 ford+1<N<2d. Again, we note that ford
=3,4 we have established the optimality by mapping the
entire relevant domain with a resolution of at least 0.01
while for d=5,6,7 weonly verified local optimality. Since
for N=2d a geometric construction for a maximally en-
tangled qubit residing ird dimensions exists, we had ex-
pected, and indeed found, that all these states have less th gled state from the initial stafe) (or equivalently, that
one ebit of entanglement. Remarkably, all of these optima »=1/K) (albeit with classical communicatipn ’

states have only two nonvanishing Schmidt coefficients. (3) We showed an explicit dense coding scheme for an
Table | shows the value of, of these states for different gphapet size ofi+1 in d dimensions for the partially en-
values ofN andd. Since there are only two nonvanishing tangled statéyy)=/(d—-1)/d|00)+1/d|11)+0=2ii). This
Schmidt coefficients, specifying, completely characterizes proves that deterministic dense coding is possible with less
the state. Inferring from these results, we conjecture that ifhan one ebit of entanglement, which means that this ap-
any dimensiord, the state with minimal entanglement that proach is not equivalent to the trivial one wherein determin-
admits at leastd+n (n=2,... d) orthogonal unitaries is jstic concentration transforms a nonmaximal state into an
\Vd/(d+n)[00)+\n/(d+n)[11). Note that although this data epit, to be used in the standard dense coding scheme.
were generated numerically, these values are simple fractions

of N andd. This suggests that an explicit analytical construc-  In addition, we have used numerical methods to study the

tion of the unitary operators is possible for these cases dgroblem in the general case. Relying upon these numerical
well. results we conclude the following.

(4) The optimal alphabet size grows in “steps” and can
obtain any integer value in the rang, d?] with the possible
exception of the alphabet size df-1.

Let us first summarize the results of this work. The main  (5) Our numerical data support the conjecture that the
results are either proved analytically, or shown by an explicitstate|y) is the state with minimal entanglement for which

(2) We showed that deterministic dense coding with par-
tially entangled states is possible for dimensiat®s 3 by
‘constructing exact deterministic dense coding schemes for an
alphabet size of @ A necessary condition for the existence
of similar schemes for alphabet sizé (2<k=<d) is that it is
EthSible to distill deterministically &-level maximally en-

VIl. CONCLUSIONS

construction. deterministic dense coding is possible.
(1) We proved that deterministic dense coding with partial  (6) On the basis of our numerical results we conjecture
entanglement is impossible in two dimensidds 2). that the state/d/(d+n)|00)+/n/(d+n)|11) is the state with
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minimal entanglement admitting at leagtn (n=2, ... d) tions provide nontrivial sets of unitary operators which can
orthogonal unitaries i dimensiongsee Table). This rela-  be perfectly distinguished by singleapplication of the uni-
tively simple form makes us believe that an explicit con-tary and asingle measurement of a specific partially en-
struction of the unitary operators for this case can be foundtangled state.

A connection between superdense coding and teleporta- Finally, it would be interesting to examine whether the
tion has been noted in the past.[lk0], a one-to-one corre- construction of a set of unitaries that satisfy the generalized
spondence between dense coding schemes and quantum tedgthogonality conditior(7) sheds light on the recent proposal

portation schemes (for maximal entanglement was for probabilistic interpretation of evolutiorf49].
established, and we have already pointed out the similarity

between the phase operators presented in Sec. V and the
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