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Quantum phase transition of ground-state entanglement in a Heisenberg spin chain simulated
in an NMR quantum computer
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Using an NMR quantum computer, we experimentally simulate the quantum phase transition of a Heisen-
berg spin chain. The Hamiltonian is generated by a multiple-pulse sequence, the nuclear-spin system is pre-
pared in its(pseudopureground state, and the effective Hamiltonian varied in such a way that the Heisenberg
chain is taken from a product state to an entangled state, and finally to a different product state.
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Quantum-mechanical systems are known to undergo The simplest system that exhibits this behavior consists of
phase transitions at zero temperature when a suitable contriwbo spins coupled by the Ising interaction
parameter in its Hamiltonian is variefd]. At the critical
point where the quantum phase transit{@PT) occurs, the ®, 1 L
ground state of the system undergoes a qualitative change in H= E(O-z +02) +doy05, 3> 0, (1)
some of its propertiegl]. Osterlohet al. [2] showed that in
o el St e QP ofinere o, are the Paul operatorsy, 2 magnetc fed
tanglement shows scaling behavior in the vi(’:inity of the tran-Strength’ and, is a spin-spin coupling constant. .

In the range 3, < w,<J,, the ground state of this system

sition point. This behavior was discussed in detail for the. e o
Heisenberg mode]3] and for the Hubbard moddH]. It is is twofold degenerate. To avoid this complication, we add a

believed that the ground-state entanglement also plays a Cramall transverse magnetic field. The resulting Hamiltonian is

cial role in other QPTs, like the change of conductivity in the

Mott insulator-superfluid transitiofs] and the quantum Hall H= ﬂz(ai +0d) + ﬂ(g}( +02) + Joto?, (2

effect [6]. Many of the relevant features, like the transition 2 2

from a simple product state to a strongly entangled state,

occur over a wide range of parameters and persist for infinit&hich is nondegenerate. The transverse field will always be

systems as well as for systems with as few as two @~ Kept small,|w,| <|w,],[3|].

These systems, especially the Heisenberg spin model, are A symmetry adapted basis that is an eigenbasis for van-

central both to condensed-matter physics and to quantufghing transverse fielto,=0) is{|11),[¥*),[L |},|¥7)}, with

information theory. In quantum information processing, the|¥*y=(1/12)(|1)%|/1)) and||) and|T) the spin-dowrm

Heisenberg exchange interaction has been shown to provide—%) and spin-up(m: +%) states. Furthermore, it is conve-

a universal set of gatg®,10] and in quantum communica- nient to define dimensionless field strengths w,/2J, and

tion, information can be propagated through a Heisenberg,=w,/2J,.

spin chain[11]. Since the ground state of this system is always one of the
While some Heisenberg models can be solved analytitriplet states, and transitions to the singlet state are symmetry

cally, others can only be simulated numerically. Like for forbidden, we can reduce our system of interest to the triplet

other quantum systems, such simulations are extremely ine§tates. For small transverse fieldg<1, the longitudinal
ficient if the system contains more than 10-20 spins. It wasield g, determines the ground state

therefore suggested that such simulations could be more ef-

ficiently performed on a quantum compufé2]. In this ar- 17 g,<-1
ticle, we discuss the simulation of a Heisenberg spin chain .

by a nuclear magnetic resonan®MVR) quantum computer. [y =1[¥") -1<g,<1. 3)

By varying the strength of the magnetic field, we take the L) g,>1

system, which is in the quantum-mechanical ground state,

through the QPT and measure the change in entanglement lgy=+1 are therefore quantum critical points, where the
guantum state tomography. The NMR techniques that we usground state changes from the ferromagnetically ordered
here are closely related to earlier work, where they were useligh-field states to the entangled, antiferromagnetic low-field
to demonstrate quantum algorithms, quantum error correcstates.

tion, quantum simulation, quantum teleportation, and more For the full system, including the transverse field, the
(see, e.g., Refl13] and references cited thergin eigenstates and eigenvalues of the three-state system are
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FIG. 1. (a) Energy-level diagram for the two-spin Heisenberg
Ising model forg,=0 (dashed linesandg,=0.129(solid lines. (b)

e X wherer, is the pulse duration ang,.. the length of the free
Probability amplitudes of the ground statg) for g,=0.129.

evolution period. The resulting effective Hamiltonian
matches the target Hamiltonian & =w?=(7/Tyedw, T,

_ L (gr2A6+ g, -1 =(wy/ )7, and Tyree=(4J,/31) 7. While this approximation
hp= \_V. 292 1ny; is correct to first order in, the symmetrized sequence
SiT T T
AL By ) =120 @ (M0 2) - Chamroed - (e 2] @
V20

generates the desired evolution to second order iigure 2
shows the sequence of rf pulses required to generate this
evolution.

To prepare the system in the ground state, we use the
technique of pseudopure statglsl]: we prepare a density
o > operatorp,,(41) =[1/tr(1) 11+ a|ys){y|. Here, 1 is the unity
where M; are normalization constants=2y3(gy+g; operator ande a small constant of the order of 0 To
and 6=3 arcco$4(18g2-9g2-2)/r°]. measure the order parametentanglement we apply quan-

Figure 1 shows numerical values for the energies and thgym state tomographyl5]. The system can then be taken
coefficients of the ground state as a function of the longituthrough the phase transition by adiabatically changing the
dinal field strengttg,. The right-hand side shows clearly that magnetic fieldg, of the effective Hamiltonian, which acts as
at strong fieldg|g,| > 1), the ground state is a product state, a control parameter.
while it corresponds to the entangled stéde’) for weak To ensure that the system always stays in the ground state,
fields. the variation of the control parameter has to be sufficiently

To observe the system undergoing the QPT, we simulate low, so that the conditioffy (1) | u(t))/ (eo(t) —e1(1))| <1 is
on an NMR quantum computer, where the quantum spins. ¢ sijeq where the indese refers to the excited stat¢s6].

are rep.resented by r_1uc_|ear Spins apd the Hamlltgfﬂ)mf . Choosingg, as the control parameter, we write the adiaba-
the Heisenberg chain is mapped into an effective Ham|l-tiCity condition as

tonian generated by a sequence of radio frequérigpulses

and

81‘22 J|§1'2= J|[1 -2 COS(0 + ’7T/3)]/3,

&3= J|§3: J|(2r cos 6+ 1)/3, (5)
D+1,

acting on the nuclear-spin system. dg, (&(t) = &(1))?
The natural Hamiltonian of our two-qubit system is <Jy=2 .9
Hamr= ?cri + ?crf + 70'%0'5. (6) () | — | talt)

79,

The w* represent the Larmor frequencies of the two qubityhere the dimensionless parametequantifies the sensitiv-
and Jy, the spin-spin coupling constant. In addition to this jy t the control parameteg, and we have concentrated on
static Hamiltonian, we use rf pulses to drive the dynamics Ofne first excited statys), which is the critical one for tran-
the system. In the usual rotating coordinate system, the effectiions from the ground state.
of rf pulses can be written as Equation(9) defines the optimal sweep of the control pa-
rameter g,(t), with the scan speeddg,/dt|«y. Figure 3
shows the required time dependence of the magnetic field.
The resulting transfer is therefore highest for a given scan
where we assumed that the rf field strength is the same fdime or the scan time minimized for a required adiabaticity.
both qubits. The experimental implementation generates an effective
The target Hamiltoniari2) can be created as an averageHamiltonian that is constant for a time[see Eq.(8)]. For
Hamiltonian by concatenating small flip angle rf pulses withthis stepwise approximation, the duration of each time step
short periods of free evolutiong 7= e e HNMRTprec has to be chosen such th@t the time is short enough that

Hrf:%(‘fl"'oz)l (7

X X
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FIG. 3. Adiabatic magnetic-field sweepg(t). The solid line '-13 -2 -1 0 1 2 3
was calculated for constant adiabaticity paramegtddg,/dt| [see g,

Eq. (9)] for a transverse field),=0.129; the circles represent the
values obtained from the numerical optimization of the discretized FIG. 5. (Color onling (a) Measured fidelityFe,, (+) and con-
scan. currenceCq,, (*) compared to the concurrence calculated for an
ideal scanCy, (solid line) and the simulated concurren@e. (V)
the average Hamiltonian approximation holds aiigl the and fidelity Fy4ec (O) when decoherence is taken into accouhy.
i i tar ; ; ; ; Measured valueé*) of the two-spin correlatooro?) compared to
adiabaticity criterion remains valid. While this calls for many 272

short steps, there is also a lower limit for the duration of eac he theoreticalsolid line) and simulated values with decoherence
step, which is dictated by experimental aspects: switchin V).

transients, which are not taken into account in the Hamilgecoherence, which reduces the achievable fidelity if the to-
tonian of Eq.(8), tend to generate errors that increase withta| duration of the scan becomes comparable to the decoher-
the number of cycles. ence time. The model that we used to take the effect of

We used a numerical optimization procedure to determinglecoherence into account is similar to that of Vandersygien
the optimal sequence of Hamiltonians, taking the full levelal. [17].
structure into account. Choosing a hyperbolic sine as the For the experimental implementation, we used tfe
functional form, we optimized its parameters and found theand'H spins of13C_IabeIed chloroforniboth spins 1/ The
optimized discrete scan represented by the circles in Fig. 3relatively large spin-spin coupling constant /27

To determine the optimal number of steps, we used the-214.94 Hz makes this molecule well suited for this experi-
same numerical simulation, keeping the functional depenment. The chloroform was diluted in acetomi-and experi-
denceg, versust constant, but increasing the number of ments were carried out at room temperature on a Bruker
steps. The results are summarized in Fig. 4, which plots thRX-500 MHz spectrometer. The pseudopure initial state
lowest fidelity encountered during each scan against thgpp(ﬁ) was generated by spatial averag[dd]. The fidelity
number of steps taken in the simulation. The fidelity is cal-of this state preparation was checked by quantum state to-
culated as the overlap of the state with the ground state at th@ography and found to be better than 0.99.
relevant position. The simulation shows also the effect of The adiabatic scan through the QPT was achieved by

shifting the rf frequencies of both channels by the same

p amount after each period. Using the swagfi) shown in
1 Fig. 3, the offset was changed frojm=-3 to g,=+3 in 60
steps. The evolution of the system during the scan was
checked by performing a complete quantum state tomogra-
phy after every second step during the experiment.

1

0.8

=% As a quantitative measure of the QPT, we used the con-
g currence as the order parameter, which is related to “the en-
= 04l tanglement of formationT18] and ranges from @no en-
tanglementto 1 (maximum entanglementFor this purpose,
o2 we calculated the concurren€e from the tomographically

reconstructed deviation density matrigesis C(p) =max\;

-©- Ideal .
-+ w:fi]decoherence 1 —N2—N\3—\4,0}, where);(i=1,2,3,9 are the square roots
A of the eigenvalues of(aio?)p"(o20?) in decreasing order.
yYy vy
120 40 60 80 Stt(;‘))sll\io 140 160 180 200 Figure %a) shows the measured concurrencg,,

=Clpexp as individual points and compares them with the

FIG. 4. Numerical simulation of the minimum fidelities during theoretical value<C,,. Both data sets clearly show the ex-
the adiabatic passage vs the number of steps (ittand without  pected QPTs near the critical poirds=+1. The entangled

(O) decoherence effects. ground state follg,| <1 is characterized by a concurrence
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close to 1, while the high-field states are only weakly en- In conclusion, we have discussed an experimental quan-
tangled(the entanglement vanishes fgy=0). tum simulation of a quantum phase transition in a Heisen-

The experimentally determined concurrence remains beperg spin chain. Heisenberg spin chains, which have been
low ~0.75, significantly less than the theoretical values. Topyestigated in detail in solid-state physics, play an important
verify that this deviation is due to decoherence, we simulated o in a number of proposed solid-state quantum computers.
the experiment, taking into account the details of the pulsgy iy the course of the simulation, the system ground state

sequence as well as the effect of decoherence. We obtam% anges from a classical product state to an entangled state

good agreement between theoretical and experimental data il ; - 1o another product state. Like in many other pro-
we assumed a total decoherence time of 130 ms, which ISssed guantum simulations. this svstem had to be swebpt
slightly longer than the 110 ms scan time used in the experip q ' Y P

ment. Figure B) shows the simulated values of the concur—adiabatic_ally through the relevant parameter space by prop-
rence as triangles; their evolution during the scan is quité"y Varying a Hamiltonian parameter. The techniques devel-
similar to that of the experimental data points. oped here may also be useful for other types of adiabatic

To assess the quality of the adiabatic scan, we also detefll@ntum computing which have been proved to be effective

mined the fidelitiesF ;= F(peyy from the tomographically for NP(nondeterministic-polynomighard problems[19],

reconstructed density operators. The fidelities, which ar&-9- the classically NP-hard ground-state search. Further-
shown at the top of Fig. (&), deviate from unity when the more, the adiabatic passage can provide a unique method to
nfdeate entanglemef20]. The simulation can be extended to

é:&her types of Heisenberg spin chains, e.g., Heisenberg XY

overall decrease due to decoherence. Again, the simulat ; e A
g or XYZ models, etc.; work in this direction is under way.

fidelities agree remarkably well with the experimental val-
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