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Using an NMR quantum computer, we experimentally simulate the quantum phase transition of a Heisen-
berg spin chain. The Hamiltonian is generated by a multiple-pulse sequence, the nuclear-spin system is pre-
pared in its(pseudopure) ground state, and the effective Hamiltonian varied in such a way that the Heisenberg
chain is taken from a product state to an entangled state, and finally to a different product state.
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Quantum-mechanical systems are known to undergo
phase transitions at zero temperature when a suitable control
parameter in its Hamiltonian is varied[1]. At the critical
point where the quantum phase transition(QPT) occurs, the
ground state of the system undergoes a qualitative change in
some of its properties[1]. Osterlohet al. [2] showed that in
a class of one-dimensional magnetic systems, the QPT is
associated with a change of entanglement, and that the en-
tanglement shows scaling behavior in the vicinity of the tran-
sition point. This behavior was discussed in detail for the
Heisenberg model[3] and for the Hubbard model[4]. It is
believed that the ground-state entanglement also plays a cru-
cial role in other QPTs, like the change of conductivity in the
Mott insulator-superfluid transition[5] and the quantum Hall
effect [6]. Many of the relevant features, like the transition
from a simple product state to a strongly entangled state,
occur over a wide range of parameters and persist for infinite
systems as well as for systems with as few as two spins[7,8].
These systems, especially the Heisenberg spin model, are
central both to condensed-matter physics and to quantum
information theory. In quantum information processing, the
Heisenberg exchange interaction has been shown to provide
a universal set of gates[9,10] and in quantum communica-
tion, information can be propagated through a Heisenberg
spin chain[11].

While some Heisenberg models can be solved analyti-
cally, others can only be simulated numerically. Like for
other quantum systems, such simulations are extremely inef-
ficient if the system contains more than 10-20 spins. It was
therefore suggested that such simulations could be more ef-
ficiently performed on a quantum computer[12]. In this ar-
ticle, we discuss the simulation of a Heisenberg spin chain
by a nuclear magnetic resonance(NMR) quantum computer.
By varying the strength of the magnetic field, we take the
system, which is in the quantum-mechanical ground state,
through the QPT and measure the change in entanglement by
quantum state tomography. The NMR techniques that we use
here are closely related to earlier work, where they were used
to demonstrate quantum algorithms, quantum error correc-
tion, quantum simulation, quantum teleportation, and more
(see, e.g., Ref.[13] and references cited therein).

The simplest system that exhibits this behavior consists of
two spins coupled by the Ising interaction

H =
vz

2
ssz

1 + sz
2d + JIsz

1sz
2, JI . 0, s1d

where sz
i are the Pauli operators,vz a magnetic-field

strength, andJI is a spin-spin coupling constant.
In the range −JI øvzøJI, the ground state of this system

is twofold degenerate. To avoid this complication, we add a
small transverse magnetic field. The resulting Hamiltonian is

H =
vz

2
ssz

1 + sz
2d +

vx

2
ssx

1 + sx
2d + JIsz

1sz
2, s2d

which is nondegenerate. The transverse field will always be
kept small,uvxu! uvzu , uJIu.

A symmetry adapted basis that is an eigenbasis for van-
ishing transverse fieldsvx=0d is hu↑↑l , uC+l , u↓↓l , uC−lj, with
uC±l=s1/Î2dsu↑↓l± u↓↑ld and u↓ l and u↑ l the spin-downsm
=−1

2
d and spin-upsm= + 1

2
d states. Furthermore, it is conve-

nient to define dimensionless field strengthsgx=vx/2JI and
gz=vz/2JI.

Since the ground state of this system is always one of the
triplet states, and transitions to the singlet state are symmetry
forbidden, we can reduce our system of interest to the triplet
states. For small transverse fields,gx!1, the longitudinal
field gz determines the ground state

uc1l . 5u↑↑l gz , − 1

uC+l − 1 , gz , 1

u↓↓l gz . 1

. s3d

gz= ±1 are therefore quantum critical points, where the
ground state changes from the ferromagnetically ordered
high-field states to the entangled, antiferromagnetic low-field
states.

For the full system, including the transverse field, the
eigenstates and eigenvalues of the three-state system are
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ucil =
1

ÎMi
S ji

2 + 2sji + 1dgz − 1 – 2gx
2

2gx
2 u↑↑l

+
ji − 1 + 2gz

Î2gx

uC+l + u↓↓lD, si = 1,2,3d s4d

and

«1,2= JIj1,2= JIf1 – 2r cossu 7 p/3dg/3,

«3 = JIj3 = JIs2r cosu + 1d/3, s5d

where Mi are normalization constants,r =2Î3sgx
2+gz

2d+1,
andu= 1

3 arccosf4s18gz
2−9gx

2−2d / r3g.
Figure 1 shows numerical values for the energies and the

coefficients of the ground state as a function of the longitu-
dinal field strengthgz. The right-hand side shows clearly that
at strong fieldssugzu.1d, the ground state is a product state,
while it corresponds to the entangled stateuC+l for weak
fields.

To observe the system undergoing the QPT, we simulate it
on an NMR quantum computer, where the quantum spinssi

are represented by nuclear spins and the Hamiltonian(2) of
the Heisenberg chain is mapped into an effective Hamil-
tonian generated by a sequence of radio frequency(rf) pulses
acting on the nuclear-spin system.

The natural Hamiltonian of our two-qubit system is

HNMR=
vL

1

2
sz

1 +
vL

2

2
sz

2 +
J12

4
sz

1sz
2. s6d

The vL
1,2 represent the Larmor frequencies of the two qubits

and J12 the spin-spin coupling constant. In addition to this
static Hamiltonian, we use rf pulses to drive the dynamics of
the system. In the usual rotating coordinate system, the effect
of rf pulses can be written as

Hrf =
vrf

2
ssx

1 + sx
2d, s7d

where we assumed that the rf field strength is the same for
both qubits.

The target Hamiltonian(2) can be created as an average
Hamiltonian by concatenating small flip angle rf pulses with
short periods of free evolution,e−iHt.e−iHrftpe−iHNMRtprec,

wheretp is the pulse duration andtprec the length of the free
evolution period. The resulting effective Hamiltonian
matches the target Hamiltonian ifvL

1=vL
2=st /tprecdvz, tp

=svx/vrfdt, andtprec=s4JI /J12dt. While this approximation
is correct to first order int, the symmetrized sequence

SHrf ,
tp

2
D − sHNMR,tprecd − SHrf ,

tp

2
D s8d

generates the desired evolution to second order int. Figure 2
shows the sequence of rf pulses required to generate this
evolution.

To prepare the system in the ground state, we use the
technique of pseudopure states[14]: we prepare a density
operatorrppsc1d=f1/ trs1dg1+auc1lkc1u. Here,1 is the unity
operator anda a small constant of the order of 10−5. To
measure the order parameter(entanglement), we apply quan-
tum state tomography[15]. The system can then be taken
through the phase transition by adiabatically changing the
magnetic fieldgz of the effective Hamiltonian, which acts as
a control parameter.

To ensure that the system always stays in the ground state,
the variation of the control parameter has to be sufficiently

slow, so that the conditionukc1std u ċestdl / («estd−«1std)u!1 is
fulfilled, where the indexe refers to the excited states[16].
Choosinggz as the control parameter, we write the adiaba-
ticity condition as

U dgz

dt
U ! JI

2x = JI
2*

sj2std − j1stdd2

Kc1stdU ] H

] gz

Uc2stdL* , s9d

where the dimensionless parameterx quantifies the sensitiv-
ity to the control parametergz and we have concentrated on
the first excited stateuc2l, which is the critical one for tran-
sitions from the ground state.

Equation(9) defines the optimal sweep of the control pa-
rameter gzstd, with the scan speedudgz/dtu~x. Figure 3
shows the required time dependence of the magnetic field.
The resulting transfer is therefore highest for a given scan
time or the scan time minimized for a required adiabaticity.

The experimental implementation generates an effective
Hamiltonian that is constant for a timet [see Eq.(8)]. For
this stepwise approximation, the duration of each time step
has to be chosen such that(i) the time is short enough that

FIG. 1. (a) Energy-level diagram for the two-spin Heisenberg
Ising model forgx=0 (dashed lines) andgx=0.129(solid lines). (b)
Probability amplitudes of the ground stateuc1l for gx=0.129.

FIG. 2. Sequence of rf pulses applied to both spins to simulate
the target Hamiltonian. The boxes represent pulses that induce ro-
tations around thex axis of the rotating frame; the separations be-
tween them are the free precession periods. The indexm for the
different periods runs from 0 toM.
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the average Hamiltonian approximation holds and(ii ) the
adiabaticity criterion remains valid. While this calls for many
short steps, there is also a lower limit for the duration of each
step, which is dictated by experimental aspects: switching
transients, which are not taken into account in the Hamil-
tonian of Eq.(8), tend to generate errors that increase with
the number of cycles.

We used a numerical optimization procedure to determine
the optimal sequence of Hamiltonians, taking the full level
structure into account. Choosing a hyperbolic sine as the
functional form, we optimized its parameters and found the
optimized discrete scan represented by the circles in Fig. 3.

To determine the optimal number of steps, we used the
same numerical simulation, keeping the functional depen-
dencegz versus t constant, but increasing the number of
steps. The results are summarized in Fig. 4, which plots the
lowest fidelity encountered during each scan against the
number of steps taken in the simulation. The fidelity is cal-
culated as the overlap of the state with the ground state at the
relevant position. The simulation shows also the effect of

decoherence, which reduces the achievable fidelity if the to-
tal duration of the scan becomes comparable to the decoher-
ence time. The model that we used to take the effect of
decoherence into account is similar to that of Vandersypenet
al. [17].

For the experimental implementation, we used the13C
and1H spins of13C_labeled chloroform(both spins 1/2). The
relatively large spin-spin coupling constant ofJ12/2p
=214.94 Hz makes this molecule well suited for this experi-
ment. The chloroform was diluted in acetone-d6 and experi-
ments were carried out at room temperature on a Bruker
DRX-500 MHz spectrometer. The pseudopure initial state
rpps↑↑d was generated by spatial averaging[14]. The fidelity
of this state preparation was checked by quantum state to-
mography and found to be better than 0.99.

The adiabatic scan through the QPT was achieved by
shifting the rf frequencies of both channels by the same
amount after each period. Using the sweepgzstd shown in
Fig. 3, the offset was changed fromgz=−3 to gz= +3 in 60
steps. The evolution of the system during the scan was
checked by performing a complete quantum state tomogra-
phy after every second step during the experiment.

As a quantitative measure of the QPT, we used the con-
currence as the order parameter, which is related to “the en-
tanglement of formation”[18] and ranges from 0(no en-
tanglement) to 1 (maximum entanglement). For this purpose,
we calculated the concurrenceC from the tomographically
reconstructed deviation density matricesr asCsrd=maxhl1

−l2−l3−l4,0j, wherelisi =1,2,3,4d are the square roots
of the eigenvalues ofrssy

1sy
2dr*ssy

1sy
2d in decreasing order.

Figure 5(a) shows the measured concurrenceCexp
=Csrexpd as individual points and compares them with the
theoretical valuesCth. Both data sets clearly show the ex-
pected QPTs near the critical pointsgz= ±1. The entangled
ground state forugzu,1 is characterized by a concurrence

FIG. 3. Adiabatic magnetic-field sweepsgzstd. The solid line
was calculated for constant adiabaticity parameterx / udgz/dtu [see
Eq. (9)] for a transverse fieldgx=0.129; the circles represent the
values obtained from the numerical optimization of the discretized
scan.

FIG. 4. Numerical simulation of the minimum fidelities during
the adiabatic passage vs the number of steps withs* d and without
ssd decoherence effects.

FIG. 5. (Color online) (a) Measured fidelityFexp s+d and con-
currenceCexp s* d compared to the concurrence calculated for an
ideal scanCth (solid line) and the simulated concurrenceCdec s,d
and fidelity Fdec ssd when decoherence is taken into account.(b)
Measured valuess* d of the two-spin correlatorksz

1sz
2l compared to

the theoretical(solid line) and simulated values with decoherence
s,d.
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close to 1, while the high-field states are only weakly en-
tangled(the entanglement vanishes forgx=0).

The experimentally determined concurrence remains be-
low ,0.75, significantly less than the theoretical values. To
verify that this deviation is due to decoherence, we simulated
the experiment, taking into account the details of the pulse
sequence as well as the effect of decoherence. We obtained
good agreement between theoretical and experimental data if
we assumed a total decoherence time of 130 ms, which is
slightly longer than the 110 ms scan time used in the experi-
ment. Figure 5(a) shows the simulated values of the concur-
rence as triangles; their evolution during the scan is quite
similar to that of the experimental data points.

To assess the quality of the adiabatic scan, we also deter-
mined the fidelitiesFexp=Fsrexpd from the tomographically
reconstructed density operators. The fidelities, which are
shown at the top of Fig. 5(a), deviate from unity when the
system passes through the critical points and shows some
overall decrease due to decoherence. Again, the simulated
fidelities agree remarkably well with the experimental val-
ues.

As a second-order parameter, we also determined the two-
spin correlation[1] ksz

1sz
2l=Trsrexp sz

1sz
2d, which is shown

in Fig. 5(b). As expected, the system is ferromagnetically
orderedsksz

1sz
2l= +1d at high fields, but turns to an antifer-

romagnetic statesksz
1sz

2l=−1d at low fields between the two
quantum critical points. Comparing Fig. 5(a) with 5(b), the
concurrence has a similar behavior to the two-spin correla-
tion.

In conclusion, we have discussed an experimental quan-
tum simulation of a quantum phase transition in a Heisen-
berg spin chain. Heisenberg spin chains, which have been
investigated in detail in solid-state physics, play an important
role in a number of proposed solid-state quantum computers.
During the course of the simulation, the system ground state
changes from a classical product state to an entangled state
and back to another product state. Like in many other pro-
posed quantum simulations, this system had to be swept
adiabatically through the relevant parameter space by prop-
erly varying a Hamiltonian parameter. The techniques devel-
oped here may also be useful for other types of adiabatic
quantum computing which have been proved to be effective
for NP(nondeterministic-polynomial)-hard problems[19],
e.g., the classically NP-hard ground-state search. Further-
more, the adiabatic passage can provide a unique method to
create entanglement[20]. The simulation can be extended to
other types of Heisenberg spin chains, e.g., Heisenberg XY
or XYZ models, etc.; work in this direction is under way.
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