PHYSICAL REVIEW A 71, 012303(2005

Entanglement swapping via quantum state discrimination

A. Delgado® L. Roal J. C. Retamat* and C. Saavedta
center for Quantum Optics and Information, Departamento de Fisica, Universidad de Concepcién, Casilla 160-C, Concepcioén, Chile
2Departamento de Fisica, Universidad de Santiago de Chile, Casilla 307, Correo 2, Santiago, Chile

(Received 24 August 2004; published 4 January 2005

We study entanglement swapping through nonmaximally entangled states. The combination of the standard
protocol with an optimal scheme for quantum state discrimination leads to a reliable protocol for the conclusive
probabilistic generation of maximally entangled states. A possible setup based on cold trapped ions is

proposed.
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[. INTRODUCTION tion among the involved particlg8]. This process has al-
In quantum communications, entanglement plays the rol&&2dy been experimentally implement]. _
of a fundamental resourdd]. It allows one to realize pro-  Entanglement swapping can be succinctly described by
cesses such as quantum teleportaf@jnand quantum cryp- the following identity:
tography [3] which by classical means are only approxi- d-1

mately implemented[4]. Most quantum communication P P - 1 ¥ (=1l
protocols require a maximally entangled state for their OR¥0,012® [¥o,0)2s duJ2=0| w14® FD2 @ [Ws.
implementation. The use of partially entangled states leads to

a reduction in the quality and the reliability of these proto- (1)

cols. _ , _The maximally entangled statéd¥, ) with I,u=0, ... d-1
_Recently, the connection between unambiguous state digye 5 generalization of Bell states to tekalimensional quan-
crimination and quantum state teleportation has been studigg,, systemgqudity defined by

by several author$5]. The main result is that the use of

schemes for optimal unambiguous state discriminafi@in |V Wer= XORF)e ® |u),

leads to an enhancement of quantum teleportation through a d-1 _

partially entangled pure state in such a way that perfect tele- _ iz 2mi | B 5
portation can be conclusively achieved with certain success - V,raqzo ex d al @) ® [a - u, (2)

probability. The optimal conclusive quantum teleportation
protocol has recently been found by Reiaal. [7]. where XOR,; is the generalized controloT quantum gate,

In this article we study entanglement swapping throughxOR,i)|.j)=|d)]i ©); [10], ¢ andt denote the control and
partially entangled states of bipartite finite-dimensionalthe target qudit, respectivelf is the Fourier transform—
quantum systems. Under these conditions, the standard prpg F|I>:(1/\fa)Eﬂ;é exp(i2mlk/d)|k)—and operations in-
tocol for entanglement swapping leads to partially entangleg, lving subindexes are carried out modao
states, whose entanglement cannot be increased by local tye protocol for entanglement swapping can readily be
transformations. An analysis of the protocol indicates tha}ead out of identity Eq(1). Let us assume that particles 1
use of nonmaximally entangled states for entanglemen nd 4 belong to Alice and Bob, respectively, and particles 2
swapping leads to the problem of discriminating among a se nd 3 belong to Charlie. If Charlie applies a generalized

of nonorthogonal quantum states. We show that, in this cas . .
the known protocol for entanglement swapping can be en(—:or'm)l.NOT gate onto his particles and measures them sepa-
ately in base§F1l), and |u);, then the joint state of par-

hanced by the use of optimal conclusive state discrimination; . . .
Thereby, it is possible to obtain probabilistically a maximally UCles 1 and 4 will be projected onto the maximally entangled
entangled state from a pair of partially entangled pure state$tate[¥1 w1 o

We characterize the success probability for conclusive en- Thereby, the entanglement contained in staiesy1, and
tanglement swapping and propose a physical realization fof¥o.034 has been transferred to stat )1, This state can

this process based on cold ions in a linear trap inside aRe deterministically transformed into stdtl )14 by Alice
optical cavity. and Bob by means of appropriate local unitary transforma-

This article is organized as follows: In Sec. Il we briefly tions conditional to the outcome of the measurement proce-

summarize the main tenets of entanglement swapping. Seéure.
tion 1l shows how the use of partially entangled states in
entanglement swapping leads naturally to conclusive quan-
tum state discrimination. Finally, Sec. IV outlines a physical
proposal for this process. We summarize in Sec. V.

IIl. ENTANGLEMENT SWAPPING VIA PARTIALLY
ENTANGLED PURE STATES

A particularly interesting situation arises when the two

Il. ENTANGLEMENT SWAPPING WITH QUDITS pairs of particles are initially in a nonmaximally entangled

By entanglement swapping we mean the process that gestate. To illustrate this let us consider the following initial
erates entangled particles without a direct dynamical interacstate:
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- this is that the scheme occasionally leads to measurement
[¥)12® [¥)3q= Em Gl & M)z @ En: Aol & [N, results which do not enable the pregise identification of the
3) state. This idea was first proposed by Ivandit] and has
been studied by Diek§l2] and Pereg13] for two nonor-
where the coefficients,, andd, are positive and are in gen- thogonal states generated with eqaapriori probabilities.
eral different from 14d. Clearly, the states associated with The generalization to arbitra@y priori probabilities was ob-
the pairs of particles are generally nonmaximally entangledtained by Jager and Shimof¥4]. The case of a larger num-
When the protocol for entanglement swapping described ifver of states was considered by Chefl&S] and Peres and
the previous section is carried out, the final non-normalizedrerno [16], where the former showed that results for the
state of particles 1 and 4 will be several states case simply generalize from those of the two-
state case when the states involved are linearly independent.
S cd exp<_ 2i7rm(S+ I)>|\If ) @) Moreover, Qhefleﬁlﬂ_ has shown _that there gxists a conclu-
& Gl 4 lu/14s sive state discrimination scheme if and only if the states to be
’ discriminated are linearly independent. However, for a lin-
which is associated with a projection onto stafds), and  early dependent set, i€ copies of the state are available,
|u)s. In general, this state will only be partially entangled. then the resulting-particle states may form a linearly inde-
Thus, the known protocol for entanglement swapping vigpendent set and be amenable to unambiguous discrimination
partially entangled states cannot lead to maximally entangleftL7,18.
states. Consequently, this protocol has to be reformulated. In what follows we shall apply a conclusive state dis-
The starting point for such a modification is the following crimination scheme to entanglement swapping. Let us start

d-1

identity: by discussing the properties of the statgg),. In general,
| o there ared of these states defined irdadimensional Hilbert
- T space. Clearly, these states cannot be linearly independent.
X v W)= — N4 . ) ; .
OReaW)12® [W)as Vd UJE:()' w14 ® ()2 @ Uy However, foru fixed, these states can be split up intgets

5) Qu Iabele_d by the value af. Acgord!ng to Eq(6), each state
in set(),, is generated from a fiducial state by applying pow-
This identity generalizes identity Eql) to the case of two €rs of the unitary transformatiodi. Therefore, these states
pairs of nonmaximally entangled states of E8). Compar- are symmetric. Furthermore, these states are linearly inde-
ing both identities, we see that states!|l), have been re- pendent as long as the coefficientsandd, are all nonzero.

placed by statepy), defined by Therefore, the states belonging to a particular(¥gtan be
. conclusively identified.
[mw2=2"" o2, (6) The inner product between two arbitrary stafisl) in a
where statéw, ), is given by particular set(, is given by
d-1
[Pou)2= 2 G-Iz @ el = S enllon 2= N, ©
m=

and the spectral decomposition of tAeperator is Introducing the properly normalized stat§§u>:|v|,u>/\s’N_u

2i into Eq. (5), we obtain
Z=2 ex —Trm>|m><m|. (8)
m o\ d XORgW)1o® [W)s4
The identity(5) suggests a protocol for entanglement swap- 1 d-1 — d-1 5
ping. The maximally entangled statg )., are in one-to- =7 2N 2 W01 [y, ] ®[us. (10
one correspondence with states,), and|u)s. Therefore, by VHu=0 1=0

performing a suitable measurement on particles 2 and 3, ifhe N, coefficients entering into this equation correspond to
would be possible to project the states of particles 3 and 4he probabilities of projecting onto state),. After such a
onto a maximally entangled state. Since stite)s} are mu-  projection, the normalized conditional state of the remaining
tually orthogonal, a von Neumann measurement suffices tgarticles is given by
identify them. However, the statép ).} are not mutually

d-1
orthogonal and, consequently, it is not possible to distinguish _1 ~
with certainty among them. W) = 7 |=Eo [P, w14® [0z (1)

The problem of state distinguishability or state discrimi-
nation has been a recurrent subject of research both due to ithereby, the problem of entanglement swapping has been
implications for the understanding of gantum mechanics andeduced to the discrimination of the states in a particular set
to its practical applications. The main strategy consists of),,.
using generalized measurements. This allows one to define Previously we have mentioned that the state€)jpare
an optimal conclusivgor unambiguous scheme for dis- symmetric. Thus, we have to study the probabilRy, of
criminating among a finite number of nonorthogonal stategprojecting onto these states from the conditional sfdftg.
with given a priori probabilities. The price we pay in doing This is given by
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d-1
Pla= 2 |AGl*, (12)
m=0
where theA;, coefficients are defined by
Crrlm-
A= S (13)

Clearly this expression turns out to be independent of the

labell. Therefore, the states i, have equah priori prob-
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1 d-1
|q,u> = 2 |\I,I,u>l4® |T/I,u>2-

(18)
vd =0

Conditional on the measurement’s outcome, the opetdgor
is applied on particle 2 leading to the state

d-1
1
U7 =2 3 W01 (e s+ [ @02 (19)
1=0

abilities. Moreover, since there is no entanglement betweeRollowing the application olJ,, a measurement is carried
particles 2 and 3, the probability of projecting onto stateout on particle 3 in the basig|e ), |a)}t (with |,k

1 12 ® |u), corresponds simply to the produstP, .

=0, ... d-1). This projects particles 1 and 4 onto the maxi-

The optimal scheme for conclusive state discriminationmally entangled statel, ,); 4 When statde, ), is detected or

was discussed in detail by Razt al. [7] for the case of
symmetric states generated with eqagriori probabilities.
Let us now apply the results if¥] to the discrimination of

the states in sef),. The main idea is that conclusive or
unambiguous discrimination among the elements of a set of

linearly independent states is possible if we allow for suc-|P)14= DS
cessful distinguishability with some probability. In the par-
ticular case we are dealing with, the Hilbert space of particle

onto the normalized superposition of maximally entangled
states,

—

2
d-1] d-1 exp(Tm(k— I))
v Aum|2 - |Aumin|2 |‘P|,u>14'

0 \meo Vd(1-dAY,D
(20

two is enlarged by considering unused dimensions or includ- )
ing ancillary systems to allow the existence of a unitaryWhen statda ), is detected.

transformationJ,, such that its action is defined by

Uu|~7;l,u>2 = \‘"’E,u|el,u>2 + |(I)I,u>2 (14)

for u fixed. States|g )} are ad-dimensional basis which
generates thé subspace; and thé-1 unnormalized, lin-
early dependent statd$d, )} belong to theA" subspace

The probabilityQ, , of obtaining the maximally entangled
state|W; )1 4is given by the product dfl, the probability of
projecting particle 3 onto a particulir) state, and probabil-
ity py of successfully discriminating stafé, ,)—that is,

Ql,u: I\Iupl,u- (21)

spanned by basifa, ,)}. Both subspaces are orthogonal andSumming over botH and u we obtain the overall success

are such that{=U® A". The application ofU, follows a

probability Q of the protocol. The optimal value for this

measurement which projects particle two onto one of thes@robability is given by the expression

two subspaces. A projection onto stdeg,) in U allows
conclusive identification of sta@, ,) with probability p; ,. A
projection onto statda,,) leads to no certain knowledge
about state[y ). It can be showr{7,15 that the optimal
success probability, , is

Pru = Al (15)
where|Ay,; | =min{|Al}=o... g1 and that stategb, ) are

d-1| d-1 .
|®I,u>:i'— > [E exn(?m(k—l))

Vd k=0 [ m=0

XA - |A$nin|2:| |3y (16)

d-1

Q=dX min{|ced-uheo.. g-1,

u=0

(22)

which is a function of coefficients, andd,, which define the
partially entangled states of the two pairs of qudits. If we
assume that the,, and d,, coefficients have been ordered
from the lower to the maximum value—i.ec,,< ¢, and
dn=d.1 for 0=m=d—this expression can be cast in the
form

d-1

Q=d> min{|cody-i/2 doCaul?
u=0

(23

which allows us to find the following upper and lower

Now we can proceed to clearly state the entanglemenbounds for the overall success probability:
swapping protocol combined with conclusive state distin-

guishability. Let us recall the identitgd 0):
[W) = XORg W) 1, ® [W)34

u=0 1=0

L&t d-1
= _EE \"NU(Z ¥ )14 ® |73|,u>2) ®lus. (17
J

o2 + min ) = Q = d minfleminflo?.
(24)

The states of particles 1 and 4 are in a partially entangled
state even when the discrimination process leads to an am-

A measurement on particle 3 projects the remaining particlebiguous result. Since these states, E2)) , are pure, the

onto the state

entanglement can easily be calculated. This is given by
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—\2
d 2 A+ A PAR - 2) = o 1=V 20

- 1- T (d-D%
@D (LA, P oy
(25) The upper bound is obtained when all the coefficients are
Al =(1+\/d)/d except one, which isAL,, With e
Here we have used the expressiBrd[1-Tr(p;)?]/(d-1) =\d(d-2)/(d-1), so that(d-1)&2 == sﬁv. Thus, for an

to calculate the entanglement. Let us note that we have 'rﬁrbitrary state, the entanglement difference satisfies
— 2 [dd-22+(d-1)]=E-E=
from a failure in the discrimination process have the samdlere, we can appreciate that, in case of failure, the entangle-

troduced an extra factor so thasE<1.
(1-2%
outcome of the measurement carried out on particle 3, but d-1)3
amount of entanglement. This can be explained by considement of the residual pair is always less than in the case of

E

Clearly, the entanglement depends on the value of the (1-\2 31
d-1)2
not on the measurement’s result Thus, the states arising ( )

ing that the|®),, states can be cast in the form nonimplementing quantum state discrimination. However,
[ the main difference between both processes arises when the
‘ AR AL discrimination is successful.
|D)14=Z @ 1, >, ———"=|m); @ M~ u),.

Comparing with state, Eq20) , we obtain that the pro-
tocol for conclusive entanglement swapping can be described
(26)  in terms of a channel of the form

meo \VA(1 —d|AYP)

Thereby, these states turn out to be symmetric under thed-1 ¢l
local, unitary operatoZX® 1, and, consequently, they have > =lan®le)ne > =leds® lads
the same amount of entanglement. 1=0 vd k=0 Vd
Let us now consider the case of entanglement swapping d-1 d-1
without resorting to state discrimination. It can be shown that P N a2 2
. . — ® ® ’A - A i ® y
a measurement on particle 3. and a measurement on particle g \s’d|a'>1 22 go VWAnl” = il @ 24
2 in the Fourier basis lead to the state
d-1 d-1 33
5 2 hich ds to th ition of the product of tw
Oy, = =S exd s A | 1w which corresponds to the superposition of the product of two
[©)14 g[( mzzo ( )> m]' Lu)1a maximally entangled states in subspagend the product of
27) a maximally entangled state and a nonmaximally entangled
state in subspacd,.
when the measurement outcomes sr@nd u, respectively.
The entanglement of particles 1 and 4 in this state is IV. PHYSICAL IMPLEMENTATIONS USING COLD
_ d 5 TRAPPED IONS
E=—(1- ul4y, 28 N . .
(d- 1)( m A ) (28) For a physical implementation of the above described pro-

) ) tocol, in the case of using qubits, we consider cold trapped
This entanglement is also dependent only on the outcomgyns inside optical cavities. Let us consider a set of three

u of a measurement on particle 3 As was mentioned abovgyyjitiesC,, C, 5, andC,. Each one of these cavities contains
when the quantum channels are not prepared in maximally set of jons'in a linear array. The ions have been cooled
entangled states, at least one of # coefficients is less  down to the ground state of their center-of-mass motion. Let
than 1 4. Thus, without loss of generality, we can write us select one ion in cavitg;, two ions inC, 5, and one ion
1 1 \ in C, labeled asA;, A, andA;, andA,, respectively.
|Ainl* = a(l -\, |ALP= a(l 917t sm/), The first step of the implementation is to establish a pair
-1 of nonmaximally entangled states between the pairs of ions

where 1=\ <0; 3,y &,y=0 andm’ meansm#min. Hence, (A;,A3) and(A;,A,), which is accomplished by the follow-
the entanglement difference between the case without quaifig procedure: We assume that each ion in the linear trap in
tum state discrimination Eq28) , and that with discrimina- cavity C,, is individually addressed as is proposed in the

tion in case of failure, Eq(25) , is given by original scheme of Ref19]. In what follows, we assume the
(1-22) ions to be in a five-level configuration as depicted in Fig. 1.
E-E=———>>(d-1DX 2, + ). (29 The two pathslg)—cy)i— [ep; and [g)—|cp)i—ey); are
d(d-1)"n m addressed using fields with different polarizations. A classi-

cal field Q). detuned inA; with respect to the allowed tran-
We found bounds for this expression by using the extremejtion |¢q>i_>|g>i of theith ion in the central cavityC, 5, is
values of coefficientg,,. A lower bound for the above ex- considered. The|0q>i—>|eq>i dipole-allowed transition is
pression corresponds to the case where all the coefficientfuantum mechanically described by creation and annihila-
are A_,=[1+\/(d-1)]/d except one, which isAy,—i.e.,  tion operatorsa and a', respectively. This quantized field
ey =0. In this case the difference of entanglement is givermode is assumed to be initially in the vacuum state. In the
by high detuning limit the upper Ieve||cq>i is adiabatically
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| o) = = ler) states. If the photon is absorbed Gycavity, the state of the
""" WACS system evolves to

le:) s = (CalegiiLe); + Calalo ey (39)

|g) Now, the classical field for driving the ion Raman transition
in cavity C; is turned on. Thus, after a tim&t, we get
FIG. 1. Electronic level structure of trapped ions. Partially en-
tangled statéy), of ionsi andj are prepared using levells,), and 4= (Cei|eq>i|g>j + Cgi|g>i|eq>j)- (39
|g), with k=i,j andg=0, 1. Thetransitions involving effective in-
teractions between levelg)— |cy) and |cy)— e, are driven by
classical fields with different polarizations.

Following the above procedure, a nonmaximal entangled
pair between ion$A;,A;) using the polarized path=0 has
been prepared. In the same way, theg,A,) pair is prepared
eliminated, such that a Raman configuration leads to an e#p the. same state, _through the polapzed pqthl In the.
fective interaction term: ollowing, we describe the set of logical operations leading
, to the conditional operation between the ion gais, As).
re(t)

Here, we consider that ion&, and Az in cavity C, 3 are

) — t : i) AT
Vi(t) = A |9)i{a| + Asa'aley)iey| +ir () (e *Valley; individually addressed using a pair of Raman fieffs de-
60 tuned inA;+A, andQJ; detuned inA;+A,+ &, respectively,
x(g| - €V |g)i(egla), (33) {0 the lower ionic transitiondcy) — g and [cy)i— [eg.

whereq=0, 1 denotes orthogonal polarizations of the createdEliminating adiabatically the excited leviey);, and properly

photon, r(t)=gQ()/26 (Rabi frequency of Raman transi- adjustlng the de_tunln@q, it is possible to generate general

tion), andA=g?/ 8 (cavity-induced Stark shift For simplic- dyngmlc evolution betw_een the_ _quant|zed center-of-mass

ity, we have assumed a common detuning parameter betwediotion and the electronic transitiojg); —|e;);. It can be

the pump fields and the cavity modes, and real coupling corSNoWn that, by adjusting;=-1, the center-of-mass collec-

stants. Any additional frequency shifts can be included in thdiV€ motion and the internal ionic levels evolve under the

phase of the classical fielg(t). The time- and intensity- €fective Hamiltonian

dependent terms correspond to dynamical shifts arising from Oy _

the adiabatic elimination of the upper atomic level. Hq = i—=(be’lei(a| +|g)i(eyb’e™?), (40
Thus, we have obtained an effective anti-Jaynes- 2VN

Cummings interaction. An important element in this processyith 7 being the Lamb-Dicke parametds,and b’ are the

is the production of polarized photons, provided that wWe;gnter-of-mass motion operators, aRfE QY 09/(A,+A,)2.

drive the transition|c);—|g); using classical fields of a For 8=0 (carrier transitiof we obtain a single Hamiltonian
given polarization. Assume that the quantum field is initially

in the vacuum state and the ion in the ground state, such that
[¥)0=19)i[0)c, O, (34)

where |O)e represents the state of the environment, which ©h00sing an interaction time between the laser pulses and
initially is the vacuum connecting caviti€®, ; and C;, with thelth ion such that=kN/Q%, the Hamiltonian structure

j=1,4.Driving the transitionc,) —|g) during an appropri- Hqi leads to the evolution operator
ate timeAt, we have

)= (Ce'|eq>'|1q>c2~3+ C9'|g>'|o>c2~3)|o>5’ (35 The HamiltonianHg allows us to implement unitary opera-
where ce;=cos¢; and c,=sin ¢;. The photon is emitted by tions on one qubit through the following rotation operator:
the cavity in a short time compared to the relaxation scales of
the ion because of a sufficiently high cavity decay rate. The R|k(¢>) = eXp[— ikz(|eq>“<g|e‘¢+ e“¢|g)”<eq|) . (43
emission process leads to an emitted one-photon wave 2
packet such that

Q- _
Hgr= ﬁ?'(é¢|eq>||<g| +|ghi(ege™?). (41)

U|kq(¢) = e‘ikW/Z(bei¢|eq>||<g|+|g>||(eq\bTe_i¢)_ (42)

According to Ref.[19], this physical picture allows imple-
[1h)2= (Ceilegi| e + Cgi|g>i|0>E)|o>Cz’3v (36)  menting a controlleckoT gate as

where |1) denotes a one-photon wave packet emitted by XORp3= RyA(- Y)U3US U3 RIA(Y), (44)
cavity C, 3.

In cavity C; one ion initially is in thefe,); state, so that the
state of the whole system is given by

whereY =7/2 and ionsA, andA; are the control and target
qubits, respectively.
Before applying the contraoT gate, using the carrier
|1)2 = (Ceileg)i| 1ge * C4ilD)i|0)e) €9 |O)c (37)  transition we apply ar pulse to ions(A; and A,); i.e., we
_ : _ apply the operatoR}(7) and Ry(w). Thus, the partially en-
where we have omitted the vacuum state of @g cavity,  tangled pairs in Eq(3) in this case are given by
because it is factorized to the state of ions. The same is done

in the following steps with contributions from factorized ) = |13 ® |24,
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)13 (Co|@10)s + Cg,[elen)s). (1-2gof?)=Ce,Ce,/ N and that the phase difference @]
is equal tomr. Thus,|P)—|P,), with

|¢>24: (Ce2|g>2|g>4 + ng|el>2|e1>4)- (45) |P2> = (;055|e0> -sin ﬂeﬁ, (49

Now, we apply the controlledtoT gate to the above state gnd sins= 2Cy, Cg Ce,Ce,/ \NgNe . We shall remove théey),
H H H 1 92 F1 *2 1
(45), so that we arrive at the state given by E8). In this  component from statéP,) without adding an additional
case, theu,,), states are explicitly given by component alongg;), in state|Q,). This is achieved through
5 1 extending statéP,) to a third dimensiong), by applying a
Vo g2 = T(Ce10e2|9>2+ Cq,Co,le1)2), rotation U(e;) in the |e;)—|g) plane. Hence, a subsequent
g rotation U(¢,) in the |ey)—|g) plane permits canceling the
1 probability amplitude in directione,) of state|P,). The ro-
7,0’91>2= /__(091062|g>2+ Celcgz|el>2)’ (46) tation U(¢,) is obtained from Eq(47) by imposinggy=0.
VNe, Statesle;) and|g) transform according to

whereNy andN,, are the obvious normalization constants for le))—cos ¢4)e;) —iesin ¢4|g),
each state. For the sake of simplicity, from now on we shall
omit the label referring to particle “2.” |g)——ie'”1sin ¢;|e;) + cos ¢4|g), (50)

The most remarkable feature in this physical implementa- : N ) o
tion of the protocol is that we can make use of the additionavhere€?1=g,/|g,|. The additional rotatiord(¢,) is imple-
electronic levels for discriminating between statesmented by choosing;=0 in Eq. (47) and defininge”2
{lvo).|v1w)}. We have already developed this discrimination=%/|dol- As a result of these operations we obtain sti@as
protocol [20] for two nonorthogonal states. Here, we apply @1d|P3) in the |ey)-|g) plane and in thee;)~|g) plane, re-
previous results to this particular case. In this case the RasPectively. The condition to eliminate the) component of
man transitions through the independent channels associat8it€|P3) leads to the following relation among the param-
with orthogonal polarizations are driven by classical fields€ters of rotations:
Q¢ g and Qg with frequenciesT/ng and7.., respectively.
Here, j=0,1 denote the orthogonal polarization channels.
Only the carrier transition in the ion is considered, so that ndn addition to this constraint, for an optimal conclusive dis-
explicit effects on the center of mass of the ion are included¢rimination one needs to have equal probabilities in the con-

The following conditions homA:ijg_chg:wc-e-_V- clusive measurement states, which is equivalent to a con-

and A> Q. g, Q.. Where w.q and wg are the transition  Straint of equal components along tlg direction—that is,
. 1) ] 17

freq_uenmes of the involved eIgctromc Ieve_Is,_ so that elec- Sin @, = C0S 8 Sin @, + 8C"172sin § sin ;C0S @,.
tronic levels|cy) and|c,) are adiabatically eliminated. Thus

the evolution operator in thgey),|e;),|g)} basis is given by

C0S 8 €0S ¢, = €1 72sin § sin @, sin @,.

(51)

2 « T By imposing —y; + y,=27r, the result of the preparation pro-
1+ |g*0| Cle) gogli(qo) 'JoSIN ¢ cess for discrimination is

U(@)=| 9:19:C(e) 1+|gi|*Cle) —igysineg |, Py= 60— 167750 oolg)

—iggsine  —ig;sin @ cos¢ 3 = COS¢al€y —1€ TESIN €210),

(47) Qs) = cos gyley) — i€ 7zsin )lg), (52

where ¢=Qt is an2 dimeznsionltzass interacti_on tim&(e)  \where @,=arcco$y1-cosd/sin 8) and g,=arcsincos o).
=(cosp-1), and O*=|g, |*+|gz|*. The coupling constants g mmarizing, the protocdl(e,)U(e)U() obtains a pair

are defined ag;=g, /), and gy ={l¢¢{de. /A. This evolu-  of states having equal independent components along a con-

. . . . ] .

tion allows implementing on the ion all the required coherentclusive measuremeni,)-|e;) plane as well in the noncon-
operations for discriminating nonorthogonal states. Thelusive measurement sta.

states to be recognized are coherent superpositions of states

le,) and|g). Using the carrier transition in leveley) and|g), V. SUMMARY
the superpositions to be recognized can change into two non-
orthogonal statefP) or |Q) in such a way that In this work the problem of entanglement swapping from
1 nonmaximally entangled states has been studied. The proto-
Q) = —==(Ce,Co.|€0) + C4.Cq |€1)), col that we have described considers the implementation of a
INg 7 e quantum discrimination process for a set of nonorthogonal

quantum states. Maximally entangled states are distilled

IP) = i(c G |€0) = Co o le) (48) when a successful discrimination process takes place. Partial

\/E €17% 9y -gp! =1/ entanglement arises in case of a failure in the discrimination
* process, as occurs in the case when no discrimination process

A rotationU(p=1) in Eq.(47) is applied around thgg) state  is implemented. We found an expression for comparing the
such thatQ)— |Q,)=|ey). This is obtained by assuming that entanglement among these cases. The amount of entangle-
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ment when no discrimination process is implemented is alpartially entangled state with the particle lying at the second
ways greater than when an unsuccessful discrimination praiode, pair3-4. Thus, the degree of entanglement of the dis-
cess takes place. However, a discrimination process leads tabuted pair could be improved at expenses of the localized
the possibility of generating maximally entangled states. Amaximally entangled pair.

physical model where the protocol could be tested has been
given for trapped ions located in separated cavities.

An interesting application of this protocol is the enhance-
ment of entanglement between parties belonging to widely
separated nodes of a quantum network. In one of these nodes This work was partially supported by Grant No. FOND-
there are at least three particles. Two of them are in a maxiECYT 1030671 and Milenio Grant No. ICM P02-049F. A. D.
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