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I. INTRODUCTION

In quantum communications, entanglement plays the role
of a fundamental resource[1]. It allows one to realize pro-
cesses such as quantum teleportation[2] and quantum cryp-
tography [3] which by classical means are only approxi-
mately implemented[4]. Most quantum communication
protocols require a maximally entangled state for their
implementation. The use of partially entangled states leads to
a reduction in the quality and the reliability of these proto-
cols.

Recently, the connection between unambiguous state dis-
crimination and quantum state teleportation has been studied
by several authors[5]. The main result is that the use of
schemes for optimal unambiguous state discrimination[6]
leads to an enhancement of quantum teleportation through a
partially entangled pure state in such a way that perfect tele-
portation can be conclusively achieved with certain success
probability. The optimal conclusive quantum teleportation
protocol has recently been found by Roaet al. [7].

In this article we study entanglement swapping through
partially entangled states of bipartite finite-dimensional
quantum systems. Under these conditions, the standard pro-
tocol for entanglement swapping leads to partially entangled
states, whose entanglement cannot be increased by local
transformations. An analysis of the protocol indicates that
use of nonmaximally entangled states for entanglement
swapping leads to the problem of discriminating among a set
of nonorthogonal quantum states. We show that, in this case,
the known protocol for entanglement swapping can be en-
hanced by the use of optimal conclusive state discrimination.
Thereby, it is possible to obtain probabilistically a maximally
entangled state from a pair of partially entangled pure states.
We characterize the success probability for conclusive en-
tanglement swapping and propose a physical realization for
this process based on cold ions in a linear trap inside an
optical cavity.

This article is organized as follows: In Sec. II we briefly
summarize the main tenets of entanglement swapping. Sec-
tion III shows how the use of partially entangled states in
entanglement swapping leads naturally to conclusive quan-
tum state discrimination. Finally, Sec. IV outlines a physical
proposal for this process. We summarize in Sec. V.

II. ENTANGLEMENT SWAPPING WITH QUDITS

By entanglement swapping we mean the process that gen-
erates entangled particles without a direct dynamical interac-

tion among the involved particles[8]. This process has al-
ready been experimentally implemented[9].

Entanglement swapping can be succinctly described by
the following identity:

XOR23uC0,0l12 ^ uC0,0l34 =
1

d
o

u,l=0

d−1

uCl,ul14 ^ F−1ull2 ^ uul3.

s1d

The maximally entangled statesuCl,ul with l ,u=0, . . . ,d−1
are a generalization of Bell states to twod-dimensional quan-
tum systems(qudits) defined by

uCl,ulct = XORctFullc ^ uult

=
1
Îd

o
q=0

d−1

expS2pi

d
qlDuqlc ^ uq − ult, s2d

whereXORct is the generalized control-NOT quantum gate,
XORctuilucjlt= ucilui * jlt [10], c and t denote the control and
the target qudit, respectively,F is the Fourier transform—
i.e., Full=s1/Îddok=0

d−1 expsi2plk /ddukl—and operations in-
volving subindexes are carried out modulod.

The protocol for entanglement swapping can readily be
read out of identity Eq.(1). Let us assume that particles 1
and 4 belong to Alice and Bob, respectively, and particles 2
and 3 belong to Charlie. If Charlie applies a generalized
control-NOT gate onto his particles and measures them sepa-
rately in basesF−1ull2 and uul3, then the joint state of par-
ticles 1 and 4 will be projected onto the maximally entangled
stateuCl,ul14.

Thereby, the entanglement contained in statesuC0,0l12 and
uC0,0l34 has been transferred to stateuCl,ul14. This state can
be deterministically transformed into stateuC0,0l14 by Alice
and Bob by means of appropriate local unitary transforma-
tions conditional to the outcome of the measurement proce-
dure.

III. ENTANGLEMENT SWAPPING VIA PARTIALLY
ENTANGLED PURE STATES

A particularly interesting situation arises when the two
pairs of particles are initially in a nonmaximally entangled
state. To illustrate this let us consider the following initial
state:
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uCl12 ^ uCl34 = o
m

cmuml1 ^ uml2 ^ o
n

dnunl3 ^ unl4,

s3d

where the coefficientscm anddn are positive and are in gen-
eral different from 1/Îd. Clearly, the states associated with
the pairs of particles are generally nonmaximally entangled.
When the protocol for entanglement swapping described in
the previous section is carried out, the final non-normalized
state of particles 1 and 4 will be

o
l,m=0

d−1

cmdm−uexpS− 2ip

d
mss+ ldDuCl,ul14, s4d

which is associated with a projection onto statesFusl2 and
uul3. In general, this state will only be partially entangled.
Thus, the known protocol for entanglement swapping via
partially entangled states cannot lead to maximally entangled
states. Consequently, this protocol has to be reformulated.

The starting point for such a modification is the following
identity:

XOR23uCl12 ^ uCl34 =
1
Îd

o
u,l=0

d−1

uCl,ul14 ^ unl,ul2 ^ uul3.

s5d

This identity generalizes identity Eq.(1) to the case of two
pairs of nonmaximally entangled states of Eq.(3). Compar-
ing both identities, we see that statesF−1ull2 have been re-
placed by statesunll2 defined by

unl,ul2 = ZD−lun0,ul2, s6d

where stateun0,ul2 is given by

un0,ul2 = o
m

cmdm−uuml2 s7d

and the spectral decomposition of theZ operator is

Z = o
m

expS2ip

d
mDumlkmu. s8d

The identity(5) suggests a protocol for entanglement swap-
ping. The maximally entangled statesuCl,ul14 are in one-to-
one correspondence with statesunl,ul2 anduul3. Therefore, by
performing a suitable measurement on particles 2 and 3, it
would be possible to project the states of particles 3 and 4
onto a maximally entangled state. Since stateshuul3j are mu-
tually orthogonal, a von Neumann measurement suffices to
identify them. However, the stateshunl,ul2j are not mutually
orthogonal and, consequently, it is not possible to distinguish
with certainty among them.

The problem of state distinguishability or state discrimi-
nation has been a recurrent subject of research both due to its
implications for the understanding of qantum mechanics and
to its practical applications. The main strategy consists of
using generalized measurements. This allows one to define
an optimal conclusive(or unambiguous) scheme for dis-
criminating among a finite number of nonorthogonal states
with given a priori probabilities. The price we pay in doing

this is that the scheme occasionally leads to measurement
results which do not enable the precise identification of the
state. This idea was first proposed by Ivanovic[11] and has
been studied by Dieks[12] and Peres[13] for two nonor-
thogonal states generated with equala priori probabilities.
The generalization to arbitrarya priori probabilities was ob-
tained by Jäger and Shimony[14]. The case of a larger num-
ber of states was considered by Chefles[15] and Peres and
Terno [16], where the former showed that results for the
several states case simply generalize from those of the two-
state case when the states involved are linearly independent.
Moreover, Chefles[15] has shown that there exists a conclu-
sive state discrimination scheme if and only if the states to be
discriminated are linearly independent. However, for a lin-
early dependent set, ifC copies of the state are available,
then the resultingC-particle states may form a linearly inde-
pendent set and be amenable to unambiguous discrimination
[17,18].

In what follows we shall apply a conclusive state dis-
crimination scheme to entanglement swapping. Let us start
by discussing the properties of the statesunl,ul2. In general,
there ared2 of these states defined in ad-dimensional Hilbert
space. Clearly, these states cannot be linearly independent.
However, foru fixed, these states can be split up intod sets
Vu labeled by the value ofu. According to Eq.(6), each state
in setVu is generated from a fiducial state by applying pow-
ers of the unitary transformationZ. Therefore, these states
are symmetric. Furthermore, these states are linearly inde-
pendent as long as the coefficientscm anddn are all nonzero.
Therefore, the states belonging to a particular setVu can be
conclusively identified.

The inner product between two arbitrary statessl8 , ld in a
particular setVu is given by

knl,uunl8,ul = o
m=0

d−1

ucmu2udm−uu2 = Nu. s9d

Introducing the properly normalized statesuñl,ul= unl,ul /ÎNu
into Eq. (5), we obtain

XOR23uCl12 ^ uCl34

=
1
Îd

o
u=0

d−1

ÎNuSo
l=0

d−1

uCl,ul14 ^ uñl,ul2D ^ uul3. s10d

TheNu coefficients entering into this equation correspond to
the probabilities of projecting onto stateuul3. After such a
projection, the normalized conditional state of the remaining
particles is given by

uCul =
1
Îd

o
l=0

d−1

uCl,ul14 ^ uñl,ul2. s11d

Thereby, the problem of entanglement swapping has been
reduced to the discrimination of the states in a particular set
Vu.

Previously we have mentioned that the states inVu are
symmetric. Thus, we have to study the probabilityPl,u of
projecting onto these states from the conditional stateuCul.
This is given by
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Pl,u = o
m=0

d−1

uAm
u u4, s12d

where theAm
u coefficients are defined by

Am
u =

cmdm−u

ÎNu

. s13d

Clearly this expression turns out to be independent of the
label l. Therefore, the states inVu have equala priori prob-
abilities. Moreover, since there is no entanglement between
particles 2 and 3, the probability of projecting onto state
uñl,ul2 ^ uul2 corresponds simply to the productNuPl,u.

The optimal scheme for conclusive state discrimination
was discussed in detail by Roaet al. [7] for the case of
symmetric states generated with equala priori probabilities.
Let us now apply the results in[7] to the discrimination of
the states in setVu. The main idea is that conclusive or
unambiguous discrimination among the elements of a set of
linearly independent states is possible if we allow for suc-
cessful distinguishability with some probability. In the par-
ticular case we are dealing with, the Hilbert space of particle
two is enlarged by considering unused dimensions or includ-
ing ancillary systems to allow the existence of a unitary
transformationUu such that its action is defined by

Uuuñl,ul2 = Îpl,uuel,ul2 + uFl,ul2 s14d

for u fixed. Stateshuel,ulj are ad-dimensional basis which
generates theUu subspace; and thed−1 unnormalized, lin-
early dependent stateshuFl,ulj belong to theAu subspace
spanned by basishual,ulj. Both subspaces are orthogonal and
are such thatH=Uu % Au. The application ofUu follows a
measurement which projects particle two onto one of these
two subspaces. A projection onto stateuel,ul in Uu allows
conclusive identification of stateuñl,ul with probabilitypl,u. A
projection onto stateuak,ul leads to no certain knowledge
about stateuñl,ul. It can be shown[7,15] that the optimal
success probabilitypl,u is

pl,u = uAmin
u u2, s15d

whereuAmin
u u=minhuAk

uujk=0,. . .,d−1 and that statesuFl,ul are

uFl,ul =
1
Îd

o
k=0

d−1Fo
m=0

d−1

expS2pi

d
msk − ldD

3ÎuAm
u u2 − uAmin

u u2Guak,ul. s16d

Now we can proceed to clearly state the entanglement
swapping protocol combined with conclusive state distin-
guishability. Let us recall the identity(10):

uCl = XOR23uCl12 ^ uCl34

=
1
Îd

o
u=0

d−1

ÎNuSo
l=0

d−1

uCl,ul14 ^ uñl,ul2D ^ uul3. s17d

A measurement on particle 3 projects the remaining particles
onto the state

uCul =
1
Îd

o
l=0

d−1

uCl,ul14 ^ uñl,ul2. s18d

Conditional on the measurement’s outcome, the operatorUu
is applied on particle 2 leading to the state

UuuCul =
1

d
o
l=0

d−1

uCl,ul14 ^ sÎpl,uuel,ul2 + uFl,ul2d. s19d

Following the application ofUu, a measurement is carried
out on particle 3 in the basishuel,ul , uak,ulj (with l ,k
=0, . . . ,d−1). This projects particles 1 and 4 onto the maxi-
mally entangled stateuCl,ul1,4 when stateuel,ul2 is detected or
onto the normalized superposition of maximally entangled
states,

uFl14 = o
l=0

d−11o
m=0

d−1 expS2pi

d
msk − ldD

Îds1 − duAmin
u u2d

ÎuAm
u u2 − uAmin

u u22uCl,ul14,

s20d

when stateuak,ul2 is detected.
The probabilityQl,u of obtaining the maximally entangled

stateuCl,ul1,4 is given by the product ofNu, the probability of
projecting particle 3 onto a particularuul state, and probabil-
ity pl,u of successfully discriminating stateuñl,ul—that is,

Ql,u = Nupl,u. s21d

Summing over bothl and u we obtain the overall success
probability Q of the protocol. The optimal value for this
probability is given by the expression

Q = do
u=0

d−1

minhuckdk−uu2jk=0,. . .,d−1, s22d

which is a function of coefficientscn anddm which define the
partially entangled states of the two pairs of qudits. If we
assume that thecm and dm coefficients have been ordered
from the lower to the maximum value—i.e.,cmøcm+1 and
dmødm+1 for 0ømød—this expression can be cast in the
form

Q = do
u=0

d−1

minhuc0dd−uu2,ud0cd−uu2j, s23d

which allows us to find the following upper and lower
bounds for the overall success probability:

d

2
sminhucmu2j + minhudmu2jd ù Q ù d minhucmu2jminhudmu2j.

s24d

The states of particles 1 and 4 are in a partially entangled
state even when the discrimination process leads to an am-
biguous result. Since these states, Eq.(20) , are pure, the
entanglement can easily be calculated. This is given by
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E =
d

sd − 1d
H1 −

om
uAm

u u4 + duAmin
u u2suAmin

u u2 − 2d

s1 − duAmin
u u2d2 J .

s25d

Here we have used the expressionE=df1−Trsr1d2g / sd−1d
to calculate the entanglement. Let us note that we have in-
troduced an extra factor so that 0øEø1.

Clearly, the entanglement depends on the value of the
outcome of the measurement carried out on particle 3, but
not on the measurement’s resultk. Thus, the states arising
from a failure in the discrimination process have the same
amount of entanglement. This can be explained by consider-
ing that theuFl14 states can be cast in the form

uFl14 = Z1
k

^ 14o
m=0

d−1 ÎuAm
u u2 − uAmin

u u2

Îds1 − duAmin
u u2d

uml1 ^ um− ul4.

s26d

Thereby, these states turn out to be symmetric under the
local, unitary operatorZ1

k
^ 14 and, consequently, they have

the same amount of entanglement.
Let us now consider the case of entanglement swapping

without resorting to state discrimination. It can be shown that
a measurement on particle 3. and a measurement on particle
2 in the Fourier basis lead to the state

uF̃l14 = o
l=0

d−1F 1
Îd

o
m=0

d−1

expS2pi

d
mss− ldDAm

uGuCl,ul14

s27d

when the measurement outcomes ares and u, respectively.
The entanglement of particles 1 and 4 in this state is

Ẽ =
d

sd − 1dS1 −o
m

uAm
u u4D . s28d

This entanglement is also dependent only on the outcome
u of a measurement on particle 3 As was mentioned above,
when the quantum channels are not prepared in maximally
entangled states, at least one of theAm

u coefficients is less
than 1/d. Thus, without loss of generality, we can write

uAmin
u u2 =

1

d
s1 − ld, uAm8

u u2 =
1

d
S1 +

l

d − 1
+ «m8D ,

where 1ølø0; om8 «m8=0 andm8 meansmÞmin. Hence,
the entanglement difference between the case without quan-
tum state discrimination Eq.(28) , and that with discrimina-
tion in case of failure, Eq.(25) , is given by

Ẽ − E =
s1 − l2d

dsd − 1d2l2Ssd − 1do
m8

«m8
2 + l2dD . s29d

We found bounds for this expression by using the extreme
values of coefficients«m8. A lower bound for the above ex-
pression corresponds to the case where all the coefficients
are Am8

u =f1+l / sd−1dg /d except one, which isAmin
u —i.e.,

«m8=0. In this case the difference of entanglement is given
by

Ẽ − E =
s1 − l2d
sd − 1d2 . s30d

The upper bound is obtained when all the coefficients are
Am8

u =s1+l /dd /d except one, which isAmax
u , with «max

=ldsd−2d / sd−1d, so thatsd−1d«max
2 ùom8 «m8

2 . Thus, for an
arbitrary state, the entanglement difference satisfies

s1 − l2d
sd − 1d3fdsd − 2d2 + sd − 1dg ù Ẽ − E ù

s1 − l2d
sd − 1d2 . s31d

Here, we can appreciate that, in case of failure, the entangle-
ment of the residual pair is always less than in the case of
nonimplementing quantum state discrimination. However,
the main difference between both processes arises when the
discrimination is successful.

Comparing with state, Eq.(20) , we obtain that the pro-
tocol for conclusive entanglement swapping can be described
in terms of a channel of the form

o
l=0

d−1
1
Îd

uell1 ^ uell2 ^ o
k=0

d−1
1
Îd

uekl3 ^ uekl4

+ o
l=0

d−1
1
Îd

uall1 ^ uall2 ^ o
k=0

d−1

ÎuAmu2 − uAminu2uakl3 ^ uakl4,

s32d

which corresponds to the superposition of the product of two
maximally entangled states in subspaceUu and the product of
a maximally entangled state and a nonmaximally entangled
state in subspaceAu.

IV. PHYSICAL IMPLEMENTATIONS USING COLD
TRAPPED IONS

For a physical implementation of the above described pro-
tocol, in the case of using qubits, we consider cold trapped
ions inside optical cavities. Let us consider a set of three
cavitiesC1, C2,3, andC4. Each one of these cavities contains
a set of ions in a linear array. The ions have been cooled
down to the ground state of their center-of-mass motion. Let
us select one ion in cavityC1, two ions inC2,3, and one ion
in C4 labeled asA1, A2 andA3, andA4, respectively.

The first step of the implementation is to establish a pair
of nonmaximally entangled states between the pairs of ions
sA1,A3d and sA2,A4d, which is accomplished by the follow-
ing procedure: We assume that each ion in the linear trap in
cavity C12 is individually addressed as is proposed in the
original scheme of Ref.[19]. In what follows, we assume the
ions to be in a five-level configuration as depicted in Fig. 1.
The two pathsugli → uc1li → ue1li and ugli → uc2li → ue2li are
addressed using fields with different polarizations. A classi-
cal field Vc detuned inD1 with respect to the allowed tran-
sition ucqli → ugli of the ith ion in the central cavityC2,3, is
considered. Theucqli → ueqli dipole-allowed transition is
quantum mechanically described by creation and annihila-
tion operatorsa and a†, respectively. This quantized field
mode is assumed to be initially in the vacuum state. In the
high detuning limit the upper levelucqli is adiabatically
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eliminated, such that a Raman configuration leads to an ef-
fective interaction term:

VIstd =
r2std
Ds

ugliikgu + Dsa
†aueqliikequ + ir stdse−ifstda†ueqlii

3kgu − eifstdugliikequad, s33d

whereq=0,1denotes orthogonal polarizations of the created
photon, rstd=gVcstd /2d (Rabi frequency of Raman transi-
tion), andDs=g2/d (cavity-induced Stark shift). For simplic-
ity, we have assumed a common detuning parameter between
the pump fields and the cavity modes, and real coupling con-
stants. Any additional frequency shifts can be included in the
phase of the classical fieldfstd. The time- and intensity-
dependent terms correspond to dynamical shifts arising from
the adiabatic elimination of the upper atomic level.

Thus, we have obtained an effective anti-Jaynes-
Cummings interaction. An important element in this process
is the production of polarized photons, provided that we
drive the transitionucqli → ugli using classical fields of a
given polarization. Assume that the quantum field is initially
in the vacuum state and the ion in the ground state, such that

ucl0 = ugliu0lC2,3
u0lE, s34d

where u0lE represents the state of the environment, which
initially is the vacuum connecting cavitiesC2,3 andCj, with
j =1,4.Driving the transitionucqli → ugli during an appropri-
ate timeDt, we have

ucl1 = sceiueqliu1qlC2,3
+ cgiugliu0lC2,3

du0lE, s35d

wherecei=coswi and cgi=sin wi. The photon is emitted by
the cavity in a short time compared to the relaxation scales of
the ion because of a sufficiently high cavity decay rate. The
emission process leads to an emitted one-photon wave
packet such that

ucl2 = sceiueqliu1lE + cgiugliu0lEdu0lC2,3
, s36d

where u1lE denotes a one-photon wave packet emitted by
cavity C2,3.

In cavity Cj one ion initially is in theueql j state, so that the
state of the whole system is given by

ucl2 = sceiueqliu1qlE + cgiugliu0lEdueql ju0lCj
, s37d

where we have omitted the vacuum state of theC2,3 cavity,
because it is factorized to the state of ions. The same is done
in the following steps with contributions from factorized

states. If the photon is absorbed byCj cavity, the state of the
system evolves to

ucl3 = sceiueqliu1ql j + cgiugliu0l jdueql j . s38d

Now, the classical field for driving the ion Raman transition
in cavity Cj is turned on. Thus, after a timeDt, we get

ucl4 = sceiueqliugl j + cgiugliueql jd. s39d

Following the above procedure, a nonmaximal entangled
pair between ionssA1,A3d using the polarized pathq=0 has
been prepared. In the same way, thesA2,A4d pair is prepared
in the same state, through the polarized pathq=1. In the
following, we describe the set of logical operations leading
to the conditional operation between the ion pairsA2,A3d.

Here, we consider that ionsA2 and A3 in cavity C2,3 are
individually addressed using a pair of Raman fieldsV1i

q de-
tuned inD1+D2 andV2i

q detuned inD1+D2+di, respectively,
to the lower ionic transitionsucqli → ugli and ucqli → ueqli.
Eliminating adiabatically the excited levelucqli, and properly
adjusting the detuningdi, it is possible to generate general
dynamic evolution between the quantized center-of-mass
motion and the electronic transitionugli → ueqli. It can be
shown that, by adjustingdi =−nx, the center-of-mass collec-
tive motion and the internal ionic levels evolve under the
effective Hamiltonian

Hql = "
Vi

qh

2ÎN
sbeifueqlllkgu + uglllkequb†e−ifd, s40d

with h being the Lamb-Dicke parameter,b and b† are the
center-of-mass motion operators, andVi

q=V1i
q V2i

q / sD1+D2d2.
For di =0 (carrier transition) we obtain a single Hamiltonian

HR = "
Vi

q

2
seifueqlllkgu + uglllkeque−ifd. s41d

Choosing an interaction time between the laser pulses and
the lth ion such thatt=kpÎN/Vi

qh, the Hamiltonian structure
Hqi leads to the evolution operator

Ul
kqsfd = e−ikp/2sbeifueqlll kgu+uglll kequb†e−ifd. s42d

The HamiltonianHR allows us to implement unitary opera-
tions on one qubit through the following rotation operator:

Rl
ksfd = expF− ik

p

2
sueqlllkgueif + e−ifuglllkequdG . s43d

According to Ref.[19], this physical picture allows imple-
menting a controlled-NOT gate as

XOR23 = R3
1/2s− YdU2

1,0U3
2,1U2

1,0R3
1/2sYd, s44d

whereY=p /2 and ionsA2 andA3 are the control and target
qubits, respectively.

Before applying the control-NOT gate, using the carrier
transition we apply ap pulse to ions(A1 and A2); i.e., we
apply the operatorR1

1spd and R2
1spd. Thus, the partially en-

tangled pairs in Eq.(3) in this case are given by

ucl = ucl13 ^ ucl24,

FIG. 1. Electronic level structure of trapped ions. Partially en-
tangled stateucl4 of ions i and j are prepared using levelsueqlk and
uglk, with k= i , j andq=0,1. Thetransitions involving effective in-
teractions between levelsugl→ ucql and ucql→ ueql are driven by
classical fields with different polarizations.
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ucl13 = sce1
ugl1ugl3 + cg1

ue0l1ue0l3d,

ucl24 = sce2
ugl2ugl4 + cg2

ue1l2ue1l4d. s45d

Now, we apply the controlled-NOT gate to the above state
(45), so that we arrive at the state given by Eq.(5). In this
case, theun0,ul2 states are explicitly given by

uñ0,gl2 =
1

ÎNg

sce1
ce2

ugl2 + cg1
cg2

ue1l2d,

uñ0,e1
l2 =

1

ÎNe1

scg1
ce2

ugl2 + ce1
cg2

ue1l2d, s46d

whereNg andNe1
are the obvious normalization constants for

each state. For the sake of simplicity, from now on we shall
omit the label referring to particle “2.”

The most remarkable feature in this physical implementa-
tion of the protocol is that we can make use of the additional
electronic levels for discriminating between states
hun0,ul , un1,ulj. We have already developed this discrimination
protocol [20] for two nonorthogonal states. Here, we apply
previous results to this particular case. In this case the Ra-
man transitions through the independent channels associated
with orthogonal polarizations are driven by classical fields
Vcjg

and Vejcj
with frequenciesñcjg

and ñcjej
, respectively.

Here, j =0,1 denote the orthogonal polarization channels.
Only the carrier transition in the ion is considered, so that no
explicit effects on the center of mass of the ion are included.

The following conditions hold:D=vcjg
−ncjg

=vcjej
−ncjej

and D@Vcjg
, Vejcj

, wherevcjg
and vcjej

are the transition
frequencies of the involved electronic levels, so that elec-
tronic levelsuc0l and uc1l are adiabatically eliminated. Thus
the evolution operator in thehue0l , ue1l , uglj basis is given by

Uswd = 11 + ug0u2Cswd g0g1
*Cswd − ig0sin w

g1g0
*Cswd 1 + ug1u2Cswd − ig1

*sin w

− ig0
*sin w − ig1

*sin w cosw
2 ,

s47d

where w=Vt is an dimensionless interaction time,Cswd
=scosw−1d, and V2= ug21

u2+ ug20
u2. The coupling constants

are defined asgj =g2j
/V, and g2j

=Vcjg
Vejcj

* /D. This evolu-
tion allows implementing on the ion all the required coherent
operations for discriminating nonorthogonal states. The
states to be recognized are coherent superpositions of states
ue1l andugl. Using the carrier transition in levelsue0l andugl,
the superpositions to be recognized can change into two non-
orthogonal statesuPl or uQl in such a way that

uQl =
1

ÎNg

sce1
ce2

ue0l + cg1
cg2

ue1ld,

uPl =
1

ÎNe1

sce1
ce2

ue0l − cg1
cg2

ue1ld. s48d

A rotationUsw=pd in Eq. (47) is applied around theugl state
such thatuQl→ uQ2l= ue0l. This is obtained by assuming that

s1–2ug0u2d=ce1
ce2

/ÎNg and that the phase difference ofg0g1
*

is equal top. Thus,uPl→ uP2l, with

uP2l = cosdue0l − sin due1l, s49d

and sind=2cg1
cg2

ce1
ce2

/ÎNgNe1
. We shall remove theue0l2

component from stateuP2l without adding an additional
component alongue1l2 in stateuQ2l. This is achieved through
extending stateuP2l to a third dimensionugl2 by applying a
rotation Usw1d in the ue1l− ugl plane. Hence, a subsequent
rotation Usw2d in the ue0l− ugl plane permits canceling the
probability amplitude in directionue0l of stateuP2l. The ro-
tation Usw1d is obtained from Eq.(47) by imposingg0=0.
Statesue1l and ugl transform according to

ue1l→cosw1ue1l − ie−ig1sin w1ugl,

ugl→− ieig1sin w1ue1l + cosw1ugl, s50d

whereeig1=g1/ ug1u. The additional rotationUsw2d is imple-
mented by choosingg1=0 in Eq. (47) and definingeig2

=g0/ ug0u. As a result of these operations we obtain statesuQ3l
and uP3l in the ue0l-ugl plane and in theue1l− ugl plane, re-
spectively. The condition to eliminate theue0l component of
stateuP3l leads to the following relation among the param-
eters of rotations:

cosd cosw2 = eis−g1+g2dsin d sin w1 sin w2.

In addition to this constraint, for an optimal conclusive dis-
crimination one needs to have equal probabilities in the con-
clusive measurement states, which is equivalent to a con-
straint of equal components along theugl direction—that is,

sin w2 = cosd sin w2 + eis−g1+g2dsin d sin w1cosw2.

s51d

By imposing −g1+g2=2p, the result of the preparation pro-
cess for discrimination is

uP3l = cosw2ue1l − ie−ig2sin w2ugl,

uQ3l = cosw2ue0l − ie−ig2sin w2ugl, s52d

where w1=arccossÎ1−cosd /sin dd and w2=arcsinsÎcosdd.
Summarizing, the protocolUsw2dUsw1dUspd obtains a pair
of states having equal independent components along a con-
clusive measurementue0l-ue1l plane as well in the noncon-
clusive measurement stateugl.

V. SUMMARY

In this work the problem of entanglement swapping from
nonmaximally entangled states has been studied. The proto-
col that we have described considers the implementation of a
quantum discrimination process for a set of nonorthogonal
quantum states. Maximally entangled states are distilled
when a successful discrimination process takes place. Partial
entanglement arises in case of a failure in the discrimination
process, as occurs in the case when no discrimination process
is implemented. We found an expression for comparing the
entanglement among these cases. The amount of entangle-
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ment when no discrimination process is implemented is al-
ways greater than when an unsuccessful discrimination pro-
cess takes place. However, a discrimination process leads to
the possibility of generating maximally entangled states. A
physical model where the protocol could be tested has been
given for trapped ions located in separated cavities.

An interesting application of this protocol is the enhance-
ment of entanglement between parties belonging to widely
separated nodes of a quantum network. In one of these nodes
there are at least three particles. Two of them are in a maxi-
mally entangled state, pair1-2, and theother one is in a

partially entangled state with the particle lying at the second
node, pair3-4. Thus, the degree of entanglement of the dis-
tributed pair could be improved at expenses of the localized
maximally entangled pair.
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