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We show that quantum information can be encoded into entangled states of multiple indistinguishable
particles in such a way that any inertial observer can prepare, manipulate, or measure the encoded state
independent of their Lorentz reference frame. Such relativistically invariant quantum information is free of the
difficulties associated with encoding into spin or other degrees of freedom in a relativistic context.
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I. INTRODUCTION

Information encoded into the states of quantum systems
allows for powerful new computational and communication
tasks[1]. It is perhaps in situations involving extremely long
distances that quantum information will find its most useful
applications: quantum teleportation[2], entanglement-
enhanced communication[3], quantum clock synchroniza-
tion [4,5] and reference frame alignment[6–10], and
quantum-enhanced global positioning[5] are just some of
the ways that quantum physics offers an advantage over clas-
sical methods. In these long-distance situations, relativistic
effects can be expected to arise[11]. Consider the canonical
example of a qubit encoded into the angular momentum state
of a massive spin-1/2 particle. The spin entropy, which
quantifies the purity of the encoded information, is not a
covariant quantity[12]: under a Lorentz transformation, the
spin state becomes entangled with the momentum of the par-
ticle. The effect of Lorentz transformations is todecoherethe
qubit, reducing the applicability of such systems to perform
quantum information processing tasks in a relativistic setting
[11,12]. Photon polarization qubits behave similarly, with ad-
ditional effects arising from the transversality of polarization
[11,12].

We show thatrelativistically invariantquantum informa-
tion can be encoded into entangled states of multiple, indis-
tinguishable particles. This encoding allows any inertial ob-
server to prepare and manipulate quantum information in a
way that is independent of their particular frame of reference.
In particular, two observers can share entanglement and thus
perform any quantum information processing task(teleporta-
tion, communication, etc.) without sharing a reference frame.
We develop such encodings by showing that, under a general
Lorentz transformationLAB, the spin state of a particle will
be transformed due to three distinct effects:(i) a Wigner
rotation due to the Lorentz boostLBA, which occurs even for
momentum eigenstates,(ii ) a decoherence due to the entan-
gling of the spin and momentum under the Lorentz transfor-
mationLAB because the particle is not in a momentum eigen-
state, and(iii ) a decoherence due to Bob’s lack of knowledge
about the transformation relating his reference frame to Al-

ice’s frame. To construct encodings that are protected from
decoherence of the forms(i) and(iii ), we construct states of
multiple indistingishable particles with well-defined mo-
menta and use the techniques of noiseless subsystems
[13,14]. We begin by considering massive spin-1/2 particles;
massless photons are then given a separate treatment.

II. SINGLE SPIN-1/2 PARTICLE

Consider two inertial observers, Alice and Bob, who wish
to exchange spin-1/2 particles(e.g., protons) for the pur-
poses of some quantum information processing task. First,
we consider the exchange of a single particle and outline the
associated difficulties. To fix our notation, momentum eigen-
statesu0ml with m= ± 1

2 of a single spin-1/2 particle in the
rest framesp=0d, are given in a boosted frame asupml
=Lsjpdu0ml for Lsjpd a pure Lorentz boost. The Lorentz
transformationL acts via the one-particle representationT1
as

T1sLdupml = o
m8

usLpdm8lDm8,m
1/2

„VsL,pd…, s1d

whereVsL ,pd=LsjLpd−1T1sLdLsjpdPSOs3d is a Wigner ro-
tation, andDm8,m

1/2 sVd is the spin-1/2 representation. Thus, on
the spin degrees of freedom, the Lorentz transformation acts
as a rotation.

Let Alice prepare a single spin-1/2 particle in a stater
with respect to her reference frame. This state cannot be an
(unphysical) eigenstate of momentum[11]; the spatial state
of the particle could be prepared, for example, in a coherent
state of minimum uncertainty in both position and momen-
tum. A generic pure state for a single particle is given in
terms of the basis above by

uCl1 = o
m
E

−`

`

cmspdupmldmspd, s2d

wheredmspd=s2pd−3s2p0d−1d3p. To encode a qubit into this
particle, Alice may prepare the spin of this particle in an
arbitrary encoded state uncoupled(in a product state) with a
localized spatial state, i.e.,
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uCl1 = Sz

h
D E cspdupldmspd, s3d

where we take the wave functionc to be concentrated near
zero momentum and with a characteristic spreadD; i.e., to be
of the Gaussian formcspd=C exps−p2/2D2d, whereC is a
normalization constant. The reduced density matrix for the
spin component of this state in Alice’s frame is

r1 = S uzu2 zh*

z*h uhu2
D , s4d

and in this frame is independent of the form ofcspd.
Now consider the state of this particle as described by

another inertial observer, Bob. LetLBA be the element of the
Lorentz group that relates Bob’s inertial frameB to Alice’s
frameA; Bob thus assigns the transformed stateT1sLBAduCl1

to the particle. Even if Bob has the perfect knowledge of the
relative orientation and velocity of his reference frame with
respect to Alice’s, the reduced density matrix for the spin
degrees of freedom of this qubit decoheres[11]. For ex-
ample, if the Lorentz transformationLBA is a pure boost
along thez axis to the velocityv, the effective state transfor-
mation is[12]

r18svd < s1 − 1
4G2dr1 + 1

8G2ssxr1sx + syr1syd, s5d

whereG=s1−Î1−v2dD /v. As this decoherence is an artifact
of Bob’s different frame, it is in principle possible for Bob to
overcome this decoherence if he has perfect knowledge of
the relation(i.e., the Lorentz transformationLAB) that relates
his frame to Alice’s by altering his frame or performing an
appropriate transformation on the state.

However, if Bob does notknowthis relation, the decoher-
ing effects are much more significant. He represents the state
of the system as a mixture over all possible Lorentz transfor-
mations that could relate Alice’s frame to his. Specifically,
we would represent the state of the particle as

E1suCl1kCud =E dL fsLdT1sLduCl1kCuT1sLd†, s6d

where the integration is over the entire Lorentz group,dL is
its Haar measure, andfsLd describes Bob’s prior estimate of
the Lorentz transformation relating the systems.1 Viewing the
quantum stateuCl1 as a “catalog” of predictions for the out-
come of future measurements on the particle, the processE1
describes the loss of predictive power by Bob due to his lack
of knowledge about the reference frame in which the state of
the particle was prepared[17]. It is useful to view the super-
operatorE1 as a form of decoherence. Rather than describing
an interaction with an environment, this decoherence repre-
sents the resulting decrease in Bob’s predictive capacity due
to his lack of knowledge.

Consider the action of this decoherence on the reduced
density matrixr1 of Eq. (4) for the spin component of this
particle. While the Lorentz group acts via Eq.(1) on each
momentum component as the spin-1/2 representationD1/2 of
the rotation group, an effective transformation for the re-
duced density matrix of the state(3) involves averaging over
different noisy quantum channels. For example, if the trans-
formation relating Alice’s frame to Bob’s is known to be a
pure boost along thez axis but the amount of boost(i.e.,v) is
unknown and described by a distributionpsvd, then the ef-
fective transformation on the reduced density matrix for the
spin component is

E1
boostsr1d =E dv psvdr18svd, s7d

wherer18svd is given in Eq.(5). On the other hand, the lack
of knowledge of the relative orientation of the reference
frames alone is sufficient to completely decohere Bob’s qubit
[17]. Thus the decoherence due to entanglement between
spin and momentum and the lack of knowledge about the
relative motion cannot make matters worse, and the total
decoherence on the reduced density matrix for the spin com-
ponent of a single particle is

E1sr1d =E dV D1/2sVdr1D
1/2sVd† = 1

2I , s8d

whereVPSOs3d is a rotation, integration is over the entire
group SO(3), and 1

2I is the completely mixed density opera-
tor on the spin subsystem. The spin state of the particle is
decohered in Bob’s frame to the completely mixed state, and
thus no quantum information can be conveyed to Bob by
encoding into the spin of a single particle. This result proves
that Alice and Bob cannot share spin entanglement through
the exchange of a single spin-1/2 particle without first shar-
ing a reference frame.

III. CREATING DISTINGUISHABLE QUBITS
FROM INDISTINGUISHABLE PARTICLES

As we will show, it is possible to use entangled states of
multiple particles to combat the deleterious effects of this
decoherence. However, first we must demonstrate that it is
possible to use elementaryindistinguishableparticles asdis-
tinguishable qubits through an appropriate preparation of
their spatial wave functions. Consider the states ofN identi-
cal particles. To use these particles as qubits to encode quan-
tum information, they must be prepared in such a way that
they are(i) distinguishable and(ii ) relatively localized and at
rest with respect to each other, so that joint(entangling) op-
erations such as preparations and measurements can be per-
formed on them. These conditions are mutually exclusive at
first glance, but by preparing particles in minimum-
uncertainty states that are well localized(making them dis-
tinguishable) and with a sharp common momentum, we will
show that these conditions can be satisfied.

Consider a translation of a single particle stateuCl1 of Eq.
(3), uCal1=e−iaPzuCl1, where we arbitrarily choose the trans-
lation to be along thez axis. The overlap between two one-

1Because the Lorentz group is noncompact, one must take care
with using the group-invariant measure, cf. Ref.[16]. The probabil-
ity distribution fsLd not only represents Bob’s knowledge, but also
makes the integral converge.
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particle states serves as a guide to their distinguishability;

1kCuCal1 = C2E dmspde−p2/D2
e−ipza/", s9d

which should be small. BecauseD!mc, we expand the en-
ergy as E=mc2s1+p2/2mc2+¯ d and obtain 1kC uCal1

~exps−a2D2/4"2d. Thus the condition for distinguishability
is a@Â /e, whereD;emc and Â=mc/" is Compton wave-
length of the particle. Now we apply our second condition:
that the particles should be nearly at rest in Alice’s frame,
i.e., they should be cooled down. Using a proton(hydrogen
atom) in the millikelvin range as an example, we obtain an
upper bound fore to be 10−8, so Âp/e,100 Å. Thus it is
possible to have both relatively sharp momenta and good
localization, and so distinguishable qubits can be created
from elementary indistinguishable particles in an appropriate
momentum state. That is, a fiducialN-qubit product state can
be constructed fromN single-particle states as

uClN = ^n=1
N e−inaPzuCl1, s10d

forming a one-dimensional lattice of particles with separa-
tion a. In this case, we can loosely define a rest frame of
these particles(although they are not precisely in a zero mo-
mentum eigenstate), and these particles are sufficiently dis-
tinguishable via their spatial wave functions so that we can
apply labels 1,… ,N. Thus, in Alice’s frame, theN particles
are prepared in a state where the spatial wave functions of
the particles are determined by the above localization tech-
nique to make distinguishable qubits, but the spin wave func-
tions are completely arbitrary and can be used for encoding
quantum information. In other inertial frames, these particles
will no longer be at rest but remain distinguishable. From
now on we ignore the effects of momentum spread and con-
sider the particles to be eigenstates of momentump.

IV. ENCODING IN MULTIPLE PARTICLES

Let Alice prepareN particles in a stateuClN as described
above, choosing some arbitrary spin state, and consider the
state of these particles in Bob’s reference frame. LetTN be
the (reducible) collective representation of the Lorentz group
acting on states of theN particles, i.e.,TNsLd=T1sLd^N. A
Lorentz transformation acts on the spin state of each particle
as a Wigner rotation via the SU(2) representationD1/2. In
fact, because these particles possess a common momentum
and they were all prepared with respect to a common refer-
ence frame(Alice’s), the group SU(2) acts identically on
each spin via the reducible collective representation
fD1/2sVdg^N for VPSOs3d. If Bob does not know the Lor-
entz transformation that relates his frame to Alice’s, then he
represents the state of theN particles as

ENsuClNkCud =E dL fsLdTNsLduClNkCuTNsLd†. s11d

We show that, for any prior distributionfsLd, there exists an
efficient encoding scheme that allows for quantum commu-
nication. The superoperatorEN has a decohering effect on the
state of the particles, but unlike Eq.(6) this decoherence is

not complete on theN-particle Hilbert space becauseTN does
not act irreducibly on the states ofN particles. Because all
the particles are now considered to have well-defined mo-
mentum, the action on the reduced density operatorrN de-
scribing the spin states of theN particles is

ENsrNd =E dV f̃sVdfD1/2sVdg^NrNfD1/2sVd†g^N, s12d

where f̃sVd is induced byfsLd. In the following we assume

the worst-case scenario of a uniform priorf̃sVd=1. Because
fD1/2sVdg^N acts reducibly on the spin states, it is not com-
pletely decohering forN.1. By appealing to the techniques
of decoherence-free subspaces[13] and noiseless subsystems
[14], it is possible to use entangled states of multiple par-
ticles for encodings that are completely protected against this
form of decoherence. Remarkably(and conveniently), the
noiseless subsystems for the superoperatorEN are completely
determined by the noiseless subsystems for the spins under
collective decoherence[13,18], i.e., decoherence that acts
identically on each particle. The Hilbert space of the
N-particle spin states decomposes as

H j=1/2
^N = %

j=0

N/2

H jR ^ H jS, s13d

where SU(2) acts irreducibly on each subsystemH jR (via the
irreducible representation of SU(2) labeled by j), and acts
trivially on the noiseless subsystemsH jS. Thus states en-
coded into a noiseless subsystemH jS are relativistically in-
variant; they appear the same to all inertial observers, re-
gardless of their reference frame. We note that this encoding
also protects against collective decoherence but is still vul-
nerable to all other(standard) forms of decoherence, such as
the decay of the stateuClN via tunnelling of the indistin-
guishable spin-1/2 particles.

The following example illustrates how a relativistically
invariant qubit can be encoded into the state of four physical
qubits. Let four particles be prepared in the spatial state as
described above, making them distinguishable, and let the
spin states of these particles be prepared in theN=4 singlet
s j =0d subspace, which is two dimensional(i.e., an encoded
qubit). Because all states in this subspace possess zero total
angular momentum, the group of rotations acts trivially on
this subspace. Thus the superoperatorE4 preserves the two-
dimensional subspace spanned by these states, i.e., this sub-
space is decoherence free. Encodings become more efficient
for larger N, and also if noiseless subsystems[14] (rather
than subspaces) are used. Asymptotically, the number of
logical qubits that can be encoded intoN spin-1/2 particles
in this manner isN−log2N [18].

V. PHOTONS

Much of the analysis for the massive particles applies to
massless photons as well, albeit with a different little group;
thus only the key points of the photonic case will be men-
tioned. The discrete degrees of freedom for photons trans-
form under a representation of the little group for massless
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particles, and not under SU(2). The invariant subspaces un-
der this group are the subspaces with zero helicity. Consider
two entangled well-separated and therefore distinguishable
wave packets, with the same momentum profile centered on
p (the construction for creating distinguishable qubits fol-
lows the massive case). For example, the states

uCp
±l =

1
Î2

sup, + lup,− l ± up,− lup, + ld, s14d

both satisfyJ ·PuCp
±l=0. The little group element for photons

in the fiducial statepm=sk,0 ,0 ,kd is decomposed[15,19] as

WsL,pd = Ssa,bdRz„vsL,pd…, s15d

whereRzsvd is a rotation byvP f0,2pg about thez axis and
S acts trivially on the physical states. The unitary represen-
tation of the little group is just

Uss8„WsL,pd… = eivsdss8, s16d

wheres= ±1 denotes helicity. The states transform as

UsLdup, ± l = expf± ivsL,pdguLp, ± l, s17d

and so the encoded statesuCp
±l will transform under a general

Lorentz transformation as

UsLduCp
±l =

1
Î2

suLp, + l1uLp,− l2 ± uLp,− l1uLp, + l2d

= uCLp
± l. s18d

Thus one logical qubit can be encoded with two physical
qubits(photons) using the statesuCp

±l as a basis. Asymptoti-
cally, it is possible to encodeN−2−1 log2N qubits inN pho-
tons. This encoding is analogous to the case of massive par-
ticles with one direction shared between Alice and Bob[17],
which uses the noiseless subsystems that protect against col-
lective dephasing[20].

VI. DISCUSSION

The schemes presented for encoding quantum information
into noiseless subsystems are relativistically invariant be-
cause the encoded states(in a noiseless subsystemH jS) are
decoupled from any degree of freedom associated with a
reference frame(i.e., spatial and angular momentum degrees
of freedom). States on the noiseless subsystemsH jS describe
entirelyrelativeproperties of the particles[21], evidenced by
the fact that these subsystems carry irreducible representa-
tions of the symmetric group forN particles.

We note that the subsystemsH jS of the decomposition of
Eq. (13) are only noiseless when the particles all possess the
same sharp momentum, because the Wigner rotation in-
volved is a function of the momentum. However, these ad-
ditional decoherence effects(type-ii according to the classi-
fication of Sec. I) are typically small, of the order ofD2/ kEl2

[11].
A key observation about this encoded relativistically in-

variant quantum information is that it cannot be used directly
for reference frame distribution or alignment because of its

fundamentally intrinsic nature. States suitable for reference
frame alignment are not invariant under reference frame
transformations. In current schemes to perform such align-
ment, reference frames are encoded as superpositions(over
irreps j) of states on the subsystemsH jR of Eq. (13) [6,7] or
as superpositions of states entangled across the subsystems
H jR ^ H jS [9,10]. States encoded entirely in a noiseless sub-
systemH jS (with the reduced state onH jR completely mixed,
say) are invariant under reference frame transformations and
therefore are not suitable for alignment. However, it is inter-
esting to note that Alice could prepare the system in a state
of the formr jR ^ s jS on H jR ^ H jS, with directional informa-
tion encoded inr jR (for the purposes of reference frame
alignment), and relativistically invariant quantum informa-
tion encoded ins jS. Bob can perform measurements of linear
and angular momentum onr jR, obtaining information about
Alice’s reference frame, without disturbing the encoded state
s jS. For example, measuring the total linear momentum pro-
vides information about the boost that relates Alice’s frame
to Bob’s, whereas performing measurements on the SU(2)
representation subsystemsH jR can provide information
about the orientation of Alice’s frame relative to Bob’s. Thus
the decomposition(13) of states ofN particles into sub-
systems provides a division between states describing extrin-
sic (spatial) and intrinsic properties.

Such encoded quantum information is, however, useful
for most quantum information processing tasks, such as
quantum teleportation[2] of encoded states or demonstrating
Bell’s theorem with observers who do not share a reference
frame [17,22]. We also note that schemes for performing
quantum cryptography without a shared Cartesian frame(or
in the presence of noise) [23,24] can be extended in a
straightforward manner using the techniques here to perform
quantum cryptography between parties who do not share a
Lorentz frame.

For quantum information processing, it is also necessary
to perform encoded logical operations. Using the noiseless
subsystems for encoded states, the encoded operations are all
given by exchange interactions[18]. For elementary spin-
1/2 particles confined to a lattice as we describe, one would
naturally expect exchange interactions between the qubits; to
perform encoded operations, these interactions must be con-
trolled using electromagnetic fields. Finally, measurements
may be performed by performing projective measurements
pairwise onto singlet states. For photons, recent progress in
single photon sources(cf. Ref. [25]) may soon be able to
create the entangled encoded states of Eq.(14) with the nec-
essary wave-packet profiles and these advances give promise
for experimental realizations in the near future.

ACKNOWLEDGMENTS

We acknowledge significant contributions from Netanel
Lindner, in particular on the photonic case, and thank Gerard
Milburn, Terry Rudolph, and Robert Spekkens for helpful
discussions. S.D.B. would like to thank Enrique Solano and
Frank Verstraete for highlighting the importance of establish-
ing entanglement between observers in different Lorentz
frames, and for valuable preliminary discussions on this
subject.

S. D. BARTLETT AND D. R. TERNO PHYSICAL REVIEW A71, 012302(2005)

012302-4



[1] M. A. Nielsen and I. L. Chuang,Quantum Computation and
Quantum Information(Cambridge University Press, Cam-
bridge, England, 2000).

[2] C. H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres,
and W. K. Wootters, Phys. Rev. Lett.70, 1895(1993).

[3] V. Giovannetti, S. Lloyd, L. Maccone, and P. W. Shor, Phys.
Rev. Lett. 91, 047901(2003).

[4] R. Jozsa, D. S. Abrams, J. P. Dowling, and C. P. Williams,
Phys. Rev. Lett.85, 2010(2000); E. A. Burt, C. R. Ekstrom,
and T. B. Swanson,ibid. 87, 129801(2001); R. Jozsa, D. S.
Abrams, J. P. Dowling, and C. P. Williams,ibid. 87, 129802
(2001).

[5] V. Giovannetti, S. Lloyd, and L. Maccone, Nature(London)
412, 417 (2001).

[6] A. Peres and P. F. Scudo, Phys. Rev. Lett.86, 4160(2001).
[7] E. Bagan, M. Baig, and R. Muñoz-Tapia, Phys. Rev. Lett.87,

257903(2001).
[8] N. H. Lindner, A. Peres, and D. R. Terno, Phys. Rev. A68,

042308(2003).
[9] G. Chiribella, G. D’Ariano, P. Perinotti, and M. Sacchi, Phys.

Rev. Lett. 93, 180503(2004).
[10] E. Bagan, M. Baig, and R. Muñoz-Tapia, Phys. Rev. A70,

030301(R) (2004).
[11] A. Peres and D. R. Terno, Rev. Mod. Phys.76, 93 (2004).
[12] A. Peres and D. R. Terno, Int. J. Quantum Inf.1, 225 (2003).

[13] P. Zanardi and M. Rasetti, Phys. Rev. Lett.79, 3306(1997); P.
Zanardi, Phys. Rev. A63, 012301(2000).

[14] E. Knill, R. Laflamme, and L. Viola, Phys. Rev. Lett.84, 2525
(2000).

[15] S. Weinberg,The Quantum Theory of Fields, Vol. I (Cam-
bridge University Press, Cambridge, England, 1995).

[16] W.-K. Tung, Group Theory in Physics(World Scientific, Sin-
gapore, 1985).

[17] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Phys. Rev.
Lett. 91, 027901(2003).

[18] J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, Phys.
Rev. A 63, 042307(2001).

[19] N. H. Lindner, A. Peres, and D. R. Terno, J. Phys. A36, L449
(2003).

[20] L.-M. Duan and G.-C. Guo, Phys. Rev. A57, 737 (1998).
[21] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Phys. Rev. A

70, 032321(2004).
[22] A. Cabello, Phys. Rev. A68, 042104(2003).
[23] Z. D. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A.

Saleh, and M. C. Teich, Phys. Rev. Lett.91, 087901(2003).
[24] J.-C. Boileau, D. Gottesman, R. Laflamme, D. Poulin, and R.

W. Spekkens, Phys. Rev. Lett.92, 017901(2004).
[25] J. Vučković, D. Fattal, C. Santori, G. Solomon, and Y. Yama-

moto, Appl. Phys. Lett.82, 3596(2003).

RELATIVISTICALLY INVARIANT QUANTUM INFORMATION PHYSICAL REVIEW A 71, 012302(2005)

012302-5


