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Recent studies have shown that logarithmic divergence of entanglement entropy as a function of the size of
a subsystem is a signature of criticality in quantum models. We demonstrate that the ground-state entanglement
entropy of n sites for the ferromagnetic Heisenberg spin-1

2 chain of the lengthL in a sector with fixed
magnetizationy per site grows as12log2fnsL−nd /LgCsyd, whereCsyd=2pes 1

4 −y2d.
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I. INTRODUCTION

Recently it has been argued, on the example of the exactly
solvable antiferromagnetic Heisenberg spin-1

2 chain

HXXZ= Jo
i=1

`

ssi
xsi+1

x + si
ysi+1

y + Dsi
zsi+1

z d, s1d

that for a critical (gapless) quantum system[for the XXZ
model whenD belongs to the interval(21, 1)], the entangle-
ment entropy of a block ofn spins diverges logarithmically
as glog2n, while for noncritical systems(D outside the
above-mentioned interval), it converges to a constant finite
value [1–3]. This property was interpreted in the framework
of conformal field theory[4] associated with the correspond-
ing quantum phase transition and the prefactorg of the loga-
rithm related to the central charge of the theoryc=3g (for
the XXZ model this givesg= 1

3).
The aim of this paper is to show that the entanglement

entropy of a block of spins in the ground state of the antifer-
romagneticXXZ model (1), at the pointD=−1 growsfaster
than for other critical points −1,Dø1, namely asglog2n
with the logarithmic prefactor12 øgø1.

Our approach uses the permutational invariance of the
ground state of Eq.(1) at D=−1, thus allowing us to compute
the entanglement entropy exactly for blocks of arbitrary size
and system of arbitrary length. To this regard, we remark that
by performing the transformation which overturns each sec-
ond spin along the chain(we assume the length of the chain
even), the Hamiltonian(1) for D=−1 reduces to the isotropic
Heisenberg ferromagnet(2). Since this transformation does
not change the entropy of entanglement, one can compute
the block entropy of the antiferromagnetic Heisenberg chain
at D=−1 directly from that of the isotropic ferromagnetic

model. It is worth noting that, in contrast with critical points
−1,Dø1, the pointD=−1 cannot be studied by means of
conformal field theory since this point is not conformal in-
variant [4], the ground state being infinitely degenerated at
D=−1 [5]. We also note that, in contrast with the critical
region −1,Dø1 of the antiferromagnetic Heisenberg chain,
at the pointD=−1 all spin-spin correlations vanish in the
thermodynamic limit and only correlations due to the con-
straint of fixed magnetization are present. Finally, we wish to
point out that besides the Heisenberg model and models of
interacting bosons[6], our results naturally apply to all per-
mutationally invariant states and in particular to eta pairing
states of fermionic lattice models of interest for highTc su-
perconductivity. It is well known, indeed, that eta-pairing
states of the Hubbard model can be mapped into the ground-
state sector of fixed magnetization of the ferromagnetic spin-
1
2 isotropic Heisenberg model[10] and, therefore, all derived
formulas for entanglement entropies apply to these states as
well.

The paper is organized as follows. In Sec. II, we introduce
the model and study the general properties of the reduced
density matrix for the ferromagnetic ground states. In par-
ticular, we formulate and demonstrate a theorem which gives
the analytical expression of the eigenvalues of the reduced
density matrix for arbitrary sizes of the system and value of
the magnetization. In Sec. III, we use this theorem to com-
pute the entanglement entropy of a block of sizen in the
finite system of total lengthL for two specific choices of the
ground-state sector. Taking the limit of large subsystem
sizes, we derive analytical expressions for the entanglement
entropySsnd of a block of spins of sizen in the ferromagnetic
ground state, both forn, L@1 and for n@1, L=`. As a
result, we obtain that in the ground-state sector with a fixed
value of Sz, the block entanglement entropy grows asSsnd
= 1/2log2fnsL−nd /Lg for largen, while in the ground-state
sector in which all theSz components of the spin multiplet
are equally weighted,Ssnd=log2sn+1d for arbitraryn andL.
Finally, in Sec. IV, we discuss and summarize the main re-
sults of the paper.
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II. REDUCED DENSITY MATRIX FOR THE
FERROMAGNETIC HEISENBERG MODEL

We consider the ferromagnetic Heisenberg model with
nearest-neighbor interaction,

HXXX= − Jo
i=1

L

ssW isW i+1 − 3Id , s2d

wheres are Pauli matrices,J.0 denotes the exchange con-
stant, andL is the number of spins(we assume periodic
boundary conditionsL+1;1). As is well known, the ground
state of Eq.(2) belongs to a multiplet of total spinS= L /2
and is degenerate with respect toSz=−L /2 ,−sL /2d
+1,… ,L /2. In the sector with a fixed numberN of spins
down, i.e., with a fixedSz=N−sL /2d, the ground state is
obtained by the action of the rising operatorS+=oisi

+ on the
vacuum state with all spins down,

uCL
Nl , sS+dNu↓↓¯↓l. s3d

All eigenfunctions(3) correspond to the same ground-state
energyE=0 of theXXX model(2). The structure of the state
(3) is given by

s4d

where the sum is taken over all possible distributions ofN
spins onL sites and the binomial coefficientCN

L =L! / N!sL
−Nd! takes care of the normalization. Note that Eq.(4) is
also a ground state for the model of interacting bosons[6],
while for the partially asymmetric exclusion process ASEP
[7] with N particles hopping with hard-core exclusion on a
closed chain of the lengthL, Eq. (4) represents a steady-state
vector.

We will be interested in the ground-state entanglement
(von Neumann) entropySsnd of a block ofn (not necessarily
contiguous) spins

Ssnd = − trsrnlog2rnd = − o lklog2lk, s5d

wherern is the reduced density matrix of the block, obtained
from the density matrixr of the whole system by tracing out
external degrees of freedomrsnd= trsL−ndr (notice that due to
the permutational symmetry of the ground state,Ssnd does not
depend on the particular choice of the block but only on its
size n). In Eq. (5), lk are the eigenvalues of the reduced
density matrix which are all real, non-negative, and sum up
to 1: olk=1.

The density matrixr for a degenerate ground state is
given by

r = o
N=0

L

aNuCsL,NdlkCsL,Ndu, o aN = 1, s6d

wherea0,a1,… ,aL is a set of non-negative coefficients. De-
noting the reduced density matrix in a fixed sector withN
spins up byrnsNd,

rnsNd = trsL−nduCsL,NdlkCsL,Ndu, s7d

whereuCsL ,Ndl is given by Eq.(4), one can write the gen-
eral reduced density matrix as

rn = o
N=0

L

aNrnsNd. s8d

In the following, we consider two choices for the coefficients
haij:

sad ai = diN, s9d

sbd a0 = a1 = ¯ = aL =
1

L + 1
s10d

(the analysis for arbitraryhaij proceeds in a similar manner).
The choice(a) corresponds to the case when a small aniso-
tropy singles out a sector withN spins up resulting in a pure
state of a global system; see Eqs.(4) and(6). The choice(b)
corresponds to an equilibrated density matrix(i.e., with all
components of the ground-state multiplet equally weighted)
which preserves the SUs2d invariance of the Hamiltonian(2)
(this case is equivalent to infinite temperature). Using the
general property of the entropy of composite systems,Ssnd
=SsL−nd, and its invariance with respect to the inversion of all
spins, we can restrict the analysis, without losing generality,
to the casenøL /2, NøL /2. The computation of the block
entanglement entropy is drastically simplified by the follow-
ing.

Theorem. The eigenvalues of the reduced density matrix
rnsNd of a block ofn spins in the sector withN spins up in
the ground state of the ferromagnetic Heisenberg model(2)
are given by

lksL,n,Nd =
Ck

nCN−k
L−n

CN
L , k = 0,1,…,minsn,Nd. s11d

The proof of the theorem follows from the decomposition of
rnsNd with respect to the symmetric orthogonal subspaces of
the system of n spins, classified by the integerk
=0,1,… ,minsn,Nd giving the number of spins up in the
block,

rnsNd = o
k=0

minhn,Nj

ckucsn,kdlkcsn,kdu. s12d

Here ucsn,kdl denotes the symmetric state withk spins up
amongn spins,

s13d

andck is the corresponding probabilityck=CN−k
L−n /CN

L (notice
that CN−k

L−n is the number of states withk spin up in the block
of n spins andCN

L is the total number of states). Expression
(12) can be rewritten as
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rnsNd = o
k=0

minhn,Nj

lkrnskd, s14d

wherernskd is the density matrix of the stateucsn,kdl and the
coefficientslk=Ck

nCN−k
L−n /CN

L sum up to 1,olk=1. From this it
follows that rnsNd is the density matrix associated with the
ensemble of orthogonal pure stateshlk,rnskdj and therefore
it has a block diagonal form, each block having only one
nonzero eigenvaluelk which coincides with the expression
(11). This concludes the proof of the Theorem.

We remark that the specific caseN=n=L /2 was also con-
sidered in Ref.[8]. Having found the eigenvalues ofrnsNd,
one can easily compute the entanglement entropySsnd for
arbitraryL, n, andN. This will be done in the next section.

III. EXACT ENTANGLEMENT ENTROPY
OF FERROMAGNETIC GROUND STATES

A. Case (a)

To obtain an analytical expression forSsnd, from the exact
expression[Eqs.(5) and(11)], we observe that for blocks of
large size,n@1, the dominant contribution to the sum(5)
comes from the eigenvalueslk with largek. In this case, one
can approximate the binomial coefficients in Eq.(11) by the
normal distribution, see, e.g., Ref.[9],

Cn
mpmqn−m <

1
Î2pnpq

expS−
sm− npd2

2npq
D, npq@ 1,

s15d

where 0,p,1, q=1−p. Using this approximation, and de-
fining p=N/L, the eigenvalues(11) can be written as

lksL,n,Nd =
Ck

npkqn−kCN−k
L−npN−kqL−n−N+k

CN
LpNqL−N

<
1

n

1
Î2pa

exp1−
S k

n
− pD2

2a
2 ,

wherea=pqsL−nd /nL. Substituting this expression into Eq.
(5) and replacing the sum with an integral, we obtain

Ssndspd < E
0

1

RSlog2
R

n
Ddx,

R=
1

Î2pa
expS−

sx − pd2

2a
D .

For largen, the limits of the integral can be extended to
include the whole real axis, after which the result of the
integration gives

Ssndspd <
1

2
log2s2pepqd +

1

2
log2

nsL − nd
L

. s16d

Notice that this approximate result is valid fornpq@1 and in
the limit npq→` it becomes exact. From the analytical ex-

pression(16), the following properties can be easily derived:
(i) Ssndspd=Ssnds1−pd, (ii ) Ssndspd=SsL−ndspd, (iii ) ]Ssndspd /]n

=0 only atn=L /2, (iv) ]Ssndspd /]p=0 only atp= 1
2, (v) Ssnd

3spd is a monotonically increasing function of the total
length L. In Fig. 1, we compare the exact entropy of finite
systems, as computed from exact expressions Eqs.(5) and
(11), with the analytical expression(16), from which we see
that there is an excellent agreement also for small values of
npq. In the thermodynamic limitL→`, N/L→p the eigen-
values(11) reduce to

lk = Cn
0pn,Cn

1pn−1q,…,Cn
nqn, s17d

and the corresponding entanglement entropy is obtained
from Eq. (16) as

Ssndspd <
1

2
log2s2pepqd +

1

2
log2n. s18d

In Fig. 2, we plot the exact entanglement entropy of a
block of size 1ønø1000 in an infinite chain(5) and (17),
versus the limiting expression(18) for different filling p. We
see that the analytic formula(18) gives a good approxima-
tion even for a small finite number of sitesn in the block. For
very smallp the convergence is slower(see the lowest graph

FIG. 1. Entanglement entropy as obtained from the exact ex-
pressions Eqs.(5) and(11), as a function of the block sizen and for
L=20 (up triangles), 50 (down triangles), 100 (squares), 150 (dia-
monds), and 200(circles). Filled (empty) symbols correspond to
p=1/10 sp=1/2d. Continuous curves represent the analytical ex-
pression in Eq.(16). For n.L /2, Ssnd=SsL−nd (not shown).

FIG. 2. Entanglement entropy as function of a block sizen, for
different values ofp= 1

100, 1
10, 1

2. Comparison of exact formula
(points) with the limiting expression(18) (continuous curves).
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in Fig. 2) because the validity of formula(15) crucially de-
pends on the value ofnpq.

Thus, for case(a) we conclude that the block entangle-
ment entropy of the ferromagnetic ground state grows loga-
rithmically with n, as for critical quantum systems, but with
a different prefactor, i.e., as12log2n rather than1

3log2n pre-
dicted in Ref.[3].

B. Case (b)

In this case, the eigenvalues of the reduced density matrix
are given by

lk =
Cn

k

L + 1 o
N=n−k

L−k
CL−n

N−n+k

CL
N =

1

n + 1
, k = 0,1,…,n s19d

and are independent onk and on the size of the systemL.
The entanglement entropy is obtained as

Ssnd = log2sn + 1d, n = 1,2,…,L. s20d

Equations(11), (16), (18), (19), and (20), corresponding to
the cases(a) and (b) considered above, are the main results
of the paper.

IV. DISCUSSION AND CONCLUSION

In discussing the above results we remark that, due to the
permutational invariance of the ground state, for any choice
of the density matrix(8) the reduced density matrix for a
block of sizen has exactlyn+1 nonzero eigenvalues(see the
theorem) in the ground state. This implies the upper bound
for the entropySmaxsnd=log2sn+1d, which is achieved in the
case of a thermally equilibrated density matrix[case(b)].
The lower bound of logarithmic growthSsnd,

1
2 log2 n is

achieved for the “anisotropic” choice corresponding to a pure
state(6) of the whole system[case(a)]. For a generic choice
of the coefficientshaNj in Eqs.(6) and(8), Ssnd will grow as
g log2 n with 1

2 øgø1.
We also note that Eq.(20) is a monotonically increasing

function of n, attaining maximum for the whole systemn
=L, while in the case of pure state the maximum is achieved
for a block of half-system sizen=L /2. This feature is related
to the fact that the ground state of a ferromagnet is highly
degenerate and the total system for the choice(10) is in the
maximally mixed state.

Another remark concerns the origin of the logarithmic
prefactorg= 1

2 in formula (18). Apparentlyg is not related to
any central charge sinceD=−1 is not a conformal point. We
find that in our case the prefactorg is related to the spins per
site, i.e., one can show that for a ferromagnetic spins chain
(i.e., with on-site spins), the block entanglement entropy in
the ground-state sector grows likeSsnd.const+s log2 n (de-
tails will be presented elsewhere).

We also remark that it would be of great interest to gen-
eralize Eqs.(16) and(20) to the case of nonzero temperature
where excited states have to be taken into account. Work in
this direction is in progress.
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