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Recent studies have shown that logarithmic divergence of entanglement entropy as a function of the size of
a subsystem is a signature of criticality in quantum models. We demonstrate that the ground-state entanglement
entropy of n sites for the ferromagnetic Heisenberg séiru:hain of the lengthL in a sector with fixed
magnetizatiory per site grows a%logz[n(L—n)/L]C(y), whereC(y):Zwe(%—yz).

DOI: 10.1103/PhysRevA.71.012301 PACS nuniber03.67.Hk, 03.65.Ud, 75.10.Jm

[. INTRODUCTION model. It is worth noting that, in contrast with critical points
—1<A=<1, the pointA=-1 cannot be studied by means of
(\./onformal field theory since this point is not conformal in-
variant[4], the ground state being infinitely degenerated at
A=-1 [5]. We also note that, in contrast with the critical
Hxxz= JE (0foly + 0foliy + Adfor,y), (1) region -1<A <1 of the antiferromagnetic Heisenberg chain,
=1 at the pointA=-1 all spin-spin correlations vanish in the
that for a critical (gaples$ quantum systenjfor the XXz  thermodynamic limit and only correlations due to the con-
model whenA belongs to the intervdl-1, 1)], the entangle- straint of fixed magnetization are present. Finally, we wish to
ment entropy of a block of spins diverges logarithmically point out that besides the Heisenberg model and models of
as ylog,n, while for noncritical systemqA outside the interacting boson$§6], our results naturally apply to all per-
above-mentioned intervalit converges to a constant finite mutationally invariant states and in particular to eta pairing
value[1-3]. This property was interpreted in the framework states of fermionic lattice models of interest for highsu-
of conformal field theoryf4] associated with the correspond- perconductivity. It is well known, indeed, that eta-pairing
ing quantum phase transition and the prefagtof the loga-  states of the Hubbard model can be mapped into the ground-
rithm related to the central charge of the theary3y (for  state sector of fixed magnetization of the ferromagnetic spin-
the XXZ model this givesy= %). % isotropic Heisenberg modgl0] and, therefore, all derived
The aim of this paper is to show that the entanglemenformulas for entanglement entropies apply to these states as
entropy of a block of spins in the ground state of the antiferwell.

Recently it has been argued, on the example of the exactl
solvable antiferromagnetic Heisenberg séinhain

©

romagneticXXZ model (1), at the pointA=-1 growsfaster The paper is organized as follows. In Sec. Il, we introduce
than for other critical points £ A=<1, namely asylog,n  the model and study the general properties of the reduced
with the logarithmic prefacto%s y=<1. density matrix for the ferromagnetic ground states. In par-

Our approach uses the permutational invariance of théicular, we formulate and demonstrate a theorem which gives
ground state of Eq1) atA=-1, thus allowing us to compute the analytical expression of the eigenvalues of the reduced
the entanglement entropy exactly for blocks of arbitrary sizedensity matrix for arbitrary sizes of the system and value of
and system of arbitrary length. To this regard, we remark thathe magnetization. In Sec. Ill, we use this theorem to com-
by performing the transformation which overturns each secpute the entanglement entropy of a block of sizén the
ond spin along the chaifwe assume the length of the chain finite system of total length for two specific choices of the
even, the Hamiltonian(1) for A=-1 reduces to the isotropic ground-state sector. Taking the limit of large subsystem
Heisenberg ferromagné®). Since this transformation does sizes, we derive analytical expressions for the entanglement
not change the entropy of entanglement, one can compuntropySy, of a block of spins of size in the ferromagnetic
the block entropy of the antiferromagnetic Heisenberg chaimyround state, both fon, L>1 and forn>1, L=«. As a
at A=-1 directly from that of the isotropic ferromagnetic result, we obtain that in the ground-state sector with a fixed

value of &, the block entanglement entropy grows &g
=1/2log[n(L-n)/L] for largen, while in the ground-state
*Present address: Institutut fiir Theoretische Physik, Universitag€ctor in which all theS* components of the spin multiplet
zu Kéln, Zilpicher Strasse 77, D-50937 Cologne, Germany. Emaifreé equally weightedy,,=log,(n+1) for arbitraryn andL.
address: popkov@thp.uni-koeln.de Finally, in Sec. IV, we discuss and summarize the main re-
"Email address: salerno@sa.infn.it sults of the paper.
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Il. REDUCED DENSITY MATRIX FOR THE pa(N) = tr oy [T (L, N)YW(L,N)], )
FERROMAGNETIC HEISENBERG MODEL

We consider the ferromagnetic Heisenberg model With\(lavrr;‘lerr‘3e|c;lfj(cl_e,<;\lzj>e|:sﬁlverr:]a?r>ilxic;(4), one can write the gen-
nearest-neighbor interaction, y

L

L
Hyxx= =32 (66721 — 31), ) pn= N§O anpn(N). (8)
i=1

whereo are Pauli matrices]>0 denotes the exchange con- In the following, we consider two choices for the coefficients
stant, andL is the number of spingwe assume periodic {ail:

boundary conditionk +1=1). As is well known, the ground

state of Eq.(2) belongs to a multiplet of total spif=L/2 (@ @=0dn, 9
and is degenerate with respect t&=-L/2,—(L/2)

+1,...,L/2. In the sector with a fixed numbet of spins 1

down, i.e., with a fixed$*=N-(L/2), the ground state is (b) R e Y] (10
obtained by the action of the rising opera®~==;; on the

vacuum state with all spins down, (the analysis for arbitrarja;} proceeds in a similar manner

Ny (ahN L. The choice(a) corresponds to the case when a small aniso-
W0~ (S ) tropy singles out a sector wit spins up resulting in a pure
All eigenfunctions(3) correspond to the same ground-stateState of a global system; see Eq$). and(6). The choiceb)

energyE=0 of theXXX model(2). The structure of the state corresponds to an equilibrated density matiie., with all
(3) is given by components of the ground-state multiplet equally weighted

which preserves the SB) invariance of the Hamiltonia(R)
|‘If(L,N))=,L—E ITT- 1Ll L, (this case is equivalent to infinite temperajurgsing the
\s‘Cx N Tl 4) general property of the entropy of composite systeSs,

- =§.-n), and its invariance with respect to the inversion of all
where the sum is taken over all possible distributiondNof spins, we can restrict the analysis, without losing generality,
spins onL sites and the binomial coefficie®@y=L!/N!(L  to the casen<L/2, N<L/2. The computation of the block
—-N)! takes care of the normalization. Note that E4) is  entanglement entropy is drastically simplified by the follow-
also a ground state for the model of interacting bog@js  ing.
while for the partially asymmetric exclusion process ASEP  Theorem The eigenvalues of the reduced density matrix
[7] with N particles hopping with hard-core exclusion on apn(N) of a block ofn spins in the sector wittN spins up in
closed chain of the length, Eq. (4) represents a steady-state the ground state of the ferromagnetic Heisenberg m@jel
vector. are given by

We will be interested in the ground-state entanglement
(von NeumannentropyS, of a block ofn (not necessarily
contiguous spins

n

CrChn .
)\k(L,n,N):T, k=0,1,..,min(n,N). (11
N

Sy =~ tr(pplogzpn) = - > Mdogohy, (5) The proof of the theorem follows from the decomposition of
pn(N) with respect to the symmetric orthogonal subspaces of
wherep,, is the reduced density matrix of the block, obtainedthe system of n spins, classified by the integek
from the density matriy of the whole system by tracing out =0,1 ... min(n,N) giving the number of spins up in the
external degrees of freedopy, =tr(_-np (notice that due to  pjock,

the permutational symmetry of the ground st&g, does not

depend on the particular choice of the block but only on its min{n.N}
size n). In Eq. (5), \, are the eigenvalues of the reduced p(N)= 2 cdy(nk))wn k). (12
density matrix which are all real, non-negative, and sum up k=0
to 1: 2N\ =1. . . .

The density matrixp for a degenerate ground state is Here|w(n,k)> denotes the symmetric state wiknspins up

, amongn spins,
given by
L )y =2 (1T 7L |
p=2 afPLNYWLN], Zay=1 (6 - (13)

N=0

andc, is the corresponding probability,=CK_}/Cy (notice
whereag, a4, ..., is a set of non-negative coefficients. De- that Ck,'_r,l is the number of states withispin up in the block
noting the reduced density matrix in a fixed sector with  of n spins ancCh is the total number of statgsExpression

spins up byp,(N), (12) can be rewritten as
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min{n,N}

(N = 2 Neon(K),
k=0

(14)

wherep,(K) is the density matrix of the state¢(n,k)) and the
coefficients\, =CRCy_/ Cy, sum up to 13\ =1. From this it
follows that p,(N) is the density matrix associated with the
ensemble of orthogonal pure stafag, p,(k)} and therefore

it has a block diagonal form, each block having only one
nonzero eigenvalug, which coincides with the expression
(12). This concludes the proof of the Theorem.

We remark that the specific calke=n=L/2 was also con-
sidered in Ref[8]. Having found the eigenvalues pf(N),
one can easily compute the entanglement entr§gy for
arbitraryL, n, andN. This will be done in the next section.

IIl. EXACT ENTANGLEMENT ENTROPY
OF FERROMAGNETIC GROUND STATES

A. Case (a)

To obtain an analytical expression f8f,, from the exact
expressiorfEgs.(5) and(11)], we observe that for blocks of
large size,n>1, the dominant contribution to the su¢B)
comes from the eigenvalu@g with largek. In this case, one
can approximate the binomial coefficients in Etjl) by the
normal distribution, see, e.g., R},

_ (m-np)?
2npq

Chpmg"m = ) npgs>1,

v27mnpq
(15

where 0<p<1, g=1-p. Using this approximation, and de-
fining p=N/L, the eigenvaluegll) can be written as

CEpkqn—kch-_llle—k L-n-N+k
Ck‘quL—N

q
k 2
(nv)
2a
wherea=pq(L—n)/nL. Substituting this expression into Eq.
(5) and replacing the sum with an integral, we obtain

S(n)(p) = j

A(L,n,N) =

i1
n\27a

1
R
R| log,—
, (ogzn>dx,

)

For largen, the limits of the integral can be extended to
include the whole real axis, after which the result of the
integration gives

1

\2ma

(x-p)?
2a

R

n(L —n)
L

1 1
Sn(p) = §|092(27Tepq + E'ng (16)

Notice that this approximate result is valid fopg>1 and in
the limit npg— o it becomes exact. From the analytical ex-
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FIG. 1. Entanglement entropy as obtained from the exact ex-
pressions Eqg5) and(11), as a function of the block sizeand for
L=20 (up triangle$, 50 (down triangley 100 (squarey 150 (dia-
mondg, and 200(circles. Filled (empty symbols correspond to
p=1/10(p=1/2). Continuous curves represent the analytical ex-
pression in Eq(16). Forn>L/2, §,=§ ) (not shown.

pression16), the following properties can be easily derived:
(i) Sy(P)=Sn)(1-p), (i) Sn(P)=SL-n)(P), (iii) ISy (p)/dn

=0 only atn=L/2, (iv) dSy)(p)/dp=0 only atp:%, V) S

X(p) is a monotonically increasing function of the total
lengthL. In Fig. 1, we compare the exact entropy of finite
systems, as computed from exact expressions E&gsand
(11), with the analytical expressioi6), from which we see
that there is an excellent agreement also for small values of
npg In the thermodynamic limit — oo, N/L— p the eigen-
values(11) reduce to

1
n

\e=Cop",.Cop™ g, ..., Cha", 17
and the corresponding entanglement entropy is obtained

from Eq.(16) as

1 1
Sn(P) ~ Slog,(2epq + Zlogn. (18)

In Fig. 2, we plot the exact entanglement entropy of a
block of size =n=1000 in an infinite chair{5) and (17),
versus the limiting expressiaii8) for different filling p. We
see that the analytic formuld 8) gives a good approxima-
tion even for a small finite number of sitasn the block. For
very smallp the convergence is slowésee the lowest graph

0 T T T T
0 200 400 n600 800 1000

FIG. 2. Entanglement entropy as function of a block sizéor
different values ofp=1g5,15.3. Comparison of exact formula
(pointg with the limiting expressiori18) (continuous curves
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in Fig. 2) because the validity of formulél5) crucially de-  achieved for the “anisotropic” choice corresponding to a pure

pends on the value afpq state(6) of the whole systenficase(a)]. For a generic choice
Thus, for casga) we conclude that the block entangle- of the coefficientday} in Egs.(6) and(8), Sy, will grow as

ment entropy of the ferromagnetic ground state grows logay log, n with %s y<1.

rithmically with n, as for critical quantum systems, but with  We also note that Eq20) is a monotonically increasing

a different prefactor, i.e., a%:logzn rather than%logzn pre- function of n, attaining maximum for the whole system

dicted in Ref.[3]. =L, while in the case of pure state the maximum is achieved

for a block of half-system size=L/2. This feature is related

B. Case (b) to the fact that the ground state of a ferromagnet is highly

degenerate and the total system for the ch¢id® is in the
In this case, the eigenvalues of the reduced density matrimaximally mixed state.

are given by Another remark concerns the origin of the logarithmic
C Lk prefactor«y:% in formula(18). Apparentlyy is not related to
C —n+k 1 . __ . .
A, = Ca D L-n_ _ k=0,1,.n (19 any central charge sinck=-1 is not a conformal point. We
K7L+ 1o, CN Tn+1 T find that in our case the prefactgiis related to the spis per

_ _ site, i.e., one can show that for a ferromagnetic spamain
and are independent dnand on the size of the systelm  (i.e., with on-site spirs), the block entanglement entropy in
The entanglement entropy is obtained as the ground-state sector grows lilgg, = const+slog, n (de-
_ _ tails will be presented elsewhgre
= +1 =1,2,...,L. 2 : .
S =log(n+1), n=1.2,.., (20 We also remark that it would be of great interest to gen-
Equations(11), (16), (18), (19), and(20), corresponding to eralize Eqs(16) and(20) to the case of nonzero temperature

the casega) and(b) considered above, are the main resultswhere excited states have to be taken into account. Work in
of the paper. this direction is in progress.
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