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We suggest using insulating garnets doped by rare-earth ions for measurements of nuclear anapole moments.
A parity violating shift of the NMR frequency arises due to the combined effect of the lattice crystal field and
the anapole moment of the rare-earth nucleus. We show that there are two different observable effects related
to frequency:s1d a shift of the NMR frequency in an external electric field applied to the solid; the value of the
shift is aboutDn1,10−5 Hz with E=10 kV/cm; s2d a splitting of the NMR line into two lines. The second
effect is independent of the external electric field. The value of the splitting is aboutDn2,0.5 Hz and it
depends on the orientation of the crystal with respect to magnetic field. Both estimates are presented for a
magnetic field of about 10 T. We also discuss a radio frequency electric field and a static macroscopic
magnetization caused by the nuclear anapole moment.
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I. INTRODUCTION

The anapole moment is a characteristic of a system which
is related to the toroidal magnetic field confined within the
system. It was pointed out some time ago by Zeldovichf1g
that the anapole moment is related to parity violation inside
the system. Interest in the nuclear anapole moment is mostly
due to the fact that it gives a dominating contribution to
effects of atomic parity nonconservationsPNCd which de-
pend on nuclear spinf2g. There are two mechanisms that
contribute to these effects. The first is due to the exchange of
a Z boson between electron and nucleus. The second mecha-
nism is due to the usual magnetic interaction of an electron
with the nuclear anapole moment. The contribution of the
first mechanism is proportional to 1−4s2. Since the sine
squared of the Weinberg angle iss2<0.23 f3g, the first
mechanism is strongly suppressed and the second mecha-
nism dominates. The anapole moment of133Cs has been
measured in an optical PNC experiment with atomic Csf4g.
This is the only observation of a nuclear anapole moment.
There have been several different suggestions for measure-
ments of nuclear anapole moments. Measurements in optical
transitions in atoms or in diatomic molecules remains an
option; for a review, seef5g. Another possibility is related to
radio frequencysrfd transitions in atoms or diatomic mol-
eculesf6–9g. Possibilities to detect nuclear anapole moments
using collective quantum effects in superconductorsf10g, as
well as PNC electric current in ferromagnetsf11g, have been
also discussed in the literature. A very interesting idea to use
Cs atoms trapped in solid4He has been recently suggested in
Ref. f12g.

Our interest in the problem of the nuclear anapole mo-
ment in solids was stimulated by the recent suggestion for
searches of the electron electric-dipole moment in rare-earth
garnetsf13g. Garnets are very good insulators which can be
doped by rare-earth ions. They are widely used for lasers,
and their optical and crystal properties are very well under-
stood. To be specific we consider two cases: the first is yt-
trium aluminum garnetsYAGd doped by Tmf14g. Thulium
3+ ions substitute for yttrium 3+ ions. The second case is

yttrium gallium garnet doped by Prf15g. Once more,
praseodymium 3+ ions substitute for yttrium 3+ ions. The
dopant ions have an uncompensated electron spinJ and a
nuclear spinI . For Tm3+ J=6 and I =1/2 s169Tm, 100%
abundanced. For Pr3+ J=4 and I =5/2 s141Pr, 100% abun-
danced.

The simplestP-odd andT-even correlationsP is space
inversion andT is time reflectiond which arises due to the
nuclear anapole moment is

Heff
s1d ~ fI 3 Jg ·E, s1d

whereE is the external electric field. It is convenient to use
the magnitude of the effect expected in the electron electric-
dipole momentsEDMd experimentf13g as a reference point.
For this reference point we use a value of the electron EDM
equal to the present experimental limitf16g, de=1.6
310−27e cm. According to our calculations, the value of the
effective interactions1d is such that at the maximum possible
value of the cross productfI 3Jg it induces an electric field
four orders of magnitude higher than the electric field ex-
pected in the EDM experimentf13,17g. For example, in
Pr3Ga5O12 the field isE,1.5310−6 V/cm. The problem is
how to provide the maximum cross productfI 3Jg. The
value ofkJl is proportional to the external magnetic fieldB.
A magnetic field of about 5–10 T is sufficient to induce the
maximum magnetization. Nuclear spins can be polarized in
the perpendicular direction by an rf pulse, but then they will
precess around the magnetic field with a frequency of about
1 GHz. It is not clear if the anapole-induced voltage of this
frequency can be detected. An alternative possibility is to
detect the static variation of the perpendicular magnetization
induced by the external electric field,dI ~ fB3Eg. The mag-
netization effect for Pr3Ga5O12 is several times larger than
that expected for the EDM experimentf13g. This probably
makes the magnetization effect rather promising. In the
present work we concentrate on the other possibility which is
based on the crystal field of the lattice. Because of the crystal
field, the electron polarization of the rare-earth ion has a
component orthogonal to the magnetic fieldkJl~B
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+sB ·ndn, wheren is some vector related to the lattice. The
equilibrium orientation of the nuclear spin is determined by
the direct action of the magnetic field together with the hy-
perfine interaction proportional tokJl. Because of the
sB ·ndn term in kJl, the nuclear and electron spins are not
collinear, and the cross productfI 3Jg is nonzerofI 3Jg
~ sB ·ndfB3ng. We found that the NMR frequency shift due
to the correlations1d is about

Dn1 , 10−5 Hz s2d

at E=10 kV/cm andB=10 T. In essence, we are talking
about the correlationsB ·ndfB3ng ·E considered previously
in the work of Bouchiat and Bouchiatf12g for Cs trapped in
solid 4He.

Another effect considered in the present work is the split-
ting of the NMR line into two lines due to the nuclear ana-
pole moment. This effect is related to the lattice structure and
is independent of the external electric field.

The garnet lattice has a center of inversion. However, the
environment of each rare-earth ion is asymmetric with re-
spect to inversion. One can imagine that there is a micro-
scopic helix around each ion. Since the lattice is centrosym-
metric, each unit cell has equal numbers of rare-earth ions
surrounded by right and left helicessthere are 24 rare-earth
sites within the celld. The microscopic helix is characterized
by a third rank tensorTklm slattice octupoled. Together with
the nuclear anapole interaction this gives a correlation simi-
lar to Eq. s1d, but the effective “electric field” is generated
now by the helixEk~TklmJlJm. So the effective interaction is

Heff
s2d ~ ei jkI iJjTklmJlJm. s3d

The effective interactions3d produces a shift of the NMR
line. The value of the shift is about 0.5 Hz atB=10 T, and
the sign of the shift is opposite for sites of different “helic-
ity,” so in the end it gives a splitting of the NMR line:

Dn2 , 0.5 Hz. s4d

The value of the splitting depends on the orientation of the
crystal with respect to the magnetic field. This is the
“handle” which allows one to vary the effect. Generically
this effect is similar to the PNC energy shift in helical mol-
eculesf18g.

One can easily relate the values of the frequency shift in
the external fields2d and of the line splittings4d. The split-
ting is due to internal atomic electric field which is about
109 V/cm. Therefore, naturally, it is about five orders of
magnitude larger than the shifts2d in field, 10 kV/cm.

For the present calculations we use the jelly model sug-
gested in Ref.f17g. Values of the nuclear anapole moments
of 169Tm and141Pr which we use in the present paper have
been calculated separatelyf19g. The structure of the present
paper is as follows. In Sec. II the crystal structure of the
compounds under consideration is discussed. The effective
potential method used in our electronic structure calculations
is explained in Sec. III. The most important parts of the work
which contain the calculations of the effective Hamiltonians
s1d ands3d are presented in Secs. IV and V. The crystal field
and the angle between the nuclear and the electron spin is
considered in Sec. VI. In Sec. VII we calculate values of
observable effects and Sec. VIII presents our conclusions.
Some technical details concerning the numerical solution of
the equations for electron wave functions are presented in the
Appendix.

II. CRYSTAL STRUCTURE OF Y(Pr)GG AND Y(Tm)AG

The compounds under consideration are ionic crystals
consisting of Y3+, O2−, and Ga3+ ions for YGG and Al3+

instead of Ga for YAG, plus Pr3+ or Tm3+ rare-earthsRd
doping ions. The chemical formula of YGG is Y3Ga5O12 and
the formula of YAG is Y3Al5O12. Yttrium gallium garnet and

yttrium aluminum garnet belong to theIa3̄d space group and
contain 8 formula units per unit cell. Detailed structural data
for these compounds are presented in Table If20,21g.

R3+ doping ions replace Y3+ ions and hence enter the
garnet structure in the dodecahedral 24c sites with the local

FIG. 1. Dodecahedron configuration of O2− ions around theR3+

impurity ion in the garnet structure. Two different viewing angles
are shown.
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D2 symmetry. In this case eachR3+ ion is surrounded by
eight oxygen O2− ions in the dodecahedron configuration re-
sembling a distorted cubessee Fig. 1d. There are 24 such
sites per unit cell: half of them have absolutely identical
environment with the other half; the remaining 12 can be
divided into 6 pairs where the sites differ only by inversion
and these 6 pairs differ with each other by finite rotations. In
the present paper we perform calculations for the case of one
particular site orientation; the coordinates of the oxygen at-
oms around the central impurity ion for that instance are
presented in Table II. After that, the results for all other sites
in the unit cell can be found by applying the inversion of
coordinates or the necessary rotations, listed in Table III.

III. CALCULATION OF THE ELECTRONIC STRUCTURE
OF THE R·O8 CLUSTER

We describe an isolated impurity ion with the effective
potential in the following parametric form:

VRsrd =
1

r

sZi − Zdse−m/d + 1d
s1 + hrd2sesr−md/d + 1d

−
Zi

r
, s5d

Pr: m = 1.0, d = 1.3, h = 2.25;

Tm: m = 1.0, d = 1.0, h = 2.56.

Here Z is the nuclear charge of the impurity ion,Zi is the
charge of the electron core of ion, andm, d, andh are pa-
rameters that describe the core. We use atomic units, express-
ing energy in units ofE0=27.2 eV and distance in units of
the Bohr radiusaB=0.53310−8 cm. Solution of the Dirac
equation with the potentials5d gives wave functions and en-
ergies of the single-electron states. The potentials5d provides
a good fit to the experimental energy levels of isolated im-
purity ions f22g; the comparison is presented in Table IV.

In order to model the electronic structure of theR·O8
cluster sFig. 1d, following f17g we use the jelly model and
smear the eight oxygen ions over a spherical shell around the
rare-earth ion. Hence, the effective potential due to the oxy-
gen ions at theR3+ site is

VOsrd = − A0e
−fsr − r0d/Dg2, s6d

wherer0=4.5aB is the meanR-O distance andA0 andD are
parameters of the effective potential. To describe the elec-
trons which contribute to the effect we use the combined
spherically symmetric potential

TABLE I. Structural data for YGGf20g and YAG f21g.

YGG YAG

Unit cell parameterssÅd
a,b,c 12.280 12.280 12.280 a,b,c 12.008 12.008 12.008

a ,b ,g 90° 90° 90° a ,b ,g 90° 90° 90°

Space group

Ia3̄d s230 setting 1d Ia3̄d s230 setting 1d

Atomic positions

Y 0.1250 0.0000 0.2500 Y 0.1250 0.0000 0.2500

Ga 0.0000 0.0000 0.0000 Al 0.0000 0.0000 0.0000

Ga 0.3750 0.0000 0.2500 Al 0.3750 0.0000 0.2500

O 0.0272 0.0558 0.6501 O 0.9701 0.0506 0.1488

TABLE II. Coordinates of oxygen ions in YGG and YAGsÅd with respect to the rare-earth ion. The axes
x, y, andz are directed along the three orthogonal cube edgesa, b, andc, Table I.

YGG YAG

x y z x y z

O1 1.8690 0.6852 −1.2268 1.8600 0.6076 −1.2152

O2 1.8690 −0.6852 1.2268 1.8600 −0.6076 1.2152

O3 −1.8690 −1.2268 0.6852 −1.8600 −1.2152 0.6076

O4 −1.8690 1.2268 −0.6852 −1.8600 1.2152 −0.6076

O5 0.3082 2.3848 0.3340 0.2858 2.3944 0.3590

O6 −0.3082 0.3340 2.3848 −0.2858 0.3590 2.3944

O7 0.3082 −2.3848 −0.3340 0.2858 −2.3944 −0.3590

O8 −0.3082 −0.3340 −2.3848 −0.2858 −0.3590 −2.3944
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Vsrd = VRsrd + VOsrd, s7d

whereVR is the single-impurity ion potentials5d. Solution of
the Dirac equation with potentials7d gives the single-particle
orbitals. In this picture we describe the electronic configura-
tion of the cluster asfR3+g6s26p6, where the electronic con-
figuration of Pr3+ is 1s2

¯5s25p64f2 and Tm3+ is
1s2

¯5s25p64f12. The eight states 6s26p6 represent 2ps elec-
trons of oxygens combined toS andP waves with respect to
the central impurity ionssee Ref.f17gd. The parameterA0 in
the “oxygen” potentialVO s6d is determined by matching the
wave function of the oxygen 2ps orbital scalculated in Ref.
f23gd with the 6s and 6p orbitals from the combined potential
s7d at the radiusR<2.5aB. The matching conditions are

uc6ssRdu = uc2ps
sr0 − R,cosu = 1du,

uc6psR,cosu = 1/Î3du = uc2ps
sr0 − R,cosu = 1du. s8d

This is a formulation of the idea of a dual description atr
<R; see Refs.f23,24g.

The parameterD in Eq. s6d represents the size of the
oxygen core and is aboutD&1 satomic unitsd. The jelly
model is rather crude and the value ofD cannot be deter-
mined precisely; see Ref.f17g. In the present work we vary
this parameter in the range of 0.1–1.5. For each particular
value of D we find A0 to satisfy Eq.s8d—for example,A0
=0.9 at D=1. The most realistic value forD is probably
around 0.5–1.0. To be specific, in the final answers we
present results atD=1.0. Instead of the jelly model it would

certainly be better to use a relativistic quantum chemistry
Hartree-Fock methodf25g sor the Kohn-Sham form of the
relativistic density functional method which allows one to
generate electron orbitalsd to describe theR·O8 cluster. How-
ever, this would be a much more involved calculation at the
edge of present computational capabilities and therefore, at
this stage, we continue with the jelly model.

IV. CALCULATION OF THE EFFECTIVE
HAMILTONIAN (1)

The calculations in the present section are similar to those
performed inf17g for the electric-dipole moment of the elec-
tron. There are three perturbation operators that contribute to
the correlations1d. First, there is a magnetic interaction of
the electron with the nuclear anapole moment; see, e.g.,f5g.
Expressed in atomic units the interaction reads

Va = KasIaddsrd, s9d

Ka = SakaSGm2a

Î2
D = 1.573 10−14kaSa,

ka =
9

10
g

am

mr̃0
A2/3;

141Pr: ka = 0.35, Sa = − 0.34;

169Tm: ka = 0.39, Sa = − 0.25.

Herem is the electron mass,G is the Fermi constant anda is
the fine structure constant;a are the Dirac matrices,m is the
magnetic moment of the unpaired nucleonsproton in these
casesd expressed in nuclear magnetons,r̃0=1.2 fm, A is the
mass number of the nucleus, andg<4 for outer proton and
g,1 for outer neutron. Values of the nuclear structure con-
stantSa have been calculated inf19g.

The second perturbation operator is related to the shiftDr
of the rare-earth ion with respect to the surrounding oxygen
ions. The shift is proportional to the external electric field,
but for now we considerDr as an independent variable. In
the jelly model −Dr is the shift of the spherically symmetric
oxygen potentialVOsrd, Eq. s6d, with respect to the origin;
see Fig. 2. Therefore,

TABLE III. Euler angles of rotation between inequivalentR3+

impurity sites.

Euler angle

R3+ site

1 2 3 4 5 6

a 0 p /2 p 3p /2 0 p

b 0 0 0 0 p /2 p /2

g 0 0 0 0 0 0

TABLE IV. Calculated and experimentalf22g energy levels of
an isolated ion with respect to the ionization limit. Energy levels are
averaged over the fine structure. Units 103 cm−1.

Ion

Experiment Calculation

State Energy State Energy

Pr2+ 4f2s3H4d5d −155 5d −153

4f2s3H4d6s −146 6s −146

4f2s3H4d6p −114 6p −114

Pr3+ 4f2s3H4d −314 4f −313

Tm2+ 4f12s3H6d5d −163 5d −163

4f12s3H6d6s −165 6s −167

4f12s3H6d6p −126 6p −126

Tm3+ 4f12s3H6d −344 4f −345

FIG. 2. Schematic picture, illustrating the shift ofVOsrd due to
the lattice deformation.
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VOsrd → VO8 srd = VOsr + Drd = VOsrd +
sDr · rd

r

]VO

]r
.

s10d

Thus, the perturbation operator related to the lattice deforma-
tion reads

V1srd =
sDr · rd

r

]VO

]r

= sDx sinu cosf + Dy sinu sinf

+ Dzcosuds− 2d
sr − r0d

D2 VOsrd. s11d

Here r =rssinu cosf ,sinu sinf ,cosud.
The third perturbation is the residual electron-electron

Coulomb interaction, which is not included in the effective
potential,

VCsr i,r jd =
1

ur i − r ju
= o

lm

4p

2l + 1

r,
l

r.
l+1Ylm

* sr idYlmsr jd. s12d

Here r i and r j are radius vectors of the two interacting elec-
trons.

The formula for the energy correction in the third order of
perturbation theory readsssee, e.g., Ref.f26gd

En
s3d = o

m

8o
k

8
VnmVmkVkn

"2vmnvkn
− Vnno

m

8
uVnmu2

"2vnm
2 , s13d

whereV=Va+V1+VC. In Eq. s13d we need to consider only
the terms that contain all the operatorsVa, V1, andVC.

The shift operatorV1 is nearly saturated by 6s and 6p
states because core electrons do not “see” the deformation of
the lattice; hence, for this operator we consider onlys-p mix-
ing. Matrix elements of the anapole operatorVa practically
vanish for the electron states with high angular momentum,
since this operator is proportional to the Diracd function.
Therefore, it is sufficient to take into account only
kns1/2uV1ukp1/2l matrix elements. All in all, there are 11 dia-
gramssFig. 3d that correspond to Eq.s13d. All diagrams are
exchange ones and contribute with the sign shown before
each of the diagrams. Summation overall intermediate states
ukl and uml and overall filled statesunl is assumed.

SinceVa andV1 are single-particle operators, we evaluate
each diagram by solving equations for the corresponding
wave function corrections. For example, the first diagram
contains in the top right leg the correction

udcxl = o
m

kmp1/2uV1unsl
«ns− «mp1/2

ump1/2l. s14d

To evaluate the correction we do not use a direct summation,
but instead solve the equation

sH − «dudcxl = − V1unsl, « = «ns, s15d

for each particularunsl state. HereH is the Dirac Hamil-
tonian with the potentials7d. Similarly, the bottom left leg of
the same diagram is evaluated using

sH − «nsdudcdl= − Vaunsl. s16d

In solving this equation we take the finite size of the nucleus
into account by replacing thed function in Eq. s9d with a
realistic nuclear density.

Apart from the coefficients presented in Fig. 3, which in
essence show the number of diagrams of each kind, each
particular diagram in Fig. 3 contributes with its own angular
coefficient. In calculating the coefficients we assumed, with-
out loss of generality, that the total angular momentum of the
4f electrons is directed along thez axis, uJ,Jzl. Values of the
coefficients are presented in Table VIII in the Appendix. The
method for separating the radial equations corresponding to
Eqs.s15d ands16d is also described in the Appendix. As the
result of the calculations we find the followingP-odd energy
correction related to the displacementDr of the R impurity
ion:

D« = KaaA
1

aB
sDr · fI 3 JgdE0. s17d

We recall thatI is the spin of the nucleus,J is the total
angular momentum of thef electrons,E0=27.2 eV is the
atomic unit of energy,aB is the Bohr radius,a is the fine
structure constant, andKa is given in Eq.s9d. The dimension-
less coefficientA for the Pr3+ and Tm3+ ions sin the corre-
sponding latticesd calculated atD=1.0 in Eq.s6d reads

APr = − 25.99 − 11.20 + 0.32 + 0.59 + 18.64 − 18.99 + 0.58

+ 1.39 − 15.99 + 28.37 + 25.73 = 3.45,

ATm = 9.77 + 12.78 − 3.58 − 1.33 − 32.24 + 36.49 + 0.21

+ 0.12 + 53.48 − 67.70 − 10.95 = − 2.95. s18d

The 11 terms in Eq.s18d represent the contributions of the
eleven diagrams in Fig. 3. As one can see, there is significant
compensation between different terms in Eqs.s18d. This
compensation is partially related to the fact that each particu-
lar diagram in Fig. 3 contains contributions forbidden by the
Pauli principle. These contributions are canceled out only in
the sum of the diagrams. To check Eqs.s18d we have also
performed a more involved calculation explicitly taking into
account the Pauli principle in each particular diagram; the
results read

APr = − 0.07 − 0.18 + 1.48 + 0.72 + 1.00 − 2.63 − 1.74 + 0.88

+ 41.34 − 40.00 + 2.65 = 3.45,

ATm = − 0.55 − 0.56 − 4.09 − 1.36 − 1.47 + 6.27 + 0.53 + 0.15

− 38.94 + 38.06 − 0.99 = − 2.95. s19d

Although each individual term has changed compared to
Eqs. s18d, the total sum of the diagrams remains the same.
Comparison between Eqs.s18d and s19d is a test of the
many-body perturbation theory used in the calculation. To
demonstrate the sensitivity to parameters of the effective po-
tential, we plot in Fig. 4 the coefficientA versus the widthD
of the oxygen potential; see Eq.s6d. As we pointed out in
Sec. III, the most realistic value ofD is around 0.5–1.0. To
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be specific, in the final estimates we use the resultss18d and
s19d, which correspond to the valueD=1.0.

V. CALCULATION OF THE EFFECTIVE
HAMILTONIAN (3)

The P-odd effective Hamiltonian considered in the previ-
ous section arises due to a shift of the environment with
respect to the rare-earth ion. In other words, it is due to the
first harmonic in the electron density induced by the pertur-
bation operatorV1, Eq. s11d. In the equilibrium position the
first harmonic vanishes identically due to the symmetry of
the lattice. The next harmonic in the electron density that
contributes to the parity nonconserving effect is the third
harmonic which is nonzero even in the equilibrium position

FIG. 3. Third-order perturbation theory diagrams corresponding to Eq.s13d. The cross denotes the anapole interactionVa, Eq. s9d, the
dashed line denotes the lattice deformation perturbationV1, Eq. s11d, and the wavy line denotes the Coulomb interactionVC, s12d. The
multipolarity of the Coulomb interaction is shown near the wavy line. Each diagram contributes with the coefficient shown before the
diagramsnumber of diagrams of this kindd. Summation overall intermediate statesukl and uml and overall filled statesunl is assumed.

FIG. 4. Value of the coefficientA defined in Eq.s17d versus
width of the effective oxygen potential. The dashed line corre-
sponds to Pr3+ in YGG and the solid line corresponds to Tm3+ ions
in YAG.
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of the rare-earth ion. This effect gives theP-odd energy shift
even in the absence of an external electric field.

The effective oxygen potentialVO, Eq. s6d, represents the
spherically symmetric part of the real potential for electrons
created by the eight oxygen ions in the garnet lattice. Let us
describe the potentialspseudopotentiald of a single oxygen
ion asgdsr −Rd, whereR is the position of the ion andg is
some constant. Then the total potential is

Vsrd = o
R

gdsr − Rd, s20d

where summation is performed over the coordinates of the
eight oxygen ions presented in Table II. Expanding the Dirac
d function in the potentialVsrd in a series of spherical har-
monics, we find

Vsrd = g
dsr − Rd

R2 o
km

o
R

Ykm
* sRd ·Ykmsrd. s21d

Then,

VOsrd = g
dsr − Rd

R2 o
R

Y00sRd ·Y00srd → − A0e
−fsr − r0d/Dg2,

s22d

and hence the third harmonic reads

V3srd = g
dsr − Rd

R2 o
R

Y3m
* sRd ·Y3msrd

→ − A0e
−fsr − r0d/Dg2p

2
T3m ·Y3msrd, s23d

T3m = o
R

Y3m
* sRd.

The spherical tensorT3m slattice octupoled for yttrium alu-
minium garnet and yttrium gallium garnet has only one non-
zero independent componentT31=−0.1876 for YAG and
T31=−0.1010 for YGG. All other components are determined
by the following relations:

T33 =Î3

5
T31, T3−1 = − T31, T3−3 = − T33, T30 = 0.

s24d

Components of the corresponding Cartesian irreducible ten-
sor Tklm can be found using the following relations:

Txzz= Tzxz= Tzzx= − Txyy= − Tyxy= − Tyyx= −Î 8

15
T31.

s25d

All other components of the Cartesian tensor are equal to
zero.

Similar to the “dipole” effect considered in the previous
section, the octupole effect arises in the third order of pertur-
bation theory. The relevant perturbation theory operators are
sad interaction of the electron with the nuclear anapole mo-
ment Va, Eq. s9d, sbd interaction of the electron with the

lattice octupole harmonicV3, Eq. s23d, and scd the residual
electron-electron Coulomb interactionVC, Eq. s12d. The for-
mula for the energy corrections13d yields seven diagrams
which are presented in Fig. 5.

Besides the coefficients presented in Fig. 5, which show
the number of diagrams of each kind, each particular dia-
gram in Fig. 5 contributes with its own angular coefficient.
In calculating the coefficients we assumed, without loss of
generality, that the total angular momentum of 4f electrons is
directed along thez axis, uJ,Jzl, and the nuclear spin is di-
rected along theY axis, I =s0,I ,0d. The angular coefficients
for each of the seven diagrams from Fig. 5 are presented in
Table VIII in the Appendix. The method for separating the
radial equations is also described in the Appendix. The ef-
fective Hamiltonian for the lattice octupole effect has the
form

D« = KaaBIi«i jkTklmsJjJlJm + JmJlJjdE0. s26d

Equations26d represents the onlyP-odd scalar combination
one can construct from the two vectors and one irreducible
third-rank tensor. Note thatJ here is an operator and differ-
ent components ofJ do not commute. This is why on the

FIG. 5. Diagrams for the “octupole” effect. The cross denotes
the anapole interactionVa, Eq. s9d, the dashed line denotes the
lattice octupoleV3, Eq. s24d, and the wavy line denotes the Cou-
lomb interactionVC, Eq. s12d. The multipolarity of the Coulomb
interaction is shown near the wavy line. Each diagram contributes
with the coefficient shown before the diagramsnumber of diagrams
of this kindd. Summation overall intermediate statesukl anduml and
over all filled statesunl is assumed.
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right-hand side of Eq.s26d we explicitly write the Hermitian
combination. The matrix element of Eq.s26d in the kinemat-
ics which we consider for the calculation of the angular co-
efficientssTable VIIId is

kJ,JzuI i«i jkTklmsJjJlJm + JmJlJjduJ,Jzl

= TzzxIJzf5Jz
2 − 3JsJ + 1d + 1g. s27d

Our calculations show that contributions of the diagrams
with the intermediatef statesdiagrams 4, 5, 6, and 7 in Fig.
5d are at least 30 times smaller compared to diagrams 1 and
2. The reason for this is very simple:f electrons are practi-
cally decoupled from the lattice deformation. Diagram 3 is
even smaller because internal 3d and 4d electrons are also
decoupled from the lattice. So only diagrams 1 and 2 con-
tribute to the effect and they are nearly saturated by the in-
termediate unoccupied 5d state. The dimensionless coeffi-
cient B for Pr and Tm ions in corresponding lattices
calculated atD=1.0 fEq. s6dg reads

BPrsD = 1d = − 2.18 + 0.76 = − 1.42,

BTmsD = 1d = 1.11 − 0.45 = 0.66. s28d

The two terms in Eqs.s28d represent the contributions of the
first and second diagrams. The variation of the coefficientB
with the width of the effective oxygen potentialD is shown
in Fig. 6. Again, we recall that the most realistic value ofD
is around 0.5–1.0. To be specific, in the estimates for the
effect we useD=1.0.

VI. CRYSTAL FIELD, AVERAGE ELECTRON
MAGNETIZATION, ORIENTATION OF NUCLEAR SPIN

The energy of a free ion is degenerate with respect to the
z projection of the total angular momentum. The interaction
with the latticescrystal fieldd breaks the rotational invariance
and lifts the degeneracy. The effective crystal-field Hamil-
tonian can be written in the following formssee, e.g.,f27gd

Hcf = o
km

Bkm
* o

i

Î 4p

2k + 1
Ykmsrd, s29d

whereBkm are the crystal-field parameters andr is the radius
vector of the atomic electron.

Experimental values of the energy levels for Pr3+ in YGG
and Tm3+ in YAG are knownf14,15g, and fits of the crystal

field parametersBkm have been performed in the experimen-
tal papers. Unfortunately, we cannot use these fits because
they are performed without connection to a particular orien-
tation of crystallographic axes. We need to know the connec-
tion and therefore we have performed independent fits. For
the fits we use a modified point-charge model. In the simple
point-charge model the crystal field is of the form

Akm
spcd = − o

j

qj

r j
k+1Î 4p

2k + 1
Ykmsr jd, s30d

Bkm
spcd = rkAkm

spcd, s31d

where j enumerates ions of the lattice andrk=krkl is the
expectation value over thef-electron wave function. The val-
ues ofrk are knownf27g. The point charges areqO=−2 and
qY=qGa=qAl=3. Clearly, the naive point-charge model is in-
sufficient to describe the nearest eight oxygen ions because
of the relatively large size of the ionssextended electron
density of the host oxygensd. To describe the effect of the
extended electron density we introduce an additional field
Akm

seld:

Akm= Akm
spcd + Akm

seld, s32d

Akm
seld = − ako

j=1

8
qj

r j
n+1Î 4p

2n + 1
Ykmsr jd. s33d

Here the sum runs over the eight oxygen ions surrounding
the dopant ion in the garnet structure andak are fitting pa-
rameters. So we have only three fitting parametersa2, a4,
and a6, because higher multipoles do not contribute in
f-electron splitting. In the end, we get a fairly good fit of the
experimental energy levels; see Table V. The values of the
resulting crystal-field parametersBkm are presented in Table
VI.

TABLE V. Experimental and calculated crystal-field energy lev-
els in cm−1. J-J mixing is neglected in the calculation.

Pr3+:YGG Tm3+:YAG

Expt. f15g Calc. Expt.f14g Calc.

0 0 0 0

23 23 27 27

23 23 216 182

- 400 240 240

532 413 247 253

578 538 300 301

598 621 450 306

626 877 588 494

689 895 610 609

650 673

690 686

730 825

- 937

FIG. 6. Value of the coefficientB in Eq. s26d versus the width of
the effective oxygen potential. The dashed line corresponds to Pr3+

in YGG and the solid line corresponds to Tm3+ in YAG.
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For the non-Kramers ions, such as Pr3+ and Tm3+, the
expectation value of the total angular momentum in the
ground state vanishes due to the crystal field,kJl=0. To get a
nonzerokJl one needs to apply an external magnetic fieldB.
Diagonalizing the Hamiltonian matrix of the dopant ion in
the magnetic field,

kJz8uHcf + mBgsJBduJzl, s34d

s939 matrix for Pr3+ and 13313 matrix for Tm3+d, we find
the ground state of the ion in the presence of the external
magnetic fieldB sheremB is the Bohr magneton andg is the
atomic Lande factor;g=0.80 for Pr3+ in the 3H4 configura-
tion and g=1.17 for Tm3+ in the 3H6 configuration.d For
weak magnetic field the average total angular momentum
can be written as

kJil = tikBk. s35d

The tensortik can be diagonalized. According to our calcu-
lations, for both Pr and Tm it is diagonal with the principal
axes n1=s1,0,0d, n2=s1,1/Î2,1/Î2d, and n3=s1,1/Î2,
−1/Î2d:

Pr: t = 1− 0.003 0 0

0 − 0.154 0

0 0 − 0.176
2 1

T
,

Tm: t = 1− 0.474 0 0

0 − 0.023 0

0 0 − 0.032
2 1

T
. s36d

The average total electron angular momentum in the mag-
netic fields applied along the directionsn1, n2, and n3 is
plotted in Fig. 7. We see that the linear expansions35d is
valid for the fieldB,5–10 T.

The effective Hamiltonian for the nuclear spin is

Hnuc= AhfsJ · I d −
mmN

I
sB · I d, s37d

whereAhf is the hyperfine constant,m is the nuclear mag-
netic moment in nuclear magnetons, andmN is the nuclear
magnetonssee Refs.f28,29gd:

141Pr: Ahf = 1093 MHz,m = 4.2754,I = 5/2;

169Tm: Ahf = − 393.5 MHz,m = − 0.2316,I = 1/2.

s38d

Equation s37d, together with Eq. s35d, gives
the NMR frequencyn. The dependence of the frequency
on the orientation of the magnetic field B
=Bssinu cosf ,sinu sinf ,cosud with respect to the crystal-
lographic axes is plotted in Fig. 8; we takeB=10 T. Equa-
tion s37d also defines the quantization axis for the nuclear
spin:

nI ~ SAhfkJl −
mmN

I
BD = SAhft̂B −

mmN

I
BD . s39d

This allows us to find the cross productnI 3J that appears in
the anapole induced energy corrections1d and s17d:

M = unI 3 Ju =
ummNfB 3 st̂Bdgu

uIAhfst̂Bd − mmNBu
. s40d

The value ofM depends on the magnitude and orientation of
the external magnetic fieldB with respect to the crystallo-
graphic axes. AtB=10 T the maximum value ofM is

TABLE VI. Crystal-field parameters in cm−1 that fit the energy levels in Table V.

Compound B20 B21 B22 B40 B41 B42 B43 B44 B60 B61 B62 B63 B64 B65 B66

Pr:YGG 622 11i −762 211 −475i 727 1256i −423 963 −280i −648 −437i 91 304i −961

Tm:YAG 257 92i −315 −1198 344i −248 −909i −523 −938 528i 569 816i 94 −563i 843

FIG. 7. The average total electron angular momentum of the
rare-earth ion versus magnetic fieldsTd. Directions of the magnetic
field correspond to the principal axes of the magnetization tensor
n1, n2, andn3. Solid lines correspond to Tm3+ in YAG and dashed
lines correspond to Pr3+ in YGG.

FIG. 8. The NMR frequency versus the orientation of magnetic
field with respect to the crystallographic axes,B=10 T. We show
the dependence onf for different values ofu.
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Pr: M = 1.023 10−1,

Tm: M = 0.793 10−1. s41d

Unfortunately, the values ofM are relatively small compared
to the maximum possible valueM =J s4 for Pr and 6 for Tmd.
The suppression is due to the fact that in the nuclear mag-
netic Hamiltonians37d the hyperfine interactionAhfsJ ·I d is
an order of magnitude larger than the direct magnetic inter-
action mmNsB ·I d / I, while to maximizeM one has to have
these interactions comparable. In spite of the suppression,
the observable effects related to the effective Hamiltonians
s1d and s17d are quite reasonablessee the next sectiond.

The situation with the effective interactionss3d ands26d is
different. Looking at Eqs.s3d ands26d one can expect at first
sight that the corresponding energy shift is nonzero only if
I 3 kJlÞ0. However, this is incorrect. The point is that due
to the crystal field the tensorkJjJlJm+JmJlJjl has nonzero
components orthogonal tokJl. And the octupole induced en-
ergy shift is in fact maximum whenI i kJl. The dependence
of the kinematic coefficientfsee Eq.s26dg

N =
1

I
I iei jkTklmkJjJlJm + JmJlJjl s42d

on the orientation of magnetic field B
=Bssinu cosf ,sinu sinf ,cosud at B=10 T is plotted in
Fig. 9. The maximum value ofN is

Pr: N = 1.81,

Tm: N = 2.42. s43d

The calculations in the present section are based on the fit
of experimental energy levels, Table V, using the crystal field
parameters. We use the set of parameters presented in Table
VI. Unfortunately, the set is not unique and there are other
sets which also reasonably fit the energy levels. In particular,
for Tm3+ in YAG there is a set of parameters which gives a
lattice-octupole-induced PNC energy shift an order of mag-
nitude larger than the present set. At this stage we prefer to
continue with a conservative estimate. To elucidate the un-
certainty related to the crystal-field parameters detailed mea-
surements of NMR frequencies, as well as transition ampli-
tudes, are necessary.

VII. ESTIMATES OF OBSERVABLE EFFECTS

The effect s1d and s17d requires a displacement of the
impurity ion from its equilibrium position. Such a displace-
ment can be achieved by application of an external electric
field. The displacement has been estimated in Ref.f17g in
relation to the discussion of electric-dipole moments. The
idea behind the estimate is very simple. Since the Ga-O link
in YGG and the Al-O link in YAG are much more rigid than
the Y-O links ssee the discussion inf17gd, the electrostatic
polarization in YGG and YAG is mainly due to displacement
of the yttrium ions,

P = 3enDr . s44d

On the other hand, the dielectric polarization caused by the
external electric fieldE is

P =
« − 1

4p
E, s45d

where the static dielectric constant is«<12 for YGG and
YAG. This yields the following expression for the displace-
ment of the yttrium ions:

Dr =
« − 1

4p

E

3en
,

Dr/aB = 3.03 10−8E V/cm. s46d

Measurements of infrared spectra, as well as measurements
of the dependence of the dielectric constant on the concen-
tration of impurities, can help to improve the estimates46d.

Using Eq.s17d together with Eqs.s41d ands46d we obtain
the following estimates for the NMR frequency shiftsDI
=1d due to the nuclear anapole moment:

Pr: Dn , 0.93 10−9E fV/cmgHz,

Tm: Dn , 0.53 10−9E fV/cmgHz. s47d

An alternative possibility for the experiment is to provide
the maximum possible value of the cross productI 3J by
applying an rf pulse and then to measure the induced electric
field. Using Eq.s17d together with estimates of the elastic
constant with respect to the shift of the rare-earth ion per-
formed in f17g we arrive at the following values of the
anapole-induced electric field:

FIG. 9. The kinematic coefficientN, Eq. s42d, in the lattice
octupole-induced energy correction versus orientation of the mag-
netic field with respect to the crystallographic axes,B=10 T. We
show the dependence onf for different values ofu.
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Pr: E , 1.43 10−6 V/cm,

Tm: E , 0.43 10−6 V/cm. s48d

The field precesses around the direction of the magnetic field
with a frequency of about 1 GHz due to the nuclear spin
precession. In the estimatess48d we assume that all yttrium
ions are substituted by the rare-earth ions.

Another manifestation of nuclear anapole moment is the
static perpendicular macroscopic magnetization induced by
an external electric field,

dI ~ B 3 E. s49d

The exact value of the macroscopic magnetization depends
on temperature and other experimental conditions; therefore,
we cannot present a specific value. However, we can com-
pare the effect with that expected in the electron EDM ex-
perimentf13g scorrelationdJ~Ed using the present experi-
mental limit onde, 1.6310−27e cm f16g, as a reference point.
The effective anapole interactions17d is four orders of mag-
nitude larger than the similar effective EDM interactionf17g.
On the other hand, the electron EDM interaction causes elec-
tron magnetization whereas the anapole interaction causes
only nuclear magnetization, so we lose three orders of mag-
nitude on the value of the magnetic moment. Therefore, al-
together, one should expect that the anapole magnetization is
several times larger than the EDM-induced magnetization.

The effective interactions26d is independent of the exter-
nal electric field and is due to the asymmetric environment of
the rare-earth ion site. Since there is always another site
within the unit cell which is the exact mirror reflection of the
first one, the energy corrections26d does actually lead to the
NMR line splitting. Using Eqs.s26d, s28d, s42d, ands43d, we
find the maximum value of this splitting corresponding to the
magnetic fieldB=10 T:

Pr: Dn , 0.5 Hz,

Tm: Dn , 0.25 Hz. s50d

The splitting depends on the orientation of the magnetic field
with respect to the crystallographic axes; see Fig. 8.

VIII. CONCLUSIONS

In the present work we have considered effects caused by
the nuclear anapole moment in thulium-doped yttrium alumi-
num garnet and praseodymium-doped yttrium gallium gar-
net. There are two effects related to the frequency of
NMR: s1d NMR line shift in combined electric and mag-
netic fields. The shift is about 10−5 Hz at B=10 T andE
=10 kV/cm. s2d NMR line splitting smagnetic field onlyd.
The spitting is about 0.5 Hz atB=10 T. The value of the
splitting depends on the orientation of the magnetic field
with respect to the crystallographic axes. Another PNC effect
is the induced rf electric field orthogonal to the plane of the
magnetic field and nuclear spin,E~ fB3 I g. The field isE
,10−6 V/cm at magnetic fieldB=5–10 T. Thelast effect
we have discussed is unrelated to NMR. This is a variation of
the static macroscopic magnetization in combined electric

and magnetic fields,dM ~B3E. The magnitude of the effect
is several times larger than that expected in the electric-
dipole moment experimentf13g.
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APPENDIX: RADIAL EQUATIONS

In order to calculate the energies and wave functions of
unperturbed states of the single impurity ion in the garnet
environment, we use the Dirac equation

sH − educl = 0. sA1d

The effective potentialVsrd, Eq.s7d in the Dirac Hamiltonian
H is spherically symmetric, and thus the two-component
wave functionucl is of the form

ucl =
1

r
S fsrdVk

iagsrdṼk

D . sA2d

HereVk and Ṽk are the spherical spinors andfsrd andgsrd
are radial wave functions. Substituting expressionsA2d for
ucl into the Dirac equationsA1d, one gets the radial equa-
tions

f8 + kf/x + f− 2 +a2sV − edgg = 0,

g8 − kg/x − sV − edf = 0. sA3d

Here x=r /aB is the radius in atomic units;k=s−1d j+1/2−ls j
+1/2d, where j and l are the total and orbital angular mo-
menta of the single-electron state correspondingly; the poten-
tial Vsxd, as well as the energye, is expressed in atomic
energy units. Solving the system of equationss53d as an
eigenvalue problem numerically on a logarithmic coordinate
grid, we find energies and wave functions of the unperturbed
states.

The inhomogeneous Dirac equationss15d and s16d are of
the form

sH − «dudcl = − V̂pucl, sA4d

whereV̂p is the single-particle perturbation operator. The cor-
rection udcl is of the form

udcl =
1

r
S FsrdVk8

iaGsrdṼk8
D , sA5d

and hence the corresponding radial equations are

F8 + k8F/x + f− 2 +a2sV − «dgG = RfkVk8uF̂uVkl,

G8 − k8G/x − sV − «dF = RgkṼk8uF̂uṼkl. sA6d

The operatorF̂ represents the angular part of the perturba-

tion V̂p, andRf andRg are the radial parts of the perturbation.
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TABLE VII. The functionsRf, Rg, andF̂ for the different perturbation operators and different statesucl. rn is nuclear density normalized
to unity.

V̂p=Va, Eq. s9d
ucl= uns1/2l

V̂p=Va, Eq. s9d
ucl= unp1/2l

V̂p=V1, Eq. s11d
ucl= uns1/2l or ucl= unp1/2l

V̂p=V3, Eq. s23d
ucl= uns1/2l or ucl= unp1/2l

Rf −Kaarnsxdfsxd − 1
3Kaarnsxdfsxd − 2

sr − r0d
D2 A0e − F sr − r0d

D
G2

a2gsxd
A0e

−fsr − r0/Ddg2a2gsxd

Rg

1
3Kaarnsxdgsxd Kaarnsxdgsxd 2

sr − r0d
D2 A0e− F sr − r0d

D
G2

fsxd
−A0e

−fsr − r0/Ddg2fsxd

F̂ −2isI ·jd 2isI ·jd Dx sinu cosf+Dy sinu sinf+Dzcosu
p
2T3mY3msrd

TABLE VIII. Dipole effect: angular coefficient for each of the 11 diagrams shown in Fig. 3. The factorsDxIy−DyIxdJz, which corresponds
to the kinematic structures17d and which is common for all the contributions, is omitted.Fsld denotes the Coulomb integral of multipolarity
l in the radial part of the diagram.Lattice octupole effect: angular coefficients for each of the seven diagrams shown in Fig. 5. The factor
IJzf5Jz

2−3JsJ+1d+1g, which corresponds to the kinematic structures26d and which is common for all the contributions, is omitted.

Diagram Pr3+ Tm3+

Dipole effect

1,7,8,11
22 3 43

32 3 53 3 7
Fs2d −

2 3 19

36 3 5 3 7
Fs4d

1

2 3 32 3 5 3 7
Fs2d −

79

2 3 36 3 7
Fs4d

2,9,10
22 3 23

32 3 53 3 7
Fs2d +

2 3 5

36 3 7
Fs4d −

1

2 3 32 3 5 3 7
Fs2d −

2 3 17

36 3 7
Fs4d

3,4,5,6
2

3 3 5 3 7
Fs3d −

1

32 3 7
Fs3d

Lattice octupole effect

1,2,3
T31

Îp/21 13Fs3d/233235237311
− T31Î p

21

Fs3d
22 3 3 3 5 3 7 3 11

4,5 − T31Î p

21
F 133 29Fs2d

32 3 53 3 72 3 11
+

5 3 13Fs4d
2 3 34 3 72 3 112G T31Î p

21
F Fs2d

2 3 3 3 52 3 7 3 11
−

Fs4d
22 3 33 3 5 3 7 3 112G

6,7 T31Î p

21
F 132Fs2d

22 3 3 3 53 3 72 3 11
+

133 47Fs4d
22 3 33 3 5 3 72 3 112G − T31Î p

21
F Fs2d

2 3 3 3 52 3 7 3 11
+

22Fs4d
32 3 5 3 7 3 112G
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The functionsRf, Rg, andF̂ for all the cases we need in the
present work are presented in Table VII.

Having separated the radial parts, one can calculate the
angular coefficients for the diagrams in Figs. 3 and 5. The
results of these calculations are presented in Table VIII. The

electronic configurations of Pr3+ and Tm3+ are similar: twof
electrons in Pr3+ and two f holes in Tm3+. However, their
orbital and spin angular momenta combine to yield different
total angular momenta, and this makes the angular coeffi-
cients for Pr3+ and Tm3+ different.
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