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Relativistic Aharonov-Bohm effect in the presence of planar Coulomb potentials
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Exact analytic solutions are found to the Dirac equation in 2+1 dimensions for a combination of an
Aharonov-Bohm potential and the Lorentz three-vector and scalar Coulomb potentials. By means of the
solutions obtained the relativistic quantum Aharonov-Bohm effect is studied for théirfrédee presence of a
Lorentz three-vector Coulomb potenjiaind bound fermion states. We obtain the total scattering amplitude in
a combination of the Aharonov-Bohm and Lorentz three-vector Coulomb potentials as a sum of two scattering
amplitudes. This modifies the expression for the standard Aharonov-Bohm cross section due to the interference
of these two amplitudes with each other. We discuss that the observable quantities can be the phases of electron
wave functions or the energies of bound states.
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[. INTRODUCTION the Dirac equation. As the relativistic AB effect seems to be
i ) likely to occur in cylindrically symmetric potentials the

The quantum Aharonov-BohiAB) effect, first predicted  4p6ve problem can be considered by using the usual four-
by Aharonov and Bohriil], was analyzed in many physical component Dirac equation in the absence of a third spatial
aspects in numerous worksee Ref[2]). It occurs when an  coordinate. The latter equation can be easily written in terms
electron travels in a certain configuration of a vector potenof the two-component Dirac equation. Thus, the above mod-
tial A, in which the corresponding magnetic flux is confinedels can be reduced 1@+ 1)-dimensional ones.
to a finite-radius tube topologically equivalent to a cylinder.  The results of Refl1] modified by using the Dirac equa-
In the case of a cylindrical external field configuration, wheretion in 2+ 1 dimensions were applied to other problems. So-
a natural assumption is that the relevant quantum mechanichltions to the two-component Dirac equation in the
system is invariant along the symmetiz) axis, the system Aharonov-Bohm potential were first obtained and applied by
then becomes essentially two dimensional in fyeplane  Alford and Wilczek in Ref[7] to the study of the interaction
[3]. When an electron travels in an Aharonov-Bohm potentialof cosmic strings with matter. The above solutions coincide
the electron wave function acquires (mp0|ogica) phase with splutions of the Dirac e.quation in2+1 dimensions_ for a
which further influences the interference pattern. Themassive neutral fermion with an anomalous magnetic mo-
Aharonov-Bohm vector potential can produce observable efent in a planar field of a point electric charge placed at the
fects because the relativgauge invariantphase of the elec- 0rigin z=0 (see, for example, Refl8]. In the three-
tron wave function, correlated with a nonvanishing g‘,ﬂugedlmensflonal space, thls field cor.responds to the electric field
vector potential in the domain where the magnetic field van-Of a thin thrlead 'thathls perpehndlcular tol'the plamaolandh
ishes, depends on the magnetic f[&}. In a definite sense cr?rrlesl an € ectrlchc arge wit constarg_ inear density. T #S’
one can say that the Aharonov-Bohm effect is due to th e solutions to the two-component Dirac equation in the

. . . haronov-Bohm potential can directly be applied to the pla-
topological properties of a space of electron wave functlon%ar scattering of a massive neutral fermion with anomalous

in2+1 dlmenS|0n's ina topologically nontrivial backgroupd. magnetic moment interacting in the electric field of the thin
In [4,5] the contribution to the Aharonov-Bohm scattering y, a4 which was first predicted by Aharonov and Casher in
amplitude which can arise from the inclusion of the Spin-pet 9] The Aharonov-Casher effect is, however, different
orbit i.nte_ractior? of the electron magneftic mpment with thg-n many ways from the AB effect. ’In pal‘tiCl:I|aI’, the
electric f".ald prlented along. the_ solen0|q axis was .theoret'Aharonov—Casher effect is a phenomenon involving two spa-
cally studied in the non_relahw;ﬂc approximation. This effect ;-1 qimensions in an essential Way0].

ha_\s been recently confirmed in e>_<per|m&|]t We note that A permanent interest in this topic also is stimulated by the
this quantum system also ha_s axial symmetry. studies of(2+1)-dimensional models in both superconduc-

There are two more questions of how the effect of Othertivity [11] and particle theoryincluding the quantum Hall

physical fields modifie; the u;ual AB phenomenon as wel! Affect [12] and degenerate planar semiconductors with low-
of how the AB effect will manifest itself when an electron is energy electron dynamidd3)) in Refs.[7—18].

in the bound state. In order to approach the solution of these The main purpose of the paper is to study the relativistic

E:)Orbtlﬁéns tr;el Séglge.zt %r;yril)(;]ar‘lelglpqetl'sc Cgrt.(gg Cg::gg;ed uantum Aharonov-Bohm effect in the presence of other
usual s fng IVISUiC particles hysical fields. This study is possible only in 2+1 dimen-

to solve the Schri?dinger e.qu.ation in two s_patial dimensio.n ions. In 3+1 dimensions, analytic solutions even to the

but when the particle spin is included one is concerned W't%chrbdinger equation in the Coulomb and Aharonov-Bohm
potentials still are not found.

This paper is organized as follows. In Sec. Il we study the

*Electronic address: khalilov@thc.phys.msu.su electron states in the Aharonov-Bohm potential and briefly
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discuss the topological properties of a space of electron wavapplied for spin “up” and spin “down,” respectivelyee Ref.
functions in 2+1 dimensions. In Sec. Il we find exact ana-[20]).

lytic solutions to the Dirac equation in 2+1 dimensions fora We seek solutions of Eq4) in potential(1) in the form
combination of the Lorentz three-vector and scalar Coulomtj17]
as well as Aharonov-Bohm potentials. In Sec. IV the relativ-
istic Aharonov-Bohm scattering in the presence of the Lor-
entz three-vector Coulomb potential is studied.

1
W(t,x) = o exp(—iEt+il o) y(r, @), (5
We use the units where=A=1.

Vet

whereE is the electron energy,is an integer, andir, ¢) is

II. DIRAC ELECTRON IN AN AHARONOV-BOHM a two-component functiofi.e., a two-spinor

POTENTIAL
The most general combination of external potentials in ur ):( f(r)‘ ) ©6)
which exact analytic solutions to the Dirac equation in 2+1 s g(ree/’

dimensions can be found in the form of special functions is

an Aharonov-Bohm potential The upper(“large”) and lower(“small”) components of

the two-spinor can be interpreted in the sense of positive-
and negative-energy solutions of the Dirac equation. It
should be noted that an electron in the two-dimensional
space corresponds to one in the three-dimensional space with
only one spin projection on theaxis[18]. The upper com-

B Bx
AO:O’ AX:—r—gl, Ay:?’ AO:O' Ar:O’

A,= E, B= 2 r= \x’x2+y2, ¢ = arctarty/x), (1) ponent only remains in the nonrelativistic approximation
r 2m (see, for exampl€g,19]). Therefore, there is a conventional
and the Lorentz three-vectpA“(r)] and scalafU(r)] relationship to the corresponding nonrelativistic Schrédinger
limit.
a b The electron wave function in potentiél) (limited asr
0 - = - - - =
AYr)=- or A=0, A,=0, U= p (2 =0) has the form
Coulomb potentials. Here is the electrical charge of a fer- [ e VE+ ym3,(pr)
mion. The interaction with a scalar field can be introduced in -~ W (r,p) =e™=*le [ =| )
theory by means of the replacement-m+U, wherem is 2E\-iVE- 7ME*J,.4q(pr)
the fermion mass. 7)

In 2+1 dimensions, the Dirag#-matrix algebra is known
[16] to be represented in terms of the two-dimensional Paulijere p=E2-n?, andJ,(pr) is the Bessel function of order
matriceso;. In addition, two kinds of fermions can be intro-
duced in accordance with the signature of the two- v=|l+eB.
dimensional Dirac matricelsl6]

i In order that the irregulgiNeumann functiomN,,(pr)] solu-
7=-Tr(y°y'Y) = +1, tion can be eliminated we need to allot it on the “back-
2 ground” of the regular solutiod,,(pr) asr — 0 which leads

where the two signs of; correspond to two nonequivalent to the condition|l+eB>0.

representations of the Dirac matrices. We choose The wave functions are normalized by the condition
Y=nos, ¥y =ioy, Y=io ®) f : d* =278 8(p - p') (8)
oy X=Z2m 4 - .
It will be noted that the model with charged fermions is Vpt.nlr e

invariant under the charge conjugation operation and the _ _ _
transformationrm— —m, which is equivalent to the transfor- As B=0 one recover the free electron solutions in 2+1 di-

mation y“— —y* or — —7. Hence, we can fix the signs of mensions from Eq(7).

e andm. Whenv is an integer, for examplé;+s, the magnetic field
First let us consider an electron of mass-0 and charge flux is quanitized as

e in the xy plane in potentiall). In the three-dimensional

space this potential describes the magnetic field of an infi- & =2nficde = Pgs,

nitely thin solenoid creating a finite magnetic fldxin the z . )

direction[the magnetic fiel®,=®8(r)]. The Dirac equation Where®dq is the elementary magnetic flux, ae@=s.

in 2+1 dimensions in the potentidl, is One can define the scattering amplitude in a conventional
" manner. We assume that the incident electron wave is from
(,y/iﬁ)’u_ m)¥ = 0. (4)  the left and the wave function is normalized in the standard

R manner, i.e., the upper component of the incident wave is
Here P,=-id,—eA, is the generalized electron momentum ¢=€eP*. In fact, the electron wave function in potentid)
operator. Note that the parameter+1 in Eq. (4) can be must have the asymptotic form
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_ 1 ipx+ieBe L f(_cpﬂ ipr
%(r"P)_(—ip/(E+ nm)>ép +<i|o/(E+ vm)) ”

I
9
asr—«. Heref(p) is the scattering amplitude.
Writing ¢(r, ¢) in the form
Yr.e)= 2 Ady(pre's, (10)
|=—c0
it is easy to show that
AI — e—i(#/Z)“+eB|' (11)

The scattering amplitude is proportional -1=¢e*%-1,

where §=(v—l)m=eBr=ed®/2hic are the partial phase

shifts. They depend upon only the total magnetic flix
The coefficient before the terd”'/\r is the standard
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Ill. DIRAC FERMION IN A COMBINATION OF
COULOMB AND AHARONOV-BOHM POTENTIALS

Let us find the exact solutions of Dirac equati@h) in
potentials(1) and (2). After simple standard rearrangement,
we obtain for the function$(r) andg(r)

g—l-IPGBf+<E+m+—a_b> =0

dr r r )97

dg 1+l+eB ( a+b>

24 ———g-|E-m+—|f=0. (16
ar 9 m+— (16)

Here and below we puy=1. The functiond(r) andg(r) are
normalized

f ) (If4 +]g?)dr=1. (17
0

Further, following Ref.[21] for the functionsf(r) and

Aharonov-Bohm amplitude for the scattering of nonrelativ-g(r), we obtain

istic particles,

1 e s gin(ed/2)
sin(p/2)

fale) = (12

\"/27Tpi
Here eb=27s+27A, —1/2<A<1/2. First, the amplitude

(12) was calculated in Ref.7]. Thus, the scattering ampli-

tude is unaffected by the spin.
One can define the so-called “topological” current

= e P[=ix,d,+ €d A=~ i PRI+,
(13

f(r) = \m+Ee”?p"(Q: +Qy),

g(r) =—Vm-Ee"?p"(Q; - Qy), (18
where
p=2\r, N=\n?-E? (19
v is determined by
1 J( 1)2 2, 12
=t [+eB+—-| —a°+ 2
04 5 e 5 a”+ b7, (20)

and the solutiongfinite atp=0) are expressed in terms of the

whered,=d/dx*, and ¢ is the free electron wave function confluent hypergeometric functida(b,c; 2):

(atB=0). The currents)* and j* satisfy the continuity equa-
tion 9,J=4,j#=0 and, therefore,

infﬁdr:f://*<—ii+2we85(r)>¢/fdr, (14)
2 de
and

eB &

N . _eB_
q—zwjjdr—eB l/l5(l’)l/fdl’—ﬁc—q)o

L))

(where[®/d,] is the integer part ofb/dy) are conserved.

(15

The quantity[®/dy] is the “topological number,” and the

quantityg—[®/®d,] can be called the “topological defect.”

Note that the topological quantities introduced here cha
acterize such properties of the Dirac equation solutions i
2+1 dimensions in a topologically nontrivial background as
the limit, the continuity, and the uniqueness, in contrast to

rrIlL)nonnomiaIs. ForF(b,c;z) it means that the parametér

o _AF< 1 aE-mb_ )
1= Y 2 N YiP |
1 aE-mb
Q.=CF Yoo 2y;p ). (21)
A
The constanté\ andC are related by
-1/2 -(Ea- mb)/\
Y (Ea-mb) (22

~1+eB+ 1/2 +(ma- bE)/x

As a?> (1+eB+1/2)?+b? the quantityy is real, and must
be chosen positive. 42> (I+eB+1/2)?+b? then two roots
of y are imaginary and the corresponding wave functions
oscillate asr— 0, which means the occurrence of Klein's
paradox(22].

In order to normalizeQ, and Q, they must reduce to

ust be equal to a negative integer or zero; therefore
Ea-mb _ 1

the usual topological numbers which are determined by the Y 2 N ~ N et y- 2 -0

boundary conditions for the corresponding solutions at infin- (23)
ity. The latter is conserved due to the finiteness of energy. In

our case the “topological defect” is of importance. It charac-It is easy to show that the admitted values of the quantum
terizes the branching of solutions at the point=0. numbern, are 0,1,2,.. for [+eB+1/2>0 and 1,2,3,..
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for 1+eB+1/2<0, and the discrete fermion energy levels are It is seen from Eq(27) that the Aharonov-Bohm potential

given by must influence the radiation spectrum of the electron.
_ ab
En=-m (n+7)2+b? IV. RELATIVISTIC AHARONOV-BOHM SCATTERING IN
> — THE PRESENCE OF A LORENTZ THREE-VECTOR
ab n+y-“-a
.\ \/( —— b2> .\ En - 7;2+ bZ} 24 COULOMB POTENTIAL
Y Y As long as the scalar interaction is not actual for the AB
If the scalar Coulomb potential is absent, then scattering we shall pli=0 below. The wave functions of the
continuous spectrurtE>m) can be obtained from Eq¢25)
Q= AF('y— 1_saE 2y'p> by means of the following replacements:
2 A’ L 1 1
v/m— E— —iv’E—m, N — —ip,
_ 1 aE_
Q=CF|y+5-2vp), (25) -n =-n— y-1/2 -iaElp. (33
with These functions should also be normalized anew. Using
Eq. (33), let us represent the functiofisandg in the form
v—1/2 -Eal\ 26 R
= f [E+m , _
|+ 6B+ 1/2 +ma ( ) _ (‘ _>A'e'pr<2pr)r1[e¢(y— 12 -2y,
g VE—-m
and
a2 -1/2 ~ 2ipr)
a m[l i TeBr127- az]z} @ T &R (y+ 12 i1, 2, 2ipr)], (34

. o
In the nonrelativistic Schrodinger limit, the expression forWhereA Is the normalization constant and

the energy spectrum becomes aE sie y=112+iu ma m
=—, @g="—"——"-"—" = — = y—.
~ a2 29 H p [+eB+1/2-iu' K p HE
" 2>n+ |l +eB+ 1/2)* We note that the quantity is real.

After simple transformations given for the three-

We see that the quantitgB in Eq. (28) has a full analogy dimensional case in Ref21], we obtain

with the Rydberg correction.

If the vector Coulomb potential is absent, then £\ [Ex m(2pn)? [T(y+ 172 +iw)| "
n?-b? "N Ep v I
E,=m >, n:nr+\/(|+eB+ 1/2)% + b?. 9 . P (27) ‘
n % @ ilm2=y+1/2+y In 2pr-ard(y+1/2+i )]
29 M) ipres
pr+ —1/2 —i p
The lowest energy level is ><<Re>[e' Fly—1/2-iw,2y,- 2pr)].
I +eB+1/2 (35)
Eq=m— —, (30 _ .
V(I +eB+1/2)°+b HereT'(2) is theT function.

so thatEg— 0 for b— . Asymptotically, the wave function has the form

Note that the solutions of the Klein-Gordon equation con- f 2(E+m)|sin
tain the parameter ( ) = \/—_( )(pr + 8+ wpln2pr-al/2),
g Er cos

¥s= (1 +eB?-a”+ b (3D) (36)

therefore the energy spectrum, for example, in the absence Qfi e
the scalar Coulomb potential is

a2 —12 S=é-myl2—ard (y+ 112 +iu) + wld + 72 (37)
Eo=m| 1+ 32
§ [ [n, - 1/2 +4(1 + eB)?2 - a?2 (32 and
This expression makes sense only whlereB>a?, a con- 5 | +eB+ 12 —ip' T(y+1/2-ip) grll-r+112
dition that forbids the existence of the0 energy levels at v=12+iu T(y+1/2+iw) '
B=0. Thus, the relativistic spectf27) and(32) lead one to (38)

conclude that the two-dimensional Dirac particle only con-
nects to the physically reasonable nonrelativistic Schrodinger The expression for the analytical continuation of E28)
limit for the electron energy. in the rangeE<m,
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oo | HeB+ 12+ @M T (y+ 12 =@EN) o pei P S [sin(weB)e‘i“’(S"”Z) L
y=1/2-(@E)/N T(y+1/2+(@E)/\) ’ ° V27rpi sin(¢/2) p
(39 = fas(@) + fa(@). (48)
has poles at the points wherg+1/2-(aE)/A=1-n, n From Eq.(49) it follows that these two amplitudes inter-

=1,2..., as well as at the poiny—1/2—(aE)/A\=-n=0. At  fere with each other in the scattering cross section:
these points the energy levels are discrete. Near the poles

ith iti t tai d
with n#0, it is easy to obtain do = [fo (@) = > .<rp]2 /z{sinz eB
4 (I + B+ R+ 1/2\° 4 TRSIT @
e2|¢$| ~ (_ 1)n+l —|71-('y—l/2). 2am am 2
F(n + 1)F(2’y+ n)mza(E - EO) + (—)sin WEBCOQSQD"‘ (P/Z + 7TeB) + (—) :| .
(40) p P

The residue of the function ef@i §) in its pole is related (49)

to the coefficient in the asymptotic expression of the waverrom Eq.(49) it is seen that the periodic dependence of the

function of the corresponding bound state as follows: interference term in the cross section differs for forwégd
p—"— =0) and backward ¢=1) scattering.
f=Ag™, g:\/m_l_Ef, (41)
V. RELATIVISTIC CLASSICAL ENERGY
where The classical motion of the electron in the Aharonov-
{ [m+E (Il +eB+ma + 1/2))\3}1/2 " Bohm and Lorentz three-vector Coulomb potentials is de-
= 2\r)rnThie, cribed by the Hamilton-Jacobi equation
Ao m-E 2nmal’'(n+ 1)I'(2y+n) (2Ar) serl y ! ' equatl
42 1(0S\*> (oS a\® 1[4S eB)\?
o (22
Let us consider the scattering problem for a combination ~ €°\ Jt a . r r“\de ¢
of the Aharonov-Bohm and Lorentz three-vector Coulomb (50

potentials. The total phase shifts according to &%) are
The classical trajectory of the electron in the pure Aharonov-

d=-myl2+mld+mll2+E-ard (y+1/2 +ip) Bohm potential is linear:
=g+ &, 43
A O 43 (= I min P Lc+eB
where Ccode-@)) ™ JE2-mRct
Oap =~ Y2+ ml4 + ml/2 (44 \yhereE is the electron energy ardis thez projection of the
and electron angular momentum and the scattering angle is zero:
— e i * dr
S=¢-ard (y+1/2 +iw) (45) 0:77_4 S (51)
are the phase shifts due to the effect of Aharonov-Bohm and fmin N L i = 111
Coulomb potentials, respectively. The solution of Eq(50) (i.e., the classical actions
The total scattering amplitude is
1 a\? L?
” S=-Et+Le+ | dry/=|E+~| == -m’c% (52
frof(@) ~ 2 [exp(2i 5y + 2 ) — 1] (46) ¢ r r

1=0
The classical trajectory of the electron, which is in the finite
and the difference in the square brackets we write in the formegion of thex,y plane forLc>a, E<mdis
[23]
u

. . _ : — —12~2 _ 72
exp2idag + 21 87) — 1L =[exp(2i6p) — 1] r V27— Py coslule — eqlLo— aE' u=Lc*-a%,
+ [exp(2i Spp) (EXP(2i &) - 1)]. (53)
(47)
. . ._and the action variables are
The Coulomb phases mainly contribute to the scattering
amplitude for largd, so their contribution can be calculated 1 (> 45
in the quasiclassical approximation. After simple calculations Jo= o— =L, (54)
and taking into account Eq12), we obtain 2w ) de
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1 (Tmax 1 22 L2 VI. DISCUSSION
J,=—f dr —(E+—> - — —méc?
) c r
min

r? It is shown that the gauge-invariatabservablg quanti-
| ties are the phases of electron wave functions or the energies
__w n akc (55) of bound states. In experiments the quantum wave associated
c  ymPct-E? with each electron in the entrance splits into two wave pack-
ets that go around the solenoid on different sides. The paths
Herer i, andr ., are the classical turning points. of these wave packets intersect in the exit to result in a
From Eq. (55), we easily find the electron energy ex- closed contour. So, though the Aharonov-Bohm potential sat-
pressed through, andJ,, isfies the equatiofV X A]=0 everywhere in the plane ex-
cept the pointx=y=0, the integral that gives the magnetic
22 -1/2 flux ® through a closed contou€ encircled by the wave
E= mc’-[l + : packets
[c +V(cI, +eB)?-a?]?

. . . : Ads=®

If we require the classical energy expression after the semi- %

classical quantization to reduce to E87), we must equate . . . . .

the right-hand side of Eq55) to 4n, and putL=#(1+1/2). is defined unamblgyousl){. It is curious that feB+0 the
The latter is necessary to obtain the correct value of th&lgctron wave function7) is exactly equal to zero at=y
semiclassical wave function phase for largsee Ref[18]). e
Therefore, the semiclassical quantization of the action vari-
ables in the form),=#n,, J,=#A(l1+1/2) results in the same

energy spectruni27) as obtained from the eigenvalue prob-  This work was partly supported by Russian Leading Sci-
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