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Exact analytic solutions are found to the Dirac equation in 2+1 dimensions for a combination of an
Aharonov-Bohm potential and the Lorentz three-vector and scalar Coulomb potentials. By means of the
solutions obtained the relativistic quantum Aharonov-Bohm effect is studied for the freesin the presence of a
Lorentz three-vector Coulomb potentiald and bound fermion states. We obtain the total scattering amplitude in
a combination of the Aharonov-Bohm and Lorentz three-vector Coulomb potentials as a sum of two scattering
amplitudes. This modifies the expression for the standard Aharonov-Bohm cross section due to the interference
of these two amplitudes with each other. We discuss that the observable quantities can be the phases of electron
wave functions or the energies of bound states.
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I. INTRODUCTION

The quantum Aharonov-BohmsABd effect, first predicted
by Aharonov and Bohmf1g, was analyzed in many physical
aspects in numerous worksssee Ref.f2gd. It occurs when an
electron travels in a certain configuration of a vector poten-
tial Am in which the corresponding magnetic flux is confined
to a finite-radius tube topologically equivalent to a cylinder.
In the case of a cylindrical external field configuration, where
a natural assumption is that the relevant quantum mechanical
system is invariant along the symmetryszd axis, the system
then becomes essentially two dimensional in thexy plane
f3g. When an electron travels in an Aharonov-Bohm potential
the electron wave function acquires astopologicald phase
which further influences the interference pattern. The
Aharonov-Bohm vector potential can produce observable ef-
fects because the relativesgauge invariantd phase of the elec-
tron wave function, correlated with a nonvanishing gauge
vector potential in the domain where the magnetic field van-
ishes, depends on the magnetic fluxf3g. In a definite sense
one can say that the Aharonov-Bohm effect is due to the
topological properties of a space of electron wave functions
in 2+1 dimensions in a topologically nontrivial background.
In f4,5g the contribution to the Aharonov-Bohm scattering
amplitude which can arise from the inclusion of the spin-
orbit interaction of the electron magnetic moment with the
electric field oriented along the solenoid axis was theoreti-
cally studied in the nonrelativistic approximation. This effect
has been recently confirmed in experimentf6g. We note that
this quantum system also has axial symmetry.

There are two more questions of how the effect of other
physical fields modifies the usual AB phenomenon as well as
of how the AB effect will manifest itself when an electron is
in the bound state. In order to approach the solution of these
problems the simplest physical models can be considered.
For the usual scattering of nonrelativistic particles one needs
to solve the Schrödinger equation in two spatial dimensions
but when the particle spin is included one is concerned with

the Dirac equation. As the relativistic AB effect seems to be
likely to occur in cylindrically symmetric potentials the
above problem can be considered by using the usual four-
component Dirac equation in the absence of a third spatial
coordinate. The latter equation can be easily written in terms
of the two-component Dirac equation. Thus, the above mod-
els can be reduced tos2+1d-dimensional ones.

The results of Ref.f1g modified by using the Dirac equa-
tion in 2+1 dimensions were applied to other problems. So-
lutions to the two-component Dirac equation in the
Aharonov-Bohm potential were first obtained and applied by
Alford and Wilczek in Ref.f7g to the study of the interaction
of cosmic strings with matter. The above solutions coincide
with solutions of the Dirac equation in 2+1 dimensions for a
massive neutral fermion with an anomalous magnetic mo-
ment in a planar field of a point electric charge placed at the
origin z=0 ssee, for example, Ref.f8gd. In the three-
dimensional space, this field corresponds to the electric field
of a thin thread that is perpendicular to the planez=0 and
carries an electric charge with constant linear density. Thus,
the solutions to the two-component Dirac equation in the
Aharonov-Bohm potential can directly be applied to the pla-
nar scattering of a massive neutral fermion with anomalous
magnetic moment interacting in the electric field of the thin
thread, which was first predicted by Aharonov and Casher in
Ref. f9g. The Aharonov-Casher effect is, however, different
in many ways from the AB effect. In particular, the
Aharonov-Casher effect is a phenomenon involving two spa-
tial dimensions in an essential wayf10g.

A permanent interest in this topic also is stimulated by the
studies ofs2+1d-dimensional models in both superconduc-
tivity f11g and particle theorysincluding the quantum Hall
effect f12g and degenerate planar semiconductors with low-
energy electron dynamicsf13gd in Refs.f7–18g.

The main purpose of the paper is to study the relativistic
quantum Aharonov-Bohm effect in the presence of other
physical fields. This study is possible only in 2+1 dimen-
sions. In 3+1 dimensions, analytic solutions even to the
Schrödinger equation in the Coulomb and Aharonov-Bohm
potentials still are not found.

This paper is organized as follows. In Sec. II we study the
electron states in the Aharonov-Bohm potential and briefly*Electronic address: khalilov@thc.phys.msu.su
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discuss the topological properties of a space of electron wave
functions in 2+1 dimensions. In Sec. III we find exact ana-
lytic solutions to the Dirac equation in 2+1 dimensions for a
combination of the Lorentz three-vector and scalar Coulomb
as well as Aharonov-Bohm potentials. In Sec. IV the relativ-
istic Aharonov-Bohm scattering in the presence of the Lor-
entz three-vector Coulomb potential is studied.

We use the units wherec="=1.

II. DIRAC ELECTRON IN AN AHARONOV-BOHM
POTENTIAL

The most general combination of external potentials in
which exact analytic solutions to the Dirac equation in 2+1
dimensions can be found in the form of special functions is
an Aharonov-Bohm potential

A0 = 0, Ax = −
By

r2 , Ay =
Bx

r2 , A0 = 0, Ar = 0,

Aw =
B

r
, B =

F

2p
, r = Îx2 + y2, w = arctansy/xd, s1d

and the Lorentz three-vectorfAmsrdg and scalarfUsrdg

A0srd = −
a

er
, Ar = 0, Aw = 0, Usrd = −

b

r
s2d

Coulomb potentials. Heree is the electrical charge of a fer-
mion. The interaction with a scalar field can be introduced in
theory by means of the replacementm→m+U, wherem is
the fermion mass.

In 2+1 dimensions, the Diracgm-matrix algebra is known
f16g to be represented in terms of the two-dimensional Pauli
matricess j. In addition, two kinds of fermions can be intro-
duced in accordance with the signature of the two-
dimensional Dirac matricesf16g

h =
i

2
Trsg0g1g2d = ± 1,

where the two signs ofh correspond to two nonequivalent
representations of the Dirac matrices. We choose

g0 = hs3, g1 = is1, g2 = is2. s3d

It will be noted that the model with charged fermions is
invariant under the charge conjugation operation and the
transformationm→−m, which is equivalent to the transfor-
mationgm→−gm or h→−h. Hence, we can fix the signs of
e andm.

First let us consider an electron of massm.0 and charge
e in the xy plane in potentials1d. In the three-dimensional
space this potential describes the magnetic field of an infi-
nitely thin solenoid creating a finite magnetic fluxF in thez
directionfthe magnetic fieldBz=Fdsr dg. The Dirac equation
in 2+1 dimensions in the potentialAm is

sgmP̂m − mdC = 0. s4d

Here P̂m=−i]m−eAm is the generalized electron momentum
operator. Note that the parameterh= ±1 in Eq. s4d can be

applied for spin “up” and spin “down,” respectivelyssee Ref.
f20gd.

We seek solutions of Eq.s4d in potentials1d in the form
f17g

Cst,xd =
1

Î2p
exps− iEt + ilwdcsr,wd, s5d

whereE is the electron energy,l is an integer, andcsr ,wd is
a two-component functionsi.e., a two-spinord

csr,wd = S fsrd
gsrdeiw D . s6d

The uppers“large”d and lowers“small”d components of
the two-spinor can be interpreted in the sense of positive-
and negative-energy solutions of the Dirac equation. It
should be noted that an electron in the two-dimensional
space corresponds to one in the three-dimensional space with
only one spin projection on thez axis f18g. The upper com-
ponent only remains in the nonrelativistic approximation
ssee, for example,f19gd. Therefore, there is a conventional
relationship to the corresponding nonrelativistic Schrödinger
limit.

The electron wave function in potentials1d slimited asr
=0d has the form

Cpsr,wd = e−iEt+ilwÎpp

2E
S ÎE + hmJunusprd

− iÎE − hmeiwJun+1usprd
D .

s7d

Herep=ÎE2−m2, andJnsprd is the Bessel function of order

n = ul + eBu.

In order that the irregularfNeumann functionNunusprdg solu-
tion can be eliminated we need to allot it on the “back-
ground” of the regular solutionJunusprd as r →0 which leads
to the conditionul +eBu.0.

The wave functions are normalized by the condition

E cp,l,h
* cp8,l8,hd2x = 2pdl,l8dsp − p8d. s8d

As B=0 one recover the free electron solutions in 2+1 di-
mensions from Eq.s7d.

Whenn is an integer, for example,l +s, the magnetic field
flux is quanitized as

F = 2p"cs/e; F0s,

whereF0 is the elementary magnetic flux, andeB=s.
One can define the scattering amplitude in a conventional

manner. We assume that the incident electron wave is from
the left and the wave function is normalized in the standard
manner, i.e., the upper component of the incident wave is
c=eipx. In fact, the electron wave function in potentials1d
must have the asymptotic form
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cpsr,wd = S 1

− ip/sE + hmd
Deipx+ieBw + S 1

ip/sE + hmd
D fswd

Îr
eipr

s9d

as r →`. Here fswd is the scattering amplitude.
Writing csr ,wd in the form

csr,wd = o
l=−`

`

AlJunusprdeilw, s10d

it is easy to show that

Al = e−isp/2dul+eBu. s11d

The scattering amplitude is proportional toSl −1;e2idl −1,
where dl =sn− ldp=eBp;eF /2"c are the partial phase
shifts. They depend upon only the total magnetic fluxF.

The coefficient before the termeipr /Îr is the standard
Aharonov-Bohm amplitude for the scattering of nonrelativ-
istic particles,

fAswd =
1

Î2ppi

e−iwss−1/2dsinseF/2d
sinsw/2d

. s12d

Here eF=2ps+2pD, −1/2øDø1/2. First, the amplitude
s12d was calculated in Ref.f7g. Thus, the scattering ampli-
tude is unaffected by the spin.

One can define the so-called “topological” current

Jm = c*emnrf− ixn]r + e]nArgc = − ic*emnrxn]rc + jm,

s13d

where]m;] /]xm, andc is the free electron wave function
sat B=0d. The currentsJm and jm satisfy the continuity equa-
tion ]mJm=]m jm=0 and, therefore,

Q =
1

2p
E J0dr =E c*S− i

]

]w
+ 2peBdsr dDc dr , s14d

and

q =
1

2p
E j0dr = eBE c*dsr dc dr =

eB

"c
=

F

F0

= F F

F0
G + S F

F0
D

d
s15d

swherefF /F0g is the integer part ofF /F0d are conserved.
The quantityfF /F0g is the “topological number,” and the
quantityq−fF /F0g can be called the “topological defect.”

Note that the topological quantities introduced here char-
acterize such properties of the Dirac equation solutions in
2+1 dimensions in a topologically nontrivial background as
the limit, the continuity, and the uniqueness, in contrast to
the usual topological numbers which are determined by the
boundary conditions for the corresponding solutions at infin-
ity. The latter is conserved due to the finiteness of energy. In
our case the “topological defect” is of importance. It charac-
terizes the branching of solutions at the pointx,y=0.

III. DIRAC FERMION IN A COMBINATION OF
COULOMB AND AHARONOV-BOHM POTENTIALS

Let us find the exact solutions of Dirac equations4d in
potentialss1d and s2d. After simple standard rearrangement,
we obtain for the functionsfsrd andgsrd

df

dr
−

l + eB

r
f + SE + m+

a − b

r
Dg = 0,

dg

dr
+

1 + l + eB

r
g − SE − m+

a + b

r
D f = 0. s16d

Here and below we puth=1. The functionsfsrd andgsrd are
normalized

E
0

`

suf2u + ug2uddr = 1. s17d

Further, following Ref.f21g for the functions fsrd and
gsrd, we obtain

fsrd = Îm+ Ee−r/2rg−1sQ1 + Q2d,

gsrd = − Îm− Ee−r/2rg−1sQ1 − Q2d, s18d

where

r = 2lr, l = Îm2 − E2, s19d

g is determined by

g =
1

2
±ÎSl + eB+

1

2
D2

− a2 + b2, s20d

and the solutionssfinite atr=0d are expressed in terms of the
confluent hypergeometric functionFsb,c;zd:

Q1 = AFSg −
1

2
−

aE− mb

l
,2g;rD ,

Q2 = CFSg +
1

2
−

aE− mb

l
,2g;rD . s21d

The constantsA andC are related by

C =
g − 1/2 −sEa− mbd/l

l + eB+ 1/2 +sma− bEd/l
A. s22d

As a2. sl +eB+1/2d2+b2 the quantityg is real, and must
be chosen positive. Ifa2. sl +eB+1/2d2+b2 then two roots
of g are imaginary and the corresponding wave functions
oscillate asr →0, which means the occurrence of Klein’s
paradoxf22g.

In order to normalizeQ1 and Q2 they must reduce to
polynomials. ForFsb,c;zd it means that the parameterb
must be equal to a negative integer or zero; therefore

g −
1

2
−

Ea− mb

l
= − nr,

Ea− mb

l
= nr + g −

1

2
; n.

s23d

It is easy to show that the admitted values of the quantum
numbernr are 0,1,2,… for l +eB+1/2.0 and 1,2,3,…
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for l +eB+1/2,0, and the discrete fermion energy levels are
given by

En = − mF ab

sn + gd2 + b2

+ÎS ab

sn + gd2 + b2D2

+
sn + gd2 − a2

sn + gd2 + b2G . s24d

If the scalar Coulomb potential is absent, then

Q1 = AFSg −
1

2
−

aE

l
,2g;rD ,

Q2 = CFSg +
1

2
−

aE

l
,2g;rD , s25d

with

C =
g − 1/2 −Ea/l

l + eB+ 1/2 +ma/l
A s26d

and

En = mF1 +
a2

fnr + Îsl + eB+ 1/2d2 − a2g2G−1/2

. s27d

In the nonrelativistic Schrödinger limit, the expression for
the energy spectrum becomes

Enon= −
a2

2snr + ul + eB+ 1/2ud2 . s28d

We see that the quantityeB in Eq. s28d has a full analogy
with the Rydberg correction.

If the vector Coulomb potential is absent, then

En = mÎn2 − b2

n2 , n = nr + Îsl + eB+ 1/2d2 + b2.

s29d

The lowest energy level is

E0 = m
ul + eB+ 1/2u

Îsl + eB+ 1/2d2 + b2
, s30d

so thatE0→0 for b→`.
Note that the solutions of the Klein-Gordon equation con-

tain the parameter

gs = Îsl + eBd2 − a2 + b2; s31d

therefore the energy spectrum, for example, in the absence of
the scalar Coulomb potential is

En
s = mF1 +

a2

fnr − 1/2 +Îsl + eBd2 − a2g2G−1/2

. s32d

This expression makes sense only whenul +eBu.a2, a con-
dition that forbids the existence of thel =0 energy levels at
B=0. Thus, the relativistic spectras27d and s32d lead one to
conclude that the two-dimensional Dirac particle only con-
nects to the physically reasonable nonrelativistic Schrödinger
limit for the electron energy.

It is seen from Eq.s27d that the Aharonov-Bohm potential
must influence the radiation spectrum of the electron.

IV. RELATIVISTIC AHARONOV-BOHM SCATTERING IN
THE PRESENCE OF A LORENTZ THREE-VECTOR

COULOMB POTENTIAL

As long as the scalar interaction is not actual for the AB
scattering we shall putb=0 below. The wave functions of the
continuous spectrumsE.md can be obtained from Eq.s25d
by means of the following replacements:

Îm− E → − iÎE − m, l → − ip,

− nr ; − n → g − 1/2 − iaE/p. s33d

These functions should also be normalized anew. Using
Eq. s33d, let us represent the functionsf andg in the form

S f

g
D = SÎE + m

ÎE − m
DA8eiprs2prdg−1feijFsg − 1/2 − im,2g,

− 2iprd

7 e−ijFsg + 1/2 − im,2g,− 2iprdg, s34d

whereA8 is the normalization constant and

m =
aE

p
, e−2ij =

g − 1/2 + im

l + eB+ 1/2 − im8
, m8 =

ma

p
; m

m

E
.

We note that the quantityj is real.
After simple transformations given for the three-

dimensional case in Ref.f21g, we obtain

S f

g
D =ÎE ± m

Ep

s2prdg

r

uGsg + 1/2 + imdu
Gs2gd

epm/2

3 e−ifp/2−g+1/2+m ln 2pr−argGsg+1/2+imdg

3SIm

Re
Dfeispr+jdFsg − 1/2 − im,2g,− 2iprdg.

s35d

HereGszd is theG function.
Asymptotically, the wave function has the form

S f

g
D =Î2sE ± md

Er
Ssin

cos
Dspr + dl + m ln 2pr − pl/2d,

s36d

where

dl = j − pg/2 − argGsg + 1/2 + imd + p/4 + pl/2 s37d

and

e2idl =
l + eB+ 1/2 − im8

g − 1/2 + im

Gsg + 1/2 − imd
Gsg + 1/2 + imd

eipsl−g+1/2d.

s38d

The expression for the analytical continuation of Eq.s38d
in the rangeE,m,
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e2idl =
l + eB+ 1/2 +samd/l

g − 1/2 −saEd/l
G„g + 1/2 −saEd/l…
G„g + 1/2 +saEd/l…

eipsl−g+1/2d,

s39d

has poles at the points whereg+1/2−saEd /l=1−n, n
=1,2…, as well as at the pointg−1/2−saEd /l=−n=0. At
these points the energy levels are discrete. Near the poles
with nÞ0, it is easy to obtain

e2idl < s− 1dn+l sl + eB+ R+ 1/2dl3

Gsn + 1dGs2g + ndm2asE − E0d
e−ipsg−1/2d.

s40d

The residue of the function exps2idld in its pole is related
to the coefficient in the asymptotic expression of the wave
function of the corresponding bound state as follows:

f < A0e
−lr, g =Îm− E

m+ E
f , s41d

where

A0 = FÎm+ E

m− E

sl + eB+ ma/l + 1/2dl3

2m2aGsn + 1dGs2g + ndG1/2

s2lrdg+n−1/2.

s42d

Let us consider the scattering problem for a combination
of the Aharonov-Bohm and Lorentz three-vector Coulomb
potentials. The total phase shifts according to Eq.s36d are

dl = − pg/2 + p/4 + pl/2 + j − argGsg + 1/2 + imd

; dAB + dl
a, s43d

where

dAB = − pg/2 + p/4 + pl/2 s44d

and

dl
a = j − argGsg + 1/2 + imd s45d

are the phase shifts due to the effect of Aharonov-Bohm and
Coulomb potentials, respectively.

The total scattering amplitude is

f totswd , o
l=0

`

fexps2idA + 2idl
ad − 1g s46d

and the difference in the square brackets we write in the form
f23g

exps2idAB + 2idl
ad − 1 = fexps2idAd − 1g

+ fexps2idABdsexps2idl
ad − 1dg.

s47d

The Coulomb phases mainly contribute to the scattering
amplitude for largel, so their contribution can be calculated
in the quasiclassical approximation. After simple calculations
and taking into account Eq.s12d, we obtain

f totswd =
1

Î2ppi

1

sinsw/2dFsinspeBde−iwss−1/2d +
am

p
eipeBG

; fABswd + faswd. s48d

From Eq.s48d it follows that these two amplitudes inter-
fere with each other in the scattering cross section:

ds = uf totswdu2dw =
dw

2pp sin2 w/2
Fsin2 peB

+ S2am

p
DsinpeBcosssw + w/2 + peBd + Sam

p
D2G .

s49d

From Eq.s49d it is seen that the periodic dependence of the
interference term in the cross section differs for forwardsw
=0d and backwardsw=pd scattering.

V. RELATIVISTIC CLASSICAL ENERGY

The classical motion of the electron in the Aharonov-
Bohm and Lorentz three-vector Coulomb potentials is de-
scribed by the Hamilton-Jacobi equation

1

c2S ]S

]t
D2

− S ]S

]r
+

a

r
D2

−
1

r2S ]S

]w
+

eB

c
D2

− m2c2 = 0.

s50d

The classical trajectory of the electron in the pure Aharonov-
Bohm potential is linear:

r =
rmin

cossw − w0d
, rmin =

Lc + eB
ÎE2 − m2c4

,

whereE is the electron energy andL is thez projection of the
electron angular momentum and the scattering angle is zero:

u = p − 2E
rmin

` dr

r2Î1/rmin
2 − 1/r2

= 0. s51d

The solution of Eq.s50d si.e., the classical actiond is

S= − Et + Lw +E drÎ1

c
SE +

a

r
D2

−
L2

r2 − m2c2. s52d

The classical trajectory of the electron, which is in the finite
region of thex,y plane forLc.a, E,mc2 is

r =
u

cÎL2E2 − m2c2u cosÎusw − w0d/Lc − aE
, u = L2c2 − a2,

s53d

and the action variables are

Jw =
1

2p
E

0

2p

dw
]S

]w
= L, s54d
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Jr =
1

p
E

rmin

rmax

drÎ1

c
SE +

a

r
D2

−
L2

r2 − m2c2

= −
Îu

c
+

aEc
Îm2c4 − E2

. s55d

Here rmin and rmax are the classical turning points.
From Eq. s55d, we easily find the electron energy ex-

pressed throughJr andJw,

E = mc2F1 +
a2

fcJr + ÎscJw + eBd2 − a2g2G−1/2

.

If we require the classical energy expression after the semi-
classical quantization to reduce to Eq.s27d, we must equate
the right-hand side of Eq.s55d to "nr and putL="sl +1/2d.
The latter is necessary to obtain the correct value of the
semiclassical wave function phase for larger ssee Ref.f18gd.
Therefore, the semiclassical quantization of the action vari-
ables in the formJr ="nr, Jw="sl +1/2d results in the same
energy spectrums27d as obtained from the eigenvalue prob-
lem.

VI. DISCUSSION

It is shown that the gauge-invariantsobservabled quanti-
ties are the phases of electron wave functions or the energies
of bound states. In experiments the quantum wave associated
with each electron in the entrance splits into two wave pack-
ets that go around the solenoid on different sides. The paths
of these wave packets intersect in the exit to result in a
closed contour. So, though the Aharonov-Bohm potential sat-
isfies the equationf=3Ag=0 everywhere in the plane ex-
cept the pointx=y=0, the integral that gives the magnetic
flux F through a closed contourC encircled by the wave
packets

R A ds= F

is defined unambiguously. It is curious that foreBÞ0 the
electron wave functions7d is exactly equal to zero atx=y
=0.
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