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Semiclassical Husimi functions for spin systems
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We derive a semiclassical approximation to the Husimi functions of stationary states of spin systems. We
rederive the Bohr-Sommerfeld quantization for spin by locating the poles of the corresponding local Green
function. The residues correspond to the Husimi functions, which are seen to agree very well with exact
calculations.
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Rigorous derivation of semiclassical approximations in t
phase space via path integr@ld for systems with one de- O =S+Tgk= 3+f A(t')dt’. 2
gree of freedom has recently received considerable attention, 0
for both continuous variables and spin systems. Baraager T
al. [2], for example, have discussed the canonical coherent
state path integral and its semiclassical approximation in " .
some detall,'lncludmg an |n|t|al—valu_e rep_resentatlon and the Szf {ihjg _ H(z,ﬂ]dt’ +B, 3)
Green function. The study of semiclassical propagation of 0 1+zz
wave packets, using compl¢f] or nearly real4] trajecto-
ries, for regular and chaot{&] systems, has developed con- where the integral is done along the classical trajectory de-
siderably over the last few years. The spin path integral antermined by the Hamilton equations of motion
its semiclassical approximation have found important appli-
cations in the study of spin tunneling and topological effects = 1 o4 . 1 4H
[6]. Stoneet al. have derived the spin coherent state semi- hz= 9(z2) iz’ hz= 9z2) iz’
classical propagator in detdil], paying particular attention
to the so-called Solari-Kochetd®8] correction. This correc- and the classical HamiltoniaH(z,z) is the average value of
tion is related to the difference between the average value gf,e quantum Hamiltoniari-,l(z,?):<z|I:||z>/<z|z). This action

the Hamiltonian in coherent states and its Weyl syn{i8g| obeys the Hamilton-Jacobi relations
and has a counterpart in the canonical d&3e

To obtain semiclassical approximations for the energy ; ;g 2jz(t) i 9S  2jz(0) 9S
levels E, and stationary statesx|n)=4,(x) of one- -——==——, T—=———, —=-
dimensional bound systems, on the other hand, one normally hozg 1+zz2(t) hoz 1+20z it
resorts to the usual Bohr-SommerféBlS) and WKB theo- 5
ries [10]. A coherent state version of these theories, which . _ o o ] ]
works in phase space, is also availai#and produces a BS T_he functiong(z,z), which is unity in the canonical case, is
formula and a semiclassical approximation to the Husimidiven by
functions H,(2)=|(z|n)|?>. Recently, Garg and Stonfl1]
have derived a semiclassi¢&®S-like) quantization condition 9(z2) = _ 2 _
for spin systems, including the first quantum correctisee dzdz (1+22°
also[12]). By taking the trace of the semiclassical Green o, — .
function, they obtained the energy levels as the locations of Note thatB___'hJ In{[1+zfz(t)][1+ZO)zi]}_|s a bgl_mdary
its poles. In the present work we have obtained the semicla%erm that takes into account the fact that in general not

sical Husimi functions for spin systems. he complex conjugate af (the discrete-time formulation of
The non-normalized spin coherent states are defined b

he path integral indicates that the variabfesndz must be
|2y =exgzd.}|j,-j), and the semiclassical approximation to

he classical spin action is given by

(4)

(6)

In{z|z) =

onsidered as independent, so we denote the actual complex
conjugate o by Z'). That means that if one defines the usual

the propagatoK =(z|e |z is [7] canonical(g, p) variables according to
gl 2 )1/2 |
Keel(Zr,2,0) = ——— — | exp) =P, 1 i z —i
sci(Z,Zi,1) <ﬁ 2 9702 P (1) z__qg+ip z _q-ip @

_ _ _ V1+2z 4hj' \1+zz Vahj'
where the phase is the classical action plus an extra term
known as the Solari-KochetdBK) correction: thenqg andp will in general be complex numbers.
The semiclassical limit for spin systems consists in letting
f—0 andj— o, but keepingfj=1. If the Hamiltonian is
*Electronic address: mnovaes@ifi.unicamp.br O(#j), thenSis O(%j), but the SK correction
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g 1 9H 9 1 IH ) ' ' '

A= —- L -— 8 0.20- -~ s
97 4g (Z,_Zj 9z 9z 4g(z,§5 97 ( ) f j=10 semiclassical
is O(%), and therefore can be considered small. Note that 0.154
sincez# Z the HamiltonianH(z,2), the action, and the SK  —~
correction can all be complex. =
The semiclassical Green function :E 0.10
1(” )
Gscl(zi E) = Efo Kscl(z_iz’t)elEt/ﬁdt (9) 0.05-

can be calculated by making a stationary exponent approxi:
mation to the integral. Note that we are interested only inits ~ 0.00
diagonal elements. This implieg=z, z;=2', but in general

z(t) #z andz(0) # Z, so that we do not have a real periodic

orbit (by real orbit we mean one in whigpandp are real. 0.06 r
The stationary time, is determined by the condition
d(d + Et ) Jd7
de+EY) _ IS | +E=0. (10
dt tO (?t tO (?t tO ey 0.04 -

. . . . ., N
As usual in semiclassical calculations, we do not consider—
derivatives ofA, because including such terms would be in-
consistent with the Gaussian approximation involved in the

s . 0.02 .
derivation of Eq.(1). Therefore Eq(10) can be also written
as
E - g(z!to) + A(tho) = O! (11)
000 —————— <717
where 0.0 0.5 1.0 1.5 2.0 25 3.0
2
JS Iz|
g(za tO) =T (12)
Ity FIG. 1. Exact and semiclassical Husimi distributions for the

. . . simple HamiltoniarH = whJ,.
is the energy of the classical trajectory, not to be confused

with E, the argument of the Green function. In order to pro-.

ceed with the integration, we need to expand the exponent {fs trace under another stgtionary phase approxi_ma_tion,
second order in time. We define which leads toz(t)=z, z(0)=Z", and thus to real periodic

orbits. We take a different route, which will allow us to ob-
192_3 tain not only the energy levels but also the Husimi distribu-
It? tions. Even though the classical orbits involved in the calcu-
lation of Egs.(1) and (9) are complex, we argue that the
and neglect the second derivativelgf, in order to obtain largest contributions to the functidd(z,E) (and not only to
1( Bt 25 \Ll2 i its trace must come from the vicinity of the real periodic
G(zE) = ,—(— ) exp) -o(, (14 orbit throughz, and its repetitions. The accuracy of the final
i results supports this idea.
Let us denote the period of the orbit throughy T(z) and

= a(z,tp), (13)

to

aj 4z 9z o

where . .
expand the stationary timtg as
¢ =Sty + Zsk(to) + Eto. (15)
, . - to=nT+T, (18
We can find a more convenient way of expressinigy order
to transform the prefactor. The forfsee[2]) wheren counts the repetitions of the real periodic orbit and
. 2 Ty, assumed small, has to be determined. Expanding the sta-
a=—-7— (16) tionary exponent conditiofiL0) we find
Jd Zs d Z
E-E+A
leads to To=——w (19
o
1 ,n.eiB/ﬁj 1/2 i
G(zE)=—| —— exp T e(- (17 where
if 77 h
|
e : IE #S
Even with this simplification it is hard to find the poles of "= a(zn)=-—| = — (20)
G(z,E). Garg and Stongl1] have done this by calculating I ar I |n7
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SEMICLASSICAL HUSIMI FUNCTIONS FOR SPIN SYSTEMS

FIG. 2. Exact(top) and semiclassicdbottom) Husimi distribu-
tions for the 200th state of the LMG model, witk200, =1, and
fAa=1000.

Now we must expang to second order iff,. Note that
S(nT)=nS-nET+B(NT), where

- (Tz-=z
S=ihj —dt.
o 1+zz

(21)

Note also thatZg(nT)=nZg(T). It can also be showp2]
that

1 1 d’s

= . 22
" ihgz D2 " de? 22
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FIG. 3. Exact(top) and semiclassicdbotton) Husimi distribu-
tions for the 270th state of the LMG model. The parameters are the
same as in the previous figure.

$=N ot sk de* " de" " 242"
1 X
- — — + B(nT). 24
9(z,2) 2i%|2? ("D 249

We recognize inside the brackets the expression for the
expansion ofS(E+A) around&. SinceA~ O(%) we further
expand

After n repetitions of a periodic orbit the prefactor acquires a

phase of(—1)". Therefore, the result of this expansion is

(n)
¢ =N[S—ET+ET+ g~ mh]+B(NT) - £To+ %Tﬁ
+ETy+AT,. (23

If we add and subtraat AT, definex=E-£+A, and useT
=dS/d€ together with Eq(22) we obtain

S(E+A) =S(E) + dfSA 25
(E+A) =S(E) i€ (25
and we end up with
= MS(E) + ToE) = h] - —= 4 (T
° 9(2.2) 2ih|7? '
(26)

Summing ovem we obtain
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rj+m

(2))!
(G+m ! (j—m! L+’

v:r(l +|Z|2)2j+1 g[S+ Ty mhili
|ﬁ] |Z| 1- ei[S+I5K—7TfL]/ﬁ

o 1 (E-E+A)? 7
e - 1]
P9z 287

where we have useB(nT)=-2i%j In(1+|z7). The poles of

this function are determined by the condition
(S+Zsw(En) =(2n+ )7k,

HE(r) = (31)

G(z,E) =

quite well for large values of, as we can see in Fig. 1.

Now let us turn our attention to a less trivial system. In
[11] the authors have shown that the semiclassical quantiza-
tion condition(28) works very well for the Lipkin-Meshkov-
Glick (LMG) model

(28)

which is exactly the Bohr-Sommerfeld quantization rule ob-

tained recently inf11]. The residues at each pole give the already at moderate values pfWe now consider the accu-
Husimi functions racy of the semiclassical approximati¢29) for its station-

ary states. For small values afthe results are very similar
to the previous case, so we consider ojiy200, w=1, and
j |Z| [T(En) + (dISK/d5)|En] ha:1000_. In order to_displ_ay the results, we use the canoni-
) cal coordinatesq, p) given in Eq.(7), in terms of which the
X expl — 1 [E -2 +A@D)] (29) phase space is compagqt+ p?< 4#j. We show the exact and
9(z.2) 2h?|Z? ' the semiclassicaihormalized Husimi functions for two dif-
ferent states in Figs. 2 and 3. The agreement is excellent.
Here we have multiplied by the coherent states normalization Summarizing, we have obtained a semiclassical approxi-
factor (1+/z*)73. These functions are our main result. They mation for the phase-space representation of stationary states
are in general not normalized, and have a strong resemblanegg spin systems. This was done by investigating the semiclas-
with the canonical semiclassical Husimi functions presente@ica| Green function in the V|C|n|ty of real periodic trajecto-
in [2]. ries. The accuracy of the result was verified by comparing it

AS_ a first exgmple, we caIcuIaFe the Hu§|m| function Torwith exact calculations for the simple cal%lecﬁwJZ and for
the simple caséi=fiwJ,. The Hamilton equations can easily the Lipkin-Meshkov-Glick model. Husimi functions are

H=fod,+ ahi - 2] (32)

Va1 +|7? 1
Hn(z) =

be solved and give(t)=e7“'z andz(t)=€“ Tz, which im-

plies |7 =w|z. The SK correction is also very simple, with

A(z)=hw/2 anddZg/dE=0. The final result is

j(1- 2
H(r) = 1,1eXp<— [jA-n+@1 + rNm+1/2)] )
2j\ 7 Ajr

(30)

wherem goes from + to j andr=|z]2. When properly nor-
malized, this approximates the exact distribution

known to be good tools to study quantum chgbg|, and an
extension of this theory to more degrees of freedom would
be interesting in order to approach chaotic systémgace
formula for chaotic spin systems was recently obtaiftet]

but, as already noted, taking the trace obliterates the infor-
mation about the residugsWork in this direction is in
progress.
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