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Stabilizing quantum metastable states in a time-periodic potential
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Metastability of a particle trapped in a well with a time-periodically oscillating barrier is studied in the
Floquet formalism. It is shown that the oscillating barrier causes the system to decay faster in general.
However, avoided crossings of metastable states can occur with the less stable states crossing over to the more
stable ones. If in the static well there exists a bound state, then it is possible to stabilize a metastable state by
adiabatically increasing the oscillating frequency of the barrier so that the unstable state will eventually cross
over to the stable bound state. It is also found that increasing the amplitude of the oscillating field may change
a direct crossing of states into an avoided one.
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I. INTRODUCTION by the weak oscillatory force. The potential considered by

Ever since the advent of quantum mechanics, quanturﬁiSher has a number of oscillatorlike levels near its mini-
tunneling has been an important and fascinating subject. Thi2UM- The opposite situation where only two levels are
phenomenon arises frequently in physics. In fact, one of th@r€Sent was considered by Sokolovgkl], who studied the
first successful applications of quantum mechanics has bedfect of a small ac field mixing two levels in the well on the
the explanation of ther decay of atoms as a quantum tun- (Unneling rate in a semiclassical framework.
neling procesgl]. Recent examples include tunneling phe- The results in9,11) are quite gene_ral for a class_of weak
nomena in semiconductors and supercondud®fsin Jo- oscnl_at_qr_y forces. However, it is desirable to Con5|der_0ther
sephson junction systemsg3], resonant tunneling in possibilities, e.g., exact solutions and/or nonperturbative re-

heterojunction nanostructur@4], tunneling ionization of at- sults. In this respect, we had considered previo§sj an
) ) 4], wnneling %7 exactly solvable quantum metastable system with a moving
oms|[5], photon-assisted tunneling in superconducting junc

. . . ‘potential which has height and width scaled in a specific way
tions and semiconductor superlattifég, etc. introduced by Berry and Kleifi13]. We found that in this

In cosmology, quantum metastable states play an essentiglodel a small but finite nondecay probability could persist at
role in some versions of the inflationary models of the early|arge time limit for an expanding potential.
universe{7]. In these models inflation of the early universeis  |n this paper we consider another simple driven quantum
governed by a Higgs field trapped in a metastable state. Inmetastable model in which a particle is trapped in a well with
flation ends when the metastable state decays to the trugperiodically driven rectangular barrier. In order to do away
ground state of the universe. During inflation the universewith any restriction of amplitude or frequency of the driving
expands exponentially. It is thus obvious that the metastablorce, and of the number of states in the potential, we treat
state of the Higgs field is trapped in a rapidly varying poten-the problem in the framework of the Floquet formalism
tial. The problem is therefore a truly time-dependent one[14-17. An exact expression determining the Floquet
Unfortunately, owing to the inherent difficulties of the prob- quasienergies of stable or metastable states in the well is
lem, more often than not one has to consider the decay of th@erived. From the solution of this equation we find that while
Higgs field in a quasistationary approximation, in which thethe oscillating barrier makes the system decay faster in gen-
decay is studied assuming a static potenil Surely this eral, there is the possibility that avoided crossings of meta-
approximation is hard to justify, but for the present one hasstable states can occur with the less stable states crossing
to be content with it. Ultimately one hopes to be able toover to the more stable ones.
tackle the nonstationary case. To this end, it is desirable to That an oscillating potential can affect the tunneling prop-
gain some insights first by studying metastability in time-erty of a system has also been noticed before, e.g., in quan-
dependent potential in simple quantum-mechanical modelstum transport procedd6-19. In [17,1§ it was found that a

An early attempt at studying the effects of time-varying particle can be localized in one side of a time-dependent
forces on quantum metastability appears in Fisher’'s worklouble well if the amplitude and the frequency of the oscil-
[9], which was motivated by an experiment on quantum tundating field were chosen properly. [46] it was demonstrated
neling of the phase in a current-biased Josephson junctioifiat a propagating particle at appropriate incident energy can
with a weak microwave perturbatiofil0]. In this work be trapped into a bound state by an oscillating square well.
Fisher considered the general problem of quantum tunnelingur example shows how a time-periodic field can modify the
in a metastable well with a weak oscillatory force. There hemetastability of a decaying state.
reformulated the standard WKBJ approach to quantum decay
in order to include a weak time-dependent perturbation. For Il. THE MODEL
a class of metastable potentials which interpolates between The model we consider consists of a particle of mass
the cubic potential and a truncated harmonic-oscillator potrapped in a square well with a harmonically oscillating bar-
tential, he showed that the decay rate is generally enhanceter,
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o0, Xx<0,
B 0, 0sx<a,
Vi = Vo+V,codwt), a<x<bh, @
Vo, x> b.

Here V,, Vi, V; and w are positive parameters, with
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for brevity. It should be noted that the Floquet energy is
determined only moduldw. For if {¢,®,} is a solution of
the  Schrodinger equation, then{e'=g+nfiw,d,
=d, explinwt)} is also a solution for any integer But they
are physically equivalent as the total wave functibpis the
same[15]. All physically inequivalent states can be charac-

< Vg andV; < V,y-V}. According to the Floquet theorem, the terized by their reduced Floguet energies in a zone with a

V. (x,t)=e*"" D _(x,1), whered (x,t) is a periodic function

with the periodT=27/w, i.e., ®.(X,t+T)=d(x,t), ande is

first Floquet zone, i.es €[0,Aw).
Following the procedures described [i6] (see also

the Floquet quasienergy, which we will call Floquet energy[19]), we get the wave function as follows:

r o]

W(x,t) = e_iSt/ﬁ(DS(X,t) = g ist/hi(

k n=-—%

where

ko= V2m(e + nhw)/f,

—_—
q=V2m\Vy - ¢ - lhw)lf, ©)

K. =2m(e + nfiw — V),

and J, is the Bessel function. In the regiot>b, we have

adopted Gamow’s outgoing boundary condition, namely,

there is no particle approaching the barrier from the right

Matching the wave function and its first derivative at the
boundariex=a andx=Db, we obtain the relations among the

coefficientsA,, a,, b, andt,:
A sink,a) = > (92 + bie ), (),
|
ke COSkya) = 2, 092 ~ be )3, (a),
|
(4)

t.gkb = (a,e9P + be P)J, (@),
|

ikt €5 = > (2 - be i), (a),
|

where a=V;/Aiw. The Floquet energy is determined from
these relations by demanding nontrivial solutions of the co-

> A, sin(kx)e et 0<x<a,

n=-—c

> D (e +be ) (Vi/hw)e ™™, asx=<b, 2
n=—o |=—w

> tneikgxe—inwt' x> b,

The numberN is determined by the frequency and the
strength of the oscillation a¥>V;/fw [16].

We proceed to determine the Floquet energy as follows.
We first separate the boundary conditions for the central
band(n=0) from those for the subbands+ 0) in Eq. (4).
From the boundary conditions for the subbaids 0), one
can relate the coefficienty and b, (I #0) with the coeffi-
cientsay andb, through the following two relations:

&y = fla(Ko,Kg, 0, V)ag + fip (Ko, ko, @,V1)bg, (5

by = Gia(Ko, Ko, @, V1)ag + gip (Ko, Ko, ©, V1) bg, (6)

wheref’s andg’s are functions determined as follows. Elimi-

nating theA,'s andt,’s in Eq. (4), we can obtain

AL € g, + A e N Joby, + > AL €78, 8
1#n,0

+ 2 AyE R b= - AL g™ a0 — Ay e by
1#n,0

(7)
and

B;,neqnb‘loan + B;,ne_qnb‘JObn + 2 B;,qulb‘]n—lal
1#n,0

+ 2 B e, b = - By (e%0°J a0 — Bj €™ by,
1#n,0

efficients. In practice, however, we must truncate the above (8)
equations to a finite number of terms, or sidebands as they

are usually called in the literature, e.qu=0,£1, ..., .

with
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q q energye [cf. Eq. (3)]. If the solutionse of Eq. (11) are
A, = coskazt . Sinksa, By =1t Ik_' (9 complex(rea) numbers, the corresponding Floguet states are
" n metastable(stable states. The nondecay probabili(t),

Equationg7) and(8) allow us to solve foigy andb, in terms  which is the probability of the particle still being trapped by
of ay andby in the forms of Eqs(5) and(6) by means of the the potential barrier at time>0, is given by

Cramer’s rule in matrix algebra. As mentioned before, in
practice a truncated version of Eqg,) and (8) has to be

used.
Using Eqgs.(5) and(6) we can rewrite the boundary con- P(t) = = g? Imelth
ditions for the central band=0 as f |W(x,0)|2dx J |, (x,0)|%dx
0
; - I, doa. I —0ody
A sin(koa) = F1(kg, Kg; @, V1)€%%g + F, (Ko, Ko w, V)€ %%y, _ & o), 12
koAg coKoa) = F3(ko, kg; , V1) goe™ag with P(0)=1. The imaginary part of the Floquet energy,

— Falko,k): ,V;)goe %%y, which entersP(t) via the factor exf®2 Im(e)t/4], gives a

(10) measure of the stability of the system. Unlike the static case,
however, herd?(t) is not a monotonic function of time, ow-

ikob — ’. dob ’. ~0ob
to€™0” = Fs(ko, ko @, V1) €180 + Fe(Ko, ko o0, V1) €07y, ing to the time-dependent functidiit) after the exponential
_ » factor in Eq.(12). But sinceh(t) is only a periodic function
ikgtoe™o® = F(ko, ko; w, Vi) doe™Pay oscillating between two values which are of order one, the
-F -+ 0,V;) o0& %P, essential behavior d®(t) at large times is still mainly gov-
8(Ko, ko; @, V1) g 0 erned by the exponential factor. Hence, as a useful measure
where the coefficientE,(ky; w,V,) (i=1,...,8 are of the nondecay rate of the particle in the well, we propose a
Fy (o, K 0, V) = Jo ) + @S (fLL€9% + g€ 9D (a), coarse-grained nondecay probabilR{t) defined as
e P(t) = & MMi(h(t)), (13
Fo(ko kb 0,V1) = Jo(a@) + €902 (f.e%2+ g,pe @) (a), where(h(t)) is the time average df(t) over one period of
1#0 oscillation. The graphs d®(t) and P(t) will be given in the
next section.
It is easily seen that the coefficienfs(ky; w,V,) all ap-
~Goa qa _ g e d@ 1
Falkokor@, V1) = Jola) + % O(f,ae Ga€ 1)1 (a), proach one in the limitv=V, /40— 0,
lim Fiky;o,Vy) —1, i=1,...,8. (14)
V1/w—0
Fa(ko,kg; @, V1) = Jp(@) — €033, ﬂ(ﬁbeq'a ~ g€ 19J(a), !
10 Yo Hence in the limitV;—0 or w—o°, EqQ. (11) reduces to the
corresponding equation for the case of static potential with
Fs(ko, kg 0,Vq) = Jo(a) + g b (1290 + g,.e710) (), potentialV, in the regiona<x<b, and the Floguet energy in
140 this limit is just the(real or complex eigenenergy of the
static case. This is understandable, since in the Nmit0
. - Gob qib —qib the potential becomes static, and at high frequencies the par-
Fe(ko ko @, V) = Jola) +€ %(f'be * G 1 (a), ticle in the well will only see a time-averaged barrier of
effective heightv, [19].
Fo(ko.kp; ,V) = Jo(@) + €% —(fu e - ge ) (), IIl. NUMERICAL RESULTS
1=0 Yo

We now study numerical solutions of Ed.1) with a spe-
, WS d 4 - cific potential. We takea=1, b=2, V=15, andV{=V,/2 in
Fa(ko, ko; @, V1) = Jo(@) — €0, = (fjpe” - gpe @), (@), the atomic unitga.u) (e=m,=4=1). In the static case this

1#0 0 potential supports one bound state, with eneigy/V,
By demanding nontrivial solutions of the coefficiemts b,, =~ =0.232123, and one metastable state, with complex energy
A,, andty in Eq. (10), we obtain an equation which deter- E;/V,=0.864945-0.00255261For the oscillating potential,
mines the Floquet energy. we solve Eq(11) in 2-sideband approximation, i.e., we take
N=2. This is accurate enough for oscillating frequeney
F 00, %%'%%( ) =V, /2.
ankpa+F,= Fs- tankea— F 1 . .
ko F700 = iFskd Figures 1 and 2 present the graphs of the real and imagi-
g 20io(b-a) (11) nary parts of the Floquet enerdy/V,) as a function of

wl/Vy=0.2 with V;=0.1V, and 0.2/, respectively. We find
We recall here thak, qo, ky are functions of the Floquet that the solutions of Eq(ll) have the forme=go+nw (n
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FIG. 1. The Floquet energiés/V,) of the two metastable states FIG. 2. Same plot as Fig. 1 fov,=15 a.u.,V{=V,/2, and
versus the barrier oscillating frequeney/V,) for Vo=15 a.u.,Vg V,/Vy=0.2.

=Vy/2, andV;/Vy=0.1 in the atomic unitga.u) (e=me=£=1). In

(a) the real parts of the Floquet energies are shown in the firsability density normalized to unity within €x=<2 at 7=0.
Floquet zone under the line R@=w (the straight ling The light  One can clearly see that the less stable g@éshed curve
dotted lines show how the different branches emanate from the twdecays much faster than the more stable gisdéd curve.
states in the static casvith Eq/V=0.232123 and R&1)/Vy  The nondecay probabilityoscillatory curve P(t), Eq. (12),
=0.86494%. In (b) the corresponding imaginary parts of the Floguet and the coarse-grained nondecay probabilityonotonic

energies of the two states are plotted. The dotted curve correspond —
to the state with real parts given along the patib’'cdd’e’f, and curve P(t) Eq.(13), of these two states are shown in Fig. 4.

the solid curve corresponds to the state with real parts given alonl iS clear that the coarse-grained functiext) is a mono-

ceggh. 2.5
o 7=0 7=200

=0,+1,+2,..), with Regy) (the horizontal branchlaying
close to the energieE, and RéE;) in the static potential. 15 o ‘
That is, these branches of ¢ emanate from eitheE, or ¥l ool

, ) 1.0 :
ReE;) at »=0. Branches emerging from the same point - AN
have the same imaginary part. Numerical results show that, NIAN /. k
with the barrier oscillating, the stable stdf&,) in the static o EE E——
case becomes unstable, and the unstable @&Eatavill decay 20 =100
even faster. For simplicity, in Figs.(d) and Za) we show
only six branchesn=0,+1,+2 and -3 emerging from I‘*’lzl's
ReE;), and only the central branctn=0) and a subband 10
(n=-1) from E,. As mentioned before, we only take solu- os "
tions in the first Floquet zone, Re (modulo w), which are A S /\\

points under the line Re)=w
In Fig. 3 we give the graphs of the probability density

|W]2 in the well and the barrier with the same parameters as
in Fig. 2 for the two metastable states at frequengy/, FIG. 3. Probability density®¥|2 in the well and the barrier with
=0.62. The Floquet energies of the less stable and the mokge same parameters as in Fig. 2 for the two metastable states at
stable state are/Vy=0.251714-0.004995and 0.227343 frequency w/V,=0.62. Probability density normalized to unity
—0.001456, respectively. Four time frames, namely=t  within 0<x=<2 at 7=tV,=0 a.u.. The mordlesy stable state is

X V=0, 100, 200 and 300 a.u., are shown, with the prob-ndicated by soliddasheg curve.

0
0 0510 15 200 05 1.0 15 20
X

»
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25
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[ o s e ey . e e e S FIG. 5. Same plot as Fig. 3 at frequensyV,=0.63, just before
0 30 60 90 120 0 30 60 90 120 150 the avoided crossing. The lifetimes of these two metastable states

T are comparable.

FIG. 4. Nondecay probabilityoscillatory curvg P(t) and the  the presence of a nonvanishikg always makes the system
coarse-grained nondecay probabilitponotonic curve P(t) as a  less stable. However, ¥, is reduced, an avoided crossing
function of time for the more stabi@) and the less stabld) state  may turn into a direct one. In the present case, the avoided
in Fig. 3. crossinge€ changes into a direct crossing fag/V,<0.03.

Conversely, increasing; could change a direct crossing into
tonic function, and does give a smooth measure of the staan avoided crossing. At an avoided crossing, the imaginary
bility of the system. parts of the Floguet energies cross, while the real parts do

From Figs. 1 and 2 we also see that a direct crossingot. At a direct crossing, it is the real parts, not the imaginary
occurs at frequency~ ReE; - E)/2 (pointc). However, as  parts, that cross. But the mofless stable state has the ten-

o approaches the frequenay~ Re(E;—E;)=0.63282%/, dency to become legsore stable. This is evident from the

an avoided crossin(g,e’) between the real parts of the Flo- Floquet energy at the direct crossing pairih Figs. 1 and 2.
quet energies occurs. Figure 2 indicates that larger values dihese observations are consistent with the semiclassical re-
V; only enhance the instability of the system and the repulsults obtained irf11] by perturbative methods. Hence, by a
sion between the two levels at avoided crossing. Thus as theombination of adiabatic changes of the frequency and the
frequencyw is increased, the state emanating freiphas  amplitude of the oscillating barrier, one can manipulate the
Floquet energy with real part given by values along the pattstability of different states in a quantum potential: tunevyp
abb'cdd e'f (the dark dotted curye while the real part of

2.5

Floguet energy of the state emerging fréy lies along the ) z=0
pathcegdh (the solid curve The imaginary parts of these 20 A
two paths are depicted in Figs(h) and 2b). One sees that 18 i
an exchange of the imaginary parts takes place at the avoided ¥ .
crossinge€. In Figs. 5 and 6, we show the probability den- 18 |
sity of the two states within the potential barrier just before 05

0

these plots demonstrate clearly the switching of the states.
Beyond the avoided crossing, the upper state becomes more 2.0

stable than the lower state. This gives the possibility of sta- 18

7=200
and just after the avoided crossing. Together with Fig. 3, -—-\ /,\/\
7=300

bilizing an unstable state by an oscillating field. We recall v

that asw—, EqQ. (11) reduces to the one for the static 10

potential. In the example considered here, the lower state osh / " o

supported by the static well is a stable bound state, and hence Y L K /\\m

the unstable upper Floquet state can be made stable in the 00 0'5 10 15 200 05 ’10 L5 2'0
high frequency limit. Even more simply, the same aim can be - .x - - x o

achieved by adiabatically tuning down the amplitiggjust
after the avoided crossing, as in this limit the potential be- F|G. 6. Same plot as Fig. 3 at frequeneyV,=0.64, just after
comes the static one. the avoided crossing. The dash@olid) curve represents the origi-

Finally, it is interesting to note here the role of amplitude nally less (more) stable state, which now becomes matess
V, of the oscillating barrier in the model. As we have seenstable.
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until a direct crossing becomes an avoided one, increas® can be dramatically suppressed as the inter(sitgplitudg
that the avoided crossing is passed, then redjc make of the laser field exceeds a certain threshold. Thus stabiliza-
the potential static. In the process, two states in the well aréon of the atom is attained by increasing the intensity. On the
interchanged. contrary, stabilization of the decaying state described here is
achieved by increasing the frequency of the oscillating bar-
rier to the threshold at which an avoided crossing in the
IV. SUMMARY Floquet energies takes place, regardless of the amplitude of

To summarize, our results show that an oscillating poten;he field. Also, in our case stabilization is against quantum

tial barrier generally makes a metastable system decay fastép_nneling through a potential barrier, while in the case of

However, the existence of avoided crossings of metastablaomic stabilization it is against ionization by photon absorp-

states can switch a less stable state to a more stable one. If$3"" Anort]her d|ffe(;ence Qf thebTwo rﬁ’he”"mﬁnf’]‘ IS tth an d
the static well there exists a bound state, then it is possible t tonr": |n|t e %roll:jn bStatﬁ |sdsta € when not belng 't;.rl"." "3“?
stabilize a metastable state by adiabatically changing the o&Y € 1aser field, but the decaying state to be stabilized In

cillating frequency and amplitude of the barrier so that thePUr system is already unstable even in the absence of the

unstable state will eventually cross over to the stable boun8SCIIIatIng field owing to quantum tunneling effect. Further-

state. Thus a time-dependent potential can be used to contrg|0'€: Suppression of 'On'zat'on can_be studied using the
the stability of a particle trapped in a well. methods of classical nonlinear dynamics and chHaag but

Finally, we would like to comment on the differences be- tunneling through a barrier considered here is a characteristic

tween the stabilization of the decaying state discussed in thi§nd fundamental quantum phenomenon.
work and the interesting phenomenon of the suppression of
ionization of atom(also called stabilization of atonin su-
perintense, high frequency laser pul§2@]. In this later phe- This work was supported in part by the National Science
nomenon, it was found that while an atom is generally ion-Council of the Republic of China through Grant No. NSC
ized by absorption of photons, the ionization rate of the aton92-2112-M-032-015 and NSC 93-2112-M-032-009.
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