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Metastability of a particle trapped in a well with a time-periodically oscillating barrier is studied in the
Floquet formalism. It is shown that the oscillating barrier causes the system to decay faster in general.
However, avoided crossings of metastable states can occur with the less stable states crossing over to the more
stable ones. If in the static well there exists a bound state, then it is possible to stabilize a metastable state by
adiabatically increasing the oscillating frequency of the barrier so that the unstable state will eventually cross
over to the stable bound state. It is also found that increasing the amplitude of the oscillating field may change
a direct crossing of states into an avoided one.
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I. INTRODUCTION

Ever since the advent of quantum mechanics, quantum
tunneling has been an important and fascinating subject. This
phenomenon arises frequently in physics. In fact, one of the
first successful applications of quantum mechanics has been
the explanation of thea decay of atoms as a quantum tun-
neling process[1]. Recent examples include tunneling phe-
nomena in semiconductors and superconductors[2], in Jo-
sephson junction systems[3], resonant tunneling in
heterojunction nanostructures[4], tunneling ionization of at-
oms [5], photon-assisted tunneling in superconducting junc-
tions and semiconductor superlattices[6], etc.

In cosmology, quantum metastable states play an essential
role in some versions of the inflationary models of the early
universe[7]. In these models inflation of the early universe is
governed by a Higgs field trapped in a metastable state. In-
flation ends when the metastable state decays to the true
ground state of the universe. During inflation the universe
expands exponentially. It is thus obvious that the metastable
state of the Higgs field is trapped in a rapidly varying poten-
tial. The problem is therefore a truly time-dependent one.
Unfortunately, owing to the inherent difficulties of the prob-
lem, more often than not one has to consider the decay of the
Higgs field in a quasistationary approximation, in which the
decay is studied assuming a static potential[8]. Surely this
approximation is hard to justify, but for the present one has
to be content with it. Ultimately one hopes to be able to
tackle the nonstationary case. To this end, it is desirable to
gain some insights first by studying metastability in time-
dependent potential in simple quantum-mechanical models.

An early attempt at studying the effects of time-varying
forces on quantum metastability appears in Fisher’s work
[9], which was motivated by an experiment on quantum tun-
neling of the phase in a current-biased Josephson junction
with a weak microwave perturbation[10]. In this work
Fisher considered the general problem of quantum tunneling
in a metastable well with a weak oscillatory force. There he
reformulated the standard WKBJ approach to quantum decay
in order to include a weak time-dependent perturbation. For
a class of metastable potentials which interpolates between
the cubic potential and a truncated harmonic-oscillator po-
tential, he showed that the decay rate is generally enhanced

by the weak oscillatory force. The potential considered by
Fisher has a number of oscillatorlike levels near its mini-
mum. The opposite situation where only two levels are
present was considered by Sokolovski[11], who studied the
effect of a small ac field mixing two levels in the well on the
tunneling rate in a semiclassical framework.

The results in[9,11] are quite general for a class of weak
oscillatory forces. However, it is desirable to consider other
possibilities, e.g., exact solutions and/or nonperturbative re-
sults. In this respect, we had considered previously[12] an
exactly solvable quantum metastable system with a moving
potential which has height and width scaled in a specific way
introduced by Berry and Klein[13]. We found that in this
model a small but finite nondecay probability could persist at
large time limit for an expanding potential.

In this paper we consider another simple driven quantum
metastable model in which a particle is trapped in a well with
a periodically driven rectangular barrier. In order to do away
with any restriction of amplitude or frequency of the driving
force, and of the number of states in the potential, we treat
the problem in the framework of the Floquet formalism
[14–17]. An exact expression determining the Floquet
quasienergies of stable or metastable states in the well is
derived. From the solution of this equation we find that while
the oscillating barrier makes the system decay faster in gen-
eral, there is the possibility that avoided crossings of meta-
stable states can occur with the less stable states crossing
over to the more stable ones.

That an oscillating potential can affect the tunneling prop-
erty of a system has also been noticed before, e.g., in quan-
tum transport process[16–19]. In [17,18] it was found that a
particle can be localized in one side of a time-dependent
double well if the amplitude and the frequency of the oscil-
lating field were chosen properly. In[16] it was demonstrated
that a propagating particle at appropriate incident energy can
be trapped into a bound state by an oscillating square well.
Our example shows how a time-periodic field can modify the
metastability of a decaying state.

II. THE MODEL

The model we consider consists of a particle of massm
trapped in a square well with a harmonically oscillating bar-
rier,
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Vsx,td =5
`, x , 0,

0, 0 ø x , a,

V0 + V1 cossvtd, a ø x ø b,

V08, x . b.
6 s1d

Here V0, V1, V08 and v are positive parameters, withV08
,V0 andV1,V0−V08. According to the Floquet theorem, the
wave function of a time-periodic system has the form
C«sx,td=e−i«t/"F«sx,td, whereF«sx,td is a periodic function
with the periodT=2p /v, i.e., F«sx,t+Td=F«sx,td, and« is
the Floquet quasienergy, which we will call Floquet energy

for brevity. It should be noted that the Floquet energy is
determined only modulo"v. For if h« ,F«j is a solution of
the Schrödinger equation, then h«8=«+n"v ,F«8
=F« expsinvtdj is also a solution for any integern. But they
are physically equivalent as the total wave functionC« is the
same[15]. All physically inequivalent states can be charac-
terized by their reduced Floquet energies in a zone with a
width "v. We therefore consider solutions of« only in the
first Floquet zone, i.e.,«P f0,"vd.

Following the procedures described in[16] (see also
[19]), we get the wave function as follows:

Csx,td = e−i«t/"F«sx,td = e−i«t/"5
o

n=−`

`

An sinsknxde−invt, 0 ø x , a,

o
n=−`

`

o
l=−`

`

sale
qlx + ble

−qlxdJn−lsV1/"vde−invt, a ø x ø b,

o
n=−`

`

tne
ikn8xe−invt, x . b,

6 s2d

where

kn = Î2ms« + n"vd/",

ql = Î2msV0 − « − l"vd/", s3d

kn8 = Î2ms« + n"v − V08d/",

and Jn is the Bessel function. In the regionx.b, we have
adopted Gamow’s outgoing boundary condition, namely,
there is no particle approaching the barrier from the right[1].
Matching the wave function and its first derivative at the
boundariesx=a andx=b, we obtain the relations among the
coefficientsAn, an, bn and tn:

An sinsknad = o
l

sale
qla + ble

−qladJn−lsad,

knAn cossknad = o
l

qlsale
qla − ble

−qladJn−lsad,

s4d
tne

ikn8b = o
l

sale
qlb + ble

−qlbdJn−lsad,

ikn8tne
ikn8b = o

l

qlsale
qlb − ble

−qlbdJn−lsad,

where a;V1/"v. The Floquet energy is determined from
these relations by demanding nontrivial solutions of the co-
efficients. In practice, however, we must truncate the above
equations to a finite number of terms, or sidebands as they
are usually called in the literature, e.g.,n=0, ±1, . . . , ±N.

The numberN is determined by the frequency and the
strength of the oscillation asN.V1/"v [16].

We proceed to determine the Floquet energy as follows.
We first separate the boundary conditions for the central
bandsn=0d from those for the subbandssnÞ0d in Eq. (4).
From the boundary conditions for the subbandssnÞ0d, one
can relate the coefficientsal and bl sl Þ0d with the coeffi-
cientsa0 andb0 through the following two relations:

al = f lask0,k08,v,V1da0 + f lbsk0,k08,v,V1db0, s5d

bl = glask0,k08,v,V1da0 + glbsk0,k08,v,V1db0, s6d

wheref ’s andg’s are functions determined as follows. Elimi-
nating theAn’s and tn’s in Eq. (4), we can obtain

An,n
− eqnaJ0an + An,n

+ e−qnaJ0bn + o
lÞn,0

An,l
− eqlaJn−lal

+ o
lÞn,0

An,l
+ e−qlaJn−lbl = − An,0

− eq0aJna0 − An,0
+ e−q0aJnb0

s7d

and

Bn,n
+ eqnbJ0an + Bn,n

− e−qnbJ0bn + o
lÞn,0

Bn,l
+ eqlbJn−lal

+ o
lÞn,0

Bn,l
− e−qlbJn−lbl = − Bn,0

+ eq0bJna0 − Bn,0
− e−q0bJnb0,

s8d

with
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An,l
± ; coskna ±

ql

kn
sinkna, Bn,l

± ; 1 ± i
ql

kn8
. s9d

Equations(7) and(8) allow us to solve foral andbl in terms
of a0 andb0 in the forms of Eqs.(5) and(6) by means of the
Cramer’s rule in matrix algebra. As mentioned before, in
practice a truncated version of Eqs.(7) and (8) has to be
used.

Using Eqs.(5) and (6) we can rewrite the boundary con-
ditions for the central bandn=0 as

A0 sinsk0ad = F1sk0,k08;v,V1deq0aa0 + F2sk0,k08;v,V1de−q0ab0,

k0A0 cossk0ad = F3sk0,k08;v,V1dq0e
q0aa0

− F4sk0,k08;v,V1dq0e
−q0ab0,

s10d
t0e

ik08b = F5sk0,k08;v,V1deq0ba0 + F6sk0,k08;v,V1de−q0bb0,

ik08t0e
ik08b = F7sk0,k08;v,V1dq0e

q0ba0

− F8sk0,k08;v,V1dq0e
−q0bb0,

where the coefficientsFisk0;v ,V1d si =1, . . . ,8d are

F1sk0,k08;v,V1d = J0sad + e−q0ao
lÞ0

sf laeqla + glae−qladJ−lsad,

F2sk0,k08;v,V1d = J0sad + eq0ao
lÞ0

sf lbeqla + glbe−qladJ−lsad,

F3sk0,k08;v,V1d = J0sad + e−q0ao
lÞ0

ql

q0
sf laeqla − glae−qladJ−lsad,

F4sk0,k08;v,V1d = J0sad − eq0ao
lÞ0

ql

q0
sf lbeqla − glbe−qladJ−lsad,

F5sk0,k08;v,V1d = J0sad + e−q0bo
lÞ0

sf laeqlb + glae−qlbdJ−lsad,

F6sk0,k08;v,V1d = J0sad + eq0bo
lÞ0

sf lbeqlb + glbe−qlbdJ−lsad,

F7sk0,k08;v,V1d = J0sad + e−q0bo
lÞ0

ql

q0
sf laeqlb − glae−qlbdJ−lsad,

F8sk0,k08;v,V1d = J0sad − eq0bo
lÞ0

ql

q0
sf lbeqlb − glbe−qlbdJ−lsad.

By demanding nontrivial solutions of the coefficientsa0, b0,
A0, and t0 in Eq. (10), we obtain an equation which deter-
mines the Floquet energy«:

F4
q0

k0
tank0a + F2 =

F8q0 + iF6k08

F7q0 − iF5k08
SF3

q0

k0
tank0a − F1D

3e−2q0sb−ad. s11d

We recall here thatk0, q0, k08 are functions of the Floquet

energy « [cf. Eq. (3)]. If the solutions« of Eq. (11) are
complex(real) numbers, the corresponding Floquet states are
metastable(stable) states. The nondecay probabilityPstd,
which is the probability of the particle still being trapped by
the potential barrier at timet.0, is given by

Pstd =

E
0

b

uCsx,tdu2dx

E
0

b

uCsx,0du2dx

= e2 Ims«dt/"

E
0

b

uF«sx,tdu2dx

E
0

b

uF«sx,0du2dx

; e2 Ims«dt/"hstd, s12d

with Ps0d=1. The imaginary part of the Floquet energy,
which entersPstd via the factor expf2 Ims«dt /"g, gives a
measure of the stability of the system. Unlike the static case,
however, herePstd is not a monotonic function of time, ow-
ing to the time-dependent functionhstd after the exponential
factor in Eq.(12). But sincehstd is only a periodic function
oscillating between two values which are of order one, the
essential behavior ofPstd at large times is still mainly gov-
erned by the exponential factor. Hence, as a useful measure
of the nondecay rate of the particle in the well, we propose a

coarse-grained nondecay probabilityP̄std defined as

P̄std ; e2 Ims«dt/"khstdl, s13d

where khstdl is the time average ofhstd over one period of

oscillation. The graphs ofPstd and P̄std will be given in the
next section.

It is easily seen that the coefficientsFisk0;v ,V1d all ap-
proach one in the limita=V1/"v→0,

lim
V1/v→0

Fisk0;v,V1d → 1, i = 1, . . . ,8. s14d

Hence in the limitV1→0 or v→`, Eq. (11) reduces to the
corresponding equation for the case of static potential with
potentialV0 in the regionaøxøb, and the Floquet energy in
this limit is just the (real or complex) eigenenergy of the
static case. This is understandable, since in the limitV1→0
the potential becomes static, and at high frequencies the par-
ticle in the well will only see a time-averaged barrier of
effective heightV0 [19].

III. NUMERICAL RESULTS

We now study numerical solutions of Eq.(11) with a spe-
cific potential. We takea=1, b=2, V0=15, andV08=V0/2 in
the atomic units(a.u.) se=me="=1d. In the static case this
potential supports one bound state, with energyE0/V0
=0.232123, and one metastable state, with complex energy
E1/V0=0.864945−0.00255261i. For the oscillating potential,
we solve Eq.(11) in 2-sideband approximation, i.e., we take
N=2. This is accurate enough for oscillating frequencyv
ùV1/2.

Figures 1 and 2 present the graphs of the real and imagi-
nary parts of the Floquet energys« /V0d as a function of
v /V0ù0.2 with V1=0.1V0 and 0.2V0, respectively. We find
that the solutions of Eq.(11) have the form«=«0+nv sn
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=0, ±1, ±2, . . .d, with Res«0d (the horizontal branch) laying
close to the energiesE0 and ResE1d in the static potential.
That is, these branches of Res«d emanate from eitherE0 or
ResE1d at v=0. Branches emerging from the same point
have the same imaginary part. Numerical results show that,
with the barrier oscillating, the stable statesE0d in the static
case becomes unstable, and the unstable statesE1d will decay
even faster. For simplicity, in Figs. 1(a) and 2(a) we show
only six branches(n=0, ±1, ±2 and −3) emerging from
ResE1d, and only the central branchsn=0d and a subband
sn=−1d from E0. As mentioned before, we only take solu-
tions in the first Floquet zone, Res«d (modulov), which are
points under the line Res«d=v.

In Fig. 3 we give the graphs of the probability density
uCu2 in the well and the barrier with the same parameters as
in Fig. 2 for the two metastable states at frequencyv /V0
=0.62. The Floquet energies of the less stable and the more
stable state are« /V0=0.251714−0.004995i and 0.227343
−0.001456i, respectively. Four time frames, namely,t; t
3V0=0, 100, 200 and 300 a.u., are shown, with the prob-

ability density normalized to unity within 0øxø2 at t=0.
One can clearly see that the less stable state(dashed curve)
decays much faster than the more stable state(solid curve).
The nondecay probability(oscillatory curve) Pstd, Eq. (12),
and the coarse-grained nondecay probability(monotonic

curve) P̄std, Eq. (13), of these two states are shown in Fig. 4.

It is clear that the coarse-grained functionP̄std is a mono-

FIG. 1. The Floquet energiess« /V0d of the two metastable states
versus the barrier oscillating frequencysv /V0d for V0=15 a.u.,V08
=V0/2, andV1/V0=0.1 in the atomic units(a.u.) se=me="=1d. In
(a) the real parts of the Floquet energies are shown in the first
Floquet zone under the line Res«d=v (the straight line). The light
dotted lines show how the different branches emanate from the two
states in the static case[with E0/V0=0.232123 and ResE1d /V0

=0.864945]. In (b) the corresponding imaginary parts of the Floquet
energies of the two states are plotted. The dotted curve corresponds
to the state with real parts given along the pathabb8cdd8e8f, and
the solid curve corresponds to the state with real parts given along
cegg8h.

FIG. 2. Same plot as Fig. 1 forV0=15 a.u.,V08=V0/2, and
V1/V0=0.2.

FIG. 3. Probability densityuCu2 in the well and the barrier with
the same parameters as in Fig. 2 for the two metastable states at
frequency v /V0=0.62. Probability density normalized to unity
within 0øxø2 at t; tV0=0 a.u.. The more(less) stable state is
indicated by solid(dashed) curve.
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tonic function, and does give a smooth measure of the sta-
bility of the system.

From Figs. 1 and 2 we also see that a direct crossing
occurs at frequencyv<ResE1−E0d /2 (point c). However, as
v approaches the frequencyv<ResE1−E0d=0.632822V0,
an avoided crossingse,e8d between the real parts of the Flo-
quet energies occurs. Figure 2 indicates that larger values of
V1 only enhance the instability of the system and the repul-
sion between the two levels at avoided crossing. Thus as the
frequencyv is increased, the state emanating fromE1 has
Floquet energy with real part given by values along the path
abb8cdd8e8f (the dark dotted curve), while the real part of
Floquet energy of the state emerging fromE0 lies along the
path cegg8h (the solid curve). The imaginary parts of these
two paths are depicted in Figs. 1(b) and 2(b). One sees that
an exchange of the imaginary parts takes place at the avoided
crossingee8. In Figs. 5 and 6, we show the probability den-
sity of the two states within the potential barrier just before
and just after the avoided crossing. Together with Fig. 3,
these plots demonstrate clearly the switching of the states.
Beyond the avoided crossing, the upper state becomes more
stable than the lower state. This gives the possibility of sta-
bilizing an unstable state by an oscillating field. We recall
that asv→`, Eq. (11) reduces to the one for the static
potential. In the example considered here, the lower state
supported by the static well is a stable bound state, and hence
the unstable upper Floquet state can be made stable in the
high frequency limit. Even more simply, the same aim can be
achieved by adiabatically tuning down the amplitudeV1 just
after the avoided crossing, as in this limit the potential be-
comes the static one.

Finally, it is interesting to note here the role of amplitude
V1 of the oscillating barrier in the model. As we have seen,

the presence of a nonvanishingV1 always makes the system
less stable. However, ifV1 is reduced, an avoided crossing
may turn into a direct one. In the present case, the avoided
crossingee8 changes into a direct crossing forV1/V0,0.03.
Conversely, increasingV1 could change a direct crossing into
an avoided crossing. At an avoided crossing, the imaginary
parts of the Floquet energies cross, while the real parts do
not. At a direct crossing, it is the real parts, not the imaginary
parts, that cross. But the more(less) stable state has the ten-
dency to become less(more) stable. This is evident from the
Floquet energy at the direct crossing pointc in Figs. 1 and 2.
These observations are consistent with the semiclassical re-
sults obtained in[11] by perturbative methods. Hence, by a
combination of adiabatic changes of the frequency and the
amplitude of the oscillating barrier, one can manipulate the
stability of different states in a quantum potential: tune upV1

FIG. 4. Nondecay probability(oscillatory curve) Pstd and the

coarse-grained nondecay probability(monotonic curve) P̄std as a
function of time for the more stable(a) and the less stable(b) state
in Fig. 3.

FIG. 5. Same plot as Fig. 3 at frequencyv /V0=0.63, just before
the avoided crossing. The lifetimes of these two metastable states
are comparable.

FIG. 6. Same plot as Fig. 3 at frequencyv /V0=0.64, just after
the avoided crossing. The dashed(solid) curve represents the origi-
nally less (more) stable state, which now becomes more(less)
stable.
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until a direct crossing becomes an avoided one, increasev so
that the avoided crossing is passed, then reduceV1 to make
the potential static. In the process, two states in the well are
interchanged.

IV. SUMMARY

To summarize, our results show that an oscillating poten-
tial barrier generally makes a metastable system decay faster.
However, the existence of avoided crossings of metastable
states can switch a less stable state to a more stable one. If in
the static well there exists a bound state, then it is possible to
stabilize a metastable state by adiabatically changing the os-
cillating frequency and amplitude of the barrier so that the
unstable state will eventually cross over to the stable bound
state. Thus a time-dependent potential can be used to control
the stability of a particle trapped in a well.

Finally, we would like to comment on the differences be-
tween the stabilization of the decaying state discussed in this
work and the interesting phenomenon of the suppression of
ionization of atom(also called stabilization of atom) in su-
perintense, high frequency laser pulses[20]. In this later phe-
nomenon, it was found that while an atom is generally ion-
ized by absorption of photons, the ionization rate of the atom

can be dramatically suppressed as the intensity(amplitude)
of the laser field exceeds a certain threshold. Thus stabiliza-
tion of the atom is attained by increasing the intensity. On the
contrary, stabilization of the decaying state described here is
achieved by increasing the frequency of the oscillating bar-
rier to the threshold at which an avoided crossing in the
Floquet energies takes place, regardless of the amplitude of
the field. Also, in our case stabilization is against quantum
tunneling through a potential barrier, while in the case of
atomic stabilization it is against ionization by photon absorp-
tion. Another difference of the two phenomena is that an
atom in the ground state is stable when not being irradiated
by the laser field, but the decaying state to be stabilized in
our system is already unstable even in the absence of the
oscillating field owing to quantum tunneling effect. Further-
more, suppression of ionization can be studied using the
methods of classical nonlinear dynamics and chaos[21], but
tunneling through a barrier considered here is a characteristic
and fundamental quantum phenomenon.
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