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I. INTRODUCTION

Quantum mechanics, usually formulated in terms of the
density matrix, can be as well formulated in many other
ways. One such alternative way is the probability represen-
tation of quantum mechanics, or quantum tomography, re-
cently proposed in Ref.[1] (see also[2–6] for reference
about the analogous quasidistribution functions). The prob-
ability representation is remarkable for it describes the quan-
tum state in terms ofnon-negative distribution function(the
tomogram, or marginal distribution), directly measurablein
experiments on the state reconstruction[7–18]. The tomo-
gram is aprobability distributioncompletely describing the
quantum state. In addition, the tomography can be applied to
describe classical systems. As a result one can compare the
classical and quantum behavior of the same system in the
framework of one formalism. Sign conservation of the tomo-
gram can be valuable in the computer simulation[19,20], for
example in the overcoming of the “sign problem” in simula-
tion of the Fermi systems(see [21,22] and references
therein). Another advantage of the probability representation
is the fact that not only quantum states are described by
probability distributions but also quantum transitions be-
tween the quantum states are described by nonnegative prob-
abilities (propagators) instead of complex probability ampli-
tudes. The latter ones can be expressed in terms of the
propagators. One of the aims of the present work is to make
an explicit presentation of such expressions.

Besides the above-mentioned advantages of the tomogra-
phic representation, there is a disadvantage connected with
the use of this formalism. Consider a quantum system withN
degrees of freedom. Density matrix[23,24] describing the
state of such system is the function of 2N independent vari-
ables(time, temperature, etc., being the external parameters).
The so-called symplectic tomography[25–27] describes the
same state by the symplectic tomogram, which is the func-
tion of 3N variables. The idea of tomography representation
is to rotate and scalethe reference frame in the phase space
and work with the distribution ofposition in the new refer-
ence frames:X=mq+np, whereq and p are coordinate and

momentum;m andn are the parameters of scaling and rota-
tion. Symplectic tomogram’s 3N variables are two
N-component vectors of scaling and rotation(mW and nW) and
N-component vectorXW of positions, measured in all possible
rotated and scaled reference frames(i.e., for all possiblemW
andnW). In fact, the symplectic tomogram is the homogeneous
function[28,29]. Effectively it has only 2N independent vari-
ables and contains the same amount of information about the
system as the density matrix does. But straightforward de-
scription of the quantum evolution in symplectic tomography
is possible only using the full set of 3N variables. Of course,
for the investigation of the multipartite systems(largeN), it
is quite inconvenient to operate with 3N variables instead of
2N, even if it implies the description of the state in terms of
the non-negative function.

Fortunately, it appears that one can avoid the half as much
increase of the number of variables in replacing the density
matrix formalism by the tomographic one. Recently[30,31]
we introduced thecenter of masstomography, that operates
with only 2N+1 variables, describes the state by the non-
negative function(center of mass tomogram) and contains
the same amount of information about the system as the
density matrix and symplectic tomogram do(the density ma-
trix, symplectic tomogram, and center of mass tomogram are
connected by the invertable maps). The center of mass to-
mography also uses twoN-component vectors(mW and nW) of
scaling and rotation of reference frame in the phase space.
But, contrary to the symplectic tomogram, the center of mass
tomogram is the distribution of one variableX: the sum of
positions over all degrees of freedom, or position of the cen-
ter of mass of the system, measured in the scaled and rotated
reference frame. This is the origin of the name “center of
mass tomography.” Amazingly, the function of 2N+1 vari-
able contains the same amount of information about the sys-
tem as the function of 3N variables(symplectic tomogram)
does. This is the consequence of overcompleteness of the
symplectic tomography description: the symplectic tomo-
gram operates with some additional variables that do not
give more information about the system(see[30,31]). It also
should be noted that the proposed schemes of state-
reconstruction experiments for several degrees of freedom
[13,14] used a particular variant of what we later called the
center of mass tomogram.

This paper is devoted to further development of the center
of mass tomographic map. In previous work[30,31] we de-
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rived the time evolution equation for this representation, in-
vestigated the properties of the map and its relation to the
star product formalism, and symmetry properties in respect
to identical particles permutations. In this work we present
the new results concerning the quantum evolution in the cen-
ter of mass representation. Namely, we investigate the form
and properties of the propagators in this formalism, and their
connection with the propagators in symplectic tomography,
Wigner-Moyal and Schrödinger-Heisenberg representations
of quantum mechanics. As an example, we consider the sys-
tems withN degrees of freedom and Hamiltonian

Ĥ = 1
2QŴ BstdQŴ + cWstd, s1d

whereQŴ is the 2N-component vector of momentum and co-
ordinate operators:

QŴ = hpŴ ,qŴj, s2d

andBstd andcWstd are the time-dependent 2N32N matrix and
2N-component vector. The Hamiltonians of type(1) describe
such physically valuable cases as a motion of free particles,
time evolution of multimode oscillators, and motion of non-
interacting particles in the magnetic and electric fields.

Below, for the system described by Hamiltonian(1), we
investigate the evolution equation and integrals of motion in
the center of mass tomography representation(Sec. II). In
Sec. III the general properties of propagators for center of
mass tomography are elucidated, as well as their connection
to the propagators in other representations is explained. In
Sec. III we also obtain the expression for the center of mass
tomography propagator for quadratic Hamiltonians(1). The
work is summarized in Sec. IV.

II. QUANTUM EVOLUTION AND INTEGRALS OF
MOTION

A. Connection between different state-describing functions

The center of mass tomogramw is connected with the
Wigner functionW [32], density matrixr and symplectic
tomogramws through the invertable maps[30,31]. For ex-
ample, the Wigner function and center of mass tomogram are
connected in the following way:

wsX,mW ,nWd =E WsqW,pWde−iksX−mW ·qW−nW·pWddkdqWdpW

s2pd
, s3d

WsqW,pWd =E e−ismW ·qW+nW·pW−XdwsX,mW ,nWd
dXdmW dnW

s2pd2N . s4d

HereqW ,pW are theN-component vectors of coordinates and
momenta,mW ,nW are also theN-component vectors, andX is a
real number. The meaning of the arguments of the center of
mass tomogram is given by the following relation:

wsX,mW ,nWd =E WsqW,pWdd„X − smW ·qW + nW · pWd…dqWdpW , s5d

which means thatX=mW ·qW +nW ·pW is the sum of positions(or

the center of mass position) measured inscaled and rotated
reference framein the phase space.

Connection betweenw and the density matrixr can be
easily obtained from Eqs.(3) and (4) and the expression
connectingr and the Wigner function:

WsqW,pWd =E rSqW +
uW

2
,qW −

uW

2
De−ipW·uW duW

s2pdN , s6d

rsqW8,qW9d =E WSqW8 + qW9

2
,pWDeipWsqW8−qW9ddpW . s7d

The relation between the center of mass and symplectic
tomograms is given by the following formulas:

wsX,mW ,nWd =E wssYW ,mW ,nWddSX − o
j=1

N

YjDdYW , s8d

wssXW ,mW ,nWd =E wsY,kW + mW ,kW + nWdeisY−kW·XW ddkWdY. s9d

Here and throughout the paper the designationcW =aW +bW

means the componentwise product of vectors:cj, the j th

component of vectorcW, is given byajbj; aW ·bW means usual
scalar product of vectors.

B. Evolution equations

Now, when we know how to obtain one state-describing
function from another, let us consider the evolution equation
for the center of mass tomography. In Refs.[30,31] one can
find the evolution equations for the center of mass tomogram
w, derived for the motion in potentialVsqWd (taking into ac-
count both an external potential and an interaction between
the particles). Such equation is obtained applying the for-
mula connectingw with the density matrixr to the evolution
equation forr:

i
]rsqW8,qW9d

]t
= fĤ,rsqW8,qW9dg. s10d

Note that the Hamiltonian(1) is not a special case of the
Hamiltonian describing the motion in the potentialV, be-
cause Eq.(1) contains the terms withq̂ip̂j. Therefore the
evolution equations in Refs.[30,31] do not cover all possible
forms of the Hamiltonian(1).

Before presenting the evolution equation forw, derived
from Eq. (10), let us introduce some useful designations for
B andcW in Eq. (1):

cW = hcWp,cWqj,B = Sb1 b2

b3 b4
D , s11d

where cWp and cWq are the N-component vectors and
b1,b2,b3,b4 are theN3N matrices. Using these designa-
tions, one gets the evolution equation for the system with the
Hamiltonian(1) in the center of mass tomography represen-
tation:
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]w

]t
+ X1

2 o
j ,k=1

N Hb4
jkstdSn j

]

]mk
+ nk

]

]m j
D − b1

jkstdSm j
]

]nk

+ mk
]

]n j
D + ifb2

jkstd + b3
jkstdgF1

2
n jmk

]2

]X2

+ 2
]2

]m j]nk
S ]

]X
D−2GJ − cWqnW

]

]X
− 2icWp ]

]nW
S ]

]X
D−1Cw = 0.

s12d

Evolution of the same system in the Wigner-Moyal repre-
sentation is described by the following equation(see also
[33]):

]W

]t
+H1

2 o
j ,k=1

N Fb1
jkstdSpj

]

]qk
+ pk

]

]qj
D − b4

jkstdSqj
]

]pk

+ qk
]

]pj
D + ifb2

jkstd + b3
jkstdgS1

2

]2

]pj]qk
+ 2qjpkDG

− cWq ]

]pW
+ 2icWppWJW= 0. s13d

C. Integrals of motion

Evolution of the system withN degrees of freedom can be
characterized by 2N integrals of motion[33], linearly inde-
pendent operators with constant average values. For the qua-
dratic systems described by the Hamiltonian(1) one can

write the 2N-component vectorIŴ of integrals of motion in the
form [33]

IŴstd = LstdQŴ + DW std, s14d

where matrix L=s l1l2

l3l4
d consists of N3N matrices

l1,l2,l3,l4, and vector DW =hdW1,dW2j consists of

N-component vectorsdW1 anddW2. These matrices and vectors
obey the differential equations

l̇1 = l1b3 − l2b1, l̇2 = l1b4 − l2b2,

l̇3 = l3b3 − l4b1, l̇4 = l3b4 − l5b2, s15d

dẆ1 = l1cW
p − l2cW

q, dẆ2 = l3cW
q − l4cW

p,

with initial conditions Ls0d=E2N,DW s0d=0, with E2N being
the 2N32N identity matrix.

In tomography representation any operatorÂ is replaced
by the tomographic symbolwA [31]. The center of mass to-
mography symbolswI that correspond to the integrals of mo-
tion are given by

wW Istd =E dsX − MW ·QW dfLstdQW + DW stdg
dQW

s2pdN , s16d

whereMW =hnW ,mW j, or the same in the symplectic tomography:

wW I
sstd =E dsXW − MW ·QW dfLstdQW + DW stdg

dQW

s2pdN . s17d

In the center of mass tomography one can find the invari-
ant average values of the integrals of motion

kIWstdl = LstdkQW l + DW std s18d

from the formulas

kpil =E XwsX,mW = 0,ni = 1,nW̃ = 0ddX,

kqil =E XwsX,mi = 1,mW̃ = 0,nW = 0ddX, s19d

where the designationai =1,aW̃ =0 means that all components
of vectoraW equal zero, exceptai. It means that the integrals
of motion are connected with the first moments ofX, ob-
tained from the one-variablesXd distribution, taken atpar-
ticular points in the spacehmW ,nWj.

III. PROPAGATORS

A. General relations

Let us now turn to the propagators that describe the evo-
lution of the system independently of the initial state. We
start from the propagator for the wave functionC,

CsxW,td =E GsxW,xW8,t,t8dCsxW8,t8ddxW8, s20d

or for the density matrix,

rsxW,xW8,td =E GsxW,yW,t,t8dG * sxW8,zW,t,t8drsyW,zW,t8ddyWdzW.

s21d

Standard meaning of the above propagator in Eq.(20) is
that the propagator is transition probability amplitude from
initial to final position.

The propagatorP fsz,z8 ,t ,t8d for any state-describing
function fsz,td allows us to obtain this function for anyt
from given fsz,t8d:

fsz,td =E P fsz,z8,t,t8dfsz8,t8ddz8. s22d

Below we designate the propagators in the center of mass
tomography, symplectic tomography, and Wigner representa-
tion asP, Ps, andPW, respectively. Their connections with
each other and relations to the functionG are given by the
following set of equations:

PWsqW,pW ,qW8,pW8,t,t8d

=E eispW8·vW−pW·uWd 3 GSqW +
uW

2
,qW8 +

vW

2
,t,t8DG * SqW −

uW

2
,qW8

−
vW

2
,t,t8D duWdvW

s2pdN , s23d
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GsxW,xW8,t,t8dG * syW,yW8,t,t8d

=E eifpWsxW−yWd−pW8sxW8−yW8dgPWSxW + yW

2
,pW ,

xW8 + yW8

2
,pW8,t,t8D

3
dpWdpW8

s2pdN , s24d

PsX,mW ,nW,X8,mW 8,nW8,t,t8d

=E PWsqW,pW ,qW8,pW8,t,t8de−ifksX−mW ·qW−nW·pWd+mW 8qW8+nW8pW8−X8g

3
dqWdqW8dpWdpW8dk

s2pd2N+1 , s25d

PWsxW,yW,xW8,yW8,t,t8d

=E PsX,mW ,nW,X8,mW 8,nW8,t,t8de−ifmW ·xW+nW·yW−X+k8sX8−mW 8·xW8−nW8·yW8dg

3
dXdX8dmW dnWdmW 8dnW8dk8

s2pd2N+1 , s26d

PsX,mW ,nW,X8,mW 8,nW8,t,t8d

=E e−ifksX−mW ·qWd+mW 8·qW8−X8gGSqW +
knW

2
,qW8 +

nW8

2
,t,t8DG *

3SqW −
knW

2
,qW8 −

nW8

2
,t,t8DdqWdqW8dk

s2pdN+1 , s27d

GsxW,xW8,t,t8dG * syW,yW8,t,t8d

=E ei†X−mW fsxW+yWd/2g−k8„X8−mW 8fsxW8+yW8d/2g…‡

3PSX,mW ,xW − yW,X8,mW 8,
xW8 − yW8

k8
,t,t8DdXdX8dmW dmW 8dk8

uk8uNs2pdN ,

s28d

PssXW ,mW ,nW,XW 8,mW 8,nW8,t,t8d

=E e−ifkW·XW−XW8·eW−Y+k8Y8gPSY,kW + mW ,kW + nW,Y8,
mW 8

k8
,
nW8

k8
,t,t8D

3
dYdY8dk8dkW

uk8u2Ns2pdN+1 , s29d

PsX,mW ,nW,X8,mW 8,nW8,t,t8d

=E e−isYW8·eW−X8ddsX − YW ·eWd

p j=1

N
ukj8u

3
PsSYW ,mW ,nW,

YW 8

kW8
,
mW 8

kW8
,
nW8

kW8
,t,t8D

3
dYWdYW 8dkW8

s2pdN , s30d

whereeW is the unit vector(ej =1 for any j), and the compo-

nents of vectorcW =aW /bW are given bycj =aj /bj.

Physical meaning of tomographic propagators both in
symplectic and center of mass tomography representations is
as follows. The propagators are nonnegative transition prob-
abilities from initial position in the symplectic tomography
case and from initial center of mass position in the second
case to the corresponding final position(final center of mass
position in the second case). But the initial and final posi-
tions (centers of mass) are measured in ensembles of refer-
ence frames in the phase spaces of the system labeled by
extra real parameters. The obtained formulas relate transition
probability amplitudes describing quantum transitions(quan-
tum evolution) with tomographic transition probabilities
which also describe the quantum transitions in the probabil-
ity representation.

Symplectic and center of mass tomograms are the homo-
geneous functions[30,31]. The same is true about the corre-
sponding propagators, but only concerning the variables at
“time slice” t:

PsslW + XW ,lW + mW ,lW + nW,XW 8,mW 8,nW8,t,t8d

=
PssXW ,mW ,nW,XW 8,mW 8,nW8,t,t8d

p j=1

N
ul ju

, s31d

or, in particular,

PssaXW ,amW ,anW,XW 8,mW 8,nW8,t,t8d =
PssXW ,mW ,nW,XW 8,mW 8,nW8,t,t8d

uauN
.

s32d

The center of mass tomography propagator obeys the fol-
lowing relation:

PsaX,amW ,anW,X8,mW 8,nW8,t,t8d =
PsX,mW ,nW,X8,mW 8,nW8,t,t8d

uau
.

s33d

These equations allow us to obtain the properties

p
j=1

N

uXju−1PsSeW,
mW

XW
,
nW

XW
,XW 8,mW 8,nW8,t,t8D

= p
j=1

N

um ju−1PsSXW

mW
,eW,

nW

mW
,XW 8,mW 8,nW8,t,t8D

= p
j=1

N

un ju−1PsSXW

nW
,
mW

nW
,eW,XW 8,mW 8,nW8,t,t8D , s34d

and

PS1,
mW

X
,
nW

X
,X8,mW 8,nW8,t,t8D
uXu

= PsX,mW ,nW,X8,mW 8,nW8,t,t8d,

s35d

that show that the quantum evolution even in the tomography
representation is described by the functions of 2N variables.

A. S. ARKHIPOV AND V. I. MAN’KO PHYSICAL REVIEW A 71, 012101(2005)

012101-4



B. Propagators for the system with quadratic Hamiltonians

It is convenient to begin the analysis of the center of mass
tomography propagator for the system with quadratic Hamil-
tonian (1) from the propagator in the Wigner-Moyal repre-
sentation[33]:

PWsQW ,QW 8,t,t8d = d„QW 8 − QW 0st,t8d…,

QW 0st,t8d = Lst,t8dQW + DW st,t8d, s36d

whereLst ,t8d andDW st ,t8d are the matrix and vector given by
Eqs. (15), as functions oft, with initial conditions Lst
= t8 ,t8d=E2N,DW st= t8 ,t8d=0.

Applying the transform(25) to the expression(36), one
obtains the center of mass tomography propagator:

PsX,MW ,X8,MW 8,t,t8d =E e−ifkX+MW 8·DW st,t8d−X8gd„kMW

− MW 8Lst,t8d…
dk

2p
,

s37d
MW = hnW,mW j,MW 8 = hnW8,mW 8j.

From the first sight this expression seems quite inconve-
nient. But it becomes amazingly simple if we recall that the
propagatorP does not have any meaning by itself: it must be
utilized only in the context of the integral expressions, con-
necting the center of mass tomograms at timest8 and t:

wsX,MW ,td =E PsX,MW ,X8,MW 8,t,t8dwsX8,MW 8,t8ddX8dMW 8

=E e−ifkX+MW 8·DW st,t8d−X8gd„kMW − MW 8Lst,t8d…

3wsX8,MW 8,t8d
dX8dMW 8dk

2p

=E e−ikfX+MW 8·DW st,t8d−X8gd„MW − MW 8Lst,t8d…

3wsX8,MW 8,t8d
dX8dMW 8dk

2p

=E d„X8 − X − MW 8 · DW st,t8d…d„MW − MW 8Lst,t8d…

3wsX8,MW 8,t8ddX8dMW 8. s38d

Here we used the homogeneity properties of thed function
and center of mass tomogram. Equation(38) means that for
the integral expressions where the center of mass propagators
are used, and for the functions such as center of mass tomo-
grams, the propagator given by Eq.(37) is the same as the
expression in the integral(38):

PsX,MW ,X8,MW 8,t,t8d = d„X8 − X − MW 8 · DW st,t8d…d„MW

− MW 8Lst,t8d…. s39d

Let us consider the free motion as an example. Such a

situation is described by the Hamiltonian(1) with cW =0W, b1
=b2=b3=0 andb4 being the diagonal matrix with the diag-
onal elements equal to"2/m (we consider the particles with
equal massesm). Taking "=m=1, we haveb4=E, the N
3N identity matrix. In this case Eqs.(15) give the vector

DW st ,t8d and matrixLst ,t8d in the following form:

DW st,t8d = 0,

Lst,t8d = E2N32N − S0 0

E 0
Dst − t8d.

Inserting these results in the expression(39), we obtain
the center of mass tomography propagator for free motion:

PFreesX,mW ,nW,X8,mW 8,nW8,t,t8d

= dsX8 − XddsmW 8 − mW dd„nW8 − nW − mW st − t8d…, s40d

and the same for the symplectic tomography:

PFree
s sXW ,mW ,nW,XW 8,mW ,nW,t,t8d

= dsXW 8 − XW ddsmW 8 − mW dd„nW8 − nW − mW st − t8d…. s41d

C. Integral properties of the propagators

For given time momentst1 and t2 a propagator
P fsz2,z1,t2,t1d connects the state-describing function
fsz1,t1d at time t1 with the same function at timet2. For the
coordinate, momentum, Wigner-Moyal, and many other rep-
resentations there exists a fundamental property of the propa-
gators:

P fsz3,z1,t3,t1d =E P fsz3,z2,t3,t2dP fsz2,z1,t2,t1ddz2.

s42d

Here we are going to show that the center of mass tomog-
raphy propagators obey the same property. The argumenta-
tion is straightforward. Property(42) is known for the
Wigner propagatorsPW. Applying the transform(25) to this
expression, we have

PsX3,MW 3,X1,MW 1,t3,t1d

=E e−iskX8−X1d 3 dsMW 1 − kMW 8dPsX3,MW 3,X2,MW 2,t3,t2d

3PsX2,MW 2,X8,MW 8,t2,t1d
dX2dMW 2dX8dMW 8dk

2p
. s43d

This integral expression again can be converted into a
more simple form. This can be done in the same way as it
was with obtaining expression(39) from Eq. (37). Consider-
ing Eq. (43) in the framework of the formula connecting
wst1d with wst2d, one has
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PsX3,MW 3,X1,MW 1,t3,t1d =E PsX3,MW 3,X2,MW 2,t3,t2d

3 PsX2,MW 2,X1,MW 1,t2,t1ddX2dMW 2.

s44d

The same is true for the symplectic tomography: the deriva-
tion of this property for the symplectic tomography propaga-
tors is the same as for the center of mass tomography ones.

Property(44) can be elucidated using the example of the
system with quadratic Hamiltonian(1). In this case, analysis
of Eq. (44) with the propagators given by Eq.(39) shows that
the property(44) is analogous to the following set of equa-
tions:

Lst2,t1dLst3,t2d = Lst3,t1d, s45d

DW st3,t1d = Lst2,t1dDW st3,t2d + DW st2,t1d. s46d

From Eq. (15) one can see that the requirement(46) is
satisfied automatically if Eq.(45) is true. But requirement
(45) is also satisfied because Eq.(15) for L are the first-order
linear differential equations. This example shows that the
evolution in the framework of quantum mechanics is closely
related to the properties of propagators, and properties of the
propagators and of the Hamiltonian are connected to each
other.

IV. CONCLUSION

We have presented the new results concerning the de-
scription of quantum evolution of a multipartite system(tran-
sition from one state to another) in the framework of the
center of mass tomography. These new results include the
derivation of the center of mass tomography time evolution
equation for a system with quadratic Hamiltonian(1), and
detailed investigation of the integrals of motion, as they ap-
pear in the center of mass tomography formalism. We also
studied the center of mass tomography propagator, its homo-
geneity properties, and the integral expressions connecting
the propagators at successive time moments. We point out
that in the center of mass tomography the quantum transi-
tions are described by the transition probabilities and the
complex transition probability amplitudes are connected with
the transition probabilities by Eqs.(27) and (28). As an ex-
ample, we considered in detail a system described by the
quadratic Hamiltonian(1), and particularly the case of a free
motion in a multipartite system. Expressions connecting the
propagators in the center of mass and symplectic tomogra-
phy, Wigner-Moyal, and Heisenberg-Schrödinger representa-
tions are given in the explicit form.
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