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Quantum transitions in the center-of-mass tomographic probability representation
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Propagators for quantum evolution equation of multipartite systems in the center-of-mass probability repre-
sentation are introduced. Properties of these propagators and their relation to the Green function of Schrodinger
equation and propagator of Moyal evolution equation are studied. Examples of quadratic systems are consid-
ered and explicit expressions for the center of mass tomographic propagator are obtained.
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I. INTRODUCTION momentum;u and v are the parameters of scaling and rota-
) . tion. Symplectic tomogram’s M variables are two
anntum _mechanlcs, usually formulated in terms of theN-component vectors of scaling and rotatigh and #) and
\c/jv?;\r;ssltyo:lneatsrz(éhcglrt]e:Jr?atilse Vv\(Z\li/ Ertmhglitﬁ)%égn{S/argpggee;l_\l-component vectoX of positions, measured in all possjble
tation of quantum mechanics, or quantum tomography, reg?]tgted and scaled referen_c e frantee., f_or all possiblex
. v). In fact, the symplectic tomogram is the homogeneous
cently proposed in Reff1] (see also[2—€] for reference fnction[28,29. Effectively it has only A independent vari-
about the analogous quasidistribution functjorihe prob-  gples and contains the same amount of information about the
ability representation is remarkable for it describes the quansystem as the density matrix does. But straightforward de-
tum state in terms ofion-negative distribution functiofthe  scription of the quantum evolution in symplectic tomography
tomogram, or marginal distributiondirectly measurablén s possible only using the full set ofBvariables. Of course,
experiments on the state reconstructiga-1§. The tomo-  for the investigation of the multipartite systertiarge N), it
gram is aprobability distributioncompletely describing the is quite inconvenient to operate witiN3sariables instead of
guantum state. In addition, the tomography can be applied t@N, even if it implies the description of the state in terms of
describe classical systems. As a result one can compare tkiee non-negative function.
classical and quantum behavior of the same system in the Fortunately, it appears that one can avoid the half as much
framework of one formalism. Sign conservation of the tomo-increase of the number of variables in replacing the density
gram can be valuable in the computer simula{id®,2q, for ~ matrix formalism by the tomographic one. Recer{p,3]
example in the overcoming of the “sign problem” in simula- We introduced theenter of massomography, that operates
tion of the Fermi systemgsee [21,2 and references With only 2N+1 variables, describes the state by the non-
therein. Another advantage of the probability representation€gative function(center of mass tomogrgnand contains
is the fact that not only quantum states are described b§'®¢ Same amount of information about the system as the
probability distributions but also quantum transitions be-Jensity matrix and symplectic tomogram dbe density ma-
tween the quantum states are described by nonnegative pro%'—x' symplectic tomogram, and center of mass tomogram are
abilities (propagatorginstead of complex probability ampli- connected by the invertable map¥he center of mass to-
tudes. The latter ones can be expressed in terms of thnewog_raphy also uses twii-component vectorsi: and ) of
’ ) . scaling and rotation of reference frame in the phase space.
propagators. One of_the aims of the present work is to mak%ut, contrary to the symplectic tomogram, the center of mass
an exp_I|C|t presentation of S.UCh EXPressions. tomogram is the distribution of one variabke the sum of
Besides the above-mentioned advantages of the tomogrsitions over all degrees of freedom, or position of the cen-

th'c repr?fﬁnt?tlon,lltherecls a.éjlsadvanta;ge con?ectt;wqtr\l/v "B of mass of the system, measured in the scaled and rotated
€ use ot this formalism. L.onsider a quantum system With - oo e yce frame. This is the origin of the name “center of

degrees of freedom. _Density m"?‘"ig&z‘“ describing th? mass tomography.” Amazingly, the function oN21 vari-
state O.f such system is the funcpon dfl ;hdependent var- able contains the same amount of information about the sys-
ables(time, temperature, etc., being the external p.aram)eterst’am as the function of I8 variables(symplectic tomograi

The so-called symplectic tomograp[@/S—Zﬂ dt'ascrllbes the does. This is the consequence of overcompleteness of the
same state by the symplectic tomogram, which is the func'symplectic tomography description: the symplectic tomo-

tion of 3N variables. The idea of tomography representatiorbram operates with some additional variables that do not

is to rotate and scalehe reference frame in the phase space’. : ;
. TR ive more information h Ctal
and work with the distribution opositionin the new refer- give more information about the systesee[30,31). It also

¢ X= 0t h d dinat d should be noted that the proposed schemes of state-
ence framesA=ug+vp, whereq andp are coordinate and q.qnstryction experiments for several degrees of freedom

[13,14 used a particular variant of what we later called the
center of mass tomogram.
* Author to whom correspondence should be addressed. Email ad- This paper is devoted to further development of the center
dress: aarkhip2@uiuc.edu of mass tomographic map. In previous wgB0,31] we de-
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rived the time evolution equation for this representation, in-the center of mass positipmeasured irscaled and rotated
vestigated the properties of the map and its relation to theeference framen the phase space.

star product formalism, and symmetry properties in respect Connection betweew and the density matrix can be

to identical particles permutations. In this work we presenteasily obtained from Eqg3) and (4) and the expression
the new results concerning the quantum evolution in the cenconnectingo and the Wigner function:

ter of mass representation. Namely, we investigate the form

and properties of the propagators in this formalism, and their o o - g = U\ g du
connection with the propagators in symplectic tomography, W@.p) = | plq+ >d75)¢8 2N (6)
Wigner-Moyal and Schrédinger-Heisenberg representations
of quantum mechanics. As an example, we consider the sys- S
tems withN degrees of freedom and Hamiltonian p(d',q") = f W(q q 5)@5(&’—&")(15 (7)
’ 2 1 .
H=3QB(1Q + (1), (1) The relation between the center of mass and symplectic

N tomograms is given by the following formulas:
whereQ is the 2N-component vector of momentum and co-

ordinate operators:

wW(X, i, 7) = f w(Y, 4, ﬁ)a‘(x -2 Yj)d\?, (8)

Q={p.q. ) =
andB(t) andc(t) are the time-dependenN2< 2N matrix and R ) R P
2N-component vector. The Hamiltonians of ty(ig describe we(X, i, ) = f w(Y,Ko iz,ko )Y XdkdY.  (9)

such physically valuable cases as a motion of free particles,
time evolution of multimode oscillators, and motion of non-
interacting particles in the magnetic and electric fields.
Below, for the system described by Hamiltonigk), we
investigate the evolution equation and integrals of motion i
the center of mass tomography representat®ec. I). In
Sec. Il the general properties of propagators for center of
mass tomography are elucidated, as well as their connection B. Evolution equations
to the propagators in other representations is explained. In
Sec. Il we also obtain the expression for the center of masg,
tomography propagator for quadratic Hamiltonigtg The
work is summarized in Sec. IV.

Here and throughout the paper the designaﬁmﬁoﬁ
means the componentwise product of vectass:the jth

rcomponent of vectoc, is given byab;; a-b means usual
scalar product of vectors.

Now, when we know how to obtain one state-describing
nction from another, let us consider the evolution equation
for the center of mass tomography. In R€f30,3] one can
find the evolution equations for the center of mass tomogram
w, derived for the motion in potential(q) (taking into ac-

Il. QUANTUM EVOLUTION AND INTEGRALS OF count both an external potential and an interaction between
MOTION the particles Such equation is obtained applying the for-
_ _ o _ mula connectingv with the density matrix to the evolution
A. Connection between different state-describing functions equation forp:
The center of mass tomogram is connected with the L
Wigner functionW [32], density matrixp and symplectic iﬁp(CI':qH) = [A. (6. 6)] (10)
tomogramw; through the invertable mag80,31. For ex- ot R
ample, the Wigner function and center of mass tomogram are

connected in the following way: Note that the Hamiltoniail) is not a special case of the

Hamiltonian describing the motion in the potentM| be-
. o kixendons dkdEdp cause Eq.(1) contains the terms witlg;p;. Therefore the
wW(X, &, D) = f W(g, p)e X ar D) 2m) (3 evolution equations in Ref§30,31 do not cover all possible
forms of the Hamiltoniar(1).

Before presenting the evolution equation foy derived

W(d, ) = f e—i(ﬂ-dﬁ-ﬁ—x)w(xyﬁ,,;)m_ (4)  from Eq.(10), let us introduce some useful designations for
(2m™ B and¢ in Eq. (1):
Hered, p are theN-component vectors of coordinates and b b
momenta., v are also theN-component vectors, and is a ¢={cP,¢%,B= ( ! 2>, (12
real number. The meaning of the arguments of the center of bs by

m mogram is given he following relation:
ass tomogram is given by the following relatio where ¢? and ¢@ are the N-component vectors and

.. . e b;,by,b3,b, are theN X N matrices. Using these designa-
w(X, u,v) = f W(G,P)d(X = (m-g+v-p)dddp, (5  tions, one gets the evolution equation for the system with the
Hamiltonian(1) in the center of mass tomography represen-
which means thak=px-G+v-p is the sum of positiongor  tation:
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N -
ow (1 , d d , d S . - dQ
—+| 3 kat<-—+ —)—b’kt(-— vT/St:J X-M-QIAMQ+A( .7
P (2%{ Kol vk(mj 0| iz, 0= oX-M-QIAMQ+ AWM, <5 (17
d i " &P In the center of mass tomography one can find the invari-
* )+l (1) + g (1)] Vu“k&xz ant average values of the integrals of motion
]
P a)? 9 a(a\* (1) = AD(Q) +A() (18)
— -¢lr— - 2|6p w=0.
o\ IX axX P% from the formulas
(12 ~
D=1 Xw(X,z=0,y=1,7=0)dX,
Evolution of the same system in the Wigner-Moyal repre- (P f WX, g v=0)
sentation is described by the following equatisee also
[33)): ~ .
N (ap =fXW(X,Mi =1,2=0,v=0)dX, (19
oW 1 1%
-t 2 |:bjk(t)<pj_ + pk ) bjk(t)<qj . . ~
ot 2§\ aq q; Py where the designatioa=1,a=0 means that all components
J P of vectora equal zero, exce;. It means that the integrals
+Q— >+|[b1k(t) +ka(t)]<—— q]pk>] of motion are connected with the first moments>qf ob-
“op, 2 9p;j tained from the one-variablexX) distribution, taken apar-

ticular points in the spacéu, v}.

J _
— ¢%— + 2iéPp (W=0. (13
ap I1l. PROPAGATORS
A. General relations
C. |ntegral$ of motion Let us now turn to the propagators that describe the evo-

characterized by 12 integrals of motior{33], linearly inde- ~ Start from the propagator for the wave functitn
pendent operators with constant average values. For the qua-

dratic systems described by the Hamiltonigk) one can W(X,t) = IG(* X', t,t" )W (X' ,t")dX, (20)
write the 2N-component vector of integrals of motion in the ) _
form [33] or for the density matrix,

1) = AMQ+A(), (14) %X 1) = j G(%Y,4t)G* (X, Zt,t)p(¥, 2t )dydz.
where matrix A:(igj) consists of NXN matrices (21)

MiAz g g, and  vector A={8;, 5} consists  of Standard meaning of the above propagator in 26) is
N-component vectors; and &,. These matrices and vectors that the propagator is transition probability amplitude from

obey the differential equations initial to final position.
. . The propagatorllf(z,z',t,t") for any state-describing
A1 = Abg = Aoby, Ao = Ngby = Aoby, function f(z,t) allows us to obtain this function for anty

_ . from givenf(z,t’):

)\3 = )\3b3 - )\4b1, )\4 = )\3b4 - )\5b2, (15)

. _ f(z,t):fHf(z,z’,t,t’)f(z’,t’)dz’. (22
(_3)1:)\16‘]_)\26‘1, 52:)\36[]_ )\46p, . i

R Below we designate the propagators in the center of mass
with initial conditions A(0)=E,y,A(0)=0, with E,y being  tomography, symplectic tomography, and Wigner representa-
the 2N X 2N identity matrix. tion asll, IS, andIT%, respectively. Their connections with
In tomography representation any opera@o'rs replaced each pther and relatiqns to the functi@nare given by the
by the tomographic symbat, [31]. The center of mass to- following set of equations:

mography symbolsy, that correspond to the integrals of mo- (G, ,d',p',t,t")
tion are given by
e 0. v VI
o :Je'(p v p'“)xG(q+5,q’+5,t,t’)G* (q—é,q’
Wi (t) = f SX-M - QA(MQ+ A(t)](2 N (16)
_§ t t’) duido (23
whereM ={7, &}, or the same in the symplectic tomography: 2" ) 2wV
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G(X,X' ,t,t"G* (y,y',1,t")

:f el[ﬁ()z_yj_p ()2’ >7,)]1_[\/\/<j’rﬁyx +y 1§,1tyt,)

2 2
d—* ~
x (;;;)N, (24)
(X, @, v, X', i, v’ 1)
f TIW(G,B,G’, B’ t, /) KX AP+ q +'p'-X']
dgdg’ dpdp’ dk
qdg’'dpdp (25

(271_ 2N+1 ’
Xy, x',y',t,t")
J H(X ﬁ, 1‘; X/ "/ 7 ot )e—l[,u. X+vy—X+K (X' =" X' =" y")]

dXdX dudvdu'dv'dk’

2
(27)2N+1 ! ( 6)
OX, @, 0, X, 4, o' t,t)
kv v’
— —i[k(X—z-g)+u-g" -X"] - g + — r) *
f G<q S0 LG
ki ¥ dgdg dk
X{q-—,9" - =,t,t’ , 2
(q 29772 )(27T)N+1 @0

GX.X',t,t")G* (y,y',t,t")

:f @ DX=al(x+y)/2]-k' (X" -p"[(X"+y")/2])]

I X =y dXdXduda' dk’
XH(X,,u,x—y,X’,,u’, Y 4, ') PR

Kk’ |k/|N(2,n_)N !
(28)
(X, @, 5, X', &', 7', t,t')
- [t v gy £ )
K 'K
dydYdk' dk
X 29
|k/|2N(27T)N+1 ( )
(X, o, 0, X, 4!, 0 tt)
e—i(?'-é—X')éx_?_e N ?/ S >y
:f N ( ,3 _))HS Y!ﬁIIj!T,iMT’II—})_IVtit’
I, Ikl KKk
dydY'dk’ (30
@mN

whereé is the unit vectorej=1 for anyj), and the compo-

nents of vectoé=a/b are given byc;=a;/b;.

PHYSICAL REVIEW A 71, 012101(2005

Physical meaning of tomographic propagators both in
symplectic and center of mass tomography representations is
as follows. The propagators are nonnegative transition prob-
abilities from initial position in the symplectic tomography
case and from initial center of mass position in the second
case to the corresponding final positidimal center of mass
position in the second caseBut the initial and final posi-
tions (centers of magsare measured in ensembles of refer-
ence frames in the phase spaces of the system labeled by
extra real parameters. The obtained formulas relate transition
probability amplitudes describing quantum transitiégsan-
tum evolution with tomographic transition probabilities
which also describe the quantum transitions in the probabil-
ity representation.

Symplectic and center of mass tomograms are the homo-
geneous functiong30,31]. The same is true about the corre-
sponding propagators, but only concerning the variables at
“time slice” t:

TSN o X, N o N o 5, X, !, 7 4 t)
HS(X,L,L,VX’ TR R

Hj=1|)\]|

(31

or, in particular,

HS(X,LL,VX a7t

|a

(X, afi, i, X' i, 7 ) =
(32
The center of mass tomography propagator obeys the fol-
lowing relation:
X, o, X, 1, 7', t,t')

(X, am,av, X', o/, v/ t,t') = o]
a

(33

These equations allow us to obtain the properties

N > >
&L X i vt
IT x| s 62
j=1 X X
N - -
X %o
:H|Mj|‘1ﬂs<: 2 X i ’tt)
=1 T
X ji N
_H|V| 11—[3(_; % /’Mr, 7ot ) (34)

IJ’ 1-; A
H 1,_,_,X,,,LL v 1t1t,
XX

=TI(X, &, 5, X ', 7 ),
X

(35

that show that the quantum evolution even in the tomography
representation is described by the functions WNf\ariables.
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B. Propagators for the system with quadratic Hamiltonians Let us consider the free motion as an example. Such a
It is convenient to begin the analysis of the center of massituation is described by the Hamiltonigf) with ¢=0, b,

tomography propagator for the system with quadratic Hamil=b,=b;=0 andb, being the diagonal_ matrix with_the dia_lg-
tonian (1) from the propagator in the Wigner-Moyal repre- onal elements equal t?/m (we consider the particles with

sentation33]: equal massesn). Taking A=m=1, we haveb,=E, the N
oL S X N identity matrix. In this case Eqg15) give the vector
MQ,Q" t,t") = &(Q" — Qq(t,t"), A(t,t") and matrixA(t,t’) in the following form:
Qo(t,t) = A(Lt)Q+A(tt), (36) Att)=0,
whereA(t,t’) and&(t,t’) are the matrix and vector given by 0 o
Egs. (15), ase functions oft, with initial conditions A(t At,t)) = E2N><2N_< )(t—t’).
=t' t')=E,y, A(t=t’,t")=0. EO
Applying the transform(23) to the expressiol36), one Inserting these results in the expressi@9), we obtain
obtains the center of mass tomography propagator: the center of mass tomography propagator for free motion:
H(x,|\7|,x',|\7|',t,t’)=fe‘i“‘W"5<tvt’>‘x’15(k|\7| el X, 4, 5 X, 35 )
A dk =X =X)ap - w)o(v' - v-pult-t)), (40)
-M'AE)—, i
( ))277 and the same for the symplectic tomography:
] ] (37 -
M={7,u},M" ={7', 0’} rred X2, v, X' 1, v, t,t)
From the first sight this expression seems quite inconve- = 5()2’ - )2)5(;2’ -8V - v-pt-t)). (42)

nient. But it becomes amazingly simple if we recall that the
propagatoill does not have any meaning by itself: it must be
utilized only in the context of the integral expressions, con- C. Integral properties of the propagators

necting the center of mass tomograms at tirriesndt: . .
For given time momentst; and t, a propagator

- - e vy I1¢(z,2,t5,t;) connects the state-describing function
WX, M,t) = | TI(X,M, X, MY ) w(XE, MY, t)dX dM f(z,t;) at timet, with the same function at timg. For the
coordinate, momentum, Wigner-Moyal, and many other rep-
_ e“[km;'"&(tst')‘x']ﬁ(kl\ﬁ _ I\7I’A(t t)) resentations there exists a fundamental property of the propa-
’ gators:
=, dX'dM'dk
XW(X 'M ’t ) 2ar Hf(Z3,Zl,t3,tl) :JHf(z3l22!t31t2)Hf(221Zl!t21tl)d22'

(42)

Here we are going to show that the center of mass tomog-
_ dX'dM’ dk raphy propagators obey the same property. The argumenta-
Xw(X',M' t")——— tion is straightforward. Property42) is known for the
2 Wigner propagator$l"V. Applying the transform(25) to this
expression, we have

:J e—ik[XH\;I'-A‘(t,t')—X'](s)\('\z _ '\Z,A(t,tl))

=f X' =X=M"-A(t,t")8(M = M’ A(t,t'))
N N H(X31M31xlleit3at1)
xw(X',M’ t")dX'dM’. (38)

Here we used the homogeneity properties of #hfeinction

and center of mass tomogram. Equat{@8) means that for

the integral expressions where the center of mass propagators
are used, and for the functions such as center of mass tomo-

grams, the propagator given by E®7) is the same as the o ) ) _
expression in the integréBs): This integral expression again can be converted into a

more simple form. This can be done in the same way as it
TIOXML X, MY 52 = S =X =M - A(t,t)) 8(M was with obtaining expressiaid9) from Eq.(37). Consider-
. ing Eq. (43) in the framework of the formula connecting
-M’A(t,t)). (39 wl(ty) with w(t,), one has

- f g () x 5('\7|1 - kI\7I’)H(X3,I\7I3,X2,I\7I2,t3,t2)

dX,dM,dX'dM’dk

XTT(Xp, M, X', M 1, ty) 5
'

(43
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. N . N IV. CONCLUSION
HXe M X0, My fa ) JH(Xg’MS'XZ'MZ’tS'tZ) We have presented the new results concerning the de-
- - - scription of quantum evolution of a multipartite systénan-
X TI(Xz, M2, X3, My, 13, t1)dXod M. sition from one state to anothein the framework of the
(44) center of mass tomography. These new results include the
derivation of the center of mass tomography time evolution
The same is true for the symplectic tomography: the derivaequation for a system with quadratic Hamiltonigh), and
tion of this property for the symplectic tomography propaga-detailed investigation of the integrals of motion, as they ap-
tors is the same as for the center of mass tomography onegear in the center of mass tomography formalism. We also
Property(44) can be elucidated using the example of thestudied the center of mass tomography propagator, its homo-
system with quadratic Hamiltoniai). In this case, analysis geneity properties, and the integral expressions connecting
of Eq. (44) with the propagators given by EB9) shows that the propagators at successive time moments. We point out
the property(44) is analogous to the following set of equa- that in the center of mass tomography the quantum transi-
tions: tions are described by the transition probabilities and the
complex transition probability amplitudes are connected with
Aty t)A(ts, 1) = A(tg,ty), (45) the transition probabilities by Eq§27) and (28). As an ex-
ample, we considered in detail a system described by the
quadratic Hamiltoniargl), and particularly the case of a free
&(ts,tl) = A(tZatl)&(tgvtz) + &(tzytl)- (46) motion in a multipartite system. Expressions connecting the
propagators in the center of mass and symplectic tomogra-

From Eq.(15) one can see that the requiremed6) is  phy Wigner-Moyal, and Heisenberg-Schrédinger representa-
satisfied automatically if Eq45) is true. But requirement tions are given in the explicit form.

(45) is also satisfied because Ed5) for A are the first-order

linear differential equations. This example shows that the
evolution in the framework of quantum mechanics is closely
related to the properties of propagators, and properties of the We deeply appreciate the financial help from RFBR. A.A.
propagators and of the Hamiltonian are connected to eacis also grateful to “Dynasty” foundation and ICFPM for fi-

ACKNOWLEDGMENTS

other. nancial support.
[1] S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Lett. 213 chard, Phys. Rev. Lett66, 2693(1991).
1(1996; Found. Phys.27, 801(1997). [18] T. J. Dunn, I. A. Walmsley, and S. Mukamel, Phys. Rev. Lett.
[2] J. Bertrand and P. Bertrand, Found. Ph$g, 397 (1987. 74, 884(1995.
[3] K. Vogel and H. Risken, Phys. Rev. AO, 2847(1989. [19] Yu. E. Lozovik, V. A. Sharapov, and A. S. Arkhipov, Phys.
[4] K. Husimi, Proc. Phys. Math. Soc. Jp@2, 264 (1940. Rev. A 69, 022116(2004).
[5] E. C. G. Sudarshan, Phys. Rev. Leth, 277 (1963. [20] A. S. Arkhipov and Yu. E. Lozovik, Phys. Lett. 819, 217
[6] R. J. Glauber, Phys. Rev. Lett0, 84 (1963. (2003.
[7] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Phys. [21] C. H. Mak and R. Egger, Adv. Chem. Phy83, 39 (1996.
Rev. Lett. 70, 1244(1993. [22] D. M. Ceperley and B. J. Alder, Scien@31, 555(1986.
[8] G. M. D'Ariano, L. Maccone, and M. Paini, J. Opt. B: Quan- [23] L. D. Landau, Z. Phys45, 430(1927.
tum Semiclassical Opt5, 77 (2003. [24] J. von NeumannMathematische Grundlagen der Quanten-
[9] S. Schiller, G. Breitenbach, S. F. Pereira, T. Muller, and J. mechanik(Springer, Berlin, 193p
Mlynek, Phys. Rev. Lett77, 2933(1996. [25] S. Mancini, V. I. Man’ko, and P. Tombesi, Quantum Semiclas-
[10] D. G. Welsch, W. Vogel, and T. Opatrny, Rrogress in Optics sic. Opt. 7, 615(1995.
edited by E. Wolf(Elsevier, Amsterdam, 1999 [26] G. M. D’Ariano, S. Mancini, V. I. Man’ko, and P. Tombesi,
[11] M. Beck, D. T. Smithey, M. G. Raymer, and A. Faridani, Phys. Quantum Semiclassic. Op8, 1017(1996.
Rev. Lett. 70, 1244(1993. [27] O. V. Man’ko, V. I. Man’ko, and G. Marmo, J. Phys. A5,
[12] M. G. Raymer, M. Beck, and D. F. McAlister, Phys. Rev. Lett. 699 (2002.
72, 1137(1994). [28] A. Wiinsche, J. Mod. Opt47, 33 (2000.
[13] M. G. Raymer, D. F. McAlister, and U. Leonhardt, Phys. Rev. [29] V. I. Man’ko, L. Rosa, and P. Vitale, Phys. Rev. B7, 3291
A 54, 2397(1996. (1998.
[14] M. G. Raymer and A. C. Funk, Phys. Rev. 81, 015801 [30] A. S. Arkhipov, Yu. E. Lozovik, and V. I. Man’ko, J. Russ.
(1999. Laser Res.24, 237 (2003.
[15] J. Ashburn, R. Cline, P. van der Burgt, W. Westerveld, and J[31] A. S. Arkhipov, Yu. E. Lozovik, and V. I. Man’ko, Phys. Lett.
Risley, Phys. Rev. Ad1, 2407(1990. A 328 419(2004).
[16] O. Carnal and J. Mlynek, Phys. Rev. Le@6, 2689(1991). [32] E. Wigner, Phys. Rev40, 749(1932.

[17] D. W. Keith, C. R. Ekstrom, Q. A. Turchette, and D. E. Prit- [33] V. V. Dodonov and V. I. Man’ko Invariants and Evolution of

012101-6



QUANTUM TRANSITIONS IN THE CENTER-OF-MASS. PHYSICAL REVIEW A 71, 012101(2005

Nonstationary Quantum Systengoc. P.N. Lebedev Physical Institute Vol. 1@8va Science, New York, 1987

012101-7



