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We show that in a two-mode, three-level, double-L system an efficient multiphoton destructive interference
involving one- and three-photon pumping pathways occurs, leading to a unique type of induced transparency.
Unlike the conventional electromagnetically induced transparency achieved with a three-stateL system, the
induced transparency is critically dependent upon two distinctive relaxation processes involving the production
and propagation of an internally generated field. When a two-mode probe field is injected under suitable
conditions, we show that the two probe pulses, after a characteristic propagation distance, evolve into a pair of
temporal, amplitude, and group velocity matched pulse, traveling loss free in a highly dispersive medium.
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Electromagnetically induced transparencysEITd f1g
achieved with a three-levelL system has been demonstrated
to be able to significantly reduce the absorption of a probe
field tuned to a strong one-photon resonance. In two seminal
studiesf2,3g, Harris has described how a pair of short and
intense probe and pump pulses can evolve, in a three-state
L-type EIT configuration, into a temporally matched pair
that propagates losslessly in the medium after a characteristic
initial propagation distance.

In this Rapid Communication we show that with a two-
mode, three-level, double-L system it is possible to produce
a pair of temporally, amplitude, and group velocitysTAGd
matched ultraslow probe pulsef4,5g. The key difference, in
comparison with the conventional EITL schemef1–3g, is
the suppression of a dark state population by an efficient
multiphoton destructive interferencef6g, leading to a unique
type of efficient induced transparency. Specifically, we show
s1d under suitable conditions both temporal profiles, ampli-
tudes, and group velocities of two probe pulses can be well
matched,s2d substantial suppression of a dark state due to a
robust destructive interference between a one- and a three-
photon excitation channel, resulting in a unique type of in-
duced transparency and remarkable suppression of probe
pulse absorption, ands3d no requirement on having maxi-
mum atomic coherence in order to achieve 100% photon flux
conversion efficiency.

Before presenting our work, we first cite several works on
Raman double-L system. These works include lasing with-
out inversionf7g, cavity QEDf8g, optical phase conjugation
f9g, efficient parametric frequency conversionf10g, and effi-
cient Raman scatteringf11,12g. We point out that all these
studiessexcept Ref.f12gd require a four-level system and
many rely on steady-state solutions to atomic responsesses-
pecially in the case of efficient frequency conversionf10gd.
Finally, we also point out several recent studies on double-L
systemsf13g.

In the present study we consider a lifetime broadened
three-state atomic medium interacting with a pulsed two-
mode probe field and a two-mode continuous wavescwd
pump field sFig. 1d. The probe fieldsspulse lengtht at the
entrance of the medium and angular frequenciesvpn,n

=1,2d and pump fieldssangular frequenciesvcnd couple the
transition u1l→ u2l and u2l→ u3l, respectively. We assume
that the probe lasers are weak so that ground-state depletion
can be neglected. The equations of motion for the atomic
response and the probe fields can be written assthroughout
the present workn=1,2 unless specifiedd
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Here,A2
snd is the part of the stateu2l amplitude that carries the

polarization at frequencyvpn,dpn=dpn+ ig2/2, wheredpn is
the detuning of the probe lasersvpnd from the u1l→ u2l reso-
nance andg2 is the decay rate of the stateu2l. In addition,A3
is the amplitude of stateu3l and d3=d3+ ig3/2, whered3

FIG. 1. Energy-level diagram for a three-state double-L system
interacting with a two-mode probe and two-mode control fields. In
reference to ultracold87Rb atomic vapor, we chooseu1l=5S1/2sF
=1,MF=−1d, u2l=5P1/2sF=2,MF=0d, u3l=5S1/2sF=2,MF=1d.
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=vp1−vc1=vp2−vc2 is the two-photon detuning between
statesu1l and u3l and g3 is the decay rate of stateu3l. We
assume that two-photon resonances are always maintained so
that d3=0 and takeg3.0. Finally, 2Vpns2Vcnd is the Rabi
frequency of the probespumpd field for the relevant fre-
quency mode,k12=2pNvpnuD12u2/ s"cd with D12 andN being
the dipole moment for transitionu1l→ u2l and concentration,
respectively. We note that the major approximations used in
deriving Eqs.s1ad–s1cd are the undepleted ground statesA1

.1d and the neglect of far off-resonant terms such as cross-
mode stimulated emission with nonvanishing two-photon de-
tunings sthese approximations should always be accurate if
the fields atvpn are sufficiently weakd. No other approxima-
tions have been made in our semiclassical theory, Eqs.
s1ad–s1cd.

To solve Eqs.s1ad–s1cd we begin by assuming thatudpnu
@g2, udpntu@1, udp2u@ uVpnu, on=1

2 uVcntu2/ udpntu@1, and
uVpnu! uVcnu. These conditions ensure that the ground state
remains undepleted and adiabatic processes remain effective.
Let a2

snd, a3, andLpn
* be the time Fourier transforms ofA2

snd,
A3, andVpn

* , respectively; we obtainsn,m=1,2;nÞmd
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wherev is Fourier transform variable,

D = sdp1 + vdsdp2 + vdsd3 + vd − uVc1u2sdp2 + vd

− uVc2u2sdp1 + vd. s2dd

Equationss2ad–s2dd can be easily solved, yielding

Lpn
* = eapzsW+

sndeLz + W−
snde−Lzd, s3d

where ap=L0on=1
2 fuVcnu2−sdpn+vdsd3+vdg /2, L0

= ik12/ fsdp1+vdsdp2+vdsd3+vd−Jg, J=sdp1+vduVc2u2+sdp2

+vduVc1u2, a12=−L0b12, b12=Vc1
* Vc2, L=L0

Îbq
2+ ub12u2,

W±
snd=fsL±aqdLpn

* s0,vd±anmLpm
* s0,vdg / s2Ld, aq=L0bq,

andbq=fuVc1u2− uVc2u2−sdp1−dp2dsd3+vdg /2.
Although in general detailed solutions of the probe fields

require numerical evaluation of the inverse transform of Eq.
s3d using the complex quantities defined above, much physi-
cal insight can be gained if the exponentssi.e., ap±Ld can be
approximated as linear or quadratic functions ofv. The lin-
ear dependence onv will correctly predict the propagation
velocities and temporal profiles of the weak probe fields,
whereas the inclusion of the quadratic terms inv provides
further corrections to temporal profiles, amplitudes, and
group velocities due to pulse spreading and additional pulse
attenuation. We note that the quadratic approximation can be
quite accurate even wheng2t is relatively large, as with the
lowest S→P transitions in alkali elements. Typically, when

the linear or quadratic approximation toap±L is accurate it
is sufficiently accurate to simply evaluate the coefficients in
W±

snd at v=0. With these approximations, we obtain

W+
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uVc2u2

uVu2
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uVc1u2
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where S1=sVc1
* /Vc2

* ddn,1+sVc1/Vc2ddn,2, S2=sVc2/Vc1ddn,1

+sVc2
* /Vc1

* ddn,2 sdn,1 is the Kroneckerd functiond, and uVu2
= uVc1u2+ uVc2u2. In arriving at Eqs.s4ad and s4bd we have
assumed thatuVcnu2@ usdpn+vdsd3+vdu and uJu@ usdp1+vd
3sdp2+vdsd3+vdu.

We now consider the adiabatic limit where we use Eqs.
s4ad ands4bd and retain only the constant and linear terms in
v in the exponents in Eq.s3d. Defining K0=k12uVu2/J and
Vpns±d

* =Vpn
* f0,t−z/Vg

s±dg, we obtain

Vpn
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uVu2
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* − S1Vpm+
* d

+
uVc1u2

uVu2
sVpn−

* + S2Vpm−
* d, s5d

where 1/Vg
s−d=1/c+sk12/ uVu2d and 1/Vg

s+d=1/c+sk12/
uVu2dfsdp1−dp2d2uVc1u2uVc2u2/J2g. Equations5d indicates that
in general each probe mode breaks up into two pulses, each
traveling at a different group velocity. It is, however, possible
to match these group velocities with appropriately chosen
operation parameters. To achieve this we requiref14g
Refsdp1−dp2d2uVc1u2uVc2u2/J2g.1, and obtainVg

s+d.Vg
s−d. If

we assume the initial condition ofVp2s0,td=0, then by
maximizingVp2 keeping group velocity matched we have

Vpn
* sz,td =

1

2
f1 + s− 1dn−1e−is2k12z/d2+ig2dgVp1−

* . s6d

We note that when exps−2k12g2z/d2
2d is close to unity then if

2k12z/d2=mp and m is an odd integer, we getVp1
* sz,td=0

andVp2
* sz,td=Vp1−

* . Therefore, with an appropriate medium
thickness, the field that exits the resonant medium will be
Vp2 only, with an amplitude nearly equal to that ofVp1 at the
entrance of the medium. Since the frequencies of the two
modes are nearly the same, this represents a near 100% pho-
ton flux conversion fromVp1 to Vp2. On the other hand, ifm
is an even integer, we haveVp2sz,td=0 Vp1

* sz,td=Vp1−
* .

Thus, as the two interacting fields propagate through the me-
dium the state of the probe field oscillates between the two
frequency modes as a function of propagation distance. Note
that there are no restrictions on having maximum atomic
coherence between statesu1l andu3l in order to achieve near
unity conversion. Indeed, there is a very small excited state
population in this problem.

The second unique feature of the present work is a robust
multiphoton destructive interference. We note that bothVp1

*

and Vp2
* have a velocity componentfthe first terms in Eq.

s5dg that decays in exactly the same way. In the case where
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Vp2s0,td=0 this feature has very interesting implications. At
largez, where the fast decaying part is negligible, we get

Vpn
* sz,td =

Vc1Vcn
*

uVu2
Vp1−

* , s7d

which lead to Vp1
* sz,td /Vp2

* sz,td=Vc1
* /Vc2

* →Lp1
*

=sVc1
* /Vc2

* dLp2
* . Using this result in Eqs.s2ad and s2bd and

assuming uVcnu2@ uvdpnu we immediately obtaina2
snd.0.

This implies that at a sufficient depth into the medium the
amplitude ofA2 is strongly suppressed by a destructive in-
terference between a one-sVp1

* d and a three-photon
sVc1

* ,Vc2
* ,Vp2

* d pathway to drive theu1l→ u2l transition
transparent. This multiphoton destructive interference-based
induced transparency is very different from the conventional
three-stateL EIT system where the transparency is the result
of the destructive interference of two single-photon pathways
with two externally supplied fields. It has been shown that
such a multiphoton-based interference is a common feature
of other highly efficient four-wave mixingsFWMd processes
f15g. As a consequence, if two matched pulses satisfying the
above relation are injected into the medium, they will propa-
gate with identical velocities and with very little distortion or
attenuation.

It is instructive to examine the formation of the dark state
before and after the onset of effective three-photon destruc-
tive interference. This is another important difference be-
tween the system studied here and the conventional three-
state L scheme widely used in EIT related works. In the
conventional EIT picture, a dark state is established immedi-
ately after the probe field enters the mediumsassuming that
the cw control field is already presentd. This is, however,not
the case of the system studied here. In fact, there is no dark
state in the medium prior to the establishment of the three-
photon destructive interference deep inside the medium. A
characteristic propagation distance is required so that the
generated wave is strong enough to open the back coupling
channel, leading to the three-photon destructive interference.
In other words, unlike the conventional EIT scheme, the dark
state has a root in the nonlinear wave mixing process. In fact,
it is established by the interplay of the one-photon and three-
photon coupling after a characteristic propagation distance.
This characteristic propagation distance can be short or long
depending on the concentration and operation conditions. As
a comparison, the commonly known dark state picture in the
conventional EIT does not rely on any propagation effect.
Before the characteristic propagation distance at which the
fast damping terms become negligible, one does not have a
dark state or the multiphoton induced transparency. Indeed,
the view of changing from stateu1l to stateu3l by gradually
extinguishing the driving field, as indicated in the dark state
picture of the conventional EIT scheme, cannot be simply
applied in the present problem because of the role of the
internally generated field. If one extinguishes the control
field Vc1, a photon of frequencyvSR.vc2 will be generated
by stimulated Raman process. The characteristic of the pro-
cess changes from conventional FWM to a parametric FWM.
Consequently, both two-photonsVp1

* +VSR excitation bal-
ancesVc2

* +VPFWM excitationd and three-photonsVp1
* +VSR

+Vc2
* excitation balancesVPFWM excitationd destructive in-

terferences can occur after characteristic propagation dis-
tances under suitable driving conditions. If, on the other
hand, one extinguishes the control fieldVc2, the generated
field and the three-photon destructive interference disappear,
and one loses the TAG pulse pair. These features of the dark
state in the present study do not have a counterpart in the
conventional EIT process. We emphasize that in contrast to
the conventional EIT scheme the unique type of induced
transparency is critically dependent upon the production and
propagation of an internally generated field and upon two
distinctive relaxation processes for each velocity component.
There is no equivalent mechanism in the conventional
L-type EIT system.

The above results are the consequence of linearization of
the coefficients and exponents permitted by the assumption
of good adiabatic behavior in the atomic response. Correc-
tions to this adiabatic theory can be derived analytically to
account for probe pulse spreading and additional attenuation.
Due to space limitation, solutions to Eq.s3d using quadratic
approximation with different pulse lengths and delays will be
presented elsewhere. In the following we give numerical ex-
amples to demonstrate the validity of our analytical solu-
tions.

For numerical simulations we consider cold87Rb atomic
vapor. In the first case we takeVp1s0,0dt=1 and
Vp2s0,0dt=0. From Eq.s6d we find that the first destructive
interference occurs atz1=0.008 65 cm. We thus take the me-
dium thickness to bezm=z1=0.01 cm. In Fig. 2 we plot the
normalized probe field intensities as a function ofz/zm for
the case ofzm=0.01 cmsthe insetd andzm=1.0 cm. The nu-
merical solutions are obtained by solving Eqs.s1ad–s1cd
without any approximations. The results from the two meth-

FIG. 2. Normalized peak intensities of thevp1 modessolid lined
andvp2 modesdashed lined probe waves as a function ofz/zm for
zm=1.0 cm and zm=0.01 cm sthe insetd. Parameters used:t
=10−4 s, N=1014cm−3, uVc1tu= uVc2tu=2136, dp1t=0, dp2t=1.256
3105, uVp1s0,0dtu=1, uVp2s0,0dtu=0, g2t=3610, d3t=0, g3t

=0.05,k12t=2.283107 cm s−1, andVg
s−dt=0.4 cm. Each curve con-

tains two traces obtained from the numerical solutions of Eqs.
s2ad–s2cd and the analytical solutions of Eq.s7d, respectively. The
agreement between the two equations is excellent and the two traces
for each mode cannot be distinguished.
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ods are so that they cannot be distinguished on the graph.
Note that the peak ofuVp2sz,tr /tdu2/ uVp1s0,0du2 sthe insetd
indicates a conversion of 91% is nearz=0.008 65 cm, as
predicted.

It is instructive to consider a case whereLp1
*

=sVc1
* /Vc2

* dLp2
* is satisfied andVp1s0,0dt=Vp2s0,0dt=1. In

such a matched injection case Eq.s8d predicts that two fields
Vp1 and Vp2 form a perfectly matched pair, propagate with
identical group velocity, and experience very little attenua-
tion and pulse distortion. Extensive numerical simulations
for such injection-matched pairs agree well with the analyti-
cal solution Eq.s7d, and typically less than 15% attenuation
of the probe fields can be achieved for an extended propaga-
tion distance of 1 cm. This is a remarkably high transparency
for such a highly resonant and optically thick medium. In a
separate study we will systematically investigate the advan-
tages of such matched injection conditions and explore ap-
plications of this effect in other wave propagation problems.

We have investigated a unique type of induced transpar-
ency resulted from multiphoton destructive interference. We
have shown the formation of two TAG matched ultraslow
pulse pairs. In addition, we have discussed the key differ-
ences between the present scheme and the conventional EIT

scheme, and we have shown that the unique effect and the
underlying physics do not have equivalent counterparts in
the conventional EIT system. We emphasize that the unique
type of induced transparency is the result of two distinctive
relaxation processes and is critically dependent on the three-
photon destructive interference involving the internally gen-
erated field. The robust three-photon destructive interference
and the efficient multiphoton-based induced transparency
predicted here are also expected to occur in Doppler broad-
ened media under modified driving conditions due to the the
broad linewidths. Of course, the requirement for near adia-
batic behaviors of the system response will also be subject to
appropriate modifications.

The TAG matched propagation of a pair of ultraslow
probe pulses in a highly transparent medium discussed here
may be applied to other multiwavelength experiments in the
ultraslow propagation regime. The unique type of highly ef-
ficient induced transparency enabled by one- and three-
photon destructive interference may provide yet another way
to achieve lossless propagation in a highly dispersive reso-
nant medium. This could lead to intriguing applications in
the field of optoelectronics.
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