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We present an experimental and theoretical study of the effect of additive noise on the signal-to-noise ratio
(SNR) in a bistable, vertical cavity laser. We show that, the regime of vibrational resonance leads to higher
SNR’s than the regime of stochastic resonance. A scaling law for the noise-induced degradation of SNR is
obtained analytically and compared with experimental and numerical results, showing a good agreement.
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In the last years, in the context of stochastic resonance
(SR) [1], large efforts have been devoted to finding condi-
tions for the improvement of the detection of weak noisy
signals. This subject is a matter of great interest in different
fields and is not a trivial problem. As a rule, the quality in the
detection of periodic signals can be evaluated using the
signal-to-noise ratio(SNR). A theoretical treatment using the
concept of SR has revealed that a SNR gain[that is, the
output sSNRdout is higher than the inputsSNRdin] can be
achieved in level crossing detectors[2], nondynamical
threshold systems with a static nonlinearity[3], in bistable
dynamical systems for a periodic sequence of alternating
rectangular pulses with a small duty cycle and near-threshold
amplitudes [4,5], and in a Schmidt trigger with near-
threshold rectangular pulses[6,7]. Evidence of the SNR gain
was given in a Schmitt trigger[6] and in an analog simula-
tion [4].

Recently, the phenomenon of vibrational resonance(VR)
has been theoretically predicted by Landa and McClintock
[8]. Experimental evidence of VR has been demonstrated in
analog circuits[10–12] and in a bistable vertical cavity sur-
face emitting laser(VCSEL) [13]. The phenomenon shows
up in a bistable system as a resonancelike behavior in the
response at the low-frequency(LF), depending on the ampli-
tude or frequency of an additional high-frequency(HF),
modulation. The mechanism underlying VR can be associ-
ated with a parametric amplification near the onset of bista-
bility controlled by the high-frequency modulation. In this
case SNR is determined by two processes, namely, the am-
plification of the LF periodic signal and enhancement of
fluctuations near the bifurcation point. The interplay between
these two processes near the critical point determines the
resulting SNR. Since no additional noise is added to the sys-
tem, one can expect that the output SNR can be improved
with respect to the input.

Here we present a theoretical and experimental study of
the effect of additive noise on SNR in a bistable optical
system. We show that(i) the noise-induced degradation of
SNR obeys a simple scaling law,(ii ) SNR in VR for weak
periodic signals is always higher than the one which could be
obtained in the same conditions using conventional SR, and,
(iii ) the experimental and numerical evidence that the rela-

tionship sSNRdout@ sSNRdin can be achieved for rectangular
periodic LF signals with weak subthreshold amplitudes in a
broad range of the level of initial noise coming together with
the signal.

First, we present some analytical results on the behavior
of SNR due to VR depending on the initial noise level in a
model of an overdamped bistable oscillator. For the sake of
clarity, we recall some of the results presented in[12]. The
system is being excited by the LF periodic signalfsVLd with
a frequencyVL and an amplitudeAL, and by a sinusoidal HF
modulation with an amplitudeAH and a frequencyVH, such
that VH@VL. In this case, the dynamics is described by the
equation

] x/] t = − V8sxd + ALfstd + AH sinVHt, s1d

whereV8sxd is the derivative with respect tox of a bistable
potential functionVsxd=−ax2/2+bx4/4, with local minima
xm

± = ±Îa /b and barrier heightV0=a2/4b, wherea and b
are positive numbers. The dynamics is ruled by two time
scales which are determined by LF and HF signals, respec-
tively. Therefore, we look for the solution as follows[9]:
xstd=ystd+fAH / sVH

2 +hd1/2gcosVHt where ystd denotes the
slow part of the solution andh is a parameter. Substituting it
into (1) and averaging over the periodTH=2p /VH, we ob-
tain the following equation, which governs a slow dynamics
of the system:

dY/dt = as1 − j2dY − bY3 + ALFstd, s2d

where Y=kystdlTH
, Fstd=kfstdlTH

, and where kzstdlTH
=1/THe0

THzsTddT. We introduce here a normalized parameter
j=AH /Ac, whereAc is a switching threshold which depends
on both the amplitude and the frequencyAc=fs2a /3bdsVH

2

+2a2/9bdg1/2. In this case, the effective potentialVef fsxd
takes the form

Vef fsx,jd = − as1 − j2dx2/2 + bx4/4. s3d

The sign near the quadratic term determines the character of
Vef fsx,jd. For j=1 we have a bifurcation point where the
transition from bistability to monostability occurs asj in-
creases[12]. Obviously, after averaging, the parameters of
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the potential such as the minima locationxm
± and the barrier

heightVj depend onj,

xm
± = ± Îas1 − j2d/b, Vj = a2s1 − j2d2/4b. s4d

Now, we can study the effect of noise on SNR for the LF
signalFstd=sinsVLtd. In this case the equation reads

dY/dt = as1 − j2dY − bY3 + AL sinsVLtd + zstd, s5d

where zstd is a white, Gaussian noise withkzstdzst8dl
=2Ddst− t8d and meankzstdl=0. We explicitly assume here
that the averaging does not change the character of noise
when we add the noise term into the averaged equation.
Equation(5) is the standard statement of the problem used
for studying the phenomenon of SR. We can use therefore
the analytical results obtained earlier, taking into account the
dependence of the potential parameters onj. In particular,
we consider here the well-known result for SNR in SR. In
the limit xmAL!D, the SNR can be evaluated from the ex-
pression[see, for instance, Eq.(3.12) from [14]]

R= psALx/Dd2rk, s6d

where

rk =
as1 − j2d

Î2p
expS−

a2s1 − j2d2

4bD
D s7d

is the Kramers rate. Substitutingxm (4) andrk (7) into (6), we
obtain for SNR in VR(denoted asRVR)

RVR=
AL

2a2s1 − j2d2

Î2bD2
expS−

a2s1 − j2d2

4bD
D . s8d

It is seen thatRVR is a nonmonotonic function ofj as shown
experimentally in[13]. Obviously, the expression(8) can be
used for an evaluation ofRVR for j,1, since forjù1the
bistability disappears. The maximum SNRsRVR

maxd obeys the
scaling law as a function of the input noise strengthDin,

RVR
max= 2Î2e−1AL

2Din
−1. s9d

In order to compare the efficiency of VR versus SR for the
SNR, we introduce the ratioRSNRdefined as

RSNR= RVR
max/RSR

max, s10d

where RSR
max is the maximum of SNR in SR,RSR

max

=32Î2AL
2be−2 follows from (6). Finally,

RSNR= sa2e/16bdDin
−1. s11d

From the condition R=1 it follows that for all Din
*

,a2e/16b=eV0/4, the RVR is always higher than theRSR,
since for theRSR the optimal valueDSR

* =V0/2,Din
* .

The experimental setup is essentially the same as was
used earlier for the investigation of VR[13]. We studied the
laser response after polarization selection when the mixture
of two periodic signals with very different frequencies and
noise were applied to the injection current. The square-wave
and sinusoidal LF signals have a frequencyVL=1 kHz and a
subthreshold amplitudeAL, whereas the sinusoidal HF con-
trol signal has a frequencyVH=100 kHz and an amplitude
AH. In what follows, we use the normalized amplitudes of the

LF and HF signals defined as«=AL /mL and j=AH /mH,
wheremL andmH are the switching thresholds at the frequen-
cies VL and VH, respectively, and the noise strengthD de-
fined asD=sN

2, wheresN is the noise amplitude. The nor-
malized amplitudej is a control parameter. We tune the
injection current of the laser into the middle of the bistability
region [15], so that the switching between two polarization
states could be induced by the deterministic modulation and
noise. The laser responses were detected by a fast photode-
tector and were recorded further by a digital oscilloscope
coupled with a computer to store and process the data. Each
point of SNR was obtained by averaging over 10 signals
containing 50 000 sampling points with 20 periods of the LF
signal. For comparison purposes, we define the SNR for
sinusoidal and square-wave signals as SNR=IsVLd / INsVLd,
whereIsVLd andINsVLd are the response of the system to the
LF signal and the noise background at the frequencyVL,
respectively, which were evaluated from the power spectra of
the Fourier-transformed time series. The SNR gain due to
VR is defined asGSNR=RVR

max/Rin (whereRin is SNR in the
input).

The experimentally measured SNR due to VR for sinu-
soidal and square-wave LF signals is shown in Fig. 1. For
both types of signals asj increases SNR passes through a
maximum in the close vicinity of the bifurcation pointj=1
corresponding to the transition from bistability to monosta-
bility. For the sinusoidal signalRVR

max is lower than theRin,
whereas for the square-wave signal we have a substantial
increase ofRVR. The second peculiarity is that on both sides
from the maximum,RVR practically does not depend onj and
remains almost constant, which corresponds to the linear re-
sponse in the bistable and monostable regime.

In Fig. 2, the SNR for the weak square-wave LF signal
s«=0.2d with increasing the level of noise is shown. For a
weak noise strength, one can observe a strong increase of
SNR with respect to SNRin. This rise takes place exactly
where a parametric amplification appears in the bistable sys-
tem (near the onset of bistability controlled by the HF modu-
lation). A further increase ofD (for a moderate level of
noise) leads to a degradation of SNR. One can note also the
curve broadening and the shift of the optimal value ofj
corresponding toRVR

max.
A comparison of the efficiency of VR with respect to SR,

FIG. 1. (Color online) Experiment. SNR for(1) sinusoidal and
(2) square-wave LF signals as a function ofj s«=0.2d. The noise
strengthsN=14 mVrms. The vertical line marks the transition from
bistable(left) and monostable(right) operation.
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which is characterized by the magnitudeRSNR defined by
(10), is shown in Fig. 3(a) for both types of the LF signal. It
is seen thatRSNR.1 in the whole range of the input noise
strengthD. The RVR

max due to VR is always higher than the
RSR

max, in agreement with the analytical considerations. For
weak input noise,RSNR for square-wave signal significantly
exceeds the one for the sinusoidal signal, whereas for a mod-
erate noise levelRSNRis almost the same for both types of LF
signals. The dashed line in Fig. 3(a), (with a slope21), fits
well the experimental data in the range of the moderate noise
level, showing agreement with(11) and, correspondingly,
with (9) for the noise-induced degradation of SNR.

The experimental evidence of the SNR gain with respect
to the SNRin is presented in Fig. 3(b), whereGSNRas a func-
tion of D for different values of the amplitudes of the square-
wave LF signal is shown. For the purpose of comparison,
GSNRfor the sinusoidal signal is also plotted. First of all, one
can note that the relationshipGSNR*1 is observed for all
amplitudes of the LF signal used in the experiment. The
unity gain in the SNR is shown by a dashed line in Fig. 3(b).
One can stress that for«<0.32,GSNR@1 in the whole range
of the noise strengthD.

In order to check the validity of our analytical and experi-
mental results we performed a numerical simulation in the
framework of Eq.(1),

dx/dt = 4sx − x3d + ALFstd + AH sinVHt + zstd, s12d

where Fstd=sinVLt or FsVLtd=sgnssinVLtd; sgnsxd is a
signum function sgnsxd=−1, for x,0, and sgnsxd=1, for x
.0, zstd is white, Gaussian noise withkzstdzst8dl=2Ddst
− t8d and a zero meankzstdl=0. In what follows, we use the
normalized amplitudes« and j defined as«=AL /mL and j
=AH /mH wheremL andmH are the switching thresholds at the
frequenciesVL /2p=0.001 andVH /2p=0.1, respectively,
used in the simulation. A forward Euler algorithm with a
fixed step of 0.0012p /VH was used. All quantities used for
the characterization of the SNR gain in the simulation are
defined in the same fashion as before.

A comparison of the SNR due to VR for sinusoidal and
square-wave signals is shown in Fig. 4. In accordance with
the experimental results depicted in Fig. 1, the SNR for both
signals displays the resonancelike behavior depending onj.
Both maxima are located near the critical valuesj=1d of a
switching threshold corresponding to the transition from bi-
stability to a monostable operation. At the same time, in
agreement with experimental results, the maximum of SNR
for the square-wave signal substantially exceeds thesSNRdin,
while for the sinusoidal signal the maximum of SNR is lower
than thesSNRdin. Figure 5 displays the SNR as a function of
j andD for the square-wave signal with«=0.2. In qualitative
agreement with the experimental results(Fig. 2), there is
some range ofD, wheresSNRdout@ sSNRdin. A strong degra-

FIG. 2. (Color online) Experiment. The SNR for the square-
wave LF signal as a function ofj andD s«=0.2d. The line in the
plane marks the transition from bistability to monostability.

FIG. 3. (Color online) Experiment.(a) RSNRvs D for (1) sinu-
soidal s«=0.028d and (2) square-waves«=0.08d LF signals. A
dashed line is plotted with a slope21 (see text). (b) GSNRvs D for
square-wave
[«=0.08 (1), 0.2 (2), 0.32 (3)] and sinusoidal[«=0.2 (4)] LF
signals.

FIG. 4. (Color online) Numerics. SNR vsj for the(1) sinusoidal
and (2) square-wave LF signals(D=0.001,AL=0.05). The vertical
line is as in Fig. 1.

FIG. 5. (Color online) Numerics. SNRVR for the square-wave LF
signal as a function ofj andD s«=0.2d. The line in the plane marks
the transition from bistability to monostability.
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dation of SNR and the shift of the maximum of SNR to
lower values ofj with increasingD are also observed. In
Fig. 6(a) a comparison of the efficiency of VR with respect
to SR is shown for different values of the amplitude of
square-wave and sinusoidal LF signals. A dashed line in Fig.
6(a) is plotted using the expression(11). It is seen that
RSNR@1 in the whole range ofD and for all values of« used
in the simulation. This means that theRVR

max is always higher
the RSR

max. One can note also SNR in VR from square-wave
signals is always higher than for sinusoidal ones. We can
conclude also that an analytical prediction can be considered
as a limiting case for weak periodic signals. For square-wave
signals it can be considered as the lower bound ofRSNR,
while for sinusoidal signals as the upper one. In the quasis-
tatical regime of the excitation of VR from the condition

Ax!D one can find that forD* @ s2/3d3/2sa2/bd«3/2 the ex-
pression(11) can be used for the evaluation ofRSNR.

The results of the simulation presented in Fig. 6(b) con-
firm our experimental observation of the SNR gain for
square-wave signals. First of all, one can stress that the rela-
tionshipGSNR*1 holds for all amplitudes of the LF signal,
even for a very weak signal[«=0.032, curve 1 in Fig. 6(b)],
where the unity gain in the SNR is shown by a horizontal
line. On the other hand, going from«<0.3 to higher values
of the amplitude LF signal,GSNR substantially exceeds the
unity in the broad range ofD, and for«*0.4 the magnitude
GSNRpractically does not depend onD. At the same time for
sinusoidal signals such an improvement is not observed in
the same range of the amplitudes[curves 5 and 6 in Fig.
6(b)].

To conclude, we have shown that the phenomenon of vi-
brational resonance can represent an effective approach for
the detection of weak noisy square-wave signals, allowing to
get simultaneously a gain in the SNR and the signal ampli-
tude. Besides, our analysis has shown that SNR due to VR is
always higher than the one obtained through the use of the
phenomenon of SR. From this point of view, we believe that
the results presented in this paper can stimulate further the-
oretical and experimental works in the field, in particular, to
optimize the operation of bistable systems for the detection
and regeneration of signals affected by noise, as, e.g., in
optical communication systems.
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FIG. 6. (Color online) Numerics.(a) RSNRand (b) GSNR for the
square-wave
[«=0.032 (1), 0.125 (2), 0.32 (3), 0.48 (4)] and sinusoidal[«
=0.032(5), 0.32 (6)] LF signals vs the noise strengthD. A dashed
line in (a) is plotted using the expression(11).
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