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The theory of a compound, large-angle atom beam splitter[A. Zh. Muradyan, A. A. Poghosyan, and P. R.
Berman, Phys. Rev. A68, 033604 (2003)] is generalized to allow for initial-state deflection. Atoms are
prepared in an initial state by an off-resonant standing-wave field and then subject to two-standing-wave fields
that couple the initial state to a final state. By a proper choice of parameters, atoms in the initial state can be
deflected or split as a result of the interactions with the fields. The role of relaxation is considered.
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In Ref. [1] a theory of a compound, atom beam splitter
was developed, based on the coupling of standing wave
fields to aL-type three-level atom(see Fig. 1). Atoms are
prepared initially in state 1 and are subjected to an intense
off-resonant standing-wave field acting on the 1-2 transition,
preferably in the Raman-Nath regime. This preliminary in-
teraction creates widely spread momentum states in state 1
(see Fig. 2). Following this interaction, a pair of
p /2-phase-shifted standing-wave fields act on the coupled 1-
2 and 2-3 transitions. As a result, the outlying momentum
states are transferred to internal state 3, while the intermedi-
ate ones are left in internal state 1. In this manner, one gen-
erates a large-angle beam splitter, provided one can isolate
the atoms exiting the interaction zone in state 3. For the field
parameters chosen in Ref.[1], it was not possible to produce
a beam splitter on the initially populated internal state.

Our beam splitter differs somewhat from conventional
beam splitters in that the atoms emerge in a coherent super-
position of two internal states, but the desired final-state mo-
mentum components are associated with only one of the in-
ternal states. This is in contrast to beam splitters(i) involving
atoms in asingle internal state whose momentum distribu-
tion is modified by an atom-field interaction or passage
through a material grating[2,3] and (ii ) involving atoms for
which an atom-field interaction leads to different momentum
components associated with each of two different internal
states of the atoms[4]. In Ref. [1], it is possible to maintain
the coherence of atoms in state 3 while eliminating the con-
tribution to the wave function from atoms in state 1. This
could be achieved, for example, by selectively ionizing at-
oms in state 1 since the ionizing fields would leave the atoms
in state 3 untouched. Note that the compound beam splitter
discussed in this paper is based on techniques that are similar
in spirit to those proposed by Cohenet al. [5] and Rohwed-
der [3] who use multiple-atom optics elements to enhance a
desired output.

From an experimental point of view it may be desirable to
construct a beam splitter in the initially occupied state. In
this Brief Report, we show that, within the context of the
model represented schematically in Fig. 1, it is possible to
choose the fields to achieve this goal. Moreover, the same

scheme may be used as a beam reflector, rather than a beam
splitter, for appropriate input fields.

Assuming the same time envelope for both laser pulses,
Vpsz,td=Vpszdsechst /Td , Vssz,td=Vsszdsechst /Td, one can
show that, provided the initial-state amplitudes are(C1sz,
−`dÞ1,C3sz,−`d=0), the lower-state probability ampli-
tudes following the interaction are given by[1]

C1sz, + `d = fB sin2u + cos2ugC1sz,− `d, s1ad

C3sz, + `d = sB − 1dsinu cosuC1sz,− `d, s1bd

where

sinu = Vpszd/ÎVp
2szd + Vs

2szd,

cosu = Vsszd/ÎVp
2szd + Vs

2szd, s2d

B =
Gs 1

2 + g + iddGs 1
2 + g + idd

G„
1
2 + g + id − aszd…G„ 1

2 + g + id + aszd…
, s3d

Gsxd is the gamma function,

aszd = ÎVp
2szd + Vs

2szdT s4d

is a dimensionless pulse area,

FIG. 1. Atom-field geometry. Standing-wave pulsesVpsz,td and
Vssz,td drive coupled atomic transitionsu1l-u2l and u2l-u3l, respec-
tively. Relaxation from stateu2l is out of theL system.
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1

2
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1

2
g0T s5d

are dimensionless detuning and decay parameters, andD
=vp−v21=vs−v31 is an atom-field detuning. A frequency
chirp, considered in Ref.[1], has been set equal to zero.

To get the momentum amplitude distribution after the in-
teraction, one should expand Eqs.(1a) and(1b) into Fourier
series. The parameterB and the trigonometric functions are
rather complicated functions of the coordinatez and an ana-
lytical expression relating the final-state Fourier components
to the initial ones cannot be obtained, in general. Stated in
another way, the interference between different initial-state
Fourier components is rather complicated. To simplify mat-
ters, we choose

Vpszd = Vpsinkz, Vsszd = Vscoskz, s6d

Vp=Vs=aT. The pulse areaa and the parameterB are in-
dependent ofz and

sinu = sinkz, cosu = coskz. s7d

Then, if one expands the amplitudes appearing in Eqs.
(1a) and (1b) in Fourier series as C1sz,−`d
=on=−`

` C1,ns−`de2inkz,C3sz,`d=on=−`
` C3,ns`de2inkz [assum-

ing the initial state amplitude contains only even powers of
skzd], one finds

C1,ns`d =
1 + Bsa,b,gd

2
C1,ns− `d

+
1 − Bsa,b,gd

4
fC1,n+1s− `d + C1,n−1s− `dg,

s8ad

C3,ns`d =
1 − Bsa,b,gd

4i
fC1,n+1s− `d − C1,n−1s− `dg,

s8bd

a relatively simple relationship between the initial- and final-
state momentum amplitudes.

In Ref. [1], an initial, off-resonant standing-wave field
pulse acted on atoms in state 1 to produce state amplitudes

that satisfied C1,n+1s−`d.C1,n−1s−`d for low- and
intermediate-momentum states; these values were then used
asinitial conditions for the pair of standing-wave pulses hav-
ing amplitudes given in Eq.(6). As can be deduced from
Eqs. (8), such initial conditions would suppress the
intermediate-momentum states associated with level 3, but
not those with level 1. To suppress the intermediate-
momentum states in level 1, the initial momentum-state
amplitudes should satisfy the conditionC1,n+1s−`d
.−C1,n−1s−`d for small and intermediate values ofn. To this
end, one can choose the initial, preparatory field to be an
off-resonant field having spatial amplitude

VSWszd = VSWsinskz± p/4d. s9d

This field produces an initial-state amplitude for the second
pair of fields given by

C1sz,− `d = e±iU sin 2kz= o
n=−`

`

s±1dnJnsUde2inkz, s10d

having Fourier coefficients

C1,ns− `d = s±1dnJnsUd, s11d

FIG. 2. Momentum distribution, generated by an intense off-
resonant standing wave. The chosen valueU=200 is in an interme-
diate range of experimentally accessible values.

FIG. 3. (a) Momentum distribution in state 1 at exact resonance
with decaysb=0,g=0.01d, which is a periodic function of pulse
area a. The original sa=0d distribution is repeated at valuesa
=2,4,… . For valuesa=1,3,…, the scheme acts as a beam splitter
(the frontal plane represents one of them), while at intermediate
valuesa=1/2,3/2,… it acts as a beam reflector.(b) Momentum
distribution in state 3 for the same parameters. As we can see from
both figures, during the interaction part of population has trans-
ferred to state 2 and than decayed out of theL system.
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whereU is the pulse area of the preparatory field andJnsUd
is a Bessel function of ordern. This initial momentum dis-
tribution is illustrated in Fig. 2. FornøU ,U@1, the
asymptotic formula[6]

JnsUd <Î 2

pU
cosSU −

np

2
−

p

4
D s12d

guarantees thatC1,n+1s−`d.−C1,n−1s−`d for small and inter-
mediate values ofn. As such, the combination of both field
pulses results in a suppression of low- and intermediate-
momentum components in level 1 with a corresponding
transfer of these components to level 3. Note that the prepa-
ratory field (9) is p /4 shifted relative to the fields(6) cou-
pling the adjacent quantum transitions.

As is seen from Eqs.(8), in order to maximize the effi-
ciency of the process—i.e. the transmission of intermediate
momentum states from level 1 into level 3—the parameterB
should be real and close to −1. By choosingd=0, one en-
sures thatB is real. If, simultaneously,g=0, then

B = cosspad

and optimal transfer occurs for odd values of pulse areaa.
For even values ofa , B=1 and the final momentum spec-
trum reverts to the initial one. Such behavior is analogous to
that encountered withp and 2p pulses. The final momentum
distributions for levels 1 and 3 as a function ofa are illus-
trated in Fig. 3.

Another interesting regularity is seen in Fig. 3(a). For a
=1/2, 3/2,…, atoms in state 1 are reflected mainly to the
right (n positive). This can be explained as follows: When
a=n+1/2,B=0. Using the recursion relationJn+1sUd
+Jn−1sUd=s2n/UdJnsUd, one finds

C1,n
2 s`d =

1

4
S1 +

n

U
D2

Jn
2sUd. s13d

If U@1, the appreciable values ofJnsUd as a function ofn
are spread betweenn=−U andn=U (Fig. 2). Therefore, the
momentum amplitudes are small for negativen and increase
with increasingn. The probabilityC1,n

2 s`d achieves its maxi-
mum value forn<U.

In general, relaxation decreases the efficiency of the beam
splitter. We consider only integrala, but the results are fairly
general. For odda, the beam splitter is optimized withg
=0 sB=−1d. As g increases from 0 to1/2, B rises from −1
to 0; B stays approximately equal to zero for 1/2,g,a and
then rises to unity forg@a. As such, the beam splitter dis-
tribution is first converted into a reflector distribution with
increasingg before reverting to the initial distribution for
g@a. For evena, the momentum distribution is unchanged
from that produced by the preparatory pulse ifg=0 sB=1d.
As g increases from 0 to1/2, B falls from 1 to 0;B stays
approximately equal to zero for 1/2,g,a and then rises to
unity for g@a. As such, the initial distribution is first con-
verted into a reflector distribution with increasingg before
reverting to the initial distribution forg@a. These features
are illustrated in Figs. 4 and 5, respectively.

As was noted above, the compound beam splitter is a
totally coherent device. Atoms are prepared in a linear super-
position of low-momentum states for atoms in state 3 and
high-momentum states for atoms in state 1. The atoms in
state 3 can be selectively removed from the beam without
seriously affecting the coherence of the atoms in state 1. As
such the compound beam splitter can serve as the first ele-
ment of an atom interferometer. To complete the interferom-
eter the beams would have to be recombined in a coherent
manner. It is possible that compound atom deflectors could
be used to achieve this goal, but we have not yet investigated
this possibility in detail.
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FIG. 4. Momentum distribution in level 1 as a function of re-
laxation rateg. The frontal plane corresponds to that in Fig. 3 with
a=1, when the the suppression of intermediate momentum states is
most effective. As is seen the increase ofg first depresses the left-
hand side of distribution, transforming it into a reflector type, and
then, as can be expected, gradually restores the initial distribution.

FIG. 5. A graph, analogous to that in Fig. 4 fora=2, when
momentum distribution equals the initial distribution wheng=0.
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