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We discuss the impact of a dielectric nanoparticle on the fluorescence light from an emitter embedded in the
particle. Numerical and analytical calculations predict a slower radiative decay compared to a bulk dielectric
due to electrostatic screening. We assess the relevance of the nanoparticle shape and size and the position and
orientation of the molecule. The numerical results are obtained from a rigorous solution of the Maxwell
equations, formulated as boundary integral equations.
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I. INTRODUCTION

The spontaneous emission rate of an excited atom or mol-
ecule is not an intrinsic property, but depends on the matter
surrounding the emitter. This fact is now well appreciated
after many years of research in the field of cavity quantum
electrodynamics. More recently, the interaction of single
emitters with their environment has opened the perspective
of using them as sensitive probes with high spatial resolu-
tion, in particular in near-field scanning optical microscopy
(SNOM) [1]. Indeed, their radiative properties(spontaneous
emission rate, scattering cross section) are significantly
changed at subwavelength distances from interfaces and
nanostructures, due to the coupling to the electromagnetic
near field. In this nanoscopic regime, cavity or standing-
wave resonances are less relevant, and the light emission is
dominated on the contrary by nonradiative or evanescent
components of the field, as soon as these are scattered by the
nanostructured surroundings into radiation that is detected as
emission in the far field.

The work we report here is motivated by recent experi-
ments where single or few molecules are embedded in
submicron-sized host particles. These can be used as point-
like sources[2] or detectors[3] for high-resolution imaging
of microstructures and optical fields. At low temperatures,
the emitters are individually addressable in frequency space
because their resonance frequencies sensitively depend on
the local environment in the host particle. Previous work has
shown that the emitters’ spontaneous lifetime, which is inde-
pendent of the illumination or detection mode, provides ac-
cess to the dielectric surroundings on the nanometer scale if
a single molecule is scanned over a structured substrate
[4–7]. In a typical experiment, where the emitters are em-
bedded in a small object, one can expect that the nanohost
also has a strong impact on the molecular lifetime. This is the
issue we analyze in this paper. The spontaneous emission

rate is calculated for a pointlike dipole in a small, subwave-
length dielectric host. Note that particles of such a small size
do not support discrete modes, except the collective plasma
oscillations for metallic particles. One therefore cannot ex-
pect the usual enhancement of the dipole emission in the
vicinity of a Mie-like resonance. On the contrary, the field
propagates in an almost static manner inside the host, since
retardation is nearly negligible.

We present numerical calculations that are able to handle
arbitrary orientations and positions of the dipole, as well as
arbitrary host shapes and material. A large class of hosts
from subwavelength to wavelength sized is covered as well.
The smallest size our approach can describe is related to the
validity of the macroscopic Maxwell equations: for hosts of
typically a few atomic units in diameter or more, the re-
sponse to an electric field can be described by an effective
susceptibility instead of solving for a correlated few-electron
quantum dynamics. The method we apply is based on the
boundary integral formulation of the wave equation. It has
been used for subwavelength optics problems with plane-
wave illumination(see, e.g.,[8,9]) and also for the determi-
nation of electron eigenmodes in quantum dots[10]. Very
recently results for molecular emission outside a metallic
nano-object have also been obtained with this method[11].
Our results compare favorably with analytical solutions for
small elliptical particles that we obtain in the electrostatic
approximation, neglecting retardation. We focus for numeri-
cal simplicity on a two-dimensional setting, but the good
comparison we achieve between numerics and analytics
leads us to believe that qualitatively similar trends will hold
in three dimensions.

The paper is organized as follows. In Sec. II, we outline
how classical electrodynamics permits the calculation of
spontaneous decay rates and introduce the numerical method
we use for the field computation. Section III discusses the
relevance of the host shape and dipole position on the spon-
taneous decay rate. We explain in detail results summarized
in a previous Letter[12] and compare to an analytical solu-
tion for elliptical particles. As an application interesting for
apertureless SNOM, we discuss the case of molecular emit-

*Electronic address: Carsten.Henkel@quantum.physik.uni-
potsdam.de

PHYSICAL REVIEW A 70, 063815(2004)

1050-2947/2004/70(6)/063815(10)/$22.50 ©2004 The American Physical Society063815-1



ters embedded in sharp tips(Sec. III C). Conclusions are
presented in Sec. IV. The Appendixes collect technical mate-
rial used in the text.

II. MODEL

A. Classical approach

In quantum mechanics, the spontaneous decay rate of an
excited two-level system is given by Fermi’s golden rule

G =
2p

"2 o
km

zkg,1k,mup̂ · Êsxsdue,0lz2dsvk,m − vegd, s1d

wherep̂ is the electric dipole operator andÊsxsd the electric
field operator, evaluated at the dipole’s positionxs. This for-
mula shows explicitly that the excited stateuel dumps its
energy"veg into an empty mode of the vacuum field, creat-
ing one photon. The decay rate is the sum over all modes
(with wave vectork and polarizationm). We assume in this
paper that the spectral density of the field modes is suffi-
ciently smooth so that the decay dynamics is characterized
by the single rateG.

For a computation of the latter, it is actually not needed to
perform an explicit mode expansion and quantization of the
field. To show this, we recall that Eq.(1) can be written in
the equivalent form[4,5,13–15]

G = o
i,j

2pipj
*

"
Im Gijsxs,xs;vegd, s2d

wherep=kgup̂uel is the dipole matrix element andGij is the
Green tensor whose imaginary part is related to the local
density of states[4,16]. Consider now a classical dipole an-
tenna with amplitudepstd=pe−ivegt+c.c. The electric field it
creates is given in terms of the Green tensor as

Edip,isx,td = Edip,isxde−ivegt + c.c. =o
j

Gijsx,xs;vegdpj + c.c.

s3d

Applying Poynting’s theorem and using Eqs.(2) and(3), one
gets[15]

Pem

"veg
=

2 Ref− ivegp
* ·Edipsxsdg

"veg
= G, s4d

where Pem is the total emitted power, averaged over one
cycle of the dipole radiation—i.e., the integral of the Poyn-
ting vector over a large sphere in the far field. With the help
of Eq. (4), we can thus compute the spontaneous decay rate
in terms of the emission of a classical dipole by normalizing
to the photon energy"veg.

We note that this approach works for absorptionless me-
dia. Otherwise, the power absorbed in the medium would
appear as well in the Poynting theorem, Eq.(4). This contri-
bution yields the rate of nonradiative decay, where the
excited-state energy is absorbed in the medium without emis-
sion of a photon into the far field. The normalized far-field
emissionPem gives the radiative decay rate in that case. The
nonradiative decay rate diverges in a continuum description

of an absorbing medium if the molecule is coupled to the
electric field described by the macroscopic Maxwell equa-
tions [17–19]. The divergence can be regularized by intro-
ducing an empty bubble around the molecule, but the result
depends sensitively on the bubble radius, a phenomenologi-
cal parameter. To avoid this complication, we focus on non-
absorbing materials here.

When a molecular dipole is embedded in a dielectric host,
one has in fact to take into account local field corrections that
connect the “macroscopic” fieldEsxd to the “local” field at
the position of the dipole. A common way to do this is the
small bubble model mentioned before[20]. This is discussed
in more detail in Appendix A where the local field correction
for a nonabsorbing dielectric is shown to be equivalent to an
“effective dipole moment,” as also pointed out in[15]. We
obtain results that are independent of the local field correc-
tion by normalizing the spontaneous decay rate to its value in
a bulk dielectric, where the same correction applies.(For the
case of an absorbing medium, see[21].)

B. Basic equations

The numerical solution of Maxwell’s equation in a dielec-
tric of arbitrary shape is quite efficiently obtained in a geom-
etry that is invariant along one axis(cylindrical objects) be-
cause the problem then reduces effectively to a two-
dimensional one. The nanohost is modeled as a linear,
isotropic, homogeneous, and nonmagnetic medium with di-
electric function«svd in its interior. We focus on the case
that the molecular dipole moment is oriented in the compu-
tational plane(p polarization). The other case(s polarization)
would correspond to a completely different physical situation
(an infinitely long, oscillating current) whose near-field be-
havior has not much to do with the emission from a dipole
source. Inp polarization, the Maxwell equations imply that
the magnetic field has only one nonvanishing component
Hsr d=Hsx,yd so that we deal with a scalar problem. In the
following, all vectors(exceptez) are two dimensional. The
wave equation for the magnetic field reads

= ·
1

«sr d
= H + k2H =

iv

«sxsd
p · sêz 3 = ddsr − xsd, s5d

wherexs is the dipole position. We writev=veg for simplic-
ity and use the vacuum wave numberk=v /c. Across the
surface of the dielectric object, the fieldH and the tangential
component of the electric field,F=s1/«ds]H /]nd, are con-
tinuous, where] /]n is the derivative along the outward nor-
mal.

To solve the partial differential equation(5), we transform
it into a boundary integral equation using the Green theorem
as explained in[22]. For a pointr in the interiorD of the
object, we get

Hintsr d = Hdipsr d +E
]DI

dssxdFG«sx − r d
]H

]n
sxd

− Hsxd
]G«

]n
sx − r dG , s6d
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Hdipsr d = ivsp 3 êzd · = G«sxs − r d, s7d

G«sr d =
i

4
H0

s1dskrÎ«d, s8d

where]DI is the inner side of the object boundary, dssxd is
the(scalar) surface element at the integration pointx, andG«

is the retarded Green function for a homogeneous dielectric
involving the zeroth-order Bessel function of the third kind
H0

s1d, henceforward denoted asH0. Equation(6) implements
the natural separation of the interior field into the dipole field
Hdipsr d for an infinite dielectric and a field reflected from the
object boundary. Similarly, outside the object the field is

Hextsr d = −E
]DI

dssxdFG1sx − r d
]H

]n
sxd − Hsxd

]G1

]n
sx − r dG ,

s9d

whereG1 is the Green function for vacuum. From Eqs.(6)
and (9), the field is completely determined by the field and
its derivative on the boundary(Huyghens principle). Note
that the exterior field automatically satisfies the Sommerfeld
radiation condition at infinity due to the choice of the re-
tarded Green function.

The field (and its normal derivative) on the boundary are
fixed self-consistently by letting the observation pointr ap-
proach the boundary in Eqs.(6) and(9). One has to take care
of the nonintegrable singularity in the Green function’s de-
rivative, as explained in Appendix B. In terms of the fieldsH
andF which take the same value on both sides of the inter-
face, we find the inhomogeneous boundary integral equa-
tions

Hsr d = 2Hisr d + 2PE
]DI

dssxdFG«sx − r d«Fsxd

− Hsxd
]G«

]n
sx − r dG , s10d

Hsr d = − 2PE
]DI

dssxdFG1sx − r dFsxd − Hsxd
]G1

]n
sx − r dG ,

s11d

where P denotes a principal value prescription, excluding the
singular part of]G« /]n. The logarithmic singularity of the
Green function itself whenx→ r can be treated by singling
out a small neighborhoods around the surface pointr , along
the method outlined in Appendix B. Its contribution to the
integral is then

E
s

dssxdG«sx − r d«Fsxd < s«Fsr df− 2g + ip + 2

− 2 lnsksÎ«/4dg. s12d

For the numerical solution, we apply the method of moments
[23]: the boundary is discretized into segments of size ds
and the integrals are approximated by Riemann sums. The
corners of polygonal objects are smoothed. The integral

equation is evaluated at discrete points centered in the seg-
ments (point matching), and each pointr j carries two un-
knowns Hj =Hsr jd and Fj. The integral equations(10) and
(11) are thus replaced by a linear system that is solved with
standard routines. To get converged results, we choose ds a
factor of 10 smaller than the minimum of the local wave-
length l /Î« and the minimum distance of the dipole to the
boundary. The emitted power is computed from Eq.(9) with
r in the far field. We use the corresponding expansion of the
Green function and perform the angular integral of the Poyn-
ting vector numerically.

C. Validation of numerical results

We have validated the numerical results by comparing
them to analytical calculations in the exactly solvable case of
a circular object surrounded by vacuum. A dipole at the cen-
ter of the object creates the dipole field

Hdipsr d = −
vkpÎ« sinc

4
H1skrÎ«d, s13d

wherec is the angle betweenr and the dipole andH1 the
first-order Bessel function. This would also be the field in a
bulk dielectric. Outside the object, the field isHext= tHdip,
where the transmission coefficient can be found by a calcu-
lation similar to the Mie solution in three dimensions[24]:

t = −
2i/spkaÎ«d

H1skadJ18skaÎ«d − Î«H18skadJ1skaÎ«d
. s14d

Here,a is the object radius and the prime denotes the deriva-
tive with respect to the argument. The normalized power
emitted by the dipole is found to be

Pem

Pbulk
=

G

Gbulk
= utu2. s15d

For a dielectric host particle, this is plotted as a solid line in
Fig. 1. The dipole emission wavelengthl=2pc/v is scanned
through a wide range froml,a to much smaller than the
particle radius. The numerical data are shown by the symbols
and are in good agreement. As the number of boundary ele-
ments increases, the relative error of the numerical solution
decreases rapidly; see the inset of Fig. 1.

As a second example, we consider the scattering cross
section for a cylindrical metallic particle illuminated by a
plane wave. The numerical data shown in Fig. 2 agree quite
well with the results of Mie theory[24]. The convergence
with the number of boundary elements(inset of Fig. 2) is
somewhat slower, probably due to the faster variations of the
field inside the metal particle. Note that we use the dielectric
function tabulated in[25]; there is no need to assume a par-
ticular analytical form for«svd as would be required for an
integration in the time domain.
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III. RESULTS AND DISCUSSION

A. Polygonal hosts

1. Spontaneous decay rate

We plot in Fig. 3 the normalized emitted power
Pem/Pbulk=G /Gbulk for a molecule located in dielectric host

particles of different size and shape. The molecule is located
at the object center, and its emission wavelength is varied.
One observes a broad peak located at the object’s first Mie
resonance. For a circular shape, this resonance corresponds
to the smallest complex zero of the denominator in Eq.(14).
It is apparent that the object shape does not significantly shift
the position of the peak; only its amplitude is reduced for
polygons that differ strongly from a circle. One also notices
that inside a very small object, the radiative lifetime ap-
proaches a common limit independent of the shape. This
limit is in agreement with the small-size limit of Eqs.(14)
and (15):

lim
ka!1

G

Gbulk
= S 2

« + 1
D2

. s16d

We notice that the emission is weaker than inside a homoge-
neous dielectric(unless −3,«,1, we do not consider this
range here). This can be attributed to the screening of the
molecular dipole by the polarization charges it induces on
the object surface. As a result, the far field contains a reduced
dipole component. We give a more detailed discussion in
Sec. III B 2 below where elongated shapes are considered,
too.

In a previous Letter, we have also shown that the depen-
dence on the dipole position inside polygonal hosts is rela-
tively weak[12]. For a circular particle and in the quasistatic
limit, the decay rate is strictly constant, and any deviation
can be attributed to retardation. For polygonal particles, an
enhanced decay is only observed if the molecule approaches
sharp corners, due to the stronger electrostatic fields there
[26]. We discuss another example in Sec. III C below where
the host is a sharp tip.

2. Radiation pattern

In Fig. 4, we plot the angular distribution of the emission
(radiation pattern) for a molecule embedded in two square
hosts that have dimensions either smaller or larger than a

FIG. 1. Emission from a dipole centered in a circular object:
normalized total emitted powerPem/Pbulk vs emission frequency.
Symbols: numerical results. Solid line: analytical results based on
Eqs.(14) and(15). Inset: test of convergence. The relative error of
the decay rate is plotted vs the inverse number 1/N of boundary
elements. An error smaller than 1% is achieved forN.250. Param-
eters: dielectric cylinder with«=2.5, surrounded by vacuum. The
results of the main figure are obtained withN=300 boundary ele-
ments. For the inset, emission wavelengthl0=525 nm and cylinder
radiusa=30 nm.

FIG. 2. Scattering cross section for a metallic cylinder: compari-
son of Mie theory and numerical results. We plot the scattering
cross section normalized to the particle diameter. Inset: relative er-
ror between the numerical and analytical values of the scattering
cross section versus the inverse number 1/N of boundary elements.
Above N=400 points, a relative error,1% is achieved. Param-
eters: p-polarized incident plane wave with tunable wavelength,
gold cylinder of radiusa=30 nm, surrounded by vacuum. The di-
electric function is taken from[25]. N=500 boundary elements are
taken in the main figure. In the inset,l0=525 nm.

FIG. 3. Radiative decay rate vs emission frequency for host
particles of the same area and aspect ratio, but with different shapes.
Parameters: tunablep-polarized dipole located at the object center,
dielectric objects«=2.5d surrounded by vacuum. The wavelength is
normalized to the square root of the particle area, the decay rate
normalized to its value in a bulk dielectric.
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wavelength. This pattern is computed from the far-field ex-
pression

1

Pbulk

dPem

du
= lim

r→`

r

2p2v2kp2uHsr du2. s17d

We observe in the figure that the emission essentially re-
sembles the familiar dipole pattern for the subwavelength
host and does not depend on the dipole position. Significant
structure occurs for objects comparable to or larger than the
wavelength: with the emitter at the center, the angular distri-
bution changes only slightly, while pronounced lobes appear
with an off-centered source. This confirms the approach of
Klimov, Ducloy, and Letokhov[27] who relate the emitted
power to the effective dipole momentpeff that the molecule
induces in a subwavelength object,ka!1:G /Gbulk
→ upeff /pu2. Higher multipoles apparently make a negligible
contribution to the radiated field in this case.(For the small
object in Fig. 4,kA1/2<0.74 withA the object area.) Figure
3 shows, however, that the decay rate rapidly deviates from
its electrostatic limit, with an approximately linear increase
with kA1/2, in agreement with the perturbation expansion
of [28].

B. Elongated hosts

1. Spontaneous decay rate and field distributions

More pronounced changes in the radiative lifetime are
found for elongated host particles, as shown in Fig. 5. The
emission peaks now depend on the aspect ratio of the object.
This behavior can be attributed to a standing-wave mode of
low order that the dipole excites. An example is visible in the
field intensity map plotted in Fig. 6. Because of the low
index contrast considered here, the confinement of the field
inside the particle is weak. The modes thus have a low qual-
ity factor, and the emission resonances are broad, as was also
seen in Fig. 3.

In the limit of dielectric particles that are very small com-
pared to the(medium) wavelength, this picture does not ap-
ply any longer since the particle does not support any mode.
In this regime, electrostatic arguments permit to understand
the dependence of the spontaneous decay rate on the object’s
aspect ratio and orientation of the dipole. We show in par-

ticular that screening due to induced surface charges qualita-
tively explains the numerical results.

2. Screening

The charge density induced on the surface of a typical
rectangular object is plotted in Fig. 7. It is well known from
electrostatics that the object shape influences the charge dis-
tribution. For the special case of an elliptical object, the elec-
trostatic problem of an embedded point dipole can be solved
analytically, as we outline in Appendix C. If the dipole is
polarized along one axis of the ellipse(lengthc), the far field
corresponds to a screened dipole momentpeff= fc p where the
depolarization factorfc is given in Eq.(C8). With this effec-
tive dipole moment, we get a decay rate

G

Gbulk
= ufcu2 =

1

f1 + s« − 1db/sb + cdg2 , s18d

whereb is the other ellipse axis. This formula reproduces the
correct value(16) for a circular object. It is also in good
agreement with the numerical results obtained for small rect-

FIG. 4. Radiation pattern for a molecule in polygonal hosts
smaller and larger, respectively, than the wavelength. Parameters:
square hosts with areas as indicated,«=2.5, emission wavelength
l0=600 nm. The molecule position in the particle and its dipole
moment are indicated on the left. FIG. 5. Same as Fig. 3 for rectangular hosts of different aspect

ratio x/y. Parameters: tunablep-polarized dipole at object center,
dielectric objects«=2.5d surrounded by vacuum. Inset: decay rate
for very small objects vs aspect ratio. Numerical data are for nano-
scopic rectangular objectssÎA=0.01l0d, analytical data for elliptic
objects in the electrostatic limit[Eq. (18)].

FIG. 6. (Color online) Field intensity created inside an elon-
gated host by a single dipole source(dipole moment pointing up-
wards). The color code gives the field intensityuEsxdu2 (color bar in
logarithmic scale) in arbitrary units: the arrows illustrate the electric
field ReE in phase with the source. The chosen host corresponds to
maximum emission for aspect ratiox/y=5 in Fig. 5: rectangle with
size s1006.23201.24d nm2, «=2.5, wavelengthl0=600 nm.
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angular objects, as shown in the inset of Fig. 5. For very
elongated objects, we have

b ! c: G = Gbulk, s19d

b @ c: G = Gbulk/«
2, s20d

which is similar to the behavior of fluorescence from thin
dye films [29]. An intuitive explanation is based on Fermi’s
golden rule (1) and the penetration of the vacuum field
modes into the object: in the first case, dipole and field are
tangential to the film and the field is continuous across the
film surface. In the second case, the dipole is perpendicular
to the film, and the corresponding vacuum mode is reduced,
inside the film, by a factor of 1/« because now the displace-
ment fieldD=«E is continuous across the surface.

C. Molecules embedded in dielectric tips

We finally consider elongated particles in order to gain
insight into the impact of the tip geometry on the spontane-
ous emission of a molecule embedded in the tip. Figure 8
illustrates, for a fixed distance of the molecule from the tip
apex, the dependence on the sharpness of an elliptical tip. A
significant enhancement of the decay rate is found for very
sharp tips, due to strong electrostatic fields and large induced
surface charges. In Fig. 9, a triangular host object is consid-
ered as an extreme case. Again, the decay rate increases as

the molecule approaches the apex of the triangle. The field
distribution for two generic molecule positions is plotted in
Fig. 10: close to the apex, the dipole creates a field that is
strongly localized on a scale of some 10 nm. The energy
flow (Poynting vector), indicated by the field lines, suggests
that the tip redirects the emission in the upward direction,
along the faces of the triangle. This agrees with the fact that
close to a planar dielectric, most of the emission goes into
modes that are evanescent in vacuum and propagate just be-
yond the critical angle inside the dielectric(see, e.g.,
[30,31]).

IV. CONCLUSIONS AND OUTLOOK

Based on the boundary integral equation method for the
solution of the Maxwell equations, we have developed in this
paper a versatile numerical method to compute the spontane-
ous emission rate of an emitter embedded in a(lossless) di-
electric host particle of arbitrary shape and a size comparable
to or smaller than the emission wavelength. We have found
that compared to the decay rate in a bulk dielectric, signifi-
cant modifications occur for elongated hosts with subwave-
length size. The general features of our results can be under-
stood from electrostatic arguments in terms of a screened
effective dipole moment, confirming the picture put forward
by Klimov, Ducloy, and Letokhov[27]. Our numerical cal-
culations have allowed to assess the validity of this approxi-
mation. If the molecule is located close to sharp corners, the

FIG. 7. (Color online) Surface
charge density(in arbitrary units)
induced on the surface of an elon-
gated rectangular host, for two
orientations of the molecular di-
pole moment. Blue curves: charge
density in phase with the dipole.
Red curves with dots: charge den-
sity in phase quadrature.

FIG. 8. Impact of tip sharpness: radiative decay rate in elliptical
dielectric hosts with different aspect ratio. The dipole is situated in
all cases at a fixed distance 30 nm from the tip apex, with vertical
dipole moment. Emission wavelengthl0=600 nm, fixed host area
s600 nmd2, «=2.5, surrounded by vacuum.

FIG. 9. Molecule close to a triangular tip: radiative decay rate vs
source position in an equilateral triangle. Vertical dipole emitting at
l0=600 nm, host dimensions as indicated in the inset,«=2.5, sur-
rounded by vacuum.
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decay rate is enhanced because of the lightning rod effect.
An exact electrostatic solution for elliptical particles gives a
satisfactory description for the emission out of rectangular
hosts of very small size as well. With the small refractive
index contrast we consider here, eigenmodes of the particle
have low quality factors and give only broad resonances
when the particle size becomes comparable to the wave-
length.

The boundary integral equation can be adapted to take
into account a planar substrate, simply by using the appro-
priate Green function[32,33]. Corrugations are then modeled
as finite objects, without the need to truncate the substrate.
This would allow to study in detail the validity of the pertur-
bative calculation done in[5,6].
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APPENDIX A: LOCAL FIELD CORRECTIONS

We discuss here the decay rate of a two-level system em-
bedded in a lossless, two-dimensional dielectric object. A
quantization scheme for the macroscopic field is used and
local field corrections are analyzed.

1. Homogeneous dielectric

Using a mode expansion of the field, the matrix element
in Fermi’s golden rule(1) can be evaluated as

ukg,1k,mup̂ · Êsxsdue,0lu2 =
"vk,m

2«0«LV
up* · fk,m

loc u2, sA1d

whereVsLd is the quantization area(length) in the xy plane
(the z axis), respectively. The field modes are labeled by the
wave vectork and the polarization indexm, and fk,m

loc is the
actual(local) field at the location of the molecule. The factor
1/« in the electric field per photon comes from the expres-
sion for the electromagnetic energy densitys««0/2dE2

+B2/ s2m0d in a (nondispersive) dielectric.
The local field is related by a “depolarization factor”jm to

the “macroscopic field”:

fk,m
loc = jmfk,msxsd. sA2d

We anticipate a polarization dependence, but no strong varia-
tion with the wave vector for the local field correction. This
would no longer be true in a birefringent host particle, for
example. In fact,jm is determined by the microscopic sur-
roundings of the molecule that typically vary on a scale
much shorter than the wavelength. For the calculation ofjm,
retardation can thus be neglected, and one faces an electro-
static problem wherefk,msxd can be approximated by an ex-
ternal, quasihomogeneous field[26]. We do not need an ac-
tual formula for jm here; it can be found by adapting the
result given in Eq.(A5). For the three-dimensional case, see,
e.g.,[17,18,21,34].

In our two-dimensional model, only wave vectorsk in the
plane are retained and are specified by an anglew with re-
spect to the dipole momentp (assumed in the plane as well).
Then only p-polarized modes(electric field in the plane)
contribute to Eq.(A1) with a matrix element proportional to
sinw. Performing the angular integral, the decay rate be-
comes

Gbulk =
ujppu2

4«0"L

veg
2

c2 . sA3d

The local field correction thus enters quadratically into the
decay rate and could as well be absorbed in a redefinition of
the dipole momentp. We have assumed an isotropic local
field correction here(molecule in a circular cavity). That Eq.
(A3) does not depend any longer explicitly on« is typical for

FIG. 10. (Color online) Intensity distribution inside a triangular
host created by a vertical point dipole. Vertical dipole with emission
wavelength l0=600 nm. Dielectric particle with«=2.5, base
length=800 nm, surrounded by vacuum. The intensity distribution
(color bar in logarithmic scale) and the time-averaged energy flow
(given by the arrows) are plotted for a centered and an off-centered
dipole, respectively.
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a two-dimensional setting, as has been shown by Nienhuis
and Alkemade[35]. In fact, the factor 1/« in Eq. (A1) is
compensated by a factor of« that occurs in the density of
modes for a two-dimensional, homogeneous dielectric with
dispersion relationvk,m=cuk u /Î«.

2. Small ellipsoidal object

We now turn to a dipole inside a finite dielectric object of
subwavelength size. In this case, we use scattering mode
functions fk,msxd that are labelled by plane wavesek,meik·x

incident from vacuum on the object. The quantization areaV
is much larger than the object, so that the latter does not
affect the normalization of the mode functions. We thus get
the matrix element

ukg,1k,mup̂ · Êsxsdue,0lu2 =
"vk,m

2«0LV
up* · fk,m

loc u2, sA4d

instead of Eq.(A1), and the mode frequencyvk,m=ck does
not contain«.

To get the field inside the object, we use again an electro-
static argument given that the dielectric particle is small
compared to the wavelength: we solve the classical problem
of a small ellipsoid in an external homogeneous electric field
(given by the polarization vectorek,m). The exterior field
contains scattered dipole and multipole fields in addition to
the external field. The interior field, for an elliptical shape, is
again homogeneous with an amplitude given by the depolar-
ization factor[36]

f km,a
int =

1

1 + s« − 1dna

fk,m,a ; ta fk,m,asxsd, sA5d

wherea labels the Cartesian components in a frame given by
the ellipsoid’s principal axes. In this frame, the depolariza-
tion is described by the numbersna. For a cylinder with
elliptical cross section(axesb,c), the three-dimensional re-
sults of Ref.[36] lead tonc=b/ sb+cd, nb=c/ sb+cd. This in
agreement with the solution of Appendix C for the reciprocal
situation(the exterior dipole field created by a dipole embed-
ded in an ellipsoid). Finally, the components of the local field
are found from the field inside the object applying the same
correction factor,f km,a

loc =jmf km,a
int . This assumes that the mi-

croscopic surroundings of the molecule are the same in the
object and in bulk.

For an elliptical object, we have to take into account the
dependence of the depolarization on the orientation of the
field polarization. Expanding an in-plane dipole moment
along the principal axes,p=pbeb+pcec, we have, for a given
p-polarized mode,

p* · fk,p
loc = jpspb

*tbeb + pc
*tcecd · fk,psxsd, sA6d

where we have again assumed an “isotropic” local field cor-
rectionjp. The integration over the anglew betweenk andeb
gives

E
0

2p

dwupbtb sinw + pctc coswu2 = pspb
2tb

2 + pc
2tc

2d;

sA7d

the mixed terms cancel. We finally get a decay rate

Gobject= Gbulkstb
2 cos2 f + tc

2 sin2 fd, sA8d

wheref is the angle of the dipole with respect to theb axis.
If the dipole is polarized along one of the axes of the ellip-
soid, we get a decay rate proportional to the corresponding
depolarization factor. For an orientation in between, one has
a contribution of both. Finally, the local field correctionjm

[involved inGbulk, Eq. (A3)] drops out when normalizing the
decay rate(A8) to its bulk value.

APPENDIX B: BOUNDARY INTEGRAL EQUATIONS

In Eqs. (6) and (9), the Green functionsG«sr −xd and
G1sr −xd are singular in the limitr →x. This does not pose
problems in the far field,r →`, becausex runs over the
object boundary]D. But the boundary integral equations
(10) and (11) require some care because, here,r P]D.

The derivative]G« /]n contains ad-function singularity.
To extract it, we introduce forr →]D a local coordinate
systemr =sx,hd, x=sx1,0d whereh measures the distance of
r from the surface in the direction of the outward unit nor-
mal. The boundary integral in the neighborhoodssr 0d of the
projectionr 0=sx,0d onto the surface is then approximated by
using the asymptotic expansion of the Bessel function. This
leads to(see, e.g.,[37])

lim
r→]D

E
ssr 0d

dssxdHsxd
]G«

]n
sx − r d

=
1

2p
lim
h→0
E

ssr 0d
dx1Hsxd

h

h2 + sx1 − xd2

=
1

2
E

ssr 0d
dx1Hsxddsx1 − xdsgnh = −

Hsr 0d
2

. sB1d

In the last step, we have used the Lorentzian representation
of the d function and assumed that the boundary]D is ap-
proached from inside the objectsh,0d. Equation(B1) leads
to the factor of 2 in front of the boundary integrals in Eqs.
(10) and (11).

The term involvingG«sr −xd shows a logarithmic singu-
larity. Extracting it in a similar way, the neighborhoodssr 0d
yields the contribution given in Eq.(12).

The linear system that represents the boundary integral
equations on a discrete set ofN surface elements corresponds
to a matrix withN2 entries. The computation of the matrix
elements and the solution of the linear system on a worksta-
tion takes roughly 10 s forN<500. Reasonably converged
results are obtained forNù100, as illustrated in Figs. 1 and
2.
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APPENDIX C: EXACT SOLUTION
FOR SUBWAVELENGTH ELLIPTIC OBJECT

We outline in the following the analytical solution for the
electrostatic field created by a point dipole at the centre of an
elliptical object. On the subwavelength scale, retardation is
negligible so that we have to solve the generalized Laplace
equation

«0 = · «sr d = U = sp · = ddsr d, sC1d

whereU is the electric(scalar) potential.
The Laplace equation(C1) can be separated in spheroidal

coordinates defined by

x = l sinhr cosw, sC2d

y = l coshr sinw, sC3d

wherel is a length scale parameter. The surface of the ellip-
tical object is the curver=r0, with the major axisb
= l coshr0 oriented along they axis and the minor axisc
= l sinhr0 along thex axis. The scale parameter is fixed by
l2=b2−c2. In these coordinates, the electrostatic potential of
a point dipole polarized along thex axis in a homogeneous
medium of permittivity« is given by

Udip =
px

2p«0«

]

]x
lnuxu =

px

2p«0«l

sinhr cosw

cosh2 r − cos2 w
. sC4d

The main complication here is that this potential does not
depend in a simple way on the angular coordinatew.

We add to Eq.(C4) a solution of the homogeneous
Laplace equations]2/]r2+]2/]w2dU=0 in order to satisfy
the boundary conditions. Those homogeneous solutions that
are adapted to the symmetry of the present problem(even in
w) are of the following form. Outside the object,

Uext = o
n=1

`

cn exps− nrdcossnwd. sC5d

The term withn=1 is the dipole component and contains the
effective dipole moment that we are looking for. For the
interior field, we have the expansion

Uint = Udip + o
n=1

`

an sinhsnrdcossnwd. sC6d

The coefficientsan and cn are found from the continuity of
the scalar potential across the boundary and the jump of its
normal derivative,«]Uint /]r=]Uext/]r, at r=r0. We expand
these equations in a cosine Fourier series and find, perform-
ing one Fourier integral, the coefficient of the exterior dipole
field:

c1 =
px/s«0pld

1 + s« − 1dcoshr0e
−r0

. sC7d

In terms of the semiaxes of the ellipse, we haveer0

=coshr0+sinhr0=sb+cd / l. By comparing to the far field of
a dipole in vacuum[Eq. (C4) in the limit of larger, with peff
instead ofpx/«], we get the effective dipole moment

peff =
px

1 + s« − 1db/sb + cd
. sC8d

One has to exchangeb andc if the dipole is polarized along
the y axis. For a circular cylinder, we haveb=c and get the
known resultpeff /px→2/s«+1d, leading to Eq.(16). For «
→−1, the dipole excites a surface plasmon resonance and the
solution diverges, unless damping is taken into account. For
an elliptical particle, the resonance shifts to«=−c/b; a simi-
lar trend has been observed in three dimensions by[38,39],
for example.
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