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Spontaneous emission in a subwavelength environment characterized by boundary
integral equations
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We discuss the impact of a dielectric nanoparticle on the fluorescence light from an emitter embedded in the
particle. Numerical and analytical calculations predict a slower radiative decay compared to a bulk dielectric
due to electrostatic screening. We assess the relevance of the nanoparticle shape and size and the position and
orientation of the molecule. The numerical results are obtained from a rigorous solution of the Maxwell
equations, formulated as boundary integral equations.
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I. INTRODUCTION rate is calculated for a pointlike dipole in a small, subwave-

ength dielectric host. Note that particles of such a small size

Tlhe_ spontaneous emission ratebof ?jn excged atorzn or mol]o not support discrete modes, except the collective plasma
ecule is not an intrinsic property, but depends on the matt€tqqjations for metallic particles. One therefore cannot ex-

s:cjtrroundmg the errfntter. Th';’ ,faCL 'Sf.n%’\’ ¥vel| gppremated ect the usual enhancement of the dipole emission in the
after many years of research in the field of cavity quantum;;i of 4 Mie-like resonance. On the contrary, the field

ele_ctrodynahmlils._ More recentlyh the mtergctrl]on of single, nagates in an almost static manner inside the host, since
emitters with their environment has opened the perspectiviya dation is nearly negligible.

of using them as sensitive probes with high spatial resolu-\ye hresent numerical calculations that are able to handle

tion, in particular in nea.r-field' spanning optical micrOSCODyarbitrary orientations and positions of the dipole, as well as
(SNOM) [1]. Indeed, their radiative propertigspontaneous ooy host shapes and material. A large class of hosts
emission rate, scattering cross secticare significantly

near field. In this nanoscopic regime, cavity or standing
wave resonances are less relevant, and the light emission
dominated on the contrary by nonradiative or evanesce
components of the field, as soon as these are scattered by
nanostructured surroundings into radiation that is detected

typically a few atomic units in diameter or more, the re-
ﬁonse to an electric field can be described by an effective
usceptibility instead of solving for a correlated few-electron
Gantum dynamics. The method we apply is based on the
T X undary integral formulation of the wave equation. It has
emission in the far field.

Th K h . . db . been used for subwavelength optics problems with plane-
e work we report here is motivated by recent EXPerlyyave illumination(see, e.9.[8,9]) and also for the determi-

mebnts_ where Zlnhgle or f_e\IN m_?:]ecules arbe embdedded Mation of electron eigenmodes in quantum dit6]. Very
submicron-sized host particles. These can be used as pOIhr[écently results for molecular emission outside a metallic
like sourceq2] or detectorq3] for high-resolution imaging nano-object have also been obtained with this mefdgt

Or]: microstructures d"?‘”.fj Oﬂtlcaéé'elds' Qt I.OV‘; temperatures, i . raqyits compare favorably with analytical solutions for
the emitters are individually addressable In irequency spacg elliptical particles that we obtain in the electrostatic

because their resonance frequencies sensitively depend g,y imation, neglecting retardation. We focus for numeri-

the local environment in the host particle. Previous work ha%al simplicity on a two-dimensional setting, but the good
shown that the emitters’ spontaneous lifetime, which is inde'comparison we achieve between numeric,s and analytics

pendent of the illumination or detection mode, provides acy,q5 s to believe that qualitatively similar trends will hold
cess to the dielectric surroundings on the nanometer scalei three dimensions

a single molecule is scanned over a structured substrate The paper is organized as follows. In Sec. II, we outline

[4=7]. In a typical experiment, where the emitters are emy,, qjassical electrodynamics permits the calculation of

. i S §bontaneous decay rates and introduce the numerical method
also has a strong impact on the molecular lifetime. This is th‘?/ve use for the field computation. Section Ill discusses the

issue we analyze in this paper. The spontaneous emiSSi‘?BIevance of the host shape and dipole position on the spon-

taneous decay rate. We explain in detail results summarized

in a previous Lettef12] and compare to an analytical solu-

*Electronic  address:  Carsten.Henkel@quantum.physik.unition for elliptical particles. As an application interesting for
potsdam.de apertureless SNOM, we discuss the case of molecular emit-

1050-2947/2004/716)/063815%10)/$22.50 063815-1 ©2004 The American Physical Society



L. ROGOBETE AND C. HENKEL PHYSICAL REVIEW A70, 063815(2004)

ters embedded in sharp tigSec. Ill ©. Conclusions are of an absorbing medium if the molecule is coupled to the
presented in Sec. IV. The Appendixes collect technical mateelectric field described by the macroscopic Maxwell equa-
rial used in the text. tions [17-19. The divergence can be regularized by intro-
ducing an empty bubble around the molecule, but the result
depends sensitively on the bubble radius, a phenomenologi-
cal parameter. To avoid this complication, we focus on non-
A. Classical approach absorbing materials here.

In quantum mechanics, the spontaneous decay rate of an When.a molecular d_ipole is embedded_in a dieleqric host,

excited two-level system is given by Fermi's golden rule 2" has in fa‘?t to take m't'o"agcount local f'e‘!d cor"re'cuons that
connect the “macroscopic” fiel#(x) to the “local” field at
27 . o~ the position of the dipole. A common way to do this is the
I'= ﬁkg K9, 2k ulP - E(x9le. 0P (e s~ weg, (1) gmall bubble model mentioned befd20]. This is discussed
K in more detail in Appendix A where the local field correction

wherep is the electric dipole operator afﬁixs) the electric ~ for a nonabsorbing dielectric is shown to be equivalent to an

field operator, evaluated at the dipole’s positiqnThis for- €ffective dipole moment,” as also pointed out [ibS]. We

mula shows explicitly that the excited std®® dumps its qbtaln results _that are independent of the local f|¢|d correc-

energyfiwe, into an empty mode of the vacuum field, creat- tion by n_ormal_lzmg the spontaneous decay rate to its value in

ing one photon. The decay rate is the sum over all mode& Pulk dielectric, where the same correction appliesr the

(with wave vectork and polarizationu). We assume in this ¢ase of an absorbing medium, ged].)

paper that the spectral density of the field modes is suffi-

ciently smooth so that the decay dynamics is characterized B. Basic equations

by the single ratd". . . , L .
yFor a cgmputation of the latter, it is actually not needed to The numerical solution of Maxwell's equation in a dielec-

perform an explicit mode expansion and quantization of thetnc of arbitrary shape is quite efficiently obtained in a geom-

. ; . : etry that is invariant along one axisylindrical object$ be-
Ilr?édé(;rl?ivsar:gm ;glrfﬂxvg giil!!;that EgL) can be written in cause the problem then reduces effectively to a two-
= dimensional one. The nanohost is modeled as a linear,
zpip’f isotropic, homogeneous, and nonmagnetic medium with di-
I'=2> =1 1m Gjj(XsXs: weg), (2)  electric functione(w) in its interior. We focus on the case

. h : L .
b that the molecular dipole moment is oriented in the compu-

wherep=(g|p|e) is the dipole matrix element ar@; is the  tational planp polarization. The other cases polarizatior)
Green tensor whose imaginary part is related to the locajvould correspond to a completely different physical situation

density of state$4,16]. Consider now a classical dipole an- (an infinitely long, oscillating curremtwhose near-field be-
tenna with amp”tud@(t)=pe—iwegt+c_c_ The electric field it havior has not much to do with the emission from a dipole

Il. MODEL

creates is given in terms of the Green tensor as source. Inp polarization, the Maxwell equations imply that
the magnetic field has only one nonvanishing component
Eqipi (X,1) = Egipi(X)€79ed + c.C. => Gjj (X, Xs; Weg)Pj + C-C. H(r)=H(x,y) so that we deal with a scalar problem. In the
j

following, all vectors(excepte,) are two dimensional. The
(33 Wwave equation for the magnetic field reads

Applying Poynting’s theorem and using E@®) and(3), one 1 L) .

gets[15] V-S(r)VH+kH——8(XS)p-(eZ>< V)& —-x9, (5
Pem _ 2 R~ iweg -Eap(X5)] =T, (4)  wherexg s the dipole position. We write)= we,q for simplic-
fiweg fiweg ity and use the vacuum wave numhberw/c. Across the

where P, is the total emitted power, averaged over onestrface of the dielectric object, the figitiand the tangential
em 1 . . _
cycle of the dipole radiation—i.e., the integral of the Poyn-cOmponent of the electric fields=(1/¢)(dH/4n), are con-

ting vector over a large sphere in the far field. With the he|pt|nuous, wherej/ dn is the derivative along the outward nor-

of Eqg. (4), we can thus compute the spontaneous decay raf@a!- o , )

in terms of the emission of a classical dipole by normalizing, . 10 Solve the partial differential equatigh), we transform

to the photon energfi e it into a bound_ary integral equation using the_Green theorem
We note that this approach works for absorptionless me@S_€xplained irf22]. For a pointr in the interiorD of the

dia. Otherwise, the power absorbed in the medium woul@®Pi€ct, we get

appear as well in the Poynting theorem, E4). This contri-

bution yields the rate of nonradiative decay, where the Hind(r) = Haip(r) +J do-(X)[GS(X - r)ﬁ(x)

excited-state energy is absorbed in the medium without emis- aD an

sion of a photon into the far field. The normalized far-field

emissionP,,, gives the radiative decay rate in that case. The ~ H(x)

nonradiative decay rate diverges in a continuum description

G,
P (x- r)] : (6)
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Haip(1) = io(p X &) VG, (xs—r), (7) equation is evaluated at discrete points centered in the seg-
ments (point matching, and each point; carries two un-
i _ knowns H;=H(r;) andF;. The integral equationgl0) and
G(r) = ZHél)(kr\"S), (8)  (11) are thus replaced by a linear system that is solved with
standard routines. To get converged results, we choosa d
wheredD is the inner side of the object boundaryr(e) is ~ factor of 10 smaller than the minimum of the local wave-
the(sca_lap surface element at the integration pomandG, length\/+e and the minimum distance of the dipole to the
is the retarded Green function for a homogeneous dielectriboundary. The emitted power is computed from E.with
involving the zeroth-order Bessel function of the third kind I in the far field. We use the corresponding expansion of the
Hf)l), henceforward denoted &%, Equation(6) implements Green function an_d perform the angular integral of the Poyn-
the natural separation of the interior field into the dipole fieldting vector numerically.
Haip(r) for an infinite dielectric and a field reflected from the
object boundary. Similarly, outside the object the field is C. Validation of numerical results
Hext(r):_f dg(x)[el(x—r)ﬁ(x)-H(X)@(x_r) , We have validated the numerical results by comparing
) an an them to analytical calculations in the exactly solvable case of
9) a circular object surrounded by vacuum. A dipole at the cen-
ter of the object creates the dipole field

whereG; is the Green function for vacuum. From Ed6)
and (9), the field is completely determined by the field and

its derivative on the boundargHuyghens principle Note Haip(r) =-MH1(ME), (13)
that the exterior field automatically satisfies the Sommerfeld 4

radiation condition at infinity due to the choice of the re-

tarded Green function. where ¢ is the angle between and the dipole andi, the

~ The field(and its normal derivativeon the boundary are first-order Bessel function. This would also be the field in a
fixed self-consistently by letting the observation pairdp-  pylk dielectric. Outside the object, the field =tHgip,
proach the boundary in Eq&) and(9). One has to take care here the transmission coefficient can be found by a calcu-

of the nonintegrable singularity in the Green function's de-|ation similar to the Mie solution in three dimensiof]:
rivative, as explained in Appendix B. In terms of the fields

and F which take the same value on both sides of the inter-

. ’/_
face, we find the inhomogeneous boundary integral equa- f=— 2il(mkave) (1
tions H,(ka)J](kave) — VeH)(ka)Jy(kaye)
H(r) =2H(r) + ZPJ d”(x){GS(X ~NeFX) Here,a is the object radius and the prime denotes the deriva-
— tive with respect to the argument. The normalized power
G, emitted by the dipole is found to be
—HO)——(x=1) |, (10)
an
P r
JG FARETRLLE (15)
H(r) = - ZPJ da(x)[el(x = DF0) = HOO ™ (¢~ r)] , bt Touik
JD

(12) For a dielectric host particle, this is plotted as a solid line in
Fig. 1. The dipole emission wavelengtlx 27c/ w is scanned
where P denotes a principal value prescription, excluding thénrough a wide range from~a to much smaller than the
singular part ofdG,/dn. The logarithmic singularity of the particle radius. The numerical data are shown by the symbols
Green function itself whex—r can be treated by singling and are in good agreement. As the number of boundary ele-
out a small neighborhood around the surface point along  ments increases, the relative error of the numerical solution
the method outlined in Appendix B. Its contribution to the decreases rapidly; see the inset of Fig. 1.

integral is then As a second example, we consider the scattering cross
section for a cylindrical metallic particle illuminated by a
f do(X)G, (X = r)eF(X) = oeF(r)[- 2y +im+2 plane wave. The numerical data shown in Fig. 2 agree quite
o well with the results of Mie theory24]. The convergence
PN In(ka\s“gl4)]. (12) with the number of boundary elementsset of Fig. 3 is

somewhat slower, probably due to the faster variations of the
For the numerical solution, we apply the method of momentdield inside the metal particle. Note that we use the dielectric
[23]: the boundary is discretized into segments of size d function tabulated irf25]; there is no need to assume a par-
and the integrals are approximated by Riemann sums. Thigcular analytical form fore(w) as would be required for an
corners of polygonal objects are smoothed. The integraintegration in the time domain.
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172
(AY"1 Ay FIG. 3. Radiative decay rate vs emission frequency for host

- _ ) _ ____particles of the same area and aspect ratio, but with different shapes.
FlG'. L Emlssmn. from a dipole centered na circular object: Parameters: tunablepolarized dipole located at the object center,
normalized total emitted pow&Pen/Pyyi VS emission frequency. giojectric object(e=2.5 surrounded by vacuum. The wavelength is

Symbols: numerical results. Solid line: analytical results based oR . ~ii-ad to the square root of the particle area, the decay rate
Egs.(14) and(15). Inset: test of convergence. The relative error of normalized to its value in a bulk dielectric

the decay rate is plotted vs the inverse numbex df boundary

elements. An error smaller than 1% is achievedNor 250. Param- ) . . .
eters: dielectric cylinder wit:=2.5, surrounded by vacuum. The Particles of different size and shape. The molecule is located

results of the main figure are obtained wit=300 boundary ele- @t the object center, and its emission wavelength is varied.

ments. For the inset, emission wavelenygx 525 nm and cylinder One observes a broad peak located at the object’s first Mie

radiusa=30 nm. resonance. For a circular shape, this resonance corresponds
to the smallest complex zero of the denominator in @4).

[ll. RESULTS AND DISCUSSION It is apparent that the object shape does not significantly shift
the position of the peak; only its amplitude is reduced for
polygons that differ strongly from a circle. One also notices

1. Spontaneous decay rate that inside a very small object, the radiative lifetime ap-
We plot in Fig. 3 the normalized emitted power Proaches a common limit independent of the shape. This

Perm/ Pouic=T'/ Toui for a molecule located in dielectric host “m(ijt(ilss)i” agreement with the small-size limit of Eqel4)
and(15):

A. Polygonal hosts

PE3

0.24 |
022}
02
0.18 7
0.16 |

2
# numerics lim I :( 2 ) (16)

< +
- Mie theory ka<tD'pgie \&+1

We notice that the emission is weaker than inside a homoge-
neous dielectrigunless —3<e <1, we do not consider this
range herg This can be attributed to the screening of the
molecular dipole by the polarization charges it induces on

Scattering efficiency

014} 5 the object surface. As a result, the far field contains a reduced
012 g dipole component. We give a more detailed discuss_ion in
E: Sec. 1l B 2 below where elongated shapes are considered,
01 1% too.
0.08 | 28 12 16 x10° In a previous Letter, we have also shown that the depen-
AN ‘ , dence on the dipole position inside polygonal hosts is rela-
450 500 550 600 650 700 tively weak([12]. For a circular particle and in the quasistatic

A, [nm] limit, the decay rate is strictly constant, and any deviation

) ) ) ) _can be attributed to retardation. For polygonal particles, an
FIG. 2.. Scattering cross sec.tlon for a metallic cylinder: compari-anhanced decay is only observed if the molecule approaches
son of Mie theory and numerical results. We plot the scatteringgp o comers, due to the stronger electrostatic fields there

Cross section normallze_d to the partlclt_e diameter. Inset: relative _er-26]_ We discuss another example in Sec. Ill C below where
ror between the numerical and analytical values of the scatterin . -
e host is a sharp tip.

cross section versus the inverse numbed df boundary elements.
Above N=400 points, a relative errox1% is achieved. Param-

. S ; 2. Radiation pattern
eters: p-polarized incident plane wave with tunable wavelength, P

gold cylinder of radiusa=30 nm, surrounded by vacuum. The di- In Fig. 4, we plot the angular distribution of the emission
electric function is taken froni25]. N=500 boundary elements are (radiation patterpfor a molecule embedded in two square
taken in the main figure. In the insety=525 nm. hosts that have dimensions either smaller or larger than a
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FIG. 4. Radiation pattern for a molecule in polygonal hosts 02

smaller and larger, respectively, than the wavelength. Parameters:
square hosts with areas as indicated,2.5, emission wavelength
No=600 nm. The molecule position in the particle and its dipole
moment are indicated on the left.

0 01 02 03 04 05 06 0.7 0.8 09 1
(A)1IZ/)\°

FIG. 5. Same as Fig. 3 for rectangular hosts of different aspect
ratio x/y. Parameters: tunable-polarized dipole at object center,
wavelength. This pattern is computed from the far-field ex-dielectric object(e=2.5 surrounded by vacuum. Inset: decay rate
pression for very small objects vs aspect ratio. Numerical data are for nano-

scopic rectangular objects A=0.01\), analytical data for elliptic
1 dPgn, im

— H(r)I2. 17 objects in the electrostatic limjEq. (18)].
Pouk dé rwzﬂ%zkp?' ©) 7

We observe in the figure that the emission essentially ret_@cular that _screening due.to induced surface charges qualita-
sembles the familiar dipole pattern for the subwavelengtfively explains the numerical results.

host and does not depend on the dipole position. Significant )

structure occurs for objects comparable to or larger than the 2. Screening

wavelength: with the emitter at the center, the angular distri- The charge density induced on the surface of a typical
bution changes only slightly, while pronounced lobes appeafectangular object is plotted in Fig. 7. It is well known from
with an off-centered source. This confirms the approach oglectrostatics that the object shape influences the charge dis-
Klimov, Ducloy, and Letokho(27] who relate the emitted tribution. For the special case of an elliptical object, the elec-
power to the effective dipole momept; that the molecule  trostatic problem of an embedded point dipole can be solved
induces in a subwavelength objectka<1:I'/T',yx  analytically, as we outline in Appendix C. If the dipole is

— |pesi/ pl2. Higher multipoles apparently make a negligible polarized along one axis of the ellipdlengthc), the far field
contribution to the radiated field in this cag€or the small corresponds to a screened dipole monmggt f. p where the

object in Fig. 4kAY?~0.74 with A the object areaFigure  depolarization factof. is given in Eq.(C8). With this effec-
3 shows, however, that the decay rate rapidly deviates frorflve dipole moment, we get a decay rate
its electrostatic limit, with an approximately linear increase

with kA2, in agreement with the perturbation expansion r Z |t 2= 1 (18
of [28]. Touk© [1+(e=Dbl(b+0)]?
B. Elongated hosts whereb is the other eIIipsc_a axis. Thi_s formu_la repro_duces the
_ o correct value(16) for a circular object. It is also in good
1. Spontaneous decay rate and field distributions agreement with the numerical results obtained for small rect-

More pronounced changes in the radiative lifetime are
found for elongated host particles, as shown in Fig. 5. The
emission peaks now depend on the aspect ratio of the object.
This behavior can be attributed to a standing-wave mode of
low order that the dipole excites. An example is visible in the
field intensity map plotted in Fig. 6. Because of the low
index contrast considered here, the confinement of the field
inside the particle is weak. The modes thus have a low qual-
ity factor, and the emission resonances are broad, as was also

seenin Fig. 3. _ _ FIG. 6. (Color online Field intensity created inside an elon-
In the limit of cﬁelectnc particles that are very small com- gated host by a single dipole sour@ipole moment pointing up-

pared to thegmedium) wavelength, this picture does not ap- wards. The color code gives the field intens{&(x)|? (color bar in

ply any longer since the particle does not support any mode&egarithmic scalgin arbitrary units: the arrows illustrate the electric

In this regime, electrostatic arguments permit to understanfleld ReE in phase with the source. The chosen host corresponds to

the dependence of the spontaneous decay rate on the objegiiaximum emission for aspect ratidy=5 in Fig. 5: rectangle with

aspect ratio and orientation of the dipole. We show in parsize (1006.2x 201.24 nn?, £=2.5, wavelengttg=600 nm.
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FIG. 7. (Color onling Surface
charge densityin arbitrary unit3
induced on the surface of an elon-
gated rectangular host, for two
orientations of the molecular di-
pole moment. Blue curves: charge
density in phase with the dipole.
Red curves with dots: charge den-
sity in phase quadrature.

angular objects, as shown in the inset of Fig. 5. For verthe molecule approaches the apex of the triangle. The field
elongated objects, we have distribution for two generic molecule positions is plotted in
Fig. 10: close to the apex, the dipole creates a field that is
b<c: I'= Ty, (19 strongly localized on a scale of some 10 nm. The energy
flow (Poynting vectoy, indicated by the field lines, suggests
b c: I'=yyde?, (20)  that the tip redirects the emission in the upward direction,
along the faces of the triangle. This agrees with the fact that
close to a planar dielectric, most of the emission goes into
modes that are evanescent in vacuum and propagate just be-

which is similar to the behavior of fluorescence from thin
dye films[29]. An intuitive explanation is based on Fermi's
golden rule (1) and the penetration of the vacuum field " o : )
modes into the object: in the first case, dipole and field ar¢od the critical angle inside the dielectricee, e.g.,
tangential to the film and the field is continuous across th 30,31).
film surface. In the second case, the dipole is perpendicular

to the film, and the corresponding vacuum mode is reduced,

inside the film, by a factor of 1/ because now the displace-

ment fieldD=¢E is continuous across the surface. Based on the boundary integral equation method for the
solution of the Maxwell equations, we have developed in this
paper a versatile numerical method to compute the spontane-
] } . ] _ ous emission rate of an emitter embedded itoasless di-

We finally consider elongated particles in order to gaingjectric host particle of arbitrary shape and a size comparable
insight into the impact of the tip geometry on the spontanet or smaller than the emission wavelength. We have found
ous emission of a molecule embedded in the tip. Figure §nat compared to the decay rate in a bulk dielectric, signifi-
illustrates, for a fixed distance of the molecule frqm the.tipcant modifications occur for elongated hosts with subwave-
apex, the dependence on the sharpness of an elliptical tip. fngth size. The general features of our results can be under-
significant enhancement of the decay rate is found for vergigog from electrostatic arguments in terms of a screened
sharp tips, due to strong electrostatic fields and large inducegkfective dipole moment, confirming the picture put forward
surface charges. In Fig. 9, a triangular host object is considyy Klimov, Ducloy, and Letokho\27]. Our numerical cal-
ered as an extreme case. Again, the decay rate increases @fations have allowed to assess the validity of this approxi-

mation. If the molecule is located close to sharp corners, the

IV. CONCLUSIONS AND OUTLOOK

C. Molecules embedded in dielectric tips

o 0.8
£ . 1.4
s b Qo
0.7 % ® 1.2}
@ ;
: g
(o] 77}
2 &4
N 0.6 )
g 3
5 % 08¢
Z 05 £
5
! Z 06+t
50 100 150 200 250 300

b [nm] 0 100 200 300 400
Distance from the center [nm]
FIG. 8. Impact of tip sharpness: radiative decay rate in elliptical
dielectric hosts with different aspect ratio. The dipole is situated in  FIG. 9. Molecule close to a triangular tip: radiative decay rate vs
all cases at a fixed distance 30 nm from the tip apex, with verticakource position in an equilateral triangle. Vertical dipole emitting at
dipole moment. Emission wavelengii3=600 nm, fixed host area \y=600 nm, host dimensions as indicated in the inset2.5, sur-
(600 nm?, £=2.5, surrounded by vacuum. rounded by vacuum.
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APPENDIX A: LOCAL FIELD CORRECTIONS

We discuss here the decay rate of a two-level system em-
bedded in a lossless, two-dimensional dielectric object. A
quantization scheme for the macroscopic field is used and
local field corrections are analyzed.

1. Homogeneous dielectric

Using a mode expansion of the field, the matrix element
in Fermi's golden rulgl) can be evaluated as

- 2_ hwk,g
|<gvlk,,u|p E(X5)|e,0>| - ZSOSLQ
where()(L) is the quantization are@ength in the xy plane
(the z axis), respectively. The field modes are labeled by the
wave vectork and the polarization indeg, ande"jL is the
actual(local) field at the location of the molecule. The factor
1/e in the electric field per photon comes from the expres-
sion for the electromagnetic energy densityeq/2)E?
+B?/(2ug) in a (nondispersivedielectric.
The local field is related by a “depolarization factdy, to
the “macroscopic field”:

loc _

FIG. 10. (Color onling Intensity distribution inside a triangular flo = Euflon(@- (A2)
host created by a vertical point dipole. Vertical dipole with emission\We anticipate a polarization dependence, but no strong varia-
wavelength \;=600 nm. Dielectric particle withe=2.5, base tion with the wave vector for the local field correction. This
length=800 nm, surrounded by vacuum. The intensity distributiorwould no longer be true in a birefringent host particle, for
(color bar in logarithmic scajeand the time-averaged energy flow example. In fact¢, is determined by the microscopic sur-
(given by the arrowsare plotted for a centered and an off-centeredroundings of the molecule that typically vary on a scale
dipole, respectively. much shorter than the wavelength. For the calculatio,of

retardation can thus be neglected, and one faces an electro-

decay rate is enhanced because of the lightning rod effecstatic problem wheré, ,(x) can be approximated by an ex-
An exact electrostatic solution for elliptical particles gives aternal, quasihomogeneous fig@6]. We do not need an ac-
satisfactory description for the emission out of rectangulatual formula for ¢, here; it can be found by adapting the
hosts of very small size as well. With the small refractiveresult given in Eq(A5). For the three-dimensional case, see,
index contrast we consider here, eigenmodes of the particle.g.,[17,18,21,34
have low quality factors and give only broad resonances In our two-dimensional model, only wave vectdrsn the
when the particle size becomes comparable to the waveplane are retained and are specified by an aggleith re-
length. spect to the dipole momept(assumed in the plane as well

The boundary integral equation can be adapted to tak&hen only p-polarized modegelectric field in the plane
into account a planar substrate, simply by using the approsontribute to Eq(A1) with a matrix element proportional to
priate Green functiofi32,33. Corrugations are then modeled sin¢. Performing the angular integral, the decay rate be-
as finite objects, without the need to truncate the substrat€eomes
This would allow to study in detail the validity of the pertur-
bative calculation done ifb,6].

p*-fE% (AL

|&pI* i
4eghl ¢

Fhuk = (A3)

The local field correction thus enters quadratically into the
decay rate and could as well be absorbed in a redefinition of
L.R. thanks Vahid Sandoghdar for supervising her re-the dipole momenp. We have assumed an isotropic local
search and suggesting the routes explored in this work. Weld correction herémolecule in a circular cavily That Eq.
are indebted to Hannes Schniepp, Rémi Carminati, SveA3) does not depend any longer explicitly etis typical for
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2

J

the mixed terms cancel. We finally get a decay rate

a two-dimensional setting, as has been shown by Nienhuis
and Alkemade[35]. In fact, the factor 14 in Eq. (Al) is
compensated by a factor ef that occurs in the density of
modes for a two-dimensional, homogeneous dielectric with
dispersion relationwy ,=c|k|/Ve.

delpym Sin @ + per; cosgl? = m(pgrp + Pire);

(AT)

2. Small ellipsoidal object

Fobject: 1_‘bulk( Tg cos ¢+ 7'(2: sin? ¢) ) (A8)

We now turn to a dipole inside a finite dielectric object of

subwavelength size. In this case, we use scattering moqﬁhereqs is the angle of the dipole with respect to thexis.

functionsfy ,(x) that are labelled by plane waveg & f e dipole is polarized along one of the axes of the ellip-

is much larger than the object, so that the latter does nQfepolarization factor. For an orientation in between, one has

affect the normalization of the mode functions. We thus gel contribution of both. Finally, the local field correctidp

the matrix element [involved inTy, Eq.(A3)] drops out when normalizing the
decay ratgA8) to its bulk value.

hwkvf?
ZSOLQ

(A4)

K9, LlP - E(xJle,0)2 = p* R,

APPENDIX B: BOUNDARY INTEGRAL EQUATIONS

instead of Eq(A1), and the mode frequenay, ,=ck does In Egs. (6) and (9), the Green function&,(r —x) and
not containe. G4(r —x) are singular in the limit —x. This does not pose
To get the field inside the object, we use again an electroproblems in the far fieldr —o, becausex runs over the
static argument given that the dielectric particle is smallobject boundarysD. But the boundary integral equations
compared to the wavelength: we solve the classical problemi0) and(11) require some care because, here,dD.
of a small ellipsoid in an external homogeneous electric field The derivativedG,/dn contains ad-function singularity.
(given by the polarization vectog, ,). The exterior field To extract it, we introduce for —dJD a local coordinate
contains scattered dipole and multipole fields in addition tosystemr =(x,h), x=(x;,0) whereh measures the distance of
the external field. The interior field, for an elliptical shape, isy from the surface in the direction of the outward unit nor-
again homogeneous with an amplitude given by the depolaimal. The boundary integral in the neighborhas@,) of the
ization factor[36] projectionr ,=(x,0) onto the surface is then approximated by
using the asymptotic expansion of the Bessel function. This

1 leads to(see, e.g.[37])

———f
1+(s-1n, “*

int
ku,a =

a= Ta fk,;/,,a(xs)! (AS)

G
ol

ns(x—r)

lim
r—adbD

f do(x)H(x)
o(rp)

wherea labels the Cartesian components in a frame given by
the ellipsoid’s principal axes. In this frame, the depolariza-
tion is described by the numbers, For a cylinder with
elliptical cross sectiorfaxesb,c), the three-dimensional re-
sults of Ref.[36] lead ton.=b/(b+c), nyb=c/(b+c). This in
agreement with the solution of Appendix C for the reciprocal
situation(the exterior dipole field created by a dipole embed-
ded in an ellipsoiyl Finally, the components of the local field
are found from the field inside the object applying the sam
correction factorf 2 =¢,f " . This assumes that the mi-
croscopic surroundfn ﬁe molecule are the same in th
object and in bulk.

For an elliptical object, we have to take into account the 1
dependence of the depolarization on the orientation of thé
field polarization. Expanding an in-plane dipole moment
along the principal axe®@=p,e,+ P, We have, for a given
p-polarized mode,

=—1Iim

h
dxHX) 55—
27Th—>0Jo(ro) ! ( )h2+(X1_X)2

1 H
éf dx;H(x) 8(x; — x)sgnh = - ﬁ.
o(rp)

2

(B1)

8n the last step, we have used the Lorentzian representation
of the § function and assumed that the boundaBy is ap-
Sroached from inside the objedt<0). Equation(B1) leads

to the factor of 2 in front of the boundary integrals in Egs.
0) and(11).

The term involvingG,(r —x) shows a logarithmic singu-
larity. Extracting it in a similar way, the neighborhoodr )
yields the contribution given in Eq12).

The linear system that represents the boundary integral
equations on a discrete setdfsurface elements corresponds
to a matrix withN? entries. The computation of the matrix
elements and the solution of the linear system on a worksta-
where we have again assumed an “isotropic” local field cortion takes roughly 10 s foN~500. Reasonably converged

k
gs of t

p* .fLO’% = gp(p;Tbeo + pzTcec) : fk,p(xs)i (A6)

rection§,. The integration over the anglebetweerk ande,
gives

results are obtained foM =100, as illustrated in Figs. 1 and
2.
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APPENDIX C: EXACT SOLUTION =
FOR SUBWAVELENGTH ELLIPTIC OBJECT Uext= > Gy €Xp(— Np)cogneg). (C5)

n=1
We outline in the following the analytical solution for the

electrostatic field created by a point dipole at the centre of a he term withn=1 is the dipole component and contains the
elliptical object. On the subwavelength scale, retardation igffective dipole moment that we are looking for. For the
negligible so that we have to solve the generalized Laplac#éterior field, we have the expansion

equation o

20V () VU=(p- V)alr), (CD Uin=Uap + 2, &g sinhinp)cosing). (€6

whereU is the electrioscalay potential. , . The coefficientsa, andc, are found from the continuity of
The Laplace equatio(C1) can be separated in spheroidal \he scalar potential across the boundary and the jump of its

coordinates defined by normal derivativeg Ui,/ dp= Uyl dp, at p=po. We expand

(C2) these equations in a cosine Fourier series and find, perform-

ing one Fourier integral, the coefficient of the exterior dipole
field:

x=1sinhp cose,

y =1 coshp sin ¢, (C3

wherel is a length scale parameter. The surface of the ellip- C = P/ (eqm) —,
tical object is the curvep=p, with the major axisb 1+ (e — 1)coshpee™
= coshp, oriented along they axis and the minor axi€  |n terms of the semiaxes of the ellipse, we haet
=1 sinhpg along thex axis. The scale parameter is fixed by =coshp,+sinhp,=(b+c)/Il. By comparing to the far field of
12=b?-c?. In these coordinates, the electrostatic potential of, dipole in vacuunfEq. (C4) in the limit of largep, with pyq

a point dipole polarized along theaxis in a homogeneous jnstead ofp,/&], we get the effective dipole moment
medium of permittivitye is given by

(C7

| _ Px
Pe 9 gz Px_Sinhpcose - Pelt = 1 ¥ (e - Dbib+0)”

2mege X - 2megel costt p—cod ¢

(CY

Udip =
One has to exchandeandc if the dipole is polarized along
The main complication here is that this potential does nothey axis. For a circular cylinder, we hade=c and get the
depend in a simple way on the angular coordinate known resultpey/ py—2/(e+1), leading to Eq.(16). For ¢
We add to Eq.(C4) a solution of the homogeneous — -1, the dipole excites a surface plasmon resonance and the
Laplace equatior(d?/ dp?+#/3¢?)U=0 in order to satisfy solution diverges, unless damping is taken into account. For
the boundary conditions. Those homogeneous solutions thanh elliptical particle, the resonance shiftsete—c/b; a simi-
are adapted to the symmetry of the present prolflewen in  lar trend has been observed in three dimension§38y39,
¢) are of the following form. Outside the object, for example.
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