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We study four-wave mixing in a double-L system, for cw laser beams whose transverse intensity profiles
(TIP’s) are initially Gaussian, by solving the Maxwell-Bloch equations numerically. For systems where coher-
ent population trapping(CPT) is initially absent, we show that efficient frequency conversion, without focusing
or ring formation, can occur even at distances which are much shorter than those required to establish CPT. We
also show, for certain configurations, that blue-detuned beams become focused on propagation so that very
high frequency conversion, even exceeding 100% at the center of the profile, can occur. This focusing is,
however, accompanied by ring formation. We show that focusing, without ring formation, can occur for
identical blue-detuned beams when the initial relative phase isp so that CPT cannot be established on
propagation. The behavior of the TIP’s of the beams on propagation is explained by considering the effective
linear and third-order contributions to the off-diagonal density-matrix elements.
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I. INTRODUCTION

Modern nonlinear optics exploits quantum interference
and coherence effects in order to control and modify the
properties of the interacting optical fields and material sys-
tems. One of the most studied schemes is the double-L sys-
tem, which consists of four atomic or molecular states inter-
acting with four near-resonant laser beams so that a closed
loop is formed. An important property of these systems is
that both the initial relative phases and amplitudes of the
electromagnetic fields determine the populations and coher-
ences of the atoms[1–6] as well as the properties of the
fields on propagation[6]. The double-L system has been
investigated in the context of amplification without inversion
[7–10], phase-sensitive laser cooling[11], the propagation of
pairs of optical pulses[12], optical phase conjugation
[13–16], phase control of photoionization[17], resonantly
enhanced four-wave mixing(FWM) [6,13,18–24], cavity
quantum electrodynamics(QED) [25], phase control of elec-
tromagnetically induced transparency[26,27] and coherent
population trapping(CPT) [28], Ramsey fringes[29], light
storing of a pair of pulses[30,31], and dynamic optical bi-
stability [32]. Recently, Morigiet al. [33] have compared the
phase-dependent properties of theL (diamond) four-level
system with those of the double-L system.

In this article, we discuss the behavior of the initially
Gaussian transverse intensity profiles(TIP’s) of cw copropa-
gating beams that interact with a double-L system. Previous
studies of propagation in four-level double-L systems
[6,7,12,13,30,31,34] or in their five-level modified version
[35], proposed by Johnsson and Fleischhauer[36–38], have
considered either cw[6,13,35] or pulsed plane wave fields
[12,24,30,31]. However, none of them have considered the
role of the transverse intensity profiles of the interacting
beams in enhancing FWM, although the potential signifi-
cance of doing so was pointed out by Korsunsky and Kosa-
chiov [6]. Harris and coworkers[39–43] have shown that if
maximum two-photon(Raman) coherence can be established
between the two lower states of the system, highly efficient
FWM occurs within a coherence length, so that self-focusing

and phase matching become irrelevant.(For earlier work on
the role of maximal coherence in coherent anti-Stokes reso-
nance Raman systems which are also double-L systems, see
Refs.[44,45].) This is quite different from the situation in the
pumped two-level system[46–49] where parametric ampli-
fication of the FWM and probe fields increases with the
propagation length[49].

Here we demonstrate that for systems where CPT is ini-
tially absent, considerable enhancement of the FWM can oc-
cur even at distances which are an order of magnitude shorter
than those required to establish CPT. Maximum frequency
conversion can be achieved before the beams become fo-
cused, defocused, or develop a ring around the central peak
which would be indicative of potential azimuthal-symmetry
breakup[50]. We also show that when the beams are blue
detuned and the nonlinearity of the medium is reduced con-
siderably, self-focusing of the beams leading to very high
frequency conversion can be obtained, near the axis of
propagation of the copropagating beams. This self-focusing
is, however, accompanied by ring formation which may lead
to breakup[50]. Only by solving the Maxwell-Bloch equa-
tions in three dimensions, rather than in two dimensions as
presented here, will it be possible to determine at what
propagation length breakup will occur. In all these configu-
rations, the laser at the FWM frequency is initially very
weak. On propagation, FWM is generated with the correct
phase so that CPT conditions can be established[6].

We also compare the propagation of four beams with
equal Rabi frequencies and detunings to the blue, whenF
=0 andF=p. WhenF=0, CPT exists from the outset and
the beams propagate unchanged for a length that is short
compared to the diffraction length. However, whenF=p so
that CPT is absent throughout propagation, and the nonlin-
earity sets in at a suitable length, all four beams can be
focused without ring formation.

We show that the behavior of the transverse intensity pro-
files of the beams, on propagation, can be explained by
studying the effective linear and third-order contributions to
the off-diagonal density-matrix elements, as a function of the
beam profile.
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II. THE MODEL

The four-level double-L system is depicted in Fig. 1. The
lower L system consists of the statesu1l, u2l, andu3l, and the
upperL system consists of the statesu1l, u2l, and u4l. Each
u jl→ uil transition (with j =1, 2 and i =3,4 throughout the
paper) interacts with an electromagnetic field

EW i jsrW,td = s1/2dx̂i jEijsrdexpf− isvi j t − kijz+ wi jdg + c.c.,

s1d

with unit polarization vectorx̂i j , frequencyvi j , wave vector
kij , and initial phasewi j , whose detuning from the transition
frequencyvi j8 is Di j =vi j8 −vi j and whose Rabi frequency is
2Vijsrd=mi jEijsrd /".

The first step is to write the Bloch equations[51] for the
double-L system[6]. It should be pointed out that the Bloch
equations for the off-diagonal elements of the density matrix
are the same for all four-level systems that interact with four
fields so that a loop is formed. The equations for the diagonal
elements differ only in the decay terms. The Bloch equations
are given by

ṙ11 = isV13r318 + V14r418 − V31r138 − V41r148 d − g12r11 + g21r22

+ g31r33 + g41r44, s2d

ṙ22 = isV23r328 + V24r428 − V32r238 − V42r248 d + g12r11 − g21r22

+ g32r33 + g42r44, s3d

ṙ33 = isV31r138 + V32r238 − V13r318 − V23r328 d − g3r33 + g43r44,

s4d

ṙ44 = isV41r148 + V42r248 − V14r418 − V24r428 d − g4r44, s5d

ṙ218 = isV23r318 + aV24r418 − V31r238 − aV41r248 d

− sG21 + iD21dr218 , s6d

ṙ318 = isV31r11 + V32r218 − V31r33 − V41r348 d − sG31 + iD31dr318 ,

s7d

ṙ328 = isV32r22 + V31r128 − V32r33 − a*V42r348 d

− sG32 + iD32dr328 , s8d

ṙ418 = isV41r11 + a*V42r218 − V31r438 − V41r44d

− sG41 + iD41dr418 , s9d

ṙ428 = isV42r22 + aV41r128 − aV32r438 − V42r44d

− sG42 + iD42dr428 , s10d

ṙ438 = isV41r138 + a*V42r238 − V13r418 − a*V23r428 d

− sG43 + iD43dr438 , s11d

where a=expsiFd and F=w31−w32+w42−w41 is the initial
relative phase,gkl is the longitudinal decay rate from state
ukl→ ull, gi is the total decay rate from stateuil, and Gkl
=0.5sgk+gld+Gkl

* is the transverse decay rate of the off-
diagonal density-matrix elementrkl8 , whereGkl

* is the rate of
phase-changing collisions. The rapidly oscillating terms have
been eliminated by the substitutions

ri j8 = ri j expf− isDi j t + kijz− wi jdg, s12d

wherei =1, 2, andj =3, 4, and

r218 = r21 exph− ifsD31 − D32dt + sk31 − k32dz− sw31 − w32dgj,

s13d

r438 = r43 exph− ifsD41 − D31dt + sk41 − k31dz− sw41 − w31dgj.

s14d

It is only possible to write the Bloch equations in this form
when the multiphoton resonance conditionv31−v32+v42
−v41=0 is satisfied. This condition can be rewritten in terms
of the one-photon detunings asD31−D32=D41−D42=D21,
whereD21 is the two-photon or Raman detuning or, alterna-
tively, D41−D31=D42−D32=D43.

In addition to solving the steady-state Bloch equations
numerically, we have also obtained analytical formulae
which express the off-diagonal density matrix elements in
terms of the populations of the states. These formulas are a
generalization of those previously developed for the three-
level L system[51] and for the double-L system[21] in the
case whereV31 andV42 are strong, andV32 andV41 are weak
(strong-weak-strong-weak configuration), and it is assumed
that the strong fields remain constant. We find that the ana-
lytical expression forri j8 can be decomposed into a sum of
terms that are linear and third order in the Rabi frequency,

ri j8 = ri j8
s1d + ri j8

s3d, s15d

or, more explicitly, as

r318 = x̃31
s1dV31 + ax̃31

s3dV32V24V41, s16d

r328 = x̃32
s1dV32 + a* x̃32

s3dV31V14V42, s17d

r418 = x̃41
s1dV41 + a* x̃41

s3dV42V23V31, s18d

r428 = x̃42
s1dV42 + ax̃42

s3dV41V13V32, s19d

where x̃i j
s1d and x̃i j

s3d are proportional to the effective linear
and third-order susceptibilitiesxi j

s1,3d [52]. The real and
imaginary parts of the effective linear susceptibilityxi j

s1d are
proportional to the refraction and absorption of the field that
interacts with theuil→ u jl transition, and the effective third-
order susceptibilityxi j

s3d gives the contribution to the nonlin-

FIG. 1. Energy level scheme for the double-L system interact-
ing with four beams.
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ear polarization atvi j from FWM. The role played by the
phase is clearly seen in Eqs.(16)–(19). If F=0, the two
contributions tori j8 interfere, either constructively or destruc-
tively, depending on their relative signs. If the phase is
switched toF=p, the constructive interference is replaced
by destructive interference, or vice versa. It is important to
realize thatxi j

s1,3d are themselves phase dependent, since they
can be expressed in terms of the populations whose phase
dependence arises from that of the coherences[see Eqs.
(2)–(11)]. Unfortunately, the analytical expressions for the
susceptibilities are too unwieldy to reproduce here. However,
as we show in Sec. III, their numerical evaluation gives im-
portant physical insight into the behavior of the system. We
can calculate the phase mismatch introduced by interaction
with the medium from the expression

Dk . sv/cdsn31 − n32 + n42 − n41d, s20d

where [52] nij
2 =1+4p Rexi j

s1d, and the copropagating laser
beams are assumed to be close in frequency. This assumption
also allows us to neglect Doppler broadening. Asxi j

s1d de-
pends on the intensity of all four beams,Dk varies as a
function of both the beam radius and the propagation length.
In our work on parametric amplification(PA) in the two-
level system interacting with a strong pump and weak probe,
we found that the phenomenon of electromagnetically in-
duced phase matching(EIPM), in which Dk becomes zero
for certain pump intensities on propagation[49], plays a cru-
cial role in determining the magnitude of the PA. However,
we show here that the distance at which PA occurs in the
double-L system is generally very short, so that EIPM is
unimportant.

In order to study the propagation of the beams, we solve
the Maxwell-Bloch equations, in the paraxial approximation,
which may be written in the form[46–49]

]

]z
Vij8 =

i

4LD
¹T

2Vij8 +
i

Lij
ri j8 , s21d

where

¹T
2 = ]2/]j2 + s1/jd]/]j + s1/j2d]2/]u2 s22d

is the transverse Laplacian in dimensionless cylindrical co-
ordinates,j=r /Î2w31s0d, wherew31s0d is the initial spot size
of the field at frequencyv31, Vij8 =Vij /G31 is the dimension-
less Rabi frequency, the parameterLD=kfw31s0dg2 is the dif-
fraction length, and the parameterLij ="G31/pkNmi j

2

=4/ai js0d, whereai js0d is the unsaturated line-center absorp-
tion coefficient for theu jl→ uil transition. In the calculations
we assume thatLij =LNL (NL stands for nonlinear) for all the
transitions. The ratioLrel=LNL/LD expresses the propagation
distance at which the nonlinearity becomes important, rela-
tive to the length at which diffraction becomes important.
Thus for a constant value ofLD, decreasing the value ofLrel
ensures that the nonlinearity takes effect at a shorter propa-
gation distance.

We solve the Maxwell-Bloch equations numerically for
both plane waves(PW’s) and beams whose initial transverse
intensity profiles are Gaussian with the same waist sizes:

Vij8 = Vij8 s0dexps− j2d. s23d

In all the calculations presented here, we assume thatGi j8
=Gi j /G31=1 for all four one-photon transitions,g43=0, g218
=g128 =g12/G31=10−5, andGi j

* =0. In order to compare PW’s
and Gaussian beams, we assume that the initial Rabi fre-
quencies of the beams in the PW approximation are equal to
the initial values ofVij8 s0d, the on-axis Rabi frequencies of
the Gaussian TIP’s of the beams.

III. NUMERICAL RESULTS

A. CPT and maximal two-photon coherence

In this section, we examine the well-known situation
where CPT with maximal two-photon coherencesur218 u2
=r11r22=1/4,V318 /V328 =V418 /V428 d either already exists atz
=0, or is achieved after a short propagation distance
[6,39–43]. We show that maximum conversion ofV428 s0d to
V418 s0d can be achieved before focusing or ring formation sets
in, and even before CPT is achieved. In the examples dis-
cussed below, the beams that interact with the lowerL sys-
tem have equal Rabi frequenciesfV318 s0d=V328 s0d=8g and are
equally detuned to the red or blue(D318 =D328 = ±4 whereDi j8
=Di j /G31), so that the two-photon detuningD21=0. If we
were dealing with a single-L system, we would obtain CPT
with ur218 u2 remaining constant at its maximum value of 1/4
throughout propagation, andxi j

s1d=0.
WhenV418 s0d andV428 s0d are very weak, only minor devia-

tions from this situation are expected. We first consider such
a case where, initially,V418 s0d=0.001, V428 s0d=1, with Di j8
= ±4 and Lrel=1.66310−4. In Fig. 2(a), we plot the two-
photon coherences,ur218 u2 and ur438 u2, and the populations at
the centersj=0d of the Gaussian beams. As expected, the
on-axis two-photon coherenceur218 u2 rapidly achieves its
maximum value. In Fig. 2(b), the TIP’s are plotted as a func-
tion of z/LD, and we see that they remain Gaussian on propa-
gation. In Fig. 2(c), we compare the amplitudes of the PW
beams with those of the Gaussian beams at line center. We
see that the strong fieldsV318 s0d and V328 s0d remain almost
constant, whereasV428 s0d is strongly converted toV418 s0d,
with maximum conversion of 74% atz/LD=0.002. The be-
havior of V418 s0d andV428 s0d, on propagation, is the same for
both PW and Gaussian beams with either positive or nega-
tive detuning.

We now consider the case of large detuninguD418 u= uD428 u
=100, with V418 s0d=0.001, andLrel=1.66310−4, as in the
previous example. However, in this case we take a larger
initial value for V428 s0d, namely,V428 s0d=8. In Fig. 3(a), we
plot the two-photon coherences, and the populations at the
centersj=0d of the Gaussian beams. We see that the two-
photon coherence and populations of the lower levels oscil-
late as a function of the propagation lengthz/LD, while
maintaining ur218 u2=r11r22 which can deviate strongly from
its maximum value[6]. In Fig. 3(b), the TIP’s are plotted as
a function ofz/LD and we see that the they remain Gaussian
on propagation. In Fig. 3(c), we compare the amplitudes of
the PW beams with those of the Gaussian beams at line
center, and note that there is very little difference between
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the two cases. The maximum conversion ofV428 s0d to V418 s0d
is 87%, and occurs atz/LD=0.047, at the height of the first
oscillation. This distance, which is an order of magnitude
larger than in the previous case, can be shortened by reduc-
ing the detuning in the upperL system. However, as the
detuning decreases, the conversion becomes less efficient.
For example, whenuD418 u= uD428 u=50, the maximum conver-

sion is 85% atz/LD=0.024 and whenuD418 u= uD428 u=25, the
maximum conversion is 82% atz/LD=0.014. As the detun-
ing decreases, the initial deviation from CPTsur21u2
=r11r22d increases. Although this deviation decreases on
propagation, it may still be significant at the point where
maximum conversion takes place.

In order to reinforce this point, let us decrease the detun-
ing even further touD418 u= uD428 u=10. The maximum conver-
sion of 73% is achieved atz/LD=0.009 where the deviation
from CPT is −0.074,ur21u2=0.057!0.25, andr33.r44=0.1.
CPT only occurs atz/LD.0.1 which is an order of magni-
tude greater than the distance where maximum conversion is
achieved. As can be seen from Fig. 3(d), maximum conver-
sion is achieved before the beams become focused, defo-
cused or develop a ring around the central peak which would
be indicative of potential azimuthal-symmetry breakup[50].
Thus it is possible to obtain significant conversion in the
absence of CPT at very small propagation distances. Of
course, one cannot reduce the detuning indefinitely. By
uD418 u= uD428 u=6, ring formation, but not focusing, occurs be-
fore maximum conversion is achieved.

B. Focusing in the absence of CPT

The question now arises as to whether it is possible to
choose parameters that will lead to focusing of the beams
and hence to enhanced conversion ofV428 s0d to V418 s0d. It
turns out that it is possible, provided one chooses all the
beams to be detuned to the blue, and increases the value of
Lrel so that the nonlinearity sets in at a distance that is suffi-
ciently long for focusing to build up. We discuss two pos-
sible configurations for achieving focusing.

1. Three strong fields

We first consider the case in which three of the beams are
equally strong, V318 s0d=V328 s0d=V428 s0d=8, while V418 s0d
=0.001, all the beams are equally detuned to the blue,
Di j8 =−4 andLrel is increased to 1.52310−3. In Fig. 4(a), we
compare the amplitudes of the PW beams with those of the
initially Gaussian beams on axis, and note that the maximum
conversion ofV428 s0d to V418 s0d for the case of the Gaussian
beams exceeds 100%, reaching 122% atz/LD=0.12, as op-
posed to only 60% for the PW beams. For these parameters,
CPT with ur218 u2=0.2 is established on propagation atz/LD
.0.24 which is approximately twice the length at which
maximum conversion takes place. Thus, in this case, focus-
ing leads to very high on-axis frequency conversion well
before CPT is established. In Fig. 4(b), we plot the TIP’s of
the initially Gaussian beams, as they propagate. In contrast to
the configurations discussed in Sec. III A, the TIP’s do not
retain their Gaussian shape but develop into a central focused
beam surrounded by a much weaker ring. If we follow the
changes inV418 on propagation, we see that at small values of
z/LD, there are two peaks in the wings of the TIP which
grow on propagation, and eventually form the ring around
the central peak. The origin of the two peaks can be traced to
the behavior ofr418 as a function ofj at z=0. In Figs. 4(c)
and 4(d), we plot the real and imaginary parts of the contri-
butions tor418 at z=0 [see Eqs.(15)]. We see that the contri-

FIG. 2. Double-L system in which CPT with maximal two-
photon coherence exists atz.0. (a) Populations and two-photon
coherences of Gaussian beams atj=0, as a function ofz/LD; (b)
TIP’s (Vij8 vs j) of propagating beams as a function ofz/LD; (c)
comparison between Rabi frequencies of Gaussian(at j=0) and PW
beams as a function ofz/LD. Initial Rabi frequencies areV318 s0d
=V328 s0d=8, V418 s0d=0.001, andV428 s0d=1. Detunings areDi j8 = ±4,
andLrel=1.66310−4.
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bution fromr418
s3d is much greater than that fromr418

s1d which
is to be expected for a field that is initially much weaker than
the other fields. In addition, it can be seen that the contribu-
tion from FWM is greater off axis than on axis, leading to
the formation of a ring.

2. Two strong fields: Strong-weak-strong-weak configuration

We now consider the strong-weak-strong-weak configura-
tion which has been studied extensively by Babinet al.
[20–23]. We solve the Maxwell-Bloch equations for the pa-
rametersV318 s0d=V428 s0d=4, V328 s0d=0.1, V418 s0d=0.001, Di j8
=−4, andLrel=1.66310−3. In Fig. 5(a), we compare the am-
plitudes of the PW’s with those of the initially Gaussian
beams on axis, and note the maximum conversion ofV428 s0d
to V418 s0d and V318 s0d to V328 s0d for the case of the Gaussian
beams is approximately twice that of the PW beams(41%
against 19%) at a lengthz/LD=0.17. Thus focusing leads to
much higher frequency conversion for this case. In addition,
the fieldsV318 s0d and V428 s0d which are initially strong, un-
dergo focusing on propagation which prevents the steep drop
in intensity experienced by the PW beams. We note that
when the beams are detuned to the red,Di j8 =4, all the ini-
tially Gaussian beams become strongly defocused on propa-

gation, so that there is almost no difference between the be-
havior of the initially Gaussian and the PW beams. In this
case, CPT is not present initially but, in contrast to the pre-
vious case, is achieved on propagation at a length which is
approximately equal to that at which maximum conversion
occurs. Atz/LD=0.17, the deviation from CPT is −0.05 and
ur21u2=0.19. In Fig. 5(b), we plot the TIP’s of the blue-
detuned initially Gaussian beams, as they propagate. As in
the previous case, the TIP’s do not retain their Gaussian
shape but develop into a central focused beam surrounded by
a weaker ring. If we follow the changes inV328 and V418 on
propagation, we see that at small values ofz/LD, they each
acquire two peaks in the wings which grow on propagation,
and eventually form the ring around the central peak. The
origin of the rings can again be explained by considering the
behavior ofr418

s1,3d andr328
s1,3d as a function ofj at z=0.

In both the cases discussed in this section, ring formation
occurs before focusing, at a distance which is either shorter
than(case of three strong beams) or similar to(strong-weak-
strong-weak configuration) that at which CPT is established.
When propagation is continued beyond the distance where
focusing occurs, the TIP’s eventually regain their Gaussian
behavior. In order to establish at which stage, in the propa-
gation, azimuthal-symmetry breakup[50] will occur, it is

FIG. 3. Double-L system in which detuning of upperL system is varied. In(a), (b), and (c), D418 =D428 = ±100, and in(d), D418 =D428
= ±10. (a) Populations and two-photon coherences of Gaussian beams atj=0, as a function ofz/LD; (b) and (d) TIP’s (Vij8 vs j) of
propagating beams as a function ofz/LD; and (c) comparison between Rabi frequencies of Gaussian beams(at j=0) and PW beams as a
function of z/LD. Initial Rabi frequencies areV318 s0d=V328 s0d=V428 s0d=8, andV418 s0d=0.001. Detunings areD318 =D328 = ±4, andLrel=1.66
310−4.
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necessary to solve the Maxwell-Bloch equations in three di-
mensions, rather than the two dimensions studied here.

In the following section, we compare a case of perfect
CPT with one where CPT cannot occur, and show that in the
latter case, the beams achieve focusing without ring forma-
tion. We do this by considering the propagation of four
beams which have the same Rabi frequencies and detunings
from their respective transitions, for the case whereF=0. In
this case CPT with maximal coherence is established from
the outset[6]. We then switch the relative phase toF=p
where CPT cannot occur.

C. Role of the relative phase

In order to demonstrate the effect of switching the relative
phase fromF=0 to F=p, we solve the Maxwell-Bloch
equations for the parametersVijs0d=4, Di j =−4, and Lrel

=1.11310−3. When the initial relative phaseF=0, perfect
CPT with maximal two-photon coherence is obtained[6],
and all the beams propagate without changing their shape up
to z/LD.0.22. This distance is proportional toLrel and can
therefore be modified by changingLrel. The fact that the
beams propagate unchanged can be explained by considering
the contributions tori j8 [see Eqs.(15)]. In Figs. 6(a) and 6(b),
we plot the real and imaginary parts ofr418

s1d and r418
s3d at z

=0, as a function ofj. We see thatri j
8s1d andri j

8s3d are of equal
amplitude but opposite sign, so that their sumri j8 =0, and the
beams propagate unchanged apart from the effect of diffrac-
tion. However, when the phase is switched toF=p, the two-
photon coherence becomes zero[6] and CPT no longer
holds. Furthermore, we see from Eqs.(16)–(19) that the sign
of ri j

8s3d is switched so that the contributions tori j8 are now
equal in both magnitude and sign, as shown in Figs. 6(c) and
6(d). Consequently, they interfere constructively. From Figs.
6(c) and 6(d), we see that the incident and generated fields at

FIG. 4. Double-L system with three strong fields.(a) Compari-
son between Rabi frequencies of initially Gaussian beams(at j=0)
and PW beams as a function ofz/LD; (b) TIP’s (Vij8 vs j) of propa-
gating beams as a function ofz/LD; (c) Rer418

s1d (thin solid line),
Rer418

s3d (dashed line), andV418 (thick solid line) as a function ofj;
(d) Imr418

s1d (thin solid line), Imr418
s3d (dashed line), and V418 (thick

solid line) as a function ofj. Initial Rabi frequencies areV318 s0d
=V328 s0d=V428 s0d=8, andV418 s0d=0.001. Detunings areDi j8 =−4, and
Lrel=1.52310−3.

FIG. 5. Double-L system with two strong fields.(a) Comparison
between Rabi frequencies of initially Gaussian beams(at j=0) and
PW beams as a function ofz/LD; (b) TIP’s (Vij8 vs j) of propagating
beams as a function ofz/LD. Initial Rabi frequencies areV318 s0d
=V428 s0d=4, V328 s0d=0.1, andV418 s0d=0.001. Detunings areDi j8 =−4,
andLrel=1.66310−3.
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vi j are absorbed more strongly at the wings than at the cen-
ter, and are focused near the center as a result of the positive
slope, and defocused at the wings due to negative slope. As a
result of both these effects[53,54], we see in Fig. 6(e) that
the amplitudes of the beams decrease at first and then gradu-
ally increase as the beams become more focused on propa-
gation. After reaching a maximum, the focused beams then
decay completely. The maximum amplitude is approximately
twice the initial amplitude and there is no sign of ring for-
mation. If the strength of the nonlinearity is too high, the
decay is so rapid that focusing does not take place. In the PW
approximation, the beams are rapidly absorbed on propaga-
tion.

It should be noted that as the relative phaseF increases
from zero, the length at which CPT is achieved increases.
For the parameters of Fig. 6 andFø3p /4, the beams rap-
idly regain their Gaussian profiles when CPT is established
and then propagate smoothly. AsF increases furthersF
→pd, focusing occurs before CPT is established, and is fol-
lowed by breakup.

In discussing phase dependence in the double-L system,
and indeed in any system which forms a loop, it is important
to distinguish between cases where the field at the FWM

frequency is initially absent(or very small) and those where
it is present. In the former case, examples of which are dis-
cussed in Secs. III A and III B, the initial phase is irrelevant
since, on propagation in the nonlinear medium, FWM is gen-
erated with the correct phase. Only when the FWM fre-
quency is present at the outset, as in the case discussed in
this section, is the initial phase important.

IV. CONCLUSIONS

In this article, we discuss the behavior of the TIP’s of cw
four copropagating beams interacting with a double-L sys-
tem. We first study two well-known cases where CPT is es-
tablished on the lowerL system and then perturbed by the
upperL system. In the first, the fields that interact with the
upper L system are very weak, and in the second, one of
them is stronger but detuned far from resonance. We show
that there is considerable transfer of energy from the strong
field to the weak field due to FWM and that it occurs at a
very short propagation length. CPT exists in both these con-
figurations from the outset. The two-photon coherence is
constant at its maximum value in the former case, but oscil-
lates with distance in the latter case. When the detuning is
reduced considerably so that the initial deviation from CPT
is large, we find that efficient frequency conversion takes
place, without focusing or ring formation, at a distance
which is an order of magnitude smaller than that at which
CPT is established. This is contrary to conventional wisdom
which holds that efficient conversion only takes place when
CPT holds.

We also show that when the beams are blue detuned and
the nonlinearity of the medium is reduced considerably, self-
focusing of the beams leading to very high frequency con-
version can be obtained, near the axis of propagation of the
copropagating beams. This self-focusing is, however, accom-
panied by ring formation which may lead to breakup. Only
by solving the Maxwell-Bloch equations in three dimen-
sions, rather than in two dimensions as presented here, will it
be possible to determine at what propagation length breakup
will occur. In order to compare a system that has CPT at the
outset with one that has no possibility of establishing CPT on
propagation, we calculate the propagation of four beams with
equal Rabi frequencies and detunings to the blue, whenF
=0 andF=p. WhenF=0, the beams propagate unchanged
for a length that is short compared to the diffraction length.
However, whenF=p and LNL is sufficiently large, all four
beams can be focused without ring formation.

The behavior of the transverse intensity profiles of the
beams on propagation are explained by studying the effective
linear and third-order contributions to the off-diagonal
density-matrix elements, as a function of the beam profile.
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FIG. 6. Double-L system withF=0 andF=p. In (a) and (b),
F=0, and in(c), (d), and(e), F=p. (a) and (c) Rer418

s1d (thin solid
line), Rer418

s3d (dashed line), andV418 (thick solid line) as a function
of j; (b) and(d) Imr418

s1d (thin solid line), Imr418
s3d (dashed line), and

V418 (thick solid line) as a function ofj; and (e) TIP’s (Vij8 vs j) of
propagating beams as a function ofz/LD for F=p. Initial Rabi
frequencies areVij8 s0d=4, detunings areDi j8 =−4, and Lrel=1.11
310−3.
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