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The “ghost” interference experiment is analyzed when the source of entangled photons is a multimode
optical parametric amplifier(OPA) whose weak limit is the two-photon spontaneous parametric down-
conversion beam. The visibility of the double-slit pattern is calculated, taking the finite coincidence time
window of the photon counting detectors into account. It is found that the coincidence window and the
bandwidth of light reaching the detectors play a crucial role in the loss of visibility on coincidence detection,
not only in the ghost interference experiment but in all experiments involving coincidence detection. The
differences between the loss of visibility with two-mode and multimode OPA sources are also discussed.
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I. INTRODUCTION

The “ghost” interference experiment is typical of two-
photon interference experiments that bring out quantum en-
tanglement features of light. These features are not just con-
fined to the appearance of the double-slit pattern on
coincidence detection. The independence of the result on
where the optical elements are situated in the experimental
setup(a double-slit in the case of ghost interference) is a key
feature of entanglement. The ghost interference experiment
has been performed in the low-gain limit of parametric
down-conversion[1]. It is of interest to examine this experi-
ment in the high-gain regime of parametric amplification.
Analysis of similar experiments using two-mode optical
parametric amplifier(OPA) states[2] suggests the loss of
visibility at large gains. Recently different detection schemes
have been proposed to circumvent this problem[3,4,5].
Here, we present a detailed calculation of the ghost interfer-
ence experiment using a multimode OPA as the source of
entangled photons. We analyze the effect of the coincidence
time window of the photon counting detectors on the experi-
mentally observable interference pattern and visibility. We
attempt to explain how the properties of the source of en-
tangled photons and experimental limitations affect the ob-
servable interferometric effects. We find that the loss of vis-
ibility depends on the coincidence time window and the
bandwidth of the source. The coincidence time window
causes a loss in visibility at much lower gains than expected
with ideal detectors. A multimode source causes loss in vis-
ibility even if ideal detectors are used. Combined with a
finite coincidence time window, a multimode source can re-
duce visibility to less than 0.5 even at very low parametric
gain. These effects are not specific to the ghost interference
experiment but occur in all experiments with similar sources
and detection schemes.

II. MULTIMODE INTERACTION
IN OPTICAL PARAMETRIC AMPLIFIER

We consider a nondegenerate OPA[6] comprising a non-
centrosymmetric crystal with a second-order nonlinear sus-

ceptibility xs2d. The crystal is pumped by a continous-wave
(cw) laser, given by

Epsr ,td = Ep
s+d + Ep

s−d s1d

=Epe
iskp·r−vptd + H.c., s2d

where H.c. stands for Hermitian conjugate. We assume that
the pump is not depleted, has a constant amplitudeEp, and
can be treated classically. If a weak multimode signal is also
input into the OPA, the output after parametric interaction
within the crystal consists of amplified modes of the signal
and idler where the idler modes obey the phase matching
conditions,

vp = vs + vi , s3d

kp = ks + k i , s4d

wherekp, ks, andk i are the wave vectors of the pump, sig-
nal, and idler photons. The quantized field of the signal and
idler inside the crystal are given by[7]

Essr ,td = o
ks

Î "vs

2e0V
eisks·r−vstdaks

+ H.c., s5d

Eisr ,td = o
ks

Î "vi

2e0V
eisk i·r−vitdak i

+ H.c., s6d

Here,ak is the annihilation operator for a photon in modek.
Note that the dispersion relationvskd is different from that in
a vacuum,vskdÞck.

The nonlinear interaction between the crystal, pump, sig-
nal, and idler modes are characterized by the interaction
Hamiltonian[8,9],*Electronic address: su1@umbc.edu
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Hint = 2e0xs2d E d3rEp
s+dEs

s−dEi
s−d + H.c.

= 2e0xs2do
ks,ki

Î "vs

2e0V
Î "vi

2e0V
EpE d3rfeiskp−ks−k id·r

3eisvs+vi−vpdtaks

† ak i

† + e−iskp−ks−k id·re−isvs+vi−vpdtaks
ak i

g,

s7d

where the integration is over the volume of the crystal illu-
minated by the pump. For a long crystal and a wide pump
beam,

E d3reiskp−ks−k id·r = Vdkp−ks,k i
. s8d

The interaction Hamiltonian is simplified to

Hint = 2e0xs2dVo
ks,ki

Î "vs

2e0V
Î "vi

2e0V
Epdkp−ks,k i

3feisvs+vi−vpdtaks

† ak i

† + e−isvs+vi−vpdtaks
ak i

g. s9d

The delta function in Eq.(9) indicates the entanglement of
the OPA states in wave vector space. Combining the photon
commutation relations and the time evolution equations for
signal and idler modes, the time-evolved signal and idler are
given by [10,11]

aks
std = aks

s0dcoshsujks
ud − iak i

† s0dsinhsujks
ud, s10d

ak i

† std = ak i

† s0dcoshsujks
ud + iaks

s0dsinhsujks
ud, s11d

wheret is the average time taken by the photons to cross the
crystal. aks

s0d and ak i

† s0d are the annihilation and creation
operators for the input signal and idler mode. The factors
coshsujks

ud and sinhsujks
ud are the amplification factors that

depend on the strength of the nonlinearityxs2d, the pumpEp,
and the frequency of the signal and idler modes. Perfect
phase matching ensures that each signal mode interacts with
only one idler mode, selected by the phase-matching condi-
tions. Equations(10) and (11) relate the photon creation an-
nihilation operators at the output face of the crystal to those
at the input. They are derived from the unitary transforma-
tion,

Uki
= expF jks

*

2
aks

s0dak i
s0d −

jks

2
akWs

† s0dak i

† s0dG . s12d

Here jks
=sxs2dEp

Îvsvitdeip/2 may be recognized as the
squeeze parameter of the OPA[10]. The state at the output of
the crystal is given by

ucl = expf− isHint/"dtgu0l, s13d

which is a multiphoton state. In the limitujks
u!1, the expan-

sion of Eq.(13) can be limited to first order in the interaction
Hamiltonian, giving a vacuum state and an entangled two-
photon state. This is the two-photon limit of spontaneous
parametric down-conversion(SPDC).

III. EXPERIMENTAL SETUP AND CALCULATION

We now look at the experimental setup of the ghost inter-
ference experiment[1]. A nonlinear crystal is pumped by a
cw laserslp=351 nmd to generate pairs of colinear, orthogo-
nally polarized signal(e-ray) and idler (o-ray) photons
(Type-II SPDC). The signal and idler beams are separated by
a polarizing beam splitter. The signal beam passes through a
double-slit aperture to a photon counting detectorD1. D1 is a
fixed point detector. The idler is scanned by an optical fiber
and the output from the fiber is coupled to a detectorsD2d. f1

and f2 are filters(spatial or spectral) that limit the number of
wave vectors(and bandwidth) of light reaching the detectors.
The detectors in the signal and idler arms are connected to a
coincidence circuit.

IV. COINCIDENCE DETECTION

We are interested in coincident detection from the signal
and idler when the input state is a vacuum. The probability of
detecting a photon inD1 in positionr 1 at timet1 and another
in D2 at r 2 and t2 is proportional to the second-order corre-
lation function[7], given by

Gs2dsr 1,t1,r 2,t2d = kcucl, s14d

ucl = E1
s+dsr 1,t1dE2

s+dsr 2,t2du0l, s15d

where E1sr 1,t1d and E2sr 2,t2d are the electric fields at the
detectorsD1 and D2. The fields at the detectors can be ex-
pressed in terms of the fields at the output face of the crystal
through Green’s functions which describe the propagation of
the beams through the optical system. The positive frequency
part of the fields at the detectors are then given by

E1
s+dsr 1,t1d = o

ko

Î "vo

2e0V
e−ivot1gAsko,r 1dako

, s16d

E2
s+dsr 2,t2d = o

ke

Î "ve

2e0V
e−ivet2gBske,r 2dake

. s17d

We now look at the state of the fields at the two detectors
when the input state is a vacuum. Note that we are relating
the fields at the detectors to the vacuum at the input face of
the crystal. This involves two transformations—from the de-

FIG. 1. Schematic of the experimental setup for observing the
two-photon ghost interference. For simplicity, the prism to remove
the pump is not shown. The double slit has widthb=0.165 mm and
slit distancea=0.4 mm. The relevant distances in this experiment
ared1=0.3 m,d2=1.5 m, andd18=1 m.
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tectors to the output face of the crystal through the Green’s
functions and from the output of the crystal to its input by
the unitary transformation of the operators in Eqs.(10) and
(11).

Using the operator commutation relations, we get

E1
s+dE2

s+du0l = o
ko8,ke

− iÎ "vo8

2e0V
Î "ve

2e0V
e−isvo8t1de−ivet2gAsko8,r 1d

3gBske,r 2dcoshsujko8
udsinhsujko

uddko8ko
u0l

− o
ko9,ke

Î "vo9

2e0V
Î "ve

2e0V
e−ivo9t1e−ivet2gAsko9,r 1d

3gBske,r 2dsinhsujko9
udsinhsujko

udake9
† s0dako

† s0du0l.

s18d

From a careful examination of the above equation, we find
that the first term indicates correlation between the modes
detected in the two arms. The second term has no such cor-
relation since it factors into two independent terms, one for
each arm. Physically, this term corresponds to accidental co-
incidences of photons that are not entangled with each other.
We expect that the double-slit diffraction pattern will emerge
from the correlation in the first term while the second term
causes a loss in visibility. The second-order correlation func-
tion Gs2d can now be written as

Gs2d = U o
ko8,ke

Î "vo8

2e0V
Î "ve

2e0V
e−ivo8t1e−ivet2gAsko8,r 1d

3gBske,r 2dcoshsujko8
udsinhsujko

uddko8koU2

+ o
ko8,ko9

Î "vo8

2e0V
Î "vo9

2e0V
eivo8t1e−ivo9t1gA

* sko8,r 1d

3gAsko9,r 1dsinhsujko8
udsinhsujko9

uddko8
ko9

3 o
k̃e,ke

Î "ṽe

2e0V
Î "ve

2e0V
eiṽet2e−ivet2gB

* sk̃e,r 2d

3gBske,k2dsinhsujk̃o
udsinhsujko

uddk̃eke
. s19d

Implementing all thed functions and converting the summa-
tions in Gs2d to integralsfok→V/ s2pd3ed3kg, we have

Gs2d = S V

s2pd3D2FUE d3keÎ"svp − ved
2e0V

Î "ve

2e0V
e−isvp−vedt1

3e−ivet2gAskp − ke,r 1dgBske,r 2dcoshsujko
ud

3sinhsujko
udU2

+E d3ko8
"vo8

2e0V
ugAsko8,r 1du2sinh2sujko8

ud

3E d3ke
"ve

2e0V
ugBske,r 2du2sinh2sujko

udG . s20d

The expression forGs2d in Eq. (20) can be rewritten as fol-

lows to emphasize the nature of the correlation in each term:

Gs2d = Gent
s2d + GA

s1dGB
s1d, s21d

whereGA
s1d and GB

s1d are the first-order correlation functions
for the two arms. The coincident counting rate is then calcu-
lated using

R~
1

T
E dt1E dt2G

s2dsrW1,t1,r 2,t2d

=
1

T
E dt1E dt2fGent

s2d + GA
s1dGB

s1dg. s22d

To make the discussion easier, we shall evaluate the two
terms in Eq.(22) separately. First we make a few approxi-
mations. It is usually easier to work with quantities invariant
along the beam:v, the angular frequency, andq, the com-
ponent of the wave vector parallel to the output face of the
crystal. Thez component of the wave vector for a photon of
polarizationb is

kz =ÎSvnbsvd
c

D2

− q2. s23d

Outside the crystal, the index of refractionnb=1. Inside the
crystal,nb depends on the orientation of the optic axis with
respect to the wave vector of the beam[12]. We assume
uqu! uk u andkz>vnbsvd /c, so that

dkz =
dv

ub

, s24d

whereub is the group velocity of a photon of polarizationb.
Since the integrals in Eq.(20) are over modes outside the
crystal,

E d3k →E d2qdv
v

c2kz
>E d2q

dv

c
. s25d

We make the following approximations to further simplify
the problem. We assume that the central frequencies of the
signal and idler are degenerate, i.e.,

vo = Vo + n, s26d

ve = Ve − n, s27d

Ve > Vo > vp/2. s28d

Further we will assume thatn!Vo,e andvo>ve>vp/2 ev-
erywhere except the exponential terms. The squeeze param-
eter ujks

u is considered constant for all modes. With these
approximations, we can now calculate the first term in the
rate of coincidence counting

Rent=
1

T
E dt1E dt2Gent

s2d s29d
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=
1

T
E

0

T

dt1E
0

T

dt2S 1

2p
D6S "vp

4e0c
D2

3UE d2qegASvp

2
,− qe,0,d1 + d18DgBSvp

2
,qe,r2,d2D

3E dne−inst1−t2dU2

cosh2sujudsinh2sujud. s30d

Rent represents “true” coincidences of mutually entangled
photons. The Green’s functions in Eq.(30) imply that that
the detectorD1 is fixed at the origin so thatr 1=sd1+d18dẑ and
the position of detectorD2 is r 2=r2r̂+d2ẑ (see Fig. 1). T is
the time window of coincidence detection. If the two detec-
tors register two photons within timeT of each other, the
photons are assumed to be part of one entangled pair. For the
present calculationT=1.8 ns. We have also used the fact that
for a given pair of signal and idler modes related by the
phase matching conditions,qo=−qe. Since the visibility, be-
ing a ratio, is not affected by the finite detection area of the
detectors, we will not bother about them in this calculation.
We now look at the frequency and time integrals in Eq.(29).
If the bandwidth of light reaching the two detectors,D, is
such thatDT@1 (DT,1000 for the detection scheme in
[1]), we can approximate the frequency and time integrals by
2pDT [8,13]

Rent= 2pDS 1

2p
D6S "vp

4e0c
D2

cosh2sujudsinh2sujud

3UE d2qegASvp

2
,− qe,0,d1 + d18DgBSvp

2
,qe,r2,d2DU2

.

s31d

Using the Green’s functions from Appendix A,Rent (ig-
noring common constants) is given by

Rent= s2pDdSvp

2c
D4S 1

d18sd1 + d2dD
2

cosh2sujudsinh2sujud

3U t̃Svp

2c

r2

d1 + d2
DU2

, s32d

where t̃sqd is the Fourier transform of the aperture function
in wave vector space. So for a double-slit aperture we have
the expected ghost interference pattern in the true coinci-
dences. cosh2sujudsinh2sujud is the amplification factor. Now,
we look at the accidental coincidence term

Racc=
1

T
E dt1E dt2GA

s1dGB
s1d s33d

=
1

T
E

0

T

dt1E
0

T

dt2S 1

2p
D6S "vp

4e0c
D2

sinh4sujud

3FE dvo8E d2qo8UgASvp

2
,qo8,0,d1 + d18DU2

3E dveE d2qeUgBSvp

2
,qe,r2,d2DU2G . s34d

Completing the time and frequency integrals in Eq.(34), we
can now infer the effect of the coincidence windowT in a
general case without entering into the details of the experi-
ment,

Racc= TS 1

2p
D6S "v

4e0c
D2FD sinh2sujud

3E d2qo8UgASvp

2
,qo8,0,d1 + d18DU2

3D sinh2sujud E d2qeUgBSvp

2
,qe,r2,d2DU2G .

s35d

ComparingRent and Racc from Eqs. (31) and (35), we find
that at low gain,Racc is negligible compared toRent since
sinh4sujud→ sujud4. The coincidence window has no effect on
the result as only a single pair of photons is produced within
the time T. But as the gain increases, and more pairs of
photons are produced within a given time interval,Racc be-
comes significant and the visibility of the interference pattern
begins to fall.

Using the Green’s functions and a double slit with aper-
ture function,

tsrad = FrectSx + a/2

b
D + rectSx − a/2

b
DGrectS y

B
D , s36d

wherea andb are the distance between the centers of the slit
and width of the slits, respectively, andB is the length of the
slit, Racc (ignoring common constants) for the ghost interfer-
ence experiment is found to be

Racc= D2TS vp

2pcd18
D2

sinh4sujud E d2qo8ut̃sqodu2

3E d2qeugBsvp/2,qe,r2,d2du2. s37d

For a given gain valueuju and coincidence windowT, Racc is
a constant since the interference pattern behind the double
slit in arm A (see Fig. 1) is averaged over due to the band-
width of the source and the intensity at the scanning detector,
uniformly illuminated by the SPDC beam, is a constant. The
details of this calculation are given in Appendix B.

The complete expression of the coincidence counting rate
in the ghost interference pattern is given by

R~ Rent+ Racc s38d

=s2pDdSvp

2c
D4S Bb

d18sd1 + d2dD
2

cosh2sujudsinh2sujud

3Hsinc2Svp

2c

r2xb

2sd1 + d2dDcos2Svp

2c

r2xa

2sd1 + d2dD
3sinc2Svp

2c

r2yB

2sd1 + d2dDJ + D2TS vp

2pcd18
D2

sinh4sujud
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3E d2qo8ut̃sqo8du
2E d2qeugBsvp/2,qe,r2,d2du2, s39d

where sincsxd=sinsxd /x.
The visibility of the interference pattern as a function of

the parametric gain, calculated from the expression for coin-
cidence count rate in Eq.(38), is given by

V =
A cosh2sujud

A cosh2sujud + 2 BsDTdsinh2sujud
, s40d

whereA andB are constants arising from experimental fac-
tors. Figure 2 shows plots of visibility as the bandwidth of
light reaching the detectors is increased.

We now look into the features of the visibility plots and
analyze the factors that give rise to these features. The im-
portant parameters for this purpose are the gain terms
coshsujud , sinhsujud, andDT in Eq. (38). The bandwidthD is
a measure of the number of modes since we have assumed
perfect phase matching.DT can be thought of as a measure
of the detectors’ ability to resolve two entangled pairs of
photons. A value ofDT@1 leads to increase in accidental

counts since detectors cannot distinguish every entangled
pair of photons. The effect of the coincidence window timeT
is easy to understand. In the very low-gain limitssinhuju
<0d only one single pair of entangled photons is produced
within time T and so every entangled pair can be distin-
guished. As the gain increases, many more entangled pairs
are produced and reach the detectors within the coincidence
window time causing accidental coincidences of photons be-
longing to different entangled pairs, and hence visibility is
lost.

To understand the effect of the number of modes on the
visibility, we go back to the output state of the OPA. The
OPA state is restricted to include the two photon state and the
next higher-order interaction giving four photon states.

The output at the OPA, given in Eq.(13) can be written as

ucl = p
ks

expF− jks

2
aks

† s0dak i

† s0dGu0l, s41d

where ks+k i =kp is the phase-matching condition between
the signal, idler, and pump modes. We considern pairs of
signal and idler modes, expand the exponential operator term
in Eq. (41), and omit terms greater than second order in the
gain parameterj. If the gain is considered constant for all the
modes, then the unnormalized OPA state is given by

ucl = u0l − S uju
2
Do

ks

u1ks
1k i

l + S uju2

8
D

3Foks

u2ks
2k i

l + o
ks,ks8

u1ks
1k i

lu1ks8
1k i8

lG . s42d

From the expression for the truncated OPA state in Eq.(42),
we infer that the states in the first and second terms of the
equation lead to “good” coincidence counts. The detectors
detect photons belonging to a single entangled pair or to an
entangled four photon state. The third term, on the other
hand, can lead to detection of two photons belonging to dif-
ferent entangled states(“bad” counts) half of the time. The
conditional probability of getting a good count, givenn
modes, is found to be

Psgoodund =

nsj/2d2 +
n

2
sj/2d4 + nsn − 1dsj/2d4

nsj/2d2 +
n

2
sj/2d4 + 2nsn − 1dsj/2d4

. s43d

For a large number of modes, this probability tends to 0.5.
This implies that when a large number of modes are allowed,
the visibility of the coincidence detection pattern falls to 0.5.

Though the number of good counts seem to dominate ac-
cording to Eq.(43), the number of modes along with the
coincidence window time produce a loss in visibility greater
than 0.5. As the gain increases, the probability of both good
and bad counts increase and tend toward a constant limit.
This leads to the flattening of the visibility with rising para-
metric gain. The flattening of the visibility occurs at lower
gain as the bandwidth(and number of modes) increases. The
value of the limiting visibility falls as the number of allowed
modes increases. This is to be expected since as the gainj

FIG. 2. The visibility of interference fringes as a function of
parametric gain, when the coincidence time windowT=1.8 ns and
bandwidth of the light reaching the detectors is(a) 1 nm and(b) 10
nm.
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rises, entangled pairs(the first-order states of the OPA) are
emitted in all modes. If the number of modes allowed in the
experiment are increased then the number of possible good
and bad counts also increase. The coincidence time window
T further adds to the bad counts causing a greater fall in
visibility and the limiting visibility is lowered.

If a smaller number of modes is allowed into the experi-
ment, for example, by using a fine pinhole, the visibility can
be maintained at values greater than 0.5 for larger values of
gain. But even in the case of just two modes, the visibility
eventually falls due to the higher-order states of the OPA and
tends to a constant as coshsujud<sinhsujud<euju /2.

This is the fundamental difference in the mechanism of
visibility loss with two-mode and multimode OPA. In a mul-
timode OPA, the loss of visibility is mainly due to the num-
ber of modes, and occurs at much lower gain than the two-
mode OPA, where the higher-order terms lead to loss of
visibility for a given coincidence window time.

V. DISCUSSION AND SUMMARY

We have analyzed the effect of a multimode optical para-
metric amplifier source in the ghost interference experiment,
taking into account the finite coincidence window of the pho-
ton counting detectors. We find that the loss of visibility with
increasing parametric gain is strongly dependent on the co-
incidence time window. A longer coincidence time window
reduces the ability of the photon counting detectors to re-
solve entangled pairs as the parametric gain of the OPA in-
creases. We have also highlighted the differences between
effects observed with a two-mode and a multimode source.
An increase in the number of modes in the experiment in-
creases the probability of accidental coincidences between
photons belonging to different entangled pairs(or states).
This experiment limited loss of visibility occurs in all coin-
cidence counting measurements though it is significant only
in the regime of a strong source of entangled photons like an
OPA. A further experimental limitation not discussed here is
that of nonperfect phase matching where the long crystal and
wide pump beam approximation is not valid. A theoretical
treatment becomes difficult in this case since thed function
in Eq. (8), which gives exclusive two-mode coupling, is re-
duced to a sinc function. An alternative would be to use a
cavity OPA tuned to amplify only two modes. Such a source
can also reduce the loss of visibility due to the bandwidth of
a noncavity OPA. We conclude that a cautious choice of
sources and detection schemes are necessary in order to ob-
serve certain signatures of entangled light in a macroscopic
regime.

Since the completion of this calculation, we have become
aware of a two-photon absorption technique demonstrated by
Dayanet al. [14] where Rb atoms undergoing simultaneous
absorption of signal and idler photons overcome the problem
of temporal resolution associated with a strong broadband
source like the multimode OPA. The two-photon transition is
sensitive to minute delays(order of 100 fs) between the sig-
nal and idler photons. But such a detection scheme does not
discriminate between entangled and separable pairs of pho-
tons and cannot reduce the loss of visibility in a ghost inter-

ference experiment. Further, the use of such a highly sensi-
tive detection scheme requires a high-gain OPA source which
enhances accidental coincidence counts.
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APPENDIX A: GREEN’S FUNCTIONS FOR PROPAGATION
THROUGH A LINEAR OPTICAL SYSTEM

We give a brief review of propagation of an electric field
through a diffraction-limited linear optical system in each
arm of the experimental setup, following the treatment in
[13]. The positive frequency part of the electric field at a
time t at the input of a detector atr =zẑ+r is given by

Eb
s+d =E E dvd2qEsvdgsq,v,r,zdabsv,qd, sA1d

whereabsv ,qd is the annihilation operator at the source for a
photon of angular frequencyv, transverse wave vectorq,
and polarizationb. The unit vectorẑ is the inward normal to
the detector surface.Esvd is a slowly varying function re-
quired for dimensional reasons and can be assumed constant
in the current analysis.gsq ,v ,r ,zd is the optical transfer
function or Green’s function which describes propagation
through the linear optical system. In classical electromag-
netic theoryg connects electric fields in real space. In our
quantum mechanical analysis, it connects two operators in
photon number or Fock space. The superposition principles
involved in calculatingg are purely classical from classical
electromagnetic theory. So, in the quantum mechanical con-
text, it is best thought of as arising from boundary conditions
on the modes of the fields irrespective of the state of the
system.

We now calculate the Green’s function for the arm A in
Fig. 1. The Green’s function is expressed in terms of the
aperture function defined bytsrad.

gAsq,v,0,d1 + d18d =E d2raE d2rshvs− ra,d18dtsrad

3hvsra − rs,d1deiq·rs, sA2d

wherers andra are the transverse coordinates of the source
(crystal) plane and aperture plane. In the Fresnel approxima-
tion [15],

hvsr,dd = S− iv

2pc
Deisv/cdd

d
cSuru,

v

cd
D , sA3d

cSuru,
v

cd
D = eisv/2cddr2

. sA4d

Finally,
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gAsq,v,0,d1 + d18d = S− iv

2pc
Deisv/cdsd1+d18d

d18
E d2rac

3Surau,
v

cd18
Dtsradeiq·racSuqu,−

c

v
d1D .

sA5d

The Green’s function in the armB of the experimental
setup, for each plane wave mode, assuming that the source
has a large cross section, is given by

gBsq,v,r,d2d =E d2rshvsr − rs,d2deiq·rs sA6d

=eisv/cdd2eiq·rcSuqu,−
c

v
d2D . sA7d

Using the above expressions forgA andgB, we see that

E d2qgAs− q,v,0,d1 + d18dgBsq,v,r,d2d

= S− iv

2pc
Deisv/cdsd1+d18+d2d

d18
E d2racSurau,

v

cd18
Dtsrad

3E d2qeiq·sr−radcSuqu,−
c

v
sd1 + d2dD

= − Sv

c
D2eisv/cdsd1+d18+d2d

d18sd1 + d2d
cSuru,

v

c

1

d1 + d2
D

3E d2racFurau,
v

c
S 1

d18
+

1

d1 + d2
DG

3expS− i
v

c

1

d1 + d2
r · raDtsrad. sA8d

In the far-field Fraunhofer approximation, thec’s in the
above expression go to unity and

E d2qgAs− q,v,0,d1 + d18dgBsq,v,r,d2d

= − Sv

c
D2eisv/cdsd1+d18+d2d

d18sd1 + d2d
s2pdt̃Sv

c

r

d1 + d2
D , sA9d

where t̃ is the Fourier transform of the aperture function.
Further,

ugAu2 = − S iv

2pc
D2 1

d18
2FE d2racSurau,

v

cd18
Dtsradeiq·ra

3cSuqu,−
c

v
d1DGFE d2ra8cSura8u,

v

cd18
Dtsra8de

iq·ra8

3cSuqu,−
c

v
d1DG*

. sA10d

In the far-field Fraunhofer approximation,

ugAu2 = S v

2pc
D2 1

d18
2UE d2ratsradeiq·raU2

sA11d

=S v

2pc
D2 1

d18
2s2pd2ut̃sqdu2. sA12d

APPENDIX B: SINGLES DETECTION

We now look at results of detection at the detectorsD1
and D2 individually, without caring for coincidences. This
involves calculating the first-order correlation functions[7],

Gs1dsr i,tid = k0uEi
s−dsr i,tidEi

s+dsr i,tidu0l, sB1d

where i =1,2. Using the same techniques as in coincidence
detection, we find that the first-order correlation functions
are given by

GA
s1dsr 1,t1d = S 1

2p
D3S vp

4pcd18
2D2S "vp

4e0c
D

3sinh2sujudDE d2qout̃sqodu2, sB2d

GB
s1dsr 2,t2d = S 1

2p
D3S "vp

4e0c
DD sinh2sujud

3E d2qeugBsvp/2,qe,r2,d2du2. sB3d

GB
s1dsr 2,t2d is the correlation function in the arm without the

double slit and as expected, there is no interference pattern at
D2. The correlation function in the arm with the double-slit
GA

s1dsr 1,t1d, suggests that there might be a pattern atD1, if the
transverse components of the wave vectorsqod reaching the
detector is narrow enough. For the wavelengths and the di-
mensions of the chosen double slit, an interference pattern
will be observed if the detection angle of the SPDC beam at
the detectorDu',2lp/a<1.5 mrad. But for the 1 nm filter
used,Du'<15 mrad. Therefore, no interference pattern is
found behind the double slit due to the large divergence of
the SPDC beam.
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