PHYSICAL REVIEW A 70, 063811(2004

Ghost interference with an optical parametric amplifier
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The “ghost” interference experiment is analyzed when the source of entangled photons is a multimode
optical parametric amplifie(OPA) whose weak limit is the two-photon spontaneous parametric down-
conversion beam. The visibility of the double-slit pattern is calculated, taking the finite coincidence time
window of the photon counting detectors into account. It is found that the coincidence window and the
bandwidth of light reaching the detectors play a crucial role in the loss of visibility on coincidence detection,
not only in the ghost interference experiment but in all experiments involving coincidence detection. The
differences between the loss of visibility with two-mode and multimode OPA sources are also discussed.
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I. INTRODUCTION ceptibility x?. The crystal is pumped by a continous-wave

The “ghost” interference experiment is typical of two- (CW) laser, given by
photon interference experiments that bring out quantum en-
tanglement features of light. These features are not just con- E(r,t)=EY + =) (1)
fined to the appearance of the double-slit pattern on L P P
coincidence detection. The independence of the result on
where the optical elements are situated in the experimental —E dkpT-oph) 4 H ¢ ?)
setup(a double-slit in the case of ghost interferenisea key P o
feature of entanglement. The ghost interference experiment
has been performed in the low-gain limit of parametricwhere H.c. stands for Hermitian conjugate. We assume that
down-conversiorf1]. It is of interest to examine this experi- the pump is not depleted, has a constant amplittgeand
ment in the high-gain regime of parametric amplification.can be treated classically. If a weak multimode signal is also
Analysis of similar experiments using two-mode opticalinput into the OPA, the output after parametric interaction
parametric amplifiefOPA) states[2] suggests the loss of within the crystal consists of amplified modes of the signal
visibility at large gains. Recently different detection schemesand idler where the idler modes obey the phase matching
have been proposed to circumvent this problEay,5. conditions,
Here, we present a detailed calculation of the ghost interfer-
ence experiment using a multimode OPA as the source of

entangled photons. We analyze the effect of the coincidence Wp = ws+ i, (3
time window of the photon counting detectors on the experi-
mentally observable interference pattern and visibility. We
attempt to explain how the properties of the source of en- Kp=ks*ki, (4)

tangled photons and experimental limitations affect the ob-

servable interferometric effects. We find that the loss of viswherek,, k,, andk; are the wave vectors of the pump, sig-
ibility depends on the coincidence time window and thenal, and idler photons. The quantized field of the signal and
bandwidth of the source. The coincidence time windowidler inside the crystal are given 4y]

causes a loss in visibility at much lower gains than expected

with ideal detectors. A multimode source causes loss in vis-

iniI_ity even if ideal_ deteg:tors are usgd. Combined with a Es(r,t):E A /%é(ks-r—wst)ak +H.c., (5)
finite coincidence time window, a multimode source can re- ke 2¢V s

duce visibility to less than 0.5 even at very low parametric

gain. These effects are not specific to the ghost interference

experiment but occur in all experiments with similar sources ho,
and detection schemes. E(r,t)=>, g/e'(ki'r“"i‘)aki +H.c., (6)
ks 0

Il. MULTIMODE INTERACTION

IN OPTICAL PARAMETRIC AMPLIFIER . I .
Here,a, is the annihilation operator for a photon in madkle
We consider a nondegenerate O\ comprising a non-  Note that the dispersion relatias(k) is different from that in
centrosymmetric crystal with a second-order nonlinear susa vacuum w(k) # ck.
The nonlinear interaction between the crystal, pump, sig-
nal, and idler modes are characterized by the interaction
*Electronic address: sul@umbc.edu Hamiltonian[8,9],
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(7
h the int tion i th | fth tal ill FIG. 1. Schematic of the experimental setup for observing the
where the integration 1S over the volume of the crystal | u'two-photon ghost interference. For simplicity, the prism to remove

minated by the pump. For a long crystal and a wide PUMRLe pump is not shown. The double slit has witdth0.165 mm and
beam, slit distancea=0.4 mm. The relevant distances in this experiment
ared;=0.3 md,=1.5 m, andd;=1 m.
f oPrellom T = Vo (®)
’ [ll. EXPERIMENTAL SETUP AND CALCULATION

The interaction Hamiltonian is simplified to We now look at the experimental setup of the ghost inter-

ho ho ference experimentl]. A nonlinear crystal is pumped by a

Hin= 260XV \ o\ o Epék ek cw laser(\,=351 nm to generate pairs of colinear, orthogo-

ki ¥ 26V N 2gV TP nally polarized signal(e-ray) and idler (o-ray) photons
+gilestemwpty g 1. (9) (Type-Il SPDQ. The signal and idler beams are separated by
' s a polarizing beam splitter. The signal beam passes through a
The delta function in Eq(9) indicates the entanglement of double-slit aperture to a photon counting dete@erD, is a
the OPA states in wave vector space. Combining the photofixed point detector. The idler is scanned by an optical fiber
commutation relations and the time evolution equations fond the output from the fiber is coupled to a dete¢iy). f;
signal and idler modes, the time-evolved signal and idler ar@ndf, are filters(spatial or spectrathat limit the number of
given by[10,1] wave vectorgand bandwidthof light reaching the detectors.

ST The detectors in the signal and idler arms are connected to a
ay (1) = & (0)cosh|§ ) —iay (0)sinh(&]), (100 coincidence circuit.

% [ei (ws+wi—wp)ta1'£sal

ali(t) = ali(O)cost(|§ks|) +ia, (0)sinh(g ), (1D) IV. COINCIDENCE DETECTION

wheret is the average time taken by the photons to cross the We are interested in coincident detection from the signal

crystal. a, (0) and al.(O) are the annihilation and creation @nd idler when the input state is a vacuum. The probability of

operators for the input signal and idler mode. The factorsdemctmg a photon i, in positionr, at timet, and another

cost|&|) and sinmlgksl) are the amplification factors that In 'Dz atr, gndtz is 'proportlonal to the second-order corre-
s . (o) lation function[7], given by
depend on the strength of the nonlineanty, the pumpk,,

and the frequency of the signal and idler modes. Perfect G(r,ty,r5,1) = (), (14)
phase matching ensures that each signal mode interacts with
only one idler mode, selected by the phase-matching condi- ) = ESV(r 1, t)ESY(r 5,1)|0), (15

tions. Equationg10) and(11) relate the photon creation an-

nihilation operators at the output face of the crystal to thosavhere E;(rq,t;) and Ex(r,,t,) are the electric fields at the

at the input. They are derived from the unitary transforma-detectorsD, and D,. The fields at the detectors can be ex-

tion, pressed in terms of the fields at the output face of the crystal
through Green’s functions which describe the propagation of

_ 5;5 &k, t T the beams through the optical system. The positive frequency
Ui =exp —a(0aq(0) - 23 (00a(0) | (12 part of the fields at the detectors are then given by

Here & =(x?EVwswit)é™ may be recognized as the +) _ [hoy i,
s E = ol1g,(k 1
squeeze parameter of the OPW)]. The state at the output of 1 (fut) % 26V Oakol )3, (16)

the crystal is given by

= —i(H; + hwe .,
) = exd - i(Hin/7)t][0), (13 ES )(rz’t"‘):%’/zeove d2gp(Ke A, (17)

which is a multiphoton state. In the Iiniigks| <1, the expan-

sion of Eq.(13) can be limited to first order in the interaction We now look at the state of the fields at the two detectors
Hamiltonian, giving a vacuum state and an entangled twowhen the input state is a vacuum. Note that we are relating
photon state. This is the two-photon limit of spontaneoughe fields at the detectors to the vacuum at the input face of
parametric down-conversiaisPDQO. the crystal. This involves two transformations—from the de-
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tectors to the output face of the crystal through the Green'$ows to emphasize the nature of the correlation in each term:
functions and from the output of the crystal to its input by

the unitary transformation of the operators in E€0) and G? =G +GYGY, (21)
(12).
Using the operator commutation relations, we get whereGY’ and G}’ are the first-order correlation functions

for the two arms. The coincident counting rate is then calcu-

ﬁ ! ﬁ s : i
EVES0)= S —iy /2:){)/, /ﬁe—l(wotl)e—lwetng(ké,rl) lated using
k('),ke 0 0

1
><gs(kevfz)COSf(ISk(;I)SInh(I&OI)5k;)k0|0> R detlfdtze (Mt r b))
ﬁ(,l)” ﬁa) s . 1
"2 Ve Vg G = [ [ouezaie) @2
Kl “OT T e
X gg(Ke T 2)sinh(| &) sinh(| & |)al~(0)al (0)[0). To make the discussion easier, we shall evaluate the two
? o e ° terms in Eq.(22) separately. First we make a few approxi-

(18) mations. It is usually easier to work with quantities invariant
L . . along the beamw, the angular frequency, argl the com-
From a careful examination of the above equation, we flndaonent of the wave vector parallel to the output face of the

that the first term indicates correlation between the modegrystal Thez component of the wave vector for a photon of

detected in the two arms. The second term has no such cof-?,_ . " . .
) . X ) ) olarizationg is
relation since it factors into two independent terms, one fo

each arm. Physically, this term corresponds to accidental co- ()2
incidences of photons that are not entangled with each other. K, (“’_nﬁ_“’)) - . (23)
c

We expect that the double-slit diffraction pattern will emerge
from the correlation in the first term while the second term

causes a loss in visibility. The second-order correlation funcOutside the crystal, the index of refractiap=1. Inside the
tion G@ can now be written as crystal,ng depends on the orientation of the optic axis with

respect to the wave vector of the bedfd®?]. We assume

o= | [l | fiwe e ivltigiodzg, (k! 1) lal<|k| andk,= wng(w)/c, so that
, 260V 260V 0
koke dw
2 dk,= —, (24)
Ug

X ga(Ke I 2)costt| e )sinhl(| & ) ek,

whereu, is the group velocity of a photon of polarizatigh

P P Since the integrals in Eq20) are over modes outside the
Wo Do ity arioltiy (1 crystal
+ —2 4 | —2e@digdlag, (K r ystal,
kz;‘ 2e0v N 26V Ok
K r s | / ik | daooe = [ %™ 25
X ga(Ky, T )sinhl| & )sint(|&e]) Sk - ) dadezge = | daT (25)
« | hwe | hog dodzgriodog’ (K. 1) We make the following approximations to further simplify
: 260V N 2¢V € T eKel2 the problem. We assume that the central frequencies of the
Keke signal and idler are degenerate, i.e.,
X gp(Ke k)sinh(| & sinh([& [) G - (19)
we=Qp+ 7, (26)
Implementing all the5 functions and converting the summa-
tions in G@ to integrals[=,— V/(27)3 [ d3k], we have
we = Qe - V, (27)

(2m) 26V 2€9V Qe= Q0= wy2. (28)

i wet _
xeega(kp ~ ke )Ga(ker2)cOSH|¢ic)) Further we will assume that<Q,  and w,= we= w,/2 ev-
2 ho! erywhere except the exponential terms. The squeeze param-
+fd3ké’25 C|9A(ké,f1)|25inhz(|§ké|) eter |§] is considered constant for all modes. With these
0 approximations, we can now calculate the first term in the

xsinh(|¢|)

h rate of coincidence countin
Xf ke we|QB(ke,rz)|ZSinh2(|§k |)} (20) g
2€0V o 1
The expression fo6?2 in Eq. (20) can be rewritten as fol- Rent= T f dtlf dt,GE (29
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Completing the time and frequency integrals in E2f), we
can now infer the effect of the coincidence winddwin a
general case without entering into the details of the experi-

) wp ) wp ment,
X Jd 09 > ,—0e,0,d; +d; |0 > \Je: P20 ; )
1 hw .
. 2 Racc:T<2_> (4_C> {A sink?(|&))
X f dve 7| cosH(|&])sint?(|&]). (30) HEER
2
2/ QE ’ !
Rant represents “true” coincidences of mutually entangled de % gA( 2 ,qo,O,d1+dl)
photons. The Green’s functions in E@O) imply that that )
S . _ o _ »
the detgqtoDl is fixed at the origin so t@&tl—(dlfdl)z and X A sinf&(|&) j d?qe gs<—E,Qe,Pz,dz> } _
the position of detectoD, is r,=p,p+d,z (see Fig. 1 T is 2

the time window of coincidence detection. If the two detec- (35)
tors register two photons within tim& of each other, the

photons are assumed to be part of one entangled pair. For ti@mparingRe,; and R, from Egs.(31) and (35), we find
present calculatioi=1.8 ns. We have also used the fact thatthat at low gain,R,.. is negligible compared t&.,; since

for a given pair of signal and idler modes related by thesinif(|&)— (|&)*. The coincidence window has no effect on
phase matching conditiong,=-0.. Since the visibility, be- the result as only a single pair of photons is produced within
ing a ratio, is not affected by the finite detection area of thehe time T. But as the gain increases, and more pairs of
detectors, we will not bother about them in this calculation.photons are produced within a given time intervgl,. be-

We now look at the frequency and time integrals in E29).

If the bandwidth of light reaching the two detectons, is
such thatAT>1 (AT~1000 for the detection scheme in

comes significant and the visibility of the interference pattern
begins to fall.
Using the Green’s functions and a double slit with aper-

[1]), we can approximate the frequency and time integrals byure function,

2mAT [8,13

VR ﬁ_wQ>2 -
Rz 27 (4EOC cosi()sint?(le)

2
X

I3) , I3)
f szeQA( —29, —0e,0,d, + d1> gB( _ZE,Qe, P2 dz)
(31

Using the Green’s functions from Appendix Rqn: (i9-
noring common constantss given by

4 2
e~ ;> :
Rent= (2 M(Zc) (di(d1+d2) cosH(|&)sin?(|&])

: (32

X T(g‘?—pz ) i
2cd; +d,

wheret(q) is the Fourier transform of the aperture function
in wave vector space. So for a double-slit aperture we hav
the expected ghost interference pattern in the true coincis
dences. cosii|€)sint?(|&]) is the amplification factor. Now,

we look at the accidental coincidence term

1
Race™ T f dt, f dt,GYGY (33

1 T T 1 6 2
:—J dtlf dt2<—> ﬁ—“"i) sint(|¢))
T 0 0 27T 4EOC
X{J dwéfdzqé
2 “p
XJ dweJ dge gB( ,qe,P2,d2>

2

2

« ! A
gA(g-’,qo,o,dl + dl)

2
] . (34)

t(pa) = {recl( X +ba/2> + rec< X —ba/2) } rect( é) , (36)

wherea andb are the distance between the centers of the slit
and width of the slits, respectively, amdis the length of the
slit, R,cc (ignoring common constant$or the ghost interfer-
ence experiment is found to be

2
Rz 22 s [ il

2med;
XJ dzqe|gB(wp/2!qevp21d2)|2' (37)

For a given gain valué| and coincidence window, R,.is
a constant since the interference pattern behind the double
slit in arm A (see Fig. 1 is averaged over due to the band-
g/idth of the source and the intensity at the scanning detector,
aniformly illuminated by the SPDC beam, is a constant. The
details of this calculation are given in Appendix B.

The complete expression of the coincidence counting rate
in the ghost interference pattern is given by

R Reng+ Race (38)
@) (B V' shepsint?
_(277A)<2C> (m> costH(|&)sintr(|&])

: w paxb w P2x@
% @p_ P2d _E—>
{Sln(?( 2c2(d; +dy) >CO§< 2c2(dy +dy)

el o ) ol )
><smc’-<2c2(dl+d2) }+A T 2mod, sint(|¢))
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counts since detectors cannot distinguish every entangled
(@ pair of photons. The effect of the coincidence window tifne

is easy to understand. In the very low-gain lini#inh¢|

~0) only one single pair of entangled photons is produced
within time T and so every entangled pair can be distin-
guished. As the gain increases, many more entangled pairs
are produced and reach the detectors within the coincidence
window time causing accidental coincidences of photons be-
longing to different entangled pairs, and hence visibility is
lost.

To understand the effect of the number of modes on the
visibility, we go back to the output state of the OPA. The
OPA state is restricted to include the two photon state and the
next higher-order interaction giving four photon states.

The output at the OPA, given in E¢L3) can be written as

09}

08}

07}

06}

Visibility
o o o
w -~ (<]

b
N

01}

014 0.6

-

' - ﬁs T (0)al

It
©

(=
0
T

where ks+ki=K, is the phase-matching condition between
the signal, idler, and pump modes. We considgpairs of
signal and idler modes, expand the exponential operator term
in Eq. (41), and omit terms greater than second order in the
gain parametet. If the gain is considered constant for all the
modes, then the unnormalized OPA state is given by

2
l=10) - (%)kE |14 + (%)

Visibility
e o o © o o
[ X < S G ™ T S

(=4
pry

S (220 S |1k51ki>|1kg1k{>]. (42

X
0 L 1 L L N N T
0 0.005 001 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 |: Ks K.k’
Ss

Il From the expression for the truncated OPA state in(E8g),

FIG. 2. The visibility of interference fringes as a function of we lnfer that the ftates"m t'he.flrst and second terms of the
parametric gain, when the coincidence time windbwl1.8 ns and equation lead to 9009‘ comud_ence counts. The _detecmrs
bandwidth of the light reaching the detectorgas1 nm and(b) 10 ~ detect photons belonging to a single entangled pair or to an
nm. entangled four photon state. The third term, on the other

hand, can lead to detection of two photons belonging to dif-
ferent entangled statg¢%had” countg half of the time. The

Xf d?q; t(q/)|2f &g |QB(wp/2 o s ) [2 (39) conditional probability of getting a good count, given
oo ¢ Hereraly modes, is found to be

where sinéx)=sin(x)/x.

n
The visibility of the interference pattern as a function of n(&2)%+ 5(5/2)4"' n(n-1)(¢/2)*

the parametric gain, calculated from the expression for coin- P(goodn) = . (43
cidence count rate in E@38), is given by n(&/2)% + 9(5/2)44_ 2n(n - 1)(&2)
2
~ Acoslt(|&) _ .
V= A cos(|€)) + 2 B(AT)sint(|¢])’ (40) For a large number of modes, this probability tends to 0.5.

This implies that when a large number of modes are allowed,

whereA andB are constants arising from experimental fac-the visibility of the coincidence detection pattern falls to 0.5.
tors. Figure 2 shows plots of visibility as the bandwidth of Though the number of good counts seem to dominate ac-
light reaching the detectors is increased. cording to Eq.(43), the number of modes along with the

We now look into the features of the visibility plots and coincidence window time produce a loss in visibility greater
analyze the factors that give rise to these features. The inthan 0.5. As the gain increases, the probability of both good
portant parameters for this purpose are the gain termand bad counts increase and tend toward a constant limit.
cosh€]), sinh(|&]), andAT in Eq. (38). The bandwidthA is  This leads to the flattening of the visibility with rising para-
a measure of the number of modes since we have assumaetktric gain. The flattening of the visibility occurs at lower
perfect phase matchingT can be thought of as a measure gain as the bandwidtfand number of modégéncreases. The
of the detectors’ ability to resolve two entangled pairs ofvalue of the limiting visibility falls as the number of allowed
photons. A value ofAT>1 leads to increase in accidental modes increases. This is to be expected since as the{gain
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rises, entangled pairghe first-order states of the OAare  ference experiment. Further, the use of such a highly sensi-
emitted in all modes. If the number of modes allowed in thetive detection scheme requires a high-gain OPA source which
experiment are increased then the number of possible goaghhances accidental coincidence counts.

and bad counts also increase. The coincidence time window

T further adds to the bad counts causing a greater fall in

visibility and the limiting visibility is lowered. ACKNOWLEDGMENTS

If a smaller number of modes is allowed into the experi-  The authors would like to thank their colleagues from the
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tends to a constant as c@f) = sinh(|&) = elél/2.
This is the fundamental difference in the mechanism of

visibility loss with two-mode and multimode OPA. In a mul- APPENDIX A: GREEN'S FUNCTIONS FOR PROPAGATION

timode OPA, the loss of visibility is mainly due to the num- THROUGH A LINEAR OPTICAL SYSTEM

ber of modes, and occurs at much lower gain than the two-

mode OPA, where the higher-order terms lead to loss o{

visibility for a given coincidence window time.

We give a brief review of propagation of an electric field
hrough a diffraction-limited linear optical system in each
arm of the experimental setup, following the treatment in
[13]. The positive frequency part of the electric field at a
V. DISCUSSION AND SUMMARY time t at the input of a detector at=zz+p is given by

We have analyzed the effect of a multimode optical para- ) _ )
metric amplifier source in the ghost interference experiment, Eg = dod*qE(w)g(d, @,p.2)a5(w,q), (A1)
taking into account the finite coincidence window of the pho-
ton counting detectors. We find that the loss of visibility with Wherea,(w,q) is the annihilation operator at the source for a
increasing parametric gain is strongly dependent on the cgshoton of angular frequency, transverse wave vecta,
incidence time window. A longer coincidence time window and polarizatior. The unit vectoiz is the inward normal to
reduces the ability of the photon counting detectors to rethe detector surfaceE(w) is a slowly varying function re-
solve entangled pairs as the parametric gain of the OPA inquired for dimensional reasons and can be assumed constant
creases. We have also highlighted the differences between the current analysisg(q,»,p,2) is the optical transfer
effects observed with a two-mode and a multimode source€unction or Green’s function which describes propagation
An increase in the number of modes in the experiment inthrough the linear optical system. In classical electromag-
creases the probability of accidental coincidences betweenetic theoryg connects electric fields in real space. In our
photons belonging to different entangled paics states guantum mechanical analysis, it connects two operators in
This experiment limited loss of visibility occurs in all coin- photon number or Fock space. The superposition principles
cidence counting measurements though it is significant onlynvolved in calculatingg are purely classical from classical
in the regime of a strong source of entangled photons like aslectromagnetic theory. So, in the quantum mechanical con-
OPA. A further experimental limitation not discussed here istext, it is best thought of as arising from boundary conditions
that of nonperfect phase matching where the long crystal andn the modes of the fields irrespective of the state of the
wide pump beam approximation is not valid. A theoreticalsystem.
treatment becomes difficult in this case since #heinction We now calculate the Green’s function for the arm A in
in Eq. (8), which gives exclusive two-mode coupling, is re- Fig. 1. The Green’s function is expressed in terms of the
duced to a sinc function. An alternative would be to use aaperture function defined hyp,).
cavity OPA tuned to amplify only two modes. Such a source
can also reduce the loss of visibility due to the bandwidth of " — 2 2 _ ,
a noncavity OPA. We conclude that a cautious choice of 9a(0, 0,0y + ) _Jd PaJ Fpsho(= parcy)tpa)
sources and detection schemes are necessary in order to ob- ig-
serve certain signatures of entangled light in Ball macroscopic XN (pa= ps dy)e ™=, (A2)
regime. whereps andp, are the transverse coordinates of the source

Since the completion of this calculation, we have becomegcrysta) plane and aperture plane. In the Fresnel approxima-
aware of a two-photon absorption technique demonstrated byon [15],
Dayanet al. [14] where Rb atoms undergoing simultaneous ) _

i i i —iw)e@od 1)

absorption of signal and idler photons overcome the problem h,(p,d) = (_) ¢<|p| _) (A3)
of temporal resolution associated with a strong broadband e 2wc/ d ‘cd/’
source like the multimode OPA. The two-photon transition is
sensitive to minute delay®rder of 100 f$ between the sig- ® , )
nal and idler photons. But such a detection scheme does not ¢(|P|'aj> = gl/2edp”, (A4)
discriminate between entangled and separable pairs of pho-
tons and cannot reduce the loss of visibility in a ghost interFinally,
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, —iw) g@o)dr+d) Ay 2 1
gA(q,w,O,d1+d1):<§)d—1JdZPalﬂ |9A|2-_ d Fpat| Pl — d1 t(p)e?*a
C !
(Ipal o )t(pa)e'q”aw(lql ——dl> X¢<|q|:_;dl):||: f dzpaw(Ipal ) t(py)ed”a
1
(A5) c :
. _ Xy |q|,——d1 : (A10)
The Green’s function in the arB of the experimental

setup, for each plane wave mode, assuming that the sour¢s the far-field Eraunhofer approximation,

has a large cross section, is given by 2 4
2_ w

o= () 3

_(» zi 2 2
_(27rc> diz(ZW) [t(@)°. (A12)

2

J dpat(ps)ed*a (A11)

0s(q, w,p,d,) =f dzPshw(P ~ Ps (3*2)(5““0S (A6)

. . c
:e'“”")dze"“’zﬂ( lal.- _dz) . (AD)
w APPENDIX B: SINGLES DETECTION
We now look at results of detection at the detectDys
and D, individually, without caring for coincidences. This
involves calculating the first-order correlation functidif$,

Using the above expressions fogf andgg, we see that

f d°qgx(~ 0,©,0,d + d))Ge(, 0, p, ) GO(r;,t) = OEC(ri ) EF(r;.1)|0), (BD)
i) @@y wherei=1,2. Using the same techniques as in coincidence
:( w) szpal/f(|l?a| )t(PaD detection, we find that the first-order correlation functions
2mC d; are given by
Xszqéq-(p—pa)lp<|q| _E(d +d )) G( )(rl 1) ( 1 )3(_(1)L>2<h_(1)2)
w2 ’ Amcd?) \dec
2 Hj(w/c)(dy+d]+dy) .
__ (9> ‘{#(ﬁ(we 1 ) Xsint?(|¢)A J )2, (B2)
c/ di(dy+dy) cd,+d,
1 1 1\% tho
d? ( )} (1) S i Y ] ;
f Pa‘//|:|pa| d d1+d2 Gg(r,,ty) o) \aege A sinkP(]€])
o 1
Xexp(—lg -~ dzp-pa>t(pa). (A8) X f d?qdlga(@p/2,dep2, ). (B3)

1 . . . . .
above expression go to unity and double slit and as expected, there is no interference pattern at

DE' The correlation function in the arm with the double-slit
GAl)(rl,tl), suggests that there might be a patterb gtif the
f d?qga(- g,®,0,d; + d;)gg(q, ®,p,d,) transverse components of the wave vedtp) reaching the
detector is narrow enough. For the wavelengths and the di-
® p mensions of the chosen double slit, an interference pattern
277)~t<— ) (A9)  will be observed if the detection angle of the SPDC beam at
cd;+d, the detecton\ @, <2\,/a~ 1.5 mrad. But for the 1 nm filter
used,Af, =15 mrad. Therefore, no interference pattern is
whereT is the Fourier transform of the aperture function. found behind the double slit due to the large divergence of
Further, the SPDC beam.

~ <w>2ei(w/c)(d1+d£+d2)
~ o \c/ didy+dy)
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