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Pattern formation in large-aspect-ratio single-mode inhomogeneously broadened lasers
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Pattern formation in large-aspect-ratio single-mode inhomogeneously broadened lasers is studied by means
of the integro-differential Maxwell-Bloch equations. As the inhomogeneous linewidth increases, the neutral
stability curve shows a relaxation in the traveling wave selection allowing structures with different sizes to
grow. We have performed numerical simulations with a simplified model based on a few discrete groups of
atoms at different resonant frequencies to observe transverse dynamics above threshold for good and bad cavity
configurations. We obtain, in general, that close to threshold the inhomogeneous broadening leads to a more
complex pattern in comparison to the homogeneous broadening case. At higher pumpings, a stabilization in the
number of spatial frequencies taking part in the transverse pattern is found. The influence of the laser aperture
on temporal dynamics is also studied. It is shown how the typical self-pulsing regime present in single-mode
inhomogeneously broadened lasers is destroyed for a wide enough aperture.

DOI: 10.1103/PhysRevA.70.063808 PACS nuniber42.65.Sf, 42.55-1, 42.60.Jf, 42.60.Mi

I. INTRODUCTION ham and co-workerf7—9]. They analyzed the instabilities in

bilities in sinal de | h b bi 0cg;reat detail using lasers similar to the ones used by Casper-
Instabilities in single-mode lasers have been a subject ol \yhich are characterized by a small ratio of the popula-

intens_e research. The si_mplesfc Iaser_ system fr(_)m both theyn and polarization decay rates, i.g<1 (y=0.05 appro-
experimental and theoretical point of view is the single-modeyiate to the 3.51sm He-Xe lasex. As we mentioned above,
homogeneously broaden¢8MHB) laser[1]. The first ex-  these systems exhibit regular trains of pulses.

periments showing instabilities in SMHB lasers were re- The first theoretical prediction of instabilities in SMIB
ported in 1985 by Klische and Weigg] in a far-infrared  |asers was given in 1973 by Idiatulin and Uspengkil]. By

NH; laser. There are two conditions for observing instabili-using a laser medium composed of two group of atoms with
ties (pulsing behavior or non-constant-intensity behavior  different resonant frequencies, they showed a change of the
these systems. First, the field decay ratenust be larger nature of the laser instability and a marked reduction of the
than the sum of the polarizatiqry,) and population inver- threshold for the onset of pulsations. This type of model—
sion () decay rates, i.ex> vy, +v, which is usually called based on a few discrete group of atoms—has been exten-
the bad cavity condition. Second, the pump vattne exci-  Sively used11-14. Following this approach, Meziane ana-
tation leve) must be larger than a certain threshold value lyzed the effect of the strong velocity-changing collisions on
This is the well-known second laser threshold or instabilityth® dynamics of a SMIB laser by including spectral cross-
threshold. Depending on the value pi /v, , the second relaxation termg[15]. A reduction of both the first laser
threshold value is predicted to be between 9 and 20 time§réshold and the second laser threshold was found. The the-
above the first laser threshold. So the instability threshold ir% mctgcrﬁlpsatrlfsgnogntsggbgg's?(')rf] gm:—?lgal?;gsls 2ir?ggctlij1|(tatﬁ15hko
SMHB lasers is very h'gh_' ‘.Nh'Ch makes the qbserv_gtyon .Ofmogeneous broadening leads to an infinite dimension sys-
these phenomena very difficult. In contrast, instabilities in

. . tem, the integro-differential Maxwell-Bloch equations. This
single-mode inhomogeneously broaden8iIB) lasers are stem has been analytically and numerically analyzed

experimentally more accessible since the second laser thre 4,16-20. In 1983, Graham and Cho constructed a simple

$|d_IS rguch I%werdm thezetla_sers.fln |1972.’ Cazper)'(sor: aNfow-dimensional model [21]. They reduced the integro-
;r'\f oths_erve kunthf_amgeh rains o puttsebs tmdat ?' N _as? ifferential Maxwell-Bloch equations to a set of four differ-
[3]. In this work, this behavior was attributed to transient gy, equations by using macroscopic variables of the me-

?;as);()aet:ggn %Secrlil\llaetcljogi[dz;](':c:pci\;vsl\ée:r’]ozeret\g eg((:)?a:isn ltﬂt:réelgium (total polarization and total population inversjoithis
' : X o imple model allows a straightforward analytical study of the
pulsing behavior[5]. The physical origin of SMIB and P g y y

i A instabilities in SMIB laserg21]. Similar models based on
SMHBIasr_erlnstat_)llmes IS d|ﬁ_erer{6]. In SMHB I_asers, the this approach have been constructed by Mezighe?2|.
nonlinear interaction of the field and polarization plays an

) ) ) o X Bowdenet al. studied the dynamics of a SMIB laser in a
important role in the onset of instabilities, whereas in SMIB e mediurf23]. The local-field effects occurring in dense
lasers, the self-pulsing behavior is due to a self-organizatio X

oY ; . ; thedia reduce the range of continuous wave operation and
process of the ra_dlatmg _d|poles in the laser medilfh lead to instabilities and chaos at much lower pumping levels.
More recent experiments in SMIB lasers were done by Abra-o,[her experimental single-mode inhomogeneously broad-
ened systems that have showed instabilities are FIR lasers
such as @HSF laser[12,24,25. They are characterized by
*Electronic  address: ecabrera@fis.ucm.es; URL: http:/the radiative limit, i.e.;y= v, so the bad cavity condition is
www.ucm.es/info/laserlab more accessible in these lasers. For low excitation, they ex-
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hibit periodic oscillations in their output intensity. the simulations reveal that the pattern tends to be formed by
Most of the research in SMIB lasers has been based oseveral traveling waves for pumpings well above threshold.
the plane-wave approximation, that is, ignoring transverseso, a roll intensity pattern is observed. Hence, in this case,
effects in the medium or in the field. Furthermore, the fewwe obtain that the SMIB laser, through the introduction of
works concerning transverse effects have been devoted to thgw atom packets under the gain profile, develops a more
case of low Fresnel numbgsmall-aspect-ratidasers, where  ordered pattern than the SMHB laser for the same param-
the optical resonator imposes the geometry of the laser fielgyters. We have also analyzed the effect of the transverse dy-
which can be expanded on a suitable basis of empty cavityjamics on the self-pulsing behavior typical of SMIB lasers

: : - 2
modes. This Fresnel number is defined Bsb”/(\L),  and we have found that the spatial degrees of freedom de-
where 2 is the laser aperture, the lasing wavelength, and oy the self-pulsing regime.

. tr
L the resonator length. Based on the results of Lugiato ana The paper is organized as follows: In Sec. Il we present

2/,'[223' [sztg[e 'Al;%rﬁ;‘ﬁ?rei; ?rl{efourre]geilgem?):‘ ;eéjgjsé?art]h,ﬁa nth_e two-level Maxwell-Bloch equations for a single-mode
y P |ﬁhomogeneously broadened laser. In Sec. lll, we analyze

verse intensity profile in comparison to the plgne—wave “aSHow the inhomogeneous broadening affects the first laser
[17]. Huyetet al. demonstrated that the breaking of the cy- . ; - ; i
threshold by doing a linear stability analysis of the non

lindrical symmetry of transverse patterns is relatively insen-" " ) . .
sitive to whether the medium is homogeneously or inhomolasing solution. The lasing solutions above threshold and

geneously broadenefl7]. Finally, Skryabin studied the their Ii_near ;tabili'gy analysis are pres_ented in Sec. IV. The
dynamical transverse patterns in a laser operating in a pair gftumerical simulations are presented in Sec V. Finally, Sec.
doughnut mode§28]. VI provides brief conclusions.

On the other hand, it is well-known that as the Fresnel
number increases, the behavior of the system becomes more
and more boundary-free, and the structure formation begins
to be dominated by bulk parameters and nonlinearities of the The semiclassical two-level Maxwell-Bloch equations for
active medium. Pattern formation and dynamics of transa large-aspect-ratio inhomogeneously broadened laser, with
verse light patterns in large-aspect-ratiogh Fresnel num-  plane and parallel mirrors in the rotating wave, slowly vary-
ben lasers and other nonlinear resonators have been a field §ffig amplitude, and single longitudinal mode approximations
intense research in recent yed29—-4J. However, to our gare
knowledge, the dynamics of transverse patterns in large-

Il. MODEL

aspect-ratio SMIB lasers has not been studied. In this work JE _. _

we address this problem. The description is made by means ar laA B-oE+ Uf dQ g )P(Q), @
of the semiclassical Maxwell-Bloch equations for a SMIB

laser, assuming the rotating wave and the slowly varying aP(Q) _ _

amplitude approximations. In large-aspect-ratio SMHB la- e =-(1+iA+iQ)P(Q) + D(Q)E, 2

sers, it is well-known that the pattern selected just above
threshold depends on the sign of the cavity detuning

[29,30,34. For negative detuningcavities tuned above reso- JD(Q) —_ [D(Q) —r+ E[E* P(Q) + EP(Q)*]} (3)
nance, the laser selects a transverse spatially homogeneous ar 7 2 '
solution, whereas for positive detunigcavities tuned below . . . L
resonancg a traveling wave is selected. In this last case, the Eis the d|men3|opless gnvelope of the electric field2) ,
laser emission is off-axis which helps the laser to emit or2Nd D(2) are the dimensionless envelopes of the electric

resonance. This phenomenon has been experimentally oBlarization, and the population inversion of each atom
served[37,39. packet_ labeled by). The_ frequency shlfﬂ f_rom the center
Here, we analyze the influence of the inhomogeneou.@_f the inhomogeneous line is scaled in units of the polariza-
broadening on the laser transverse dynamics. The neutral st decay ratéy,). y=v/y, ando=«/y, are the popu-
bility curve obtained in the linear stability analysis of the lation inversion decay rate and the cavity losses, respectively,
nonlasing solution depends on the inhomogeneous linewidtRIso normalized withy, . A=(w,;-w)/y, is the rescaled
As this inhomogeneous linewidth increases the travelingletuning between the atomic line center and frequency of the
wave selection is less relevant and a continuous laser fiel@@vity mode.r represents the pumping parameter. Light dif-
spectrum would be expected. We have performed numericdraction is introduced by means of the transverse Laplacian
simulations to observe the pattern formation above thresholderm in the field equation, and is measured by the diffraction
Due to the complexity of the 3D integro-differential coefficienta=c?/(2wy b? whereb is the spatial transverse
Maxwell-Bloch equations, the simulations have been develsize of the laserA , =#+d; is the transverse Laplacian
oped by following the model of Idiatulin and Uspenskid], =~ Wherex andy are normalized with the spatial scdiei.e.,
that is, based on a few discrete group of atoms at differerthe scaledx,y) frame is the physicalx,y) window divided
resonant frequencies. We have analyzed both the good afy the transverse aperture sizeThe time 7 is normalized
the bad cavity configurations. In the good cavity limit, we versus the polarization decay rdte=y,t). g({)) is the nor-
find in general that the inhomogeneous broadening leads toraalized spectral distribution. The most common form is a
more complex pattern in comparison to the homogeneou§aussian distribution which can be caused by thermal mo-
broadening case. On the other hand, for the bad cavity limitiion in a gaseous medium. Its expression, widely known, is
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1 A-ak \?
T = 02/92 - e
g(Q) - (2,”_0_2D)1/26Xq Q IZUD)! (4) rth (l + O-D)|:1 + ( 1 fo+ 0_D> :| ’ (12)
where oy is in units of y, and represents the width of the 1+ 2+ oA
distribution. However, it is well-known that the spectral dis- A = {M] _ (13)
tribution can present deviations from that broadening, for l+otop

Instance, because of the. presence of .cyfferent Isotopes, l.oc‘?he previous expressions reveal the following main features.
variations of the crystal field, or impurities. But these devia- (a) If the detuningA takes a negative value, the homo-

tions have litle consequences, at least ql_JaIitati‘yﬁ_e]ylt s neous transverse structure arises first, while a positive
for this reason, and because the Gaussian profile does lue of A causes the usual critical traveling wave with

Drofie 1 teach the expressions we give i he next sections /2 (0 ppeat. These are the same results of the homoge-
p p 9 Sieous broadening case.

In this case, (b) The minimum value of the pump to obtain laser
op 1 emission changes from 1 in the homogeneous broadening
9(Q) = YRS (5 case to a greater value of;,=(1+0p).
D

(c) An increase ofop makes smaller the term that se-
lects the transversal structure. If the inhomogeneous profile
is wide enough the pump threshold can be almost indepen-

We have studied the onset of the laser emission, that iglent of the wave vectdk and of the detuning.
the first laser threshold. This can be done by the analysis of ~ (d) The expression ofz, gives the oscillation fre-
the stability of the nonlasing solutioB=0,P=0,D=r ex-  quency of the first Fourier mode that appears on the onset of
panding the variables as Fourier series of transversal modége laser emission. Note that the oscillation frequency de-
of wave vector. The following system of equations is ob- pends on the inhomogeneous linewidth. As it happens in the
tained for each set of Fourier compone(#&,, 5Py, 5D}): homogeneous broadening case, the off-axis laser emission—
with the critical traveling wave—helps the system to emit on

(SE . 3 . . . .
K_ _ iak?5E, - o OE, + Uf dQ g(Q)sP,  (6) resonance, i.e., the off-axis laser emission frequeney,is

Ill. STABILITY OF THE NONLASING SOLUTION

T Figure 1 shows the behavior of the neutral stability curve
for different widths of the spectral profile and both signs of

9 OPy o the detuning. The figures are calculated with a Lorentzian

PP (L+iA +iQ) 6P + 1 5E, () profile but we have obtained the same behavior with a more

realistic Gaussian distribution. It can be noted that a wider
profile implies less restrictive selection for the wave veétor

= - y8D. (8) For op=10 (see dotted line in Fig.)1lthe neutral stability

J curve is almost plane which implies a broad spectrum in the

The last equation gives the trivial eigenvale—y, which transverse pattern. This result can be interpreted as a compe-

leads no instability. The other two yield the following equa- tition between different groups of frequencies under the in-
tion for the eigenvalues: homogeneous profile. Each of these groups has a different

detuning(A+(), and thus, we could associate to each packet

g(2) 9 the wave vector selected at threshold in the homogeneous
L+A+i(A+ Q) ©) broadening case for its detuning, i.k5\(A+Q)/a. If the
spectral profileg(Q)) is wide enough for allowing different
groups of frequencies with similar strengths the resulting
neutral stability curve will present a general smoothing. So
then, the appearance of structures with different sizes and
new complex patterns can be expected.

)\+iak2+a'=0'rJdQ

At the first laser thresholdy, the real part of the eigen-
value\ changes from a negative value to a positive ¢he
instability condition, while the imaginary part gives the fre-
quency of the temporal evolution of the growing instabilities
[Im(A)=N\,], i.e., a Hopf bifurcation takes place as in the
homogeneous broadening case. Thus, the neutral stability IV. SOLUTION ABOVE THRESHOLD
curve will be obtained fixing R&)=0. With this condition,
and treating separately the real and imaginary parts of®q.
we arrive to two equations which relatg,k, and\;:

The system admits, above threshold, traveling waves so-
lutions of the form

gOQ)(A +Q+)) E=E@ e, p=pdliosd D=Dy (14
N+akl=-ory | OS5, (10 .

1+(A+QN) whereEg andDg; are real numbers where&g; is a complex

quantity. Introducing the expressio(is}) in Eqgs.(1)—3) and

1= 40 g(Q)) 11 for a Lorentzian profile we can get the following expres-
=l 1 +(A +Q}\I)2. ( ) sions:
For a Lorentzian distribution, these expressions can be r=gop+d| 1+ (A-ak)? (15)
solved analytically, giving P 1+o+0p)?]|

063808-3



CABRERA, CALDERON, AND GUERRA

13

1.2

1.14

r /(1+6D)

(a) a=05

1.0

r, /(1+cD)

FIG. 1. General shape of the neutral stability curygk), for an
inhomogeneous linewidtbp=2 (solid line), op=5 (dashed ling
and op=10 (dotted ling, and for both signs of detuningg) A
=0.5 and(b) A=-0.5. The parameter=1. All these magnitudes

are dimensionless.

_ (op+ §ak’ + oA¢

Wst

[1-i1(A+ Q- wy]

opt &l+o)

A0 wg £

l+(A+Q_wst)2

DSt:r(A+Q—wst)2+§2’

where é=1+|E%.
We analyze the stability of this steady state following theHowever, it has been demonstrated that the introduction of
traditional lines of the linear stability analysis. We introduceone or three more packets can make the model much more

in Egs.(1)—3) the solution

E=(Eg+ eleid-i + eze—id-i)ei(ﬁ-ﬂwstr)’

P = (Py+ pygi¥ + pye %) kitosn),

: (16)

rEg, (17

(18)
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D =D+ de9¥ + d"e 9%, (19

wheree,,&,,p;,P2, andd are the perturbations, arglis the
perturbation wave vector. Then we obtaim =M (K,q,r)v,
where M is an infinite dimensional matrix anddenotes the
column vector(e;,€,,p;,p,,d)". The time dependence of
is chosen ag",\ being the eigenvalues o¥1. For a given
k andr the traveling wave solution is stable if, for all values
of g, the matrix of the coefficientd has all its eigenvalues
with negative real part. If any eigenvalue has positive real
part, the solution represented by, r) is unstable. Note that
we have to assume a direction for the traveling wiwand
consider perturbations at arbitrary directions relative to the
fixed direction. Here, we will consider two cases: perturba-
tions occurring along the direction of the traveling wage
parallel tok) which give 1D instabilities, and perturbations
occurring at right angles of the traveling waigeperpendicu-
lar to k) which give 2D instabilities.

This stability analysis has been done numerically, show-
ing no stable region in the plari,r), even for small values
of op such as less than unity. In other words, no stable trans-
verse traveling wave solution is found for any pump value
and any wave vector when we take into account an inhomo-
geneous broadening of the spectral profile. This result shows
that more complex processes of competition between differ-
ent growing waves must happen. But the pattern is not com-
pletely disordered just crossing the threshold, as it will be
seen in the next section. This is because the new waves that
grow faster havej=0, not changing the original value of the
wave vector present in the pattern.

V. NUMERICAL SIMULATIONS

The introduction of the integral on the medium’s polariza-
tion makes the phase space infinitely dimensional. This is
usually handled by fixing the number of frequency compo-
nents under the gain profile, and increasing this number to
obtain greater accuradyl4]. However, the presence of the
transverse Laplacian introduces spatial degrees of freedom,
which forces some approximations to be taken in order to
make the problem numerically feasible. There have been two
main strategies to do that, as it is discussed in the Introduc-
tion. One such strategy consists in limiting the discretization
of the inhomogeneous profile into only a small number of
groups of atoms at different resonant frequencies. Idiatulin
and Uspenskii[10] showed that the consideration of two
groups of atoms placed at symmetric positions under the
spectral profile leads to a reduction of the second laser
threshold with respect to the homogeneously broadened case.
Of course, this model shows its inadequacy to describe the
most part of the dynamical properties of the SMIB lasers.

realistic[13]. Other strategy is the one proposed by Graham
and Cho[21] in 1983. They generated macroscopic variables
of the medium(total polarization and total population inver-

sion). This change of variables solves the problem of the
integral of the medium polarization in the equation of the
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electric field, but leads to an infinite hierarchy of coupled 1Dinstabilites 2D instabiliies
equations that can be truncated by a judicious choice of som:

adjustable parameters. The approximation is introduced ir o4 o4
this truncation, when we force to be zero one global variable, a3 oz
and approximate the value of one of these parameters usin 5 5
the stationary solution of the laser equations. But with the<" <
consideration of the spatial degrees of freedom, we have see 0 0
that the system admits solutions in the form given by Eg.
(14), and the stationary state depends now on the wave vec 92, 3 2 02 3 2
tor k, which is, in principle, unknown. Thus, to use the Gra- a*q a"%q
ham and Cho approach, and fix the parameters, we must fi; %4 04
the value ofk or leave the parameters as a functionkof
which complicates the treatment. For this reason, we have 02 n=5 °~2—\/
found the first approximation more feasible to take into ac- & &é
count the spatio-temporal dynamics of large-aspect-ratio la- 0 0
sers.
The most important question is which number of frequen- -2 A -02
cies under the gain profile will be necessary to reach realistic ° ao'.sq 2 0 301,5q 2
results. We have found that an approximation of the systemr o4 04
by 5 groups of atoms at different resonant frequencies car
give, at least qualitatively, the behavior of the system. This , n=51 02
election has been done taking the stability analysis of the s 8
steady state solution as a reference. In this analysis an eiger: o R
value problem is solved. This is an easier task than the inte:
gration of a system of partial differential equations so we can
treat it with a high number of atomic frequencies in a normal % 1 2 02 1 2
computer. We have compared the behavior of the maximun. a*% %%

eigenvalue versus the wave vectqrof the perturbation FIG. 2. Maxi . U th to0 of th
added to the steady state solution, for different number of - 2. Maximum €elgenvalu&may Vs the wave vectoq of the
atomic frequencies. No important qualitative changes ap- p_erturbatlon in the stability analysis of the stationary solution, for
pear forn=5. Figure 2 shows some of these curves for dif-différent numbem of atom packetsn=3 (first row), n=5 (second
ferent number of atomic frequencies. It must be noted thafP") andn=>51 (third row). The last case is equivalent to the con-
the analysis of the first laser threshold does not show gredf!uous model of EqS1)~3). Left column Sshows\max wheng is
differences when changing the number of atomic frequenpara”el toﬂk (1D instabilitieg and right column whemj is perpen-
cies, that is the reason why we have used the stability anawiicular tok (2D instabilitieg. All the magnitudes are dimensionless.
sis of the steady state to choose the correct number of atomj

packets. Thus, the minimum number of frequencies that ca

reproduce the main features of the spatio-temporal dynamic§—awe“ng wave appears, being its wave vector close to

seems to be five, and this is the number of packets we havk la. 'Whenr is increased new structures appear and the
used. intensity pattern shows a more complicated shape, although

In order to numerically solve the set of partial differential the critical traveling wave is still present. Some examples are
equations, we must remember that the transverse Laplaci&OWn in Fig. 3 where the intensity fie{@irst column), the
variables have been scaled by the output aperturebsithe ~ Phase field'second colump and the power spectruighird
scaled window has been replaced by a A0 discrete column are plotted for different values of the inhomoge-
numerical grid and applied a finite difference method. Perineous linewidth(op). All these figures correspond to the
odic boundary conditions were programmed and a fourth orsame pump value above threshold, i.e., the same ratjg
der Runge-Kutta algorithm was used in the temporal variclose to 1.7. For this pump value the laser patteromst 0
able. The system starts with small-amplitude random initiakhomogeneous broadeninig the critical traveling wave. For
conditions and runs for times much larger than the characep=1 (first row in Fig. 3 we obtain the same pattern as that
teristic relaxation times. corresponding to the homogeneous broadening case, i.e., the

Two regimes have been explored: the good cavity coneritical traveling wave(k=vA/a). The sequence of patterns
figuration (o0<1) and the bad cavity limit where the photon for increasingrp shows how a wider profile favors the grow-
losses dominate the evolution of the magnitu@es 1). Itis  ing of new waves. In principle, these new contributions have
in this last limit where a more rich behavior has been foundvave vectors close to the critical one, and they simply modu-
in previous works from the point of view of the temporal late the intensity and the phase field patteigee second row
dynamics. The detuning value has been fixed tal.0 and a  in Fig. 3 with op=2.0). Increasing a little bit the width of the

mp parameter slightly greater than the thresholg, a

diffraction coefficient equal ta=5x 104 has been used. inhomogeneous distribution, this modulation becomes
o deeper, and the system tends to form a roll pattern as can be
A. Good cavity limit, ¢=0.5,y=0.2 seen forop=3.0 (see third row in Fig. 8 The new wave

The inhomogeneous linewidit, has been varied until a vectors are still close to the critical wave, and this is still
value of 5.0. For all of these cases and for values of thgresent. But just folop=3.5 (see fourth row in Fig. 8 a
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intensity phase power spectrum
‘ 100
™
0
: =100
1

=100 0 k 100

X

FIG. 3. Instantaneous intensity fig(first col-
umn), phase field(second colump and power
spectrum(third columr) for different values of
the inhomogeneous linewidtlry: op=1 (first
row), op=2.0 (second row, op=3 (third row),
and op=3.5 (fourth row). The rest of parameters
are ¢=0.5,y=0.2,A=1.0,a=5%x10"% and
r/ry,=1.7. The phase takes values fromr to =
in all the figures. All the magnitudes are
dimensionless.

puzzle pattern can be seen, due to the presence of eiglasers can be found in Refl3]. In particular, two main

single waves. Thus, even a small inhomogeneous broadenimggimes can be seen depending on the valug=of,/ vy, . If

of the spectral profile can give a very different spatial distri-this ratio is close to zero, the intensity can display a self-

bution of the intensity in comparison to the homogeneousulsing regime for high enough values of pumping, whereas

broadening case. for values ofy close to unity, no train of pulses appear and
Although we have obtained a more complex spatial prothe dynamics consists of regular oscillations for not very

file due to the presence of the inhomogeneous broadeningigh pump values.

the critical traveling wave persists in the spatio-temporal dy- "\ye have seen also some differences in the evolution of

namics. This can be explained by means of the stabilityhe pattern for these two systems. Let us start analyzing the
analysis of the traveling waves which indicates that the new.,qe yith,=1 for pump values close to the first threshold
waves that grow faster havg=0, as it is mentioned in the where the critical traveling wave is the only solution appear-
previous section. ing in the homogeneous broadening cdésg=0). For an
inhomogeneous spectral profile wilt;=5.0, the critical
traveling wave(k=\A/a) appears when/ry=1.0 (see first

For this configuration, where field losses are greater thanow in Fig. 4). But for pumpings a little bit highefeven just
polarization decay, we have focused the study of two systems.1 times the pump threshg|dhe system develops different
previously analyzed in the temporal case: the He-Xe [gger domains of traveling waves separated by defects, which
and the FIR lasef12,24,25. In both 0=5.0,05=5.0, while  causes the appearance of two rows of zeros in the intensity
v=0.05, for the forward system, ang=1.0 for the latter. A pattern(see second row in Fig.)4So, we have found again
very detailed study of the temporal evolution of these type othat the inhomogeneous broadening leads to a more complex

B. Bad cavity limit, =5
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intensity phase power spectrum

FIG. 4. Instantaneous intensity figfirst col-
umn), phase field(second columy and power
spectrum(third columr) for different values of
pumping: r/ry,=1.0 (first row), and r/ryp=1.1
(last row). The rest of parameters ake=5, y
=1, A=1.0,a=5%x10"% andop=5. The param-
eters correspond to the FIR laser. All the magni-

, """"""" .( 04 tudes are dimensionless.
» 0 : 60
> 3
- N L 0.2 20
0 L0
0 % 1 -20

50

behavior in comparison to the homogeneous broadening Let us study the case with=0.05. In this case, the pat-
case. tern follows a different evolution than the previous one. For
We are also interested in the spatio-temporal behavior ogpumpings very close to the threshold value the system main-
the SMIB laser for further pump values. An increase in thetains the transversal critical wave. This simple spatial con-
pumping tor = 2r, reveals the presence of rolls in the inten- figuration disappears for a pump value close to 1.3 times the
sity pattern, due to the contribution of more waves. This isthreshold, as it can be seen in the first row in Fig. 6. For this
shown in the first row of Fig. 5. This result agrees with the pumping the spatial intensity profile presents rolls due to the
stability analysis which shows a faster growing for new trav-contribution of two waves, with wave vectors close to the
eling waves with wave vectors close to the double of thecritical one and to the double of its value. In the homoge-
critical one. For comparison purpose, we also present in thiseous broadening case, the critical traveling wave also dis-
figure (second row the result with the homogeneous broad- appears for the same pumpiig=1.3ry,). The correspond-
ening which shows a very complex pattern forming by sev-4ng pattern is shown in the second row in Fig. 6. So, for the
eral defects. Then, at higher pump values we have found ho8MIB He-Xe laser(y=0.05, the bifurcation to more com-
the SMIB laser, through the introduction of new atom pack-plex patterns takes place for the same pump value above
ets under the gain profile, develops a more ordered pattetinreshold as in the SMHB laser with the same parameters.
than the SMHB laser. Note that the inhomogeneous broadening leads to a more

intensity phase power spectrum

FIG. 5. Instantaneous intensity fig(first col-
umn), phase field(second colump and power
spectrum(third column for r/ryu=2. The first
row corresponds to the FIR lasgree parameters
in Fig. 4). The second row is the homogeneous
broadening caserp=0) for the same parameters.
All the magnitudes are dimensionless.
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intensity n phase power spectrum

1//// ‘V

.

:

; 0.8

- 07

FIG. 6. Instantaneous intensity fig(first col-
umn), phase field(second columy and power
10055 spectrum(third column for r/ry,=1.3. The rest
of parameters arer=5, y=0.05,A=1.0,a=5
X 1074, andop=5. The parameters correspond to
the He-Xe lase(first row). The second row is the
homogeneous broadening ca&e,=0) for the
same parameters. All the magnitudes are
dimensionless.

=100
=100

regular spatial structure—forming by two waves—than theparison to the spatio-temporal behavior in small-aspect-ratio

homogenous broadening. This trend also occurs for highdasers. We have studied how this transition takes place for a

pump values as is shown in Fig. 7. case where it was experimentally found, for small-aspect-
These results may suggest a stabilization in the number dgitio systems, a self-pulsing regini@]. Then, we used the

the traveling waves taking part in the pattern for the inhomo{arameters of the He-Xe laser of Rg9]. In this case, the

geneous broadening case, even though it seems that woufihomogeneous linewidth equalg,=3.72, 0=4.67, andy

be easier for the system to generate new structures with dif0-183. The comparison of our numerical simulations with

ferent sizes, due to the lesser difference in the threshold t§1€S€ experimental resuits can also be used to test the model

grow for the new waves with different wave vectors than theP@S€d on 5 atom packets with different resonant frequencies.
critical one The diffraction parametea has been changed from the value

used in previous sectioria=5x 107 to a value of 0.4. This
last value ofa corresponds with an estimate made for the
small-aspect-ratio laser used in the mentioned referdRet

The dynamics of large-aspect-ratio lasers are influenceB]). Figure 8 shows the temporal behavior of global inten-
by bulk parameters and non-linearities of the medium, as it isity (left column), local intensity(central columip and also
mentioned in the Introduction. This influence changes nothe pattern intensityright column for different laser aper-
only the spatial profile of the output intensity but also thetures, i.e., different values ai. In this figure, in order to
temporal behavior of both global and local intensity in com-compare in the same scale the numerical patterns obtained

C. Effect of the laser aperture on the dynamics

intensity phase 3 power spectrum
100
o . .o .a 1.. .“b“““‘llllllllll 1 2
m‘l . k
- of
h—_‘ :- . . .
0 1 2 100 FIG. 7. Instantaneous intensity fig(first col-
x -3 -100 0 100 umn), phase field(second colump and power
k spectrum(third columr) for r/ry,=2. The first

row corresponds to the He-Xe las@ee param-
eters in Fig. 6. The second row is the homoge-

100
" " neous broadening casep=0) for the same pa-
- 1 ¥ rameters. All the magnitudes are dimensionless.
0
M 100

-100 0 100
k

X
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FIG. 8. Temporal evolution of global intensifyeft column), local intensity(central columin and transverse pattern intensityght
column) for different values of diffraction parametex. First row correspond t@=0.4, second row t@=0.04, and last row t@=5
X 1074 The parameters correspond to the He-Xe laser used inf®ef\ll the magnitudes are dimensionless.

for the different size®, we must multiply the size shown in pattern presents some structures which become smaller as the
the figure by the scale factdr corresponding to each one. diffraction parameter reduces its value. Finally, in the third
Fora=0.4, that is, the experimental situation of R}, the  row, a=5x 10 is used. The local intensity is much more
results of our simulations are shown in the first row in Fig. 8.disordered, and the orderly self-pulsing contribution present
In agreement with the experiments, a self-pulsing regime isn the previous cases is now buried under the wide global
obtained and the global and local intensity follow the sameyower spectrum. We must point out that this result indicates
behavior. We have compared the power spectrum obtaineghat the self-pulsing regime is not present in the local inten-
with those experimentally observed in RE]. For a similar  sjty which means that the disappearance of the self-pulsing is
position above threshold /ry,~3), both spectra show the not caused by an unlocked dephasing between the different
same frequency for the main pe@0 MHz approxX. Thus,  contributions of the pixels in which the transversal plane is
the model based on 5 different resonant frequencies can leafilvided. There is still the possibility that the increase of the
to results not only qualitatively but quantitatively accurate.|aser aperture changed the region of pumping where the self-
In this situation, the intensity pattern consists of a true hopulsing regime is found. But the different tests we have made
mogenous profile which corresponds to the homogeneous sy Iocalize this region have failed, which makes this possi-
lution. The system chose this solution because any transversglity improbable. The temporal features found at larger laser
wave is inhibited by the smallness of the physical transversgpertures indicate that the transverse effects are playing an
window. So this limit matches with the plane-wave approxi-important role on the dynamics. In fact, a very complex in-

mation. If we reduce the diffraction parametgror in other  tensity pattern can be seen as the laser aperture increases.
words, if we increase the laser apertimethe self-pulsing

regime disappears. The second row shows the case where VI. CONCLUSIONS

a=0.04. Now, the global intensity shows a very different

behavior from the local intensity: the global intensity shows The transverse pattern of a SMIB laser with large-aspect-
a constant contribution with a small irregular oscillation, ratio has been analyzed in the first laser threshold. Analytical
whereas the local intensity displays a very much more comexpressions for this threshold and for the stationary solutions
plex behavior. However, the power spectrum of the localare given using a Lorentzian spectral distribution. These ex-
intensity still shows a peak placed close to 20 MHz whichpressions show how the presence of an inhomogeneous
can be seen as a remnant of the self-pulsing behavior. THeroadening in the gain profile not only increases the value of
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the pump necessary for the beginning of the laser emissiomation, FIR lasers and He-Xe lasers. The simulations done
but also relaxes the selection of a wave vector. It alsdor the parameters corresponding to these two systems show
changes the stability of the stationary solutions, making thengome differences in the laser pattern, mainly close to thresh-
unstable for the whole plangk,r). But in spite of this, it  old. For the FIR laser, the transition from the pattern selected
does not mean that the transverse critical wave does not aust at the first laser threshoithe critical traveling wavgto
pear as it is shown in the simulations. a more complex pattern occurs for a pump value very close
The SMIB laser is usually studied by the integro-to the threshold one. So, the inhomogeneous broadening
differential Maxwell-Bloch equations, which makes the sys-jeads to a more complex behavior close to threshold in com-

tem infinite dimensional. Adding the spatial degrees of freey5ison to the homogeneous broadening case. This phenom-
dom to an accurate discretization of the gain d|str|but|one on does not appear in the He-Xe laser, where the bifurca-
would make the system untreatable. For that reason, a mod

. : o fion to a more complex pattern takes place for a higher pump
with only five atom packets with different resonant frequen—value, being the same as happens in the SMHB laser with the

cies has been tested analyzing the stability of the stationar ame parameters. At higher pumpingeell above thresh-

solution of the system. This type of approximation—base old), a similar pattern is obtained at both types of SMIB laser

on a few discrete groups of atoms—has been already used . . .
the study of the temporal dynamics of SMIB lasers in theﬁhalyzed. This laser pattern is formed by some traveling

plane-wave approximation, reproducing the behavior of th waves. As a consequence of this, the intensity develops a roll

system even quantitatively in some cases. In our d i %attern. This trend has been compared with the behavi.or of
aspect-ratio lasers, and for the inhomoéeneous Iinewidththe SMHB laser fpr the same set of parameters, showing a

i . ’ S fuch more complicated pattern for this last case in the same
studied, it can be seen that this simple model reproduce%lnge of pumping. Thus, it seems that even the presence of
qualitatively the behavior of the maximum eigenvalue_withan inhomogeneoﬁs bro,adening relaxes the difference be-
Yween the threshold of different waves, the system stabilizes

S.OIUt'On' Thus, we h:_;we developed simulations using th'?he number of components that participate in the transverse
simple model which is expected to reproduce the spatio-

temporal dvnamics in the larae-aspect-ratio SMIB lasers profile for pumpings not very far from the threshold. Only a
T[;]e tran).;verse attern of t%le S Etem has been studied.wiﬁnmaII number of different sizes is present in the pattern.
. P yster ) . Finally, we have predicted the influence of the transverse
this model for both good and bad cavity configurations. The

ood cavity configuration shows the presence of the critic flects in a He-Xe laser, on the self-pulsing behavior. We
9 y 9 P L ound that a wider aperture destroys the self-pulsing regime
transverse wave for small values of pumping independentl

of the value of the inhomogeneous widihp to a value of ¥%ind tends to favor smaller structures and a much more com-

five times the homogeneous linewigltrBut for a greater plex spatiotemporal dynamics. The tr_ansitio_n to this complex
value of the pump, increasing this width leads to the appearl?ehavIor oceurs sm_oothly, and des_,plte the wregular shape of
ance of new coniributions in the power spectrum of thethe temporal evc_)lutlor_1 of the I(_)c_al intensity, for intermediate
transversal field distribution. For instance, puzzles patternvalues of the ghffrac_non coefliciend, the spectra of local
appear for a width just 3.5 .times the widt'h of an homoge_ﬁregular_evoluuon s_t|II shqws the charac.ten_stlc frequency of
neous atom packet. For t.his oump value and in the absen self-pulsing dynamics. 'It is W_orth mentioning that the fr_e—
. ' . . quency of the self-pulsing regime obtained through the sim-

of the inhomogeneous broadening the pattern shows the crit Jlified model used in this work agrees with the experimen-
cal traveling wave. Thus, even a small inhomogeneou ally observed frequency,
broadening of the spectral profile can give a very different '
spatial distribution of the intensity in comparison to the ho-
mogeneous broadening case.

For a bad cavity configuration the study has been focused This work was supported by Project No. BFM2003-06292

on two systems widely analyzed in the plane-wave approxi{Spair).
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