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Pattern formation in large-aspect-ratio single-mode inhomogeneously broadened lasers is studied by means
of the integro-differential Maxwell-Bloch equations. As the inhomogeneous linewidth increases, the neutral
stability curve shows a relaxation in the traveling wave selection allowing structures with different sizes to
grow. We have performed numerical simulations with a simplified model based on a few discrete groups of
atoms at different resonant frequencies to observe transverse dynamics above threshold for good and bad cavity
configurations. We obtain, in general, that close to threshold the inhomogeneous broadening leads to a more
complex pattern in comparison to the homogeneous broadening case. At higher pumpings, a stabilization in the
number of spatial frequencies taking part in the transverse pattern is found. The influence of the laser aperture
on temporal dynamics is also studied. It is shown how the typical self-pulsing regime present in single-mode
inhomogeneously broadened lasers is destroyed for a wide enough aperture.
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I. INTRODUCTION

Instabilities in single-mode lasers have been a subject of
intense research. The simplest laser system from both the
experimental and theoretical point of view is the single-mode
homogeneously broadened(SMHB) laser [1]. The first ex-
periments showing instabilities in SMHB lasers were re-
ported in 1985 by Klische and Weiss[2] in a far-infrared
NH3 laser. There are two conditions for observing instabili-
ties (pulsing behavior or non-constant-intensity behavior) in
these systems. First, the field decay ratek must be larger
than the sum of the polarizationsg'd and population inver-
sion sgid decay rates, i.e.,k.g'+gi, which is usually called
the bad cavity condition. Second, the pump value(the exci-
tation level) must be larger than a certain threshold value.
This is the well-known second laser threshold or instability
threshold. Depending on the value ofg;gi /g', the second
threshold value is predicted to be between 9 and 20 times
above the first laser threshold. So the instability threshold in
SMHB lasers is very high, which makes the observation of
these phenomena very difficult. In contrast, instabilities in
single-mode inhomogeneously broadened(SMIB) lasers are
experimentally more accessible since the second laser thresh-
old is much lower in these lasers. In 1972, Casperson and
Yariv observed undamped trains of pulses in a He-Xe laser
[3]. In this work, this behavior was attributed to transient
relaxation oscillations[4]. However, a few years later,
Casperson derived an acceptable model to explain the self-
pulsing behavior[5]. The physical origin of SMIB and
SMHB laser instabilities is different[6]. In SMHB lasers, the
nonlinear interaction of the field and polarization plays an
important role in the onset of instabilities, whereas in SMIB
lasers, the self-pulsing behavior is due to a self-organization
process of the radiating dipoles in the laser medium[6].
More recent experiments in SMIB lasers were done by Abra-

ham and co-workers[7–9]. They analyzed the instabilities in
great detail using lasers similar to the ones used by Casper-
son, which are characterized by a small ratio of the popula-
tion and polarization decay rates, i.e.,g!1 (g=0.05 appro-
priate to the 3.51-µm He-Xe laser). As we mentioned above,
these systems exhibit regular trains of pulses.

The first theoretical prediction of instabilities in SMIB
lasers was given in 1973 by Idiatulin and Uspenskii[10]. By
using a laser medium composed of two group of atoms with
different resonant frequencies, they showed a change of the
nature of the laser instability and a marked reduction of the
threshold for the onset of pulsations. This type of model—
based on a few discrete group of atoms—has been exten-
sively used[11–14]. Following this approach, Meziane ana-
lyzed the effect of the strong velocity-changing collisions on
the dynamics of a SMIB laser by including spectral cross-
relaxation terms[15]. A reduction of both the first laser
threshold and the second laser threshold was found. The the-
oretical study of instabilities in SMIB lasers is a difficult task
in comparison to the case of SMHB lasers, since the inho-
mogeneous broadening leads to an infinite dimension sys-
tem, the integro-differential Maxwell-Bloch equations. This
system has been analytically and numerically analyzed
[14,16–20]. In 1983, Graham and Cho constructed a simple
(low-dimensional) model [21]. They reduced the integro-
differential Maxwell-Bloch equations to a set of four differ-
ential equations by using macroscopic variables of the me-
dium (total polarization and total population inversion). This
simple model allows a straightforward analytical study of the
instabilities in SMIB lasers[21]. Similar models based on
this approach have been constructed by Meziane[6,22].
Bowden et al. studied the dynamics of a SMIB laser in a
dense medium[23]. The local-field effects occurring in dense
media reduce the range of continuous wave operation and
lead to instabilities and chaos at much lower pumping levels.
Other experimental single-mode inhomogeneously broad-
ened systems that have showed instabilities are FIR lasers
such as C13H3F laser[12,24,25]. They are characterized by
the radiative limit, i.e.,gi .g', so the bad cavity condition is
more accessible in these lasers. For low excitation, they ex-
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hibit periodic oscillations in their output intensity.
Most of the research in SMIB lasers has been based on

the plane-wave approximation, that is, ignoring transverse
effects in the medium or in the field. Furthermore, the few
works concerning transverse effects have been devoted to the
case of low Fresnel number(small-aspect-ratio) lasers, where
the optical resonator imposes the geometry of the laser field,
which can be expanded on a suitable basis of empty cavity
modes. This Fresnel number is defined asF=pb2/ slLd,
where 2b is the laser aperture,l the lasing wavelength, and
L the resonator length. Based on the results of Lugiato and
Milani [26], Abraham et al. found similar results in the
steady-state behavior in the presence of a Gaussian trans-
verse intensity profile in comparison to the plane-wave case
[17]. Huyet et al. demonstrated that the breaking of the cy-
lindrical symmetry of transverse patterns is relatively insen-
sitive to whether the medium is homogeneously or inhomo-
geneously broadened[27]. Finally, Skryabin studied the
dynamical transverse patterns in a laser operating in a pair of
doughnut modes[28].

On the other hand, it is well-known that as the Fresnel
number increases, the behavior of the system becomes more
and more boundary-free, and the structure formation begins
to be dominated by bulk parameters and nonlinearities of the
active medium. Pattern formation and dynamics of trans-
verse light patterns in large-aspect-ratio(high Fresnel num-
ber) lasers and other nonlinear resonators have been a field of
intense research in recent years[29–40]. However, to our
knowledge, the dynamics of transverse patterns in large-
aspect-ratio SMIB lasers has not been studied. In this work
we address this problem. The description is made by means
of the semiclassical Maxwell-Bloch equations for a SMIB
laser, assuming the rotating wave and the slowly varying
amplitude approximations. In large-aspect-ratio SMHB la-
sers, it is well-known that the pattern selected just above
threshold depends on the sign of the cavity detuningD
[29,30,34]. For negative detuning(cavities tuned above reso-
nance), the laser selects a transverse spatially homogeneous
solution, whereas for positive detuning(cavities tuned below
resonance), a traveling wave is selected. In this last case, the
laser emission is off-axis which helps the laser to emit on
resonance. This phenomenon has been experimentally ob-
served[37,38].

Here, we analyze the influence of the inhomogeneous
broadening on the laser transverse dynamics. The neutral sta-
bility curve obtained in the linear stability analysis of the
nonlasing solution depends on the inhomogeneous linewidth.
As this inhomogeneous linewidth increases the traveling
wave selection is less relevant and a continuous laser field
spectrum would be expected. We have performed numerical
simulations to observe the pattern formation above threshold.
Due to the complexity of the 3D integro-differential
Maxwell-Bloch equations, the simulations have been devel-
oped by following the model of Idiatulin and Uspenskii[10],
that is, based on a few discrete group of atoms at different
resonant frequencies. We have analyzed both the good and
the bad cavity configurations. In the good cavity limit, we
find in general that the inhomogeneous broadening leads to a
more complex pattern in comparison to the homogeneous
broadening case. On the other hand, for the bad cavity limit,

the simulations reveal that the pattern tends to be formed by
several traveling waves for pumpings well above threshold.
So, a roll intensity pattern is observed. Hence, in this case,
we obtain that the SMIB laser, through the introduction of
new atom packets under the gain profile, develops a more
ordered pattern than the SMHB laser for the same param-
eters. We have also analyzed the effect of the transverse dy-
namics on the self-pulsing behavior typical of SMIB lasers
and we have found that the spatial degrees of freedom de-
stroy the self-pulsing regime.

The paper is organized as follows: In Sec. II we present
the two-level Maxwell-Bloch equations for a single-mode
inhomogeneously broadened laser. In Sec. III, we analyze
how the inhomogeneous broadening affects the first laser
threshold by doing a linear stability analysis of the non-
lasing solution. The lasing solutions above threshold and
their linear stability analysis are presented in Sec. IV. The
numerical simulations are presented in Sec V. Finally, Sec.
VI provides brief conclusions.

II. MODEL

The semiclassical two-level Maxwell-Bloch equations for
a large-aspect-ratio inhomogeneously broadened laser, with
plane and parallel mirrors in the rotating wave, slowly vary-
ing amplitude, and single longitudinal mode approximations
are

] E

] t
= iaD'E − sE + sE dV gsVdPsVd, s1d

] PsVd
] t

= − s1 + iD + iVdPsVd + DsVdE, s2d

] DsVd
] t

= − gFDsVd − r +
1

2
fE*PsVd + EPsVd*gG . s3d

E is the dimensionless envelope of the electric field.PsVd
and DsVd are the dimensionless envelopes of the electric
polarization, and the population inversion of each atom
packet labeled byV. The frequency shiftV from the center
of the inhomogeneous line is scaled in units of the polariza-
tion decay ratesg'd . g;gi /g' ands;k /g' are the popu-
lation inversion decay rate and the cavity losses, respectively,
also normalized withg' . D;sv21−vd /g' is the rescaled
detuning between the atomic line center and frequency of the
cavity mode.r represents the pumping parameter. Light dif-
fraction is introduced by means of the transverse Laplacian
term in the field equation, and is measured by the diffraction
coefficienta;c2/ s2vg'b2d whereb is the spatial transverse
size of the laser.D';]x

2+]y
2 is the transverse Laplacian

wherex and y are normalized with the spatial scaleb, i.e.,
the scaledsx,yd frame is the physicalsx,yd window divided
by the transverse aperture sizeb. The timet is normalized
versus the polarization decay ratest=g'td . gsVd is the nor-
malized spectral distribution. The most common form is a
Gaussian distribution which can be caused by thermal mo-
tion in a gaseous medium. Its expression, widely known, is
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gsVd =
1

s2psD
2 d1/2exps− V2/2sD

2 d, s4d

wheresD is in units of g' and represents the width of the
distribution. However, it is well-known that the spectral dis-
tribution can present deviations from that broadening, for
instance, because of the presence of different isotopes, local
variations of the crystal field, or impurities. But these devia-
tions have little consequences, at least qualitatively[1]. It is
for this reason, and because the Gaussian profile does not
allow an analytical handling, why we have used a Lorentzian
profile to reach the expressions we give in the next sections.
In this case,

gsVd =
sD

p

1

V2 + sD
2 . s5d

III. STABILITY OF THE NONLASING SOLUTION

We have studied the onset of the laser emission, that is,
the first laser threshold. This can be done by the analysis of
the stability of the nonlasing solutionE=0,P=0,D=r ex-
panding the variables as Fourier series of transversal modes
of wave vectorsk. The following system of equations is ob-
tained for each set of Fourier componentssdEk,dPk,dDkd:

] dEk

] t
= − iak2dEk − sdEk + sE dV gsVddPk, s6d

] dPk

] t
= − s1 + iD + iVddPk + rdEk, s7d

] dDk

] t
= − gdDk. s8d

The last equation gives the trivial eigenvaluel=−g, which
leads no instability. The other two yield the following equa-
tion for the eigenvalues:

l + iak2 + s = sr E dV
gsVd

1 + l + isD + Vd
. s9d

At the first laser thresholdr th, the real part of the eigen-
valuel changes from a negative value to a positive one(the
instability condition), while the imaginary part gives the fre-
quency of the temporal evolution of the growing instabilities
fImsld;lIg, i.e., a Hopf bifurcation takes place as in the
homogeneous broadening case. Thus, the neutral stability
curve will be obtained fixing Resld=0. With this condition,
and treating separately the real and imaginary parts of Eq.(9)
we arrive to two equations which relater th,k, andlI:

lI + ak2 = − sr thE dV
gsVdsD + V + lId

1 + sD + VlId2 , s10d

1 = r thE dV
gsVd

1 + sD + VlId2 . s11d

For a Lorentzian distribution, these expressions can be
solved analytically, giving

r th = s1 + sDdF1 +S D − ak2

1 + s + sD
D2G , s12d

lI = − F s1 + sDdak2 + sD

1 + s + sD
G . s13d

The previous expressions reveal the following main features.
(a) If the detuningD takes a negative value, the homo-

geneous transverse structure arises first, while a positive
value of D causes the usual critical traveling wave withk
=ÎD /a to appear. These are the same results of the homoge-
neous broadening case.

(b) The minimum value of the pump to obtain laser
emission changes from 1 in the homogeneous broadening
case to a greater value ofrmin=s1+sDd.

(c) An increase ofsD makes smaller the term that se-
lects the transversal structure. If the inhomogeneous profile
is wide enough the pump threshold can be almost indepen-
dent of the wave vectork and of the detuning.

(d) The expression oflI gives the oscillation fre-
quency of the first Fourier mode that appears on the onset of
the laser emission. Note that the oscillation frequency de-
pends on the inhomogeneous linewidth. As it happens in the
homogeneous broadening case, the off-axis laser emission—
with the critical traveling wave—helps the system to emit on
resonance, i.e., the off-axis laser emission frequency isv21.

Figure 1 shows the behavior of the neutral stability curve
for different widths of the spectral profile and both signs of
the detuning. The figures are calculated with a Lorentzian
profile but we have obtained the same behavior with a more
realistic Gaussian distribution. It can be noted that a wider
profile implies less restrictive selection for the wave vectork.
For sD=10 (see dotted line in Fig. 1) the neutral stability
curve is almost plane which implies a broad spectrum in the
transverse pattern. This result can be interpreted as a compe-
tition between different groups of frequencies under the in-
homogeneous profile. Each of these groups has a different
detuningsD+Vd, and thus, we could associate to each packet
the wave vector selected at threshold in the homogeneous
broadening case for its detuning, i.e.,k=ÎsD+Vd /a. If the
spectral profilegsVd is wide enough for allowing different
groups of frequencies with similar strengths the resulting
neutral stability curve will present a general smoothing. So
then, the appearance of structures with different sizes and
new complex patterns can be expected.

IV. SOLUTION ABOVE THRESHOLD

The system admits, above threshold, traveling waves so-
lutions of the form

E = Este
iskW·xW+vsttd, P = Pste

iskW·xW+vsttd, D = Dst, s14d

whereEst andDst are real numbers whereasPst is a complex
quantity. Introducing the expressions(14) in Eqs.(1)–(3) and
for a Lorentzian profile we can get the following expres-
sions:

r = jssD + jdF1 +
sD − ak2d2

s1 + s + sDd2G , s15d
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vst =
ssD + jdak2 + sDj

sD + js1 + sd
, s16d

Pst =
f1 − isD + V − vstdg
sD + V − vstd2 + j2 rEst, s17d

Dst = r
1 + sD + V − vstd2

sD + V − vstd2 + j2 , s18d

wherej=Î1+uEstu2.
We analyze the stability of this steady state following the

traditional lines of the linear stability analysis. We introduce
in Eqs.(1)–(3) the solution

E = sEst + e1e
iqW·xW + e2e

−iqW·xWdeiskW·xW+vsttd,

P = sPst + p1e
iqW·xW + p2e

−iqW·xWdeiskW·xW+vsttd,

D = Dst + deiqW·xW + d*e−iqW·xW , s19d

wheree1,e2,p1,p2, andd are the perturbations, andqW is the
perturbation wave vector. Then we obtain]tvW =MskW ,qW ,rdvW,
whereM is an infinite dimensional matrix andvW denotes the
column vectorse1,e2

* ,p1,p2
* ,ddT. The time dependence ofvW

is chosen aselt ,l being the eigenvalues ofM. For a given
kW andr the traveling wave solution is stable if, for all values
of qW, the matrix of the coefficientsM has all its eigenvalues
with negative real part. If any eigenvalue has positive real
part, the solution represented byskW ,rd is unstable. Note that
we have to assume a direction for the traveling wavekW and
consider perturbations at arbitrary directions relative to the
fixed direction. Here, we will consider two cases: perturba-
tions occurring along the direction of the traveling wave(qW
parallel tokW) which give 1D instabilities, and perturbations
occurring at right angles of the traveling wave(qW perpendicu-
lar to kW) which give 2D instabilities.

This stability analysis has been done numerically, show-
ing no stable region in the planesk,rd, even for small values
of sD such as less than unity. In other words, no stable trans-
verse traveling wave solution is found for any pump value
and any wave vector when we take into account an inhomo-
geneous broadening of the spectral profile. This result shows
that more complex processes of competition between differ-
ent growing waves must happen. But the pattern is not com-
pletely disordered just crossing the threshold, as it will be
seen in the next section. This is because the new waves that
grow faster haveqW .0, not changing the original value of the
wave vector present in the pattern.

V. NUMERICAL SIMULATIONS

The introduction of the integral on the medium’s polariza-
tion makes the phase space infinitely dimensional. This is
usually handled by fixing the number of frequency compo-
nents under the gain profile, and increasing this number to
obtain greater accuracy[14]. However, the presence of the
transverse Laplacian introduces spatial degrees of freedom,
which forces some approximations to be taken in order to
make the problem numerically feasible. There have been two
main strategies to do that, as it is discussed in the Introduc-
tion. One such strategy consists in limiting the discretization
of the inhomogeneous profile into only a small number of
groups of atoms at different resonant frequencies. Idiatulin
and Uspenskii[10] showed that the consideration of two
groups of atoms placed at symmetric positions under the
spectral profile leads to a reduction of the second laser
threshold with respect to the homogeneously broadened case.
Of course, this model shows its inadequacy to describe the
most part of the dynamical properties of the SMIB lasers.
However, it has been demonstrated that the introduction of
one or three more packets can make the model much more
realistic[13]. Other strategy is the one proposed by Graham
and Cho[21] in 1983. They generated macroscopic variables
of the medium(total polarization and total population inver-
sion). This change of variables solves the problem of the
integral of the medium polarization in the equation of the

FIG. 1. General shape of the neutral stability curve,r thskd, for an
inhomogeneous linewidthsD=2 (solid line), sD=5 (dashed line),
and sD=10 (dotted line), and for both signs of detuning(a) D
=0.5 and(b) D=−0.5. The parameters=1. All these magnitudes
are dimensionless.
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electric field, but leads to an infinite hierarchy of coupled
equations that can be truncated by a judicious choice of some
adjustable parameters. The approximation is introduced in
this truncation, when we force to be zero one global variable,
and approximate the value of one of these parameters using
the stationary solution of the laser equations. But with the
consideration of the spatial degrees of freedom, we have seen
that the system admits solutions in the form given by Eq.
(14), and the stationary state depends now on the wave vec-
tor kW, which is, in principle, unknown. Thus, to use the Gra-
ham and Cho approach, and fix the parameters, we must fix
the value ofkW or leave the parameters as a function ofk,
which complicates the treatment. For this reason, we have
found the first approximation more feasible to take into ac-
count the spatio-temporal dynamics of large-aspect-ratio la-
sers.

The most important question is which number of frequen-
cies under the gain profile will be necessary to reach realistic
results. We have found that an approximation of the system
by 5 groups of atoms at different resonant frequencies can
give, at least qualitatively, the behavior of the system. This
election has been done taking the stability analysis of the
steady state solution as a reference. In this analysis an eigen-
value problem is solved. This is an easier task than the inte-
gration of a system of partial differential equations so we can
treat it with a high number of atomic frequencies in a normal
computer. We have compared the behavior of the maximum
eigenvalue versus the wave vectorq of the perturbation
added to the steady state solution, for different number of
atomic frequenciesn. No important qualitative changes ap-
pear fornù5. Figure 2 shows some of these curves for dif-
ferent number of atomic frequencies. It must be noted that
the analysis of the first laser threshold does not show great
differences when changing the number of atomic frequen-
cies, that is the reason why we have used the stability analy-
sis of the steady state to choose the correct number of atomic
packets. Thus, the minimum number of frequencies that can
reproduce the main features of the spatio-temporal dynamics
seems to be five, and this is the number of packets we have
used.

In order to numerically solve the set of partial differential
equations, we must remember that the transverse Laplacian
variables have been scaled by the output aperture sizeb. The
scaled window has been replaced by a 1003100 discrete
numerical grid and applied a finite difference method. Peri-
odic boundary conditions were programmed and a fourth or-
der Runge-Kutta algorithm was used in the temporal vari-
able. The system starts with small-amplitude random initial
conditions and runs for times much larger than the charac-
teristic relaxation times.

Two regimes have been explored: the good cavity con-
figuration ss,1d and the bad cavity limit where the photon
losses dominate the evolution of the magnitudesss.1d. It is
in this last limit where a more rich behavior has been found
in previous works from the point of view of the temporal
dynamics. The detuning value has been fixed toD=1.0 and a
diffraction coefficient equal toa=5310−4 has been used.

A. Good cavity limit, s=0.5,g=0.2

The inhomogeneous linewidthsD has been varied until a
value of 5.0. For all of these cases and for values of the

pump parameterr slightly greater than the thresholdr th a
traveling wave appears, being its wave vector close to
ÎD /a. When r is increased new structures appear and the
intensity pattern shows a more complicated shape, although
the critical traveling wave is still present. Some examples are
shown in Fig. 3 where the intensity field(first column), the
phase field(second column), and the power spectrum(third
column) are plotted for different values of the inhomoge-
neous linewidthssDd. All these figures correspond to the
same pump value above threshold, i.e., the same ratior / r th,
close to 1.7. For this pump value the laser pattern atsD=0
(homogeneous broadening) is the critical traveling wave. For
sD=1 (first row in Fig. 3) we obtain the same pattern as that
corresponding to the homogeneous broadening case, i.e., the
critical traveling wavesk=ÎD /ad. The sequence of patterns
for increasingsD shows how a wider profile favors the grow-
ing of new waves. In principle, these new contributions have
wave vectors close to the critical one, and they simply modu-
late the intensity and the phase field patterns(see second row
in Fig. 3 withsD=2.0). Increasing a little bit the width of the
inhomogeneous distribution, this modulation becomes
deeper, and the system tends to form a roll pattern as can be
seen forsD=3.0 (see third row in Fig. 3). The new wave
vectors are still close to the critical wave, and this is still
present. But just forsD=3.5 (see fourth row in Fig. 3), a

FIG. 2. Maximum eigenvaluelmax vs the wave vectorq of the
perturbation in the stability analysis of the stationary solution, for
different numbern of atom packets:n=3 (first row), n=5 (second
row), andn=51 (third row). The last case is equivalent to the con-
tinuous model of Eqs.(1)–(3). Left column showslmax whenqW is
parallel tokW (1D instabilities) and right column whenqW is perpen-
dicular tokW (2D instabilities). All the magnitudes are dimensionless.
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puzzle pattern can be seen, due to the presence of eight
single waves. Thus, even a small inhomogeneous broadening
of the spectral profile can give a very different spatial distri-
bution of the intensity in comparison to the homogeneous
broadening case.

Although we have obtained a more complex spatial pro-
file due to the presence of the inhomogeneous broadening,
the critical traveling wave persists in the spatio-temporal dy-
namics. This can be explained by means of the stability
analysis of the traveling waves which indicates that the new
waves that grow faster haveq.0, as it is mentioned in the
previous section.

B. Bad cavity limit, s=5

For this configuration, where field losses are greater than
polarization decay, we have focused the study of two systems
previously analyzed in the temporal case: the He-Xe laser[3]
and the FIR laser[12,24,25]. In both s=5.0,sD=5.0, while
g=0.05, for the forward system, andg=1.0 for the latter. A
very detailed study of the temporal evolution of these type of

lasers can be found in Ref.[13]. In particular, two main
regimes can be seen depending on the value ofg=gi /g'. If
this ratio is close to zero, the intensity can display a self-
pulsing regime for high enough values of pumping, whereas
for values ofg close to unity, no train of pulses appear and
the dynamics consists of regular oscillations for not very
high pump values.

We have seen also some differences in the evolution of
the pattern for these two systems. Let us start analyzing the
case withg=1 for pump values close to the first threshold
where the critical traveling wave is the only solution appear-
ing in the homogeneous broadening casessD=0d. For an
inhomogeneous spectral profile withsD=5.0, the critical
traveling wavesk=ÎD /ad appears whenr / r th.1.0 (see first
row in Fig. 4). But for pumpings a little bit higher(even just
1.1 times the pump threshold), the system develops different
domains of traveling waves separated by defects, which
causes the appearance of two rows of zeros in the intensity
pattern(see second row in Fig. 4). So, we have found again
that the inhomogeneous broadening leads to a more complex

FIG. 3. Instantaneous intensity field(first col-
umn), phase field(second column), and power
spectrum(third column) for different values of
the inhomogeneous linewidthsD : sD=1 (first
row), sD=2.0 (second row), sD=3 (third row),
andsD=3.5 (fourth row). The rest of parameters
are s=0.5, g=0.2, D=1.0, a=5310−4, and
r / r th=1.7. The phase takes values from −p to p
in all the figures. All the magnitudes are
dimensionless.
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behavior in comparison to the homogeneous broadening
case.

We are also interested in the spatio-temporal behavior of
the SMIB laser for further pump values. An increase in the
pumping tor .2r th reveals the presence of rolls in the inten-
sity pattern, due to the contribution of more waves. This is
shown in the first row of Fig. 5. This result agrees with the
stability analysis which shows a faster growing for new trav-
eling waves with wave vectors close to the double of the
critical one. For comparison purpose, we also present in this
figure (second row) the result with the homogeneous broad-
ening which shows a very complex pattern forming by sev-
eral defects. Then, at higher pump values we have found how
the SMIB laser, through the introduction of new atom pack-
ets under the gain profile, develops a more ordered pattern
than the SMHB laser.

Let us study the case withg=0.05. In this case, the pat-
tern follows a different evolution than the previous one. For
pumpings very close to the threshold value the system main-
tains the transversal critical wave. This simple spatial con-
figuration disappears for a pump value close to 1.3 times the
threshold, as it can be seen in the first row in Fig. 6. For this
pumping the spatial intensity profile presents rolls due to the
contribution of two waves, with wave vectors close to the
critical one and to the double of its value. In the homoge-
neous broadening case, the critical traveling wave also dis-
appears for the same pumpingsr .1.3r thd. The correspond-
ing pattern is shown in the second row in Fig. 6. So, for the
SMIB He-Xe lasersg=0.05d, the bifurcation to more com-
plex patterns takes place for the same pump value above
threshold as in the SMHB laser with the same parameters.
Note that the inhomogeneous broadening leads to a more

FIG. 4. Instantaneous intensity field(first col-
umn), phase field(second column), and power
spectrum(third column) for different values of
pumping: r / r th=1.0 (first row), and r / r th=1.1
(last row). The rest of parameters ares=5, g
=1, D=1.0, a=5310−4, andsD=5. The param-
eters correspond to the FIR laser. All the magni-
tudes are dimensionless.

FIG. 5. Instantaneous intensity field(first col-
umn), phase field(second column), and power
spectrum(third column) for r / r th=2. The first
row corresponds to the FIR laser(see parameters
in Fig. 4). The second row is the homogeneous
broadening casessD=0d for the same parameters.
All the magnitudes are dimensionless.
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regular spatial structure—forming by two waves—than the
homogenous broadening. This trend also occurs for higher
pump values as is shown in Fig. 7.

These results may suggest a stabilization in the number of
the traveling waves taking part in the pattern for the inhomo-
geneous broadening case, even though it seems that would
be easier for the system to generate new structures with dif-
ferent sizes, due to the lesser difference in the threshold to
grow for the new waves with different wave vectors than the
critical one.

C. Effect of the laser aperture on the dynamics

The dynamics of large-aspect-ratio lasers are influenced
by bulk parameters and non-linearities of the medium, as it is
mentioned in the Introduction. This influence changes not
only the spatial profile of the output intensity but also the
temporal behavior of both global and local intensity in com-

parison to the spatio-temporal behavior in small-aspect-ratio
lasers. We have studied how this transition takes place for a
case where it was experimentally found, for small-aspect-
ratio systems, a self-pulsing regime[9]. Then, we used the
parameters of the He-Xe laser of Ref.[9]. In this case, the
inhomogeneous linewidth equalssD=3.72, s=4.67, andg
=0.183. The comparison of our numerical simulations with
these experimental results can also be used to test the model
based on 5 atom packets with different resonant frequencies.
The diffraction parametera has been changed from the value
used in previous sectionssa=5310−4d to a value of 0.4. This
last value ofa corresponds with an estimate made for the
small-aspect-ratio laser used in the mentioned reference(Ref.
[9]). Figure 8 shows the temporal behavior of global inten-
sity (left column), local intensity(central column), and also
the pattern intensity(right column) for different laser aper-
tures, i.e., different values ofa. In this figure, in order to
compare in the same scale the numerical patterns obtained

FIG. 6. Instantaneous intensity field(first col-
umn), phase field(second column), and power
spectrum(third column) for r / r th=1.3. The rest
of parameters ares=5, g=0.05, D=1.0, a=5
310−4, andsD=5. The parameters correspond to
the He-Xe laser(first row). The second row is the
homogeneous broadening casessD=0d for the
same parameters. All the magnitudes are
dimensionless.

FIG. 7. Instantaneous intensity field(first col-
umn), phase field(second column), and power
spectrum(third column) for r / r th=2. The first
row corresponds to the He-Xe laser(see param-
eters in Fig. 6). The second row is the homoge-
neous broadening casessD=0d for the same pa-
rameters. All the magnitudes are dimensionless.
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for the different sizesb, we must multiply the size shown in
the figure by the scale factorb corresponding to each one.
For a=0.4, that is, the experimental situation of Ref.[9], the
results of our simulations are shown in the first row in Fig. 8.
In agreement with the experiments, a self-pulsing regime is
obtained and the global and local intensity follow the same
behavior. We have compared the power spectrum obtained
with those experimentally observed in Ref.[9]. For a similar
position above thresholdsr / r th,3d, both spectra show the
same frequency for the main peak(20 MHz approx.). Thus,
the model based on 5 different resonant frequencies can lead
to results not only qualitatively but quantitatively accurate.
In this situation, the intensity pattern consists of a true ho-
mogenous profile which corresponds to the homogeneous so-
lution. The system chose this solution because any transverse
wave is inhibited by the smallness of the physical transverse
window. So this limit matches with the plane-wave approxi-
mation. If we reduce the diffraction parametera, or in other
words, if we increase the laser apertureb, the self-pulsing
regime disappears. The second row shows the case where
a=0.04. Now, the global intensity shows a very different
behavior from the local intensity: the global intensity shows
a constant contribution with a small irregular oscillation,
whereas the local intensity displays a very much more com-
plex behavior. However, the power spectrum of the local
intensity still shows a peak placed close to 20 MHz which
can be seen as a remnant of the self-pulsing behavior. The

pattern presents some structures which become smaller as the
diffraction parameter reduces its value. Finally, in the third
row, a=5310−4 is used. The local intensity is much more
disordered, and the orderly self-pulsing contribution present
in the previous cases is now buried under the wide global
power spectrum. We must point out that this result indicates
that the self-pulsing regime is not present in the local inten-
sity which means that the disappearance of the self-pulsing is
not caused by an unlocked dephasing between the different
contributions of the pixels in which the transversal plane is
divided. There is still the possibility that the increase of the
laser aperture changed the region of pumping where the self-
pulsing regime is found. But the different tests we have made
to localize this region have failed, which makes this possi-
bility improbable. The temporal features found at larger laser
apertures indicate that the transverse effects are playing an
important role on the dynamics. In fact, a very complex in-
tensity pattern can be seen as the laser aperture increases.

VI. CONCLUSIONS

The transverse pattern of a SMIB laser with large-aspect-
ratio has been analyzed in the first laser threshold. Analytical
expressions for this threshold and for the stationary solutions
are given using a Lorentzian spectral distribution. These ex-
pressions show how the presence of an inhomogeneous
broadening in the gain profile not only increases the value of

FIG. 8. Temporal evolution of global intensity(left column), local intensity(central column) and transverse pattern intensity(right
column) for different values of diffraction parametera. First row correspond toa=0.4, second row toa=0.04, and last row toa=5
310−4. The parameters correspond to the He-Xe laser used in Ref.[9]. All the magnitudes are dimensionless.
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the pump necessary for the beginning of the laser emission,
but also relaxes the selection of a wave vector. It also
changes the stability of the stationary solutions, making them
unstable for the whole planesk,rd. But in spite of this, it
does not mean that the transverse critical wave does not ap-
pear as it is shown in the simulations.

The SMIB laser is usually studied by the integro-
differential Maxwell-Bloch equations, which makes the sys-
tem infinite dimensional. Adding the spatial degrees of free-
dom to an accurate discretization of the gain distribution
would make the system untreatable. For that reason, a model
with only five atom packets with different resonant frequen-
cies has been tested analyzing the stability of the stationary
solution of the system. This type of approximation—based
on a few discrete groups of atoms—has been already used in
the study of the temporal dynamics of SMIB lasers in the
plane-wave approximation, reproducing the behavior of the
system even quantitatively in some cases. In our case(large-
aspect-ratio lasers, and for the inhomogeneous linewidths
studied), it can be seen that this simple model reproduces
qualitatively the behavior of the maximum eigenvalue with
the wave vector of the perturbation added to the stationary
solution. Thus, we have developed simulations using this
simple model which is expected to reproduce the spatio-
temporal dynamics in the large-aspect-ratio SMIB lasers.

The transverse pattern of the system has been studied with
this model for both good and bad cavity configurations. The
good cavity configuration shows the presence of the critical
transverse wave for small values of pumping independently
of the value of the inhomogeneous width(up to a value of
five times the homogeneous linewidth). But for a greater
value of the pump, increasing this width leads to the appear-
ance of new contributions in the power spectrum of the
transversal field distribution. For instance, puzzles patterns
appear for a width just 3.5 times the width of an homoge-
neous atom packet. For this pump value and in the absence
of the inhomogeneous broadening the pattern shows the criti-
cal traveling wave. Thus, even a small inhomogeneous
broadening of the spectral profile can give a very different
spatial distribution of the intensity in comparison to the ho-
mogeneous broadening case.

For a bad cavity configuration the study has been focused
on two systems widely analyzed in the plane-wave approxi-

mation, FIR lasers and He-Xe lasers. The simulations done
for the parameters corresponding to these two systems show
some differences in the laser pattern, mainly close to thresh-
old. For the FIR laser, the transition from the pattern selected
just at the first laser threshold(the critical traveling wave) to
a more complex pattern occurs for a pump value very close
to the threshold one. So, the inhomogeneous broadening
leads to a more complex behavior close to threshold in com-
parison to the homogeneous broadening case. This phenom-
enon does not appear in the He-Xe laser, where the bifurca-
tion to a more complex pattern takes place for a higher pump
value, being the same as happens in the SMHB laser with the
same parameters. At higher pumpings(well above thresh-
old), a similar pattern is obtained at both types of SMIB laser
analyzed. This laser pattern is formed by some traveling
waves. As a consequence of this, the intensity develops a roll
pattern. This trend has been compared with the behavior of
the SMHB laser for the same set of parameters, showing a
much more complicated pattern for this last case in the same
range of pumping. Thus, it seems that even the presence of
an inhomogeneous broadening relaxes the difference be-
tween the threshold of different waves, the system stabilizes
the number of components that participate in the transverse
profile for pumpings not very far from the threshold. Only a
small number of different sizes is present in the pattern.

Finally, we have predicted the influence of the transverse
effects in a He-Xe laser, on the self-pulsing behavior. We
found that a wider aperture destroys the self-pulsing regime
and tends to favor smaller structures and a much more com-
plex spatiotemporal dynamics. The transition to this complex
behavior occurs smoothly, and despite the irregular shape of
the temporal evolution of the local intensity, for intermediate
values of the diffraction coefficienta, the spectra of local
irregular evolution still shows the characteristic frequency of
self-pulsing dynamics. It is worth mentioning that the fre-
quency of the self-pulsing regime obtained through the sim-
plified model used in this work agrees with the experimen-
tally observed frequency.
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