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We examine the possibility of storing and retrieving a single photon using electromagnetically induced
transparency. We consider the theory of a proof-of-principle two-photon interference experiment, in which an
atomic vapor cell is placed in one arm of a two-photon interferometer. Since the two-photon state is entangled,
we can examine the degree to which entanglement survives. We show that while the experiment might be
difficult, it should be possible to perform. We also show that the two-photon interference pattern has oscillatory
behavior.
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I. INTRODUCTION

It is well known that processes linear in the electromag-
netic field have propagation properties that are independent
of the strength of the field. This is part of the definition of
linearity. In the quantum mechanical case, this is understood
because the coupling between the electromagnetic field and
matter is determined by the modes of the electromagnetic
field independent of the state of the field—that is, indepen-
dent of how the modes are populated. Consequently, the
question of whether an experiment can be realized at the
single-photon level often reduces to a detailed analysis of the
experiment. An example of this is the question of whether it
is possible to coherently store and retrieve light at the single-
photon level. In this paper, we analyze this question by
studying two-photon interference in which an atomic vapor
cell is placed in one arm of the interferometer and the cell
operated under the conditions of electromagnetically induced
transparency(EIT) [1–3].

The essence of EIT is to create destructive interference of
the transitions for a three-level system in order to control the
optical responses of the system. Harriset al. [4] first sug-
gested how EIT can be used to slow the speed of light sig-
nificantly compared with the vacuum case. Early experi-
ments[5–8] on slow light have demonstrated that the group
velocity vg can be reduced to several meters per second. The
results reported in these experiments are based on the fact
that EIT not only makes absorption zero at the resonant situ-
ation but also leads to a rapidly changing dispersion profile.
The condition for slow light propagation leads to photon
switching at an energy cost of one photon per event[9] and
to efficient nonlinear processes at energies of a few photons
per atomic cross section[10].

Theoretically there are two ways to implement EIT. One
way is adiabatic EIT[1] in which both the probe and cou-
pling resonant lasers are adiabatically applied. After the sys-
tem evolves into a steady state, EIT occurs for arbitrary in-
tensities of the probe and coupling lasers. The other way is
the transient-state EIT[3], where resonant probe and cou-
pling lasers are simultaneously applied. EIT occurs only

when the intensity of the probe laser is much weaker than
that of the coupling one.

In EIT the system is driven by two fields called the cou-
pling and probe; see Fig. 1 for notation. Most of the early
theory and experiments of EIT took both coupling and probe
lasers as classical external fields; see, however,[11]. A dis-
advantage of this approach is that it is hard to deal with
atom-photon and photon-photon quantum entanglement
which is of importance not only because of the interest of
fundamental physics, but also for their potential applications
to quantum computation and quantum communication[12].
Recently a number of papers have treated the probe laser
quantum mechanically[13,14].

In this paper we will take as the probe source a photon
produced using spontaneous parametric downconversion
(SPDC) [16,17]. In this nonlinear optical process a high-
frequency photon is annihilated and two lower-frequency
photons, conventionally referred to as the signal and idler,
are generated. The pair of photons are entangled in frequency
and wave number. The correlations of the entangled two-
photon system can be measured by means of coincidence
counting detection. The purpose of the present paper is to
study the optical properties of a transient-state EIT system
interacting with one quantized field and investigate the re-
sponse of the EIT medium to the nonclassical light field. We
determine the two-photon interference in which one of the
photons is stored and released. We want to examine whether
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FIG. 1. L-type atomic configuration of EIT. The strong-coupling
field with frequencyvc (Rabi frequencyVc) resonantly drives the
statesubl→ ucl and the weak-probe field with frequencyvp (Rabi
frequencyVp) is applied to the statesual→ ucl with a small fre-
quency detuningD, respectively.gc andgb are decay rates of states
ucl and ubl.
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the two-photon entangled state can be preserved in the pro-
cess. There is an inherent mismatch of four orders of mag-
nitude between the spectral bandwidth of SPDC and very
narrow bandwidth of EIT; however, we shall see that it still
may be possible to perform a proof of principle experiment.

This paper is organized as follows. In Sec. II, we discuss
the quantum mechanical description of the system Hamil-
tonian. The equation of motion for the quantum probe field is
given. In Sec. III, we investigate the optical properties of the
EIT system related to the proposed experiment. The two-
photon interference experiment of the correlated photon pairs
generated by SPDC will be discussed when the signal photon
is delayed in an EIT system. Finally, we summarize our re-
sults in Sec. IV.

II. EVOLUTION OF THE OPERATOR

To describe the interaction of electromagnetic fields, the
standard method is to start with the Bloch equations for the
atomic density-matrix elements under the adiabatic assump-
tion and moderate intensities of the fields. The equations of
motion of the fields, which are treated as classical fields, are
obtained from Maxwell equations. The detailed discussion
can be found in[14,15].

We consider a three-level atom withL-type configuration
interacting with two electromagnetic fields, which is shown
in Fig. 1. The two lower metastable levelsual and ubl are
coupled to the upper excited levelucl by the probe and cou-
pling fields, with Rabi frequenciesVp andVc, respectively.
The coupling field is taken to be resonantvcb=vc, and the
probe field is detuned byD=vca−vp (see Fig. 1). In the
interaction picture, the Hamiltonian of the system can be
expressed as

Ĥ = "1 0 Vp
* 0

Vp D − igc Vc
*

0 Vc D − igb
2 s1d

in the basishual , ucl , ublj. AssuminguVpu! uVcu, in the steady-

state approximation, the eigenvalue ofĤ associated with EIT
is, to leading order inuVpu2,

z = − "
uVpu2sD − igbd

sD − igcdsD − igbd − uVcu2
, s2d

wherez reduces to zero whenuVpu→0. This is the energy of
the probe transition from the initially prepared atomic state
ual. The polarization of a medium with atomic densityN is
the partial derivative of the interaction Hamiltonian with re-
spect to the amplitude of the electric field—i.e.,

P = − NK ]H

]E*
L = −

Nm*

"
K ]H

]V*
L , s3d

where the second term comes from the definition of the Rabi
frequency andm is the electric dipole matrix element of cor-
responding transition.

In the weak-probe limit, the excited states will have a
very small population and the system evolves adiabatically
so most of atoms are in the initially prepared stateual. Under

this condition, the interaction HamiltonianĤ shown in Eq.
(3) can be replaced by its eigenvalue; therefore,

P = −
Nm*

"
K ]z

]V*
L . s4d

From Eq. (2), one can obtain the polarization of the EIT
medium at the probe frequencyvp,

Ppsvpd =
Numu2

"

sD − igbd
sD − igcdsD − igbd − uVcu2

Ep, s5d

and fromPp=e0xEp, one finds the linear susceptibility,

xsvd =
Numu2

"e0

sD − igbd
sD − igcdsD − igbd − uVcu2

. s6d

This result can be found in[3].
To quantize the probe field, we shall assume that the field

is a quasimonochromatic wave traveling in thez direction:

Êp =Î "vp

2e0VQ
fâpstdeiskpz−vptd + âp

†stde−iskpz−vptdg. s7d

One can introduce the effective Hamiltonian operator which
describes the interaction between the fields and EIT medium:

Ĥeff = −
"vp

2
xâp

†stdâpstd. s8d

The evolution of the annihilation operatorâp is given by

]âp

]t
= − i

vp

2
xfâp

†âp,âpg + F̂ = i
vp

2
xâp + F̂, s9d

where we must include the noise operatorF̂ [3]. Since it will
not contribute to the counting rates, we will drop it. If the
interaction starts att=0, the field at the output of the EIT cell
is given by

âp
soutdstd = e−x9vpt/2eix8vpt/2âp

sinds0d, s10d

where we have writtenx=x8+ ix9 in terms of its real and
imaginary partsx8 andx9, respectively. The imaginary part
of the susceptibility describes the amplitude change, and the
real part of the susceptibility gives the phase shift of the
operator. Usingt=z/c, Eq. (10) can also be written as

âp
soutdszd = Tâp

sinds0d, s11d

where

T = e−x9vpz/2ceix8vpz/2c = e−x9vpt/2eix8vpt/2 s12d

is the transmission coefficient for the vapor.

III. SPDC IN EIT

SPDC has been studied for many years[16–24]. In this
section we shall revisit type-II SPDC, paying particular at-
tention to the passage of the beams through optical devices
and the detection of the photons. We will consider both the
single-photon counting detection and two-photon coinci-
dence counting detection.
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A. Single-photon detection of SPDC in an EIT medium

To fix notation we first discuss the single-photon proper-
ties of the radiation. Consider the experiment illustrated in
Fig. 2: a monochromatic laser beam(pump beam with fre-
quencyvpump) incident on a noncentrosymmetric birefringent
crystal (e.g., BBO) produces pairs of photons. In Fig. 2 the
point detector D detects the signal beam after the EIT me-
dium.

The average single-photon counting rate at detector D
with efficiencyh is given by

Rs = hE
0

T

dtskCuÊs
s−dÊs

s+duCl. s13d

The fieldÊs
s+d is the positive-frequency part of the signal field

evaluated at the positionrWs and the timets and Ês
s−d is its

Hermitian conjugate.uCl is the state of the system at the
output surface of the crystal. GenerallyuCl is a superposition
of the vacuum stateu0l and states with any number of pairs
of photons. Because of the small nonlinearity of the crystal,
the expansion ofuCl in the perturbation theory is limited to
the first two terms,

uCl = u0l + o
kWs,k

W
i

PskWs,kW idâs
†skWsdâi

†skW idu0l, s14d

wherekWs andkW i are the wave vectors of the signal and idler
inside the crystal andâj

† s j =s, id is the creation operator at

the surface of the crystal.PskWs,kW id is the spectral function of
the two-photon state determined from phase matching. The
general form of the spectral function is

PskWs,kW id = FsWs,WidFsnDLdhtrsqWs,qW iddsvs + vi − vpd,

s15d

where

D =
1

vs
−

1

vi
s16d

is the difference of inverse group velocities of the signal and
idler, and the Diracd function arises from the steady-state or
frequency phase-matching condition. The phase-matching
condition in the transverse direction is determined by the
functionhtrsqWs,qW id whereqWs andqW i are the transverse compo-
nents of wave vectors of the signal and idler, respectively.
The longitudinal phase-matching condition givesFsnDld
wherel is the length of the crystal andn=vs−vi. Finally, all
of the slowly varying variables are absorbed intoFsWs,Wid

whereWs andWi are the central frequencies of the signal and
idler.

For simplicity, the following discussions are focused on
the collinear case of degenerate type-II SPDC—i.e., the
propagation alongz axis andWs=Wi =vp/2. In this special
case, the state of the system takes the form of[17]

uCl =E dvsdviFsnDlddsvs + vi − vpdâs
†âi

†u0l, s17d

with the phase matching function

FsnDld =
1 − einDL

inDl
. s18d

Note here we ignore all of constants and slowly varying vari-
ables in Eq.(17).

For the cw pump case considered here the single-photon
counting rate is constant and is given by

Rs = hE dnuFsnDldTu2 = hE dnSsnd, s19d

whereT is the transmission coefficient[Eq. (12)],

Ssnd = S0sndex9vpL/vg, s20d

and the unfiltered spectral function is

S0snd = sinc2SnDl

2
D . s21d

The comparison between these two cases is illustrated in Fig.
3. Note here that there are two frequency differences: one is
coming from the nonperfect phase-matching condition of

FIG. 2. Single-photon detection with EIT medium.vac is the
transition frequency of the medium between statesual and ucl. Vc

represents the coupling field.l is the length of the crystal.

FIG. 3. (a) Spectrum of single-photon counts in degenerate
type-II SPDC without an EIT medium.(b) Spectrum of single-
photon counts in degenerate type-II SPDC with an EIT medium.
Here the central frequencyWs of the signal coinciding with the
transition ratevac is assumed—i.e.,Ws=vac.
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SPDC,n, and the other is from frequency detuning of the
signal field in the EIT medium,D=Ws+n−vac. In Fig. 3,
S0snd and Ssnd are plotted. Note the different scales, from
which we see that the dominate effect is the EIT absorption
profile. The two sharp “dips” are the signature of EIT phe-
nomena and correspond to two absorption peaks of the EIT
medium. The interval between those two dips is proportional
to the bandwidth of transparency window. If the central fre-
quency of the signal beam does not coincide with the atomic
transition rate,WsÞvac, the spectrum distribution becomes
asymmetric and the central peak will shift to left or right,
which is determined by the larger one betweenWs andvac.
In order to prevent the bulk of the signal photons from ob-
scuring the EIT signal it would be necessary to filter the
beam using a narrow filter at the input of the cell.

B. Two-photon interference of SPDC in an EIT medium

In order to measure the two-photon correlation let us con-
sider the simplified experiment shown in Fig. 4[19]. The
entangled signal and idler photon pair emitted in the SPDC
process is mixed by a 50-50 beam splitter(BS) and then
recorded by photodetectors D1 and D2 for coincidence. In
the idler channel, a time-delay apparatussdtd is put to bal-
ance the signal and idler path lengths.

The two-photon coincidence counting rate is defined as
[16,17]

Rcc = h21

T
E

0

T

dt1E
0

T

dt2kCuÊ1
s−dÊ2

s−dÊ2
s+dÊ1

s+duCl

= h21

T
E

0

T

dt1E
0

T

dt2uCst1,t2du2, s22d

where

Cst1,t2d = k0uÊ1
s+dÊ2

s+duCl s23d

is the effective two-photon amplitude. Taking into account
the EIT cell, the two-photon amplitude is

Cst1,t2d =E dnFsnDldTsnde−isWs+ndt1e−isWi−ndt2. s24d

As a comparison, the two-photon amplitude without an EIT
medium is given by

C0st1,t2d =E dnFsnDlde−isWs+ndt1e−isWi−ndt2. s25d

The coincidence counting rate type-II SPDC now can be
evaluated:

Rcc = h2E dnhuFsnDldTsndu2 − RefF * snDldF„sWi − Ws

− ndDl…T * sndTsWi − Ws − nde−isWs−Wi+2nddtgj. s26d

In the following discussions, we concentrate on the de-
generate type-II SPDC; then, the counting rate becomes

Rcc = Reh2E dn sinc2SnDl

2
DfuTsndu2 − T * snd

3Ts− ndeinsDl−2dtdg

= h2E dn sinc2SnDl

2
De−x9vsL/c

3h1 − cosfnsDl − 2dtd − 2fdsndgj, s27d

wherefdsnd=x8WsL /2c, with L the length of the EIT cell, is
the phase delay of a pulse due to the EIT. We have assumed
that the dispersion in the fiber can be ignored. For conven-
tional two-photon interference experiments, removing the
EIT medium in the signal channel, the coincidence counts of
degenerate type-II SPDC

Rcc
s0d = h2E dnUFSnDl

2
DU2

f1 − cosnsDl − 2dtdg. s28d

For simplicity, we assume perfect detection of photodetectors
and ignored other losses—i.e., takingh=1 in the following
discussions.

The comparison of coincidence counting rates between
with the EIT medium and without it is shown in Fig. 5;
again, note the different frequency scales. The quantum co-
herence from SPDC process still exists as is evident from
Fig. 5(b) where we see that in addition to a dip, there is an
oscillation. The dip profile is much narrower than the notch
shown in Fig. 5(a) with no EIT cell. Recall that the center of
the notch for the conventional coincidence counts is deter-
mined byDl /2 and its width is determined by the quantity
Dl [Eq. (28)]. In Fig. 5(b), the dip center is displaced from
Dl /2 by the time delaytd caused by the EIT effect. The
oscillations can be understood as follows. For the calculation
of the figure we chose the special case that the center fre-
quency of the signal beam coincides with the atomic transi-
tion rate—i.e.,Ws=vca. The transmission peak has a width
of the Dvtr and is centered onn=0. If DvtrsDl −2fd8−2dtd
.1, oscillations can occur, while forDvtrsDl −2fd8−2dtd
,1, wherefd8=dfd/dn, they will disappear. For the param-
eters used here, the width of transparency window isDvtr
=5.5273109 Hz, the group velocity of single photons in the
EIT medium isvg=1.0643107 m/s, and the corresponding
time delay istd=9.069310−9 s, so ifdt is negative, we can
get oscillations in the counting rate. In addition, because the
transparency bandwidth of EIT is much narrower than the
bandwidth of SPDC, the coincidence counting rate with an

FIG. 4. Two-photon coincidence counting detection with EIT
medium. A birefringent crystal(BBO) converts the pump beam into
a pair of downconverted beams. BS is a 50-50 beam splitter, D1 and
D2 are photodetectors, and CC is the coincidence counter.
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EIT medium[Fig. 5(b)] is much lower than the conventional
case. For the parameters given above, ignoring losses, the
coincidence counts are around one photon per second, which
is barely doable in the laboratory.

In Fig. 5(b) the dip center coincides with the time delaytd
because of the EIT-dominant effect. If we do not use the
resonant condition for the probeWs=vca, the visibility of
coincidence counts is lowered and meanwhile the oscilla-
tions are modulated by the frequency mismatching(see Fig.
6). The visibility can be enhanced or decreased depending on
the sign and magnitude of that frequency mismatching.

IV. CONCLUSION

In this paper, the relation between the input and output
field operators with an EIT medium is derived. Based on this
relationship, the nonclassical light(SPDC) storage is studied.
We focused on the discussions about single-photon counts
and two-photon coincidence counts of degenerate type-II
SPDC with an EIT medium in slow light case. We find that
the properties of SPDC photons can survive after passing the
EIT medium. Though the experiment may be hard to imple-

ment, it is doable depending on the choice of experimental
parameters. The results we have obtained are corresponding
to the assumption that the coupling field is not a function of
time. However, considering the low efficiency of spontane-
ous parametric downconversion and the difficulty of coinci-
dence counting measurements, turning the coupling field on
and off is not suitable as in the conventional light storage
experiments[25], which is problematic in the current case
because of the not-well-defined arrival time of SPDC pho-
tons. In addition, since EIT cuts out so many frequencies of
SPDC photons, two-photon coincidence counting rates are
very small, and it becomes a problem to keep the lasers
stable for a long enough time. Turning on and off the cou-
pling field will also increase the difficulty of adjusting the
corresponding time-delay apparatus in the idler channel.
However, to implement light storage of SPDC, one can
choose the scheme of using two spatially separated coupling
fields illuminating a cloud of moving atoms, as suggested
recently by Juzeliunaset al. [26].
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