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By using the time average of amplitude products we are able to identify changes in the dynamical complex-
ity and the spatial coherence of a multimode laser. We find that there are cases in which as the pump increases,
the dynamical complexity decreases and the spatial coherence improves. In some limiting cases the complexity
is reduced to zero and the beam is completely coherent spatially. We show that these phenomena are caused by
phase synchronization of the mode amplitudes and that they can be observed using slow detectors.
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I. INTRODUCTION

Multimode laser dynamics is the result of a complex in-
terplay between the cavity modes, whose nature is fixed
solely by the optical cavity and its symmetries, and the in-
teraction with the active medium. It is possible to study in
detail the case of few-mode dynamics or modes with some
degeneracies(see, for example,[1] for a review of the two-
mode case or[2] for a study of the antiphase dynamics ofN
identical modes). However, when the number of modes in-
creases analytical treatments become scarce and one is
forced to revert to average methods.

In a recent paper[3] we have discussed in detail the de-
ductions on the nature of multimode laser dynamics that can
be inferred by the observation of the symmetries of average
intensity patterns. Average intensity patterns are the aspect of
laser dynamics that can be most easily measured as by defi-
nition they require only slow detectors. Here we focus on
techniques to study the nature of multimode laser dynamics
that are based on an appropriate entropy introduced in[4]
and developed here in the context of multimode laser dynam-
ics. These are more powerful and give a deeper insight than
average intensity patterns, but also require more experimen-
tal effort in order to be measured. The most startling result of
the entropy analysis is that the complexity of the laser dy-
namics is not necessarily a monotonic function of the pump
power: it is quite possible for the complexity first to increase
and then to decrease as a function of the pump power. From
a practical point of view, the key point is that the spatial
coherence of the laser beam improves when its complexity
decreases. This is the situation corresponding to the regular
patterns of[5,6,7], but also of irregular nonsymmetric pat-
terns that do not fit in the classification scheme devised in
[5]. Moreover, this behavior is very similar to what happens
when only two cavity modes are active[1]: the solution with
lowest threshold is the single-mode solution(low complex-
ity); this loses stability to a periodic solution that involves
both cavity modes(high complexity), which is replaced, as
the pump is increased further, by a stationary mode-locked
solution (low complexity).

The structure of this paper is as follows: in the next sec-
tion we introduce the biorthogonal decomposition[8] and

use it to define a statistical entropy that we use in Sec. III to
study the dynamics of the multimode laser whose model was
developed in Ref.[3].

II. THE BIORTHOGONAL DECOMPOSITION

A. Introduction

Roughly, the biorthogonal decomposition[4,8–10] repre-
sents a given space-time function(in the case of this paper
the amplitude of the electric field in the laser cavity) in terms
of independent functions of space and time only. In other
words, it identifies the linearly independent components in
spaceand in time that underly a given signal.

Here we summarize the main ideas of the biorthogonal
decomposition using a notation suitable for complex fields.
Let X#Rn andT,R andHsXd andHsTd are Hilbert spaces
on X andT, respectively, each endowed with an inner prod-
uct, s· , ·dX,T, respectively. Given a functionusx ,tdPHsXTd,
we define the operatorU from HsXd to HsTd as

∀ w P HsXd, sUwdstd = su,wdX ; E
X

usx,tdwsxddx.

s1d

The adjoint ofU is

∀ c P HsTd, sU * cdsxd = sū,cdT ; E
T

usx,tdcstddt.

s2d

SinceU acts from one Hilbert space to another one the equa-
tion Uw=lc is insufficient to determine the eigenvectors of
U. They are given by the simultaneous equations

Uw = lc, U * c = lw, s3d

or, equivalently, in terms of the Hermitian operatorV acting
on the spaceHsXd % HsTd,

VSw

c
D = S0 U*

U 0
DSw

c
D = lSw

c
D . s4d
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The eigenvectorswsxd andcstd are calledtoposandchronos,
respectively. They form sets of orthogonal functionswn in
HsXd ,cn in HsTd, and swn,cndT in HsXd % HsTd, and thus
identify the linearly independent components of the space-
time functionusx ,td. If U is a compact operator then there
are countably many topos and chronos and we can decom-
pose the functionusx ,td as

usx,td = o
n

lnwnsxdc̄nstd, s5d

with l1ùl2ù ¯ .0. This expression is called the bior-
thogonal decomposition of the functionusx ,td.

The orthonormality of thec̄nstd means that the average
intensity pattern is a linear superposition of the intensities of
the topos,

kuuu2lt0
= o

n

ln
2uwnsxdu2, s6d

wherek·lt0
;s· , ·dT/t0 indicates the average in time over the

length t0 of the intervalT,R. By suitably normalizing the
topos so thatswn,wmdX=dnm we can see from Eq.(6) that the
coefficientsln

2 are a measure of how much of the “energy” of
the functionusx ,td is accounted for by the pairhwnsxd ,cnstdj.
We can therefore use the eigenvalues of the decomposition
(5) to define the entropy[4]:

H = − o
n

pn log pn, s7d

wherepn=ln
2/oili

2 is the normalized eigenvalue. The value
of the entropy is an indication of the spreading of the energy
over the topos. Its maximum value isH=logsMd, with M the
number of topos with eigenvalue different from zero, and
corresponds to equipartition of energy overM topos. Its
minimum value isH=0, when only one eigenvalue is differ-
ent from zero and all the energy is concentrated in a single
topos. Equation(7) can be written in operator form as

H = − TrF U
TrsUd

logS U
TrsUdDG , s8d

whereU;U* U is the two-point spatial correlation operator.
This shows that the entropy defined by Eq.(7) is formally a
von Neumann–type entropy[11] where the operatorU /TrsUd
plays the role of the density matrix. The spectrum ofU andH
clearly indicate how many independent “coherent” structures
there are and how the energy is distributed over these struc-
tures. For lasers, this is related to the spatial coherence of the
beam. For instance, forH=0 the dynamics of the laser may
be chaotic, but the beam is spatially coherent. In general,
whenH is higher, the spatial coherence of the beam is lower.

Moreover, note thatV, U, andU* ;UU* have the sym-
metry of their kernels. Therefore, as the control parameters
are changed, the symmetry and the eigenvalue spectra of
these operators are expected to change. This is the most use-
ful aspect of this technique, in that it allows us to detect
bifurcations of the dynamics and of the spatial and temporal
correlations of the system through the changes of value and
degeneracy of the eigenvalues of these operators.

B. The biorthogonal decomposition and laser dynamics

We consider the following model for a two-level ring la-
ser [3]:

] F

] t
= LF + P, s9d

] P

] t
= − P + xF + FN, s10d

] N

] t
= − gFN +

1

2
sFP̄ + F̄PdG , s11d

whereL is a linear spatial propagation operator that depends
on the cavity geometry through itsABCD matrices[12], F
andP are the slowly varying amplitudes of the electric field
and polarization, respectively, whileN is the population in-
version.g is the ratio between the decay times of the polar-
ization and of the population inversion andx is the pump
parameter. This model has been analyzed in detail in[3]
where it has been found in good agreement with experimen-
tal results. Its main strengths are that it is possible to include
hard apertures in the modeling of the cavity and that we can
study both class C and class B lasers for high pump values
without approximations. We consider here regimes in which
there is a numberM of cavity modes above the lasing thresh-
old. Therefore, for any given value oft andx, F is contained
in a finite-dimensional subspaceHFsXd,HsXd and HFsTd
,HsTd, respectively. In these circumstances it becomes very
convenient to use the modal decomposition

Fsx,td = o
k=1

M

f̄kstdAksxd, s12d

where the cavity modesAksxd are the eigenfunctions of the

linear operatorL and f̄ kstd are their amplitudes.
One of the key results of[3] is that the time average of the

products of the amplitudes of the cavity modes is not always
negligible. In general one has

kuFu2lt0
= o

j ,k=1

M

kf j f̄ klt0
ĀjsxdAksxd, s13d

where the lengtht0 of the averaging intervalT,R is much
longer than the natural time scale of the laser. In[5,6] it was
found that some regular patterns can be very well approxi-
mated by the superposition of the intensity of the cavity
modes, i.e., they are consistent with the hypothesis that in

Eq. (13) kf j f̄ klt0
=d jkCk, wherehCkj are normalization factors.

However, in Ref.[3] it was shown that in general the average
amplitude products are not zero and that they have macro-
scopic effects, in the sense that they may alter the symmetry
of the average intensity patterns. Here we show that they
give rise to spatiotemporal coherent structures, the topos and
chronos of the laser dynamics, and that, ultimately, they may
considerably reduce the complexity of the laser dynamics at
high pump powers.
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Using the notation of Sec. II A we identify the(smooth)
function usx ,td with the electric field amplitudeFsx ,td, the
Hilbert spacesHsXd and HsTd with L2sR2d and L2sf0,t0gd,
respectively. The topos and chronos of the laser dynamics are
given by solving the eigenvalue problem(3). It is also pos-
sible to compute the topos as the eigenfunctions of the two-
point spatial correlation operatorU;U* U:

Uw ; U * Uw =E
T

Fsx,tdE
X

F̄sx8,tdwsx8ddx8dt = l2w.

s14d

The chronos must then be obtained by projecting the electric
field F on the topos.1 If one uses this procedure with topos
obtained for a given set of control parameter values to an-
other set, the temporal functions obtained will not be, in
general, orthogonal in time. We will use this property later to
discuss the nature of the bifurcations of the system.

C. Relation between topos and the cavity modes

In order to apply the general theory of the previous sec-
tions to a specific problem, we need to find the appropriate
basis to represent the operatorsV andU. In laser physics the
cavity modes and their amplitudes form the most natural
bases. The cavity modesAksxd are the eigenfunctions of the
linear evolution operatorL of Eq. (9): LAksxd=mkAksxd. The
cavity modes are orthonormal with respect to the inner prod-
uct in L2sXd either when the round-trip propagation inside
the cavity is the same in both directions of propagation(the
operatorL is then self-adjoint) or when the cavity is stable
and does not contain apertures(in this case the modes ofL
are Gauss-Laguerre or Gauss-Hermite functions even when
L is not self-adjoint). In general, the modes of a cavity with
a hard or soft aperture are not orthonormal. However, the
eigenfunctionsBk of L†, the Hermitian conjugate ofL, are
such thatsBi ,Ajd=di j [12].

By using the basis of the cavity modesAksxd in HFsXd, the

basis of f i in HFsTd, and the basesB̄ksxd and b̄istd, with
sbi , f jdT=d jk, on their dual spaces, we find the matrix
representations2

sBi,UAjdX =E
X

B̄isxdFE
T

Fsx,tdE
X

F̄sx8,tdAjsx8ddx8dtGdx

= Ti,lAl,j =E
T

f̄ istdgjstddt = sf i,gjdT, s15d

sbi,U * f jdT = Ai,lTl,j , s16d

S 0 sBi,U * f jdX

sbi,UAjdT 0
D = S 0 Ti,j

Ai,j 0
D , s17d

where we have used the convention of summation over the
repeated indexl. Ai j is the metric tensor of the space
spanned by the cavity modes, andTi j is the matrix of the
average amplitude products and contains information on the
dynamics of the modes. The expressionḡistd=(Ai ,Fsx ,td)X

for the amplitude of the adjoint modeBi. Neither the func-
tionsbistd nor theBisxd need to be found explicitly. Note that
the matrix in Eq.(15) is the paraxial version of the mutual
intensity matrix defined in Ref.[13]. From Eq.(15), we see
that the entropyH defined by Eq.(7) or Eq. (8) can be
computed using either the eigenvalues of the matrixT times
the metric tensorA, or the eigenvalues of the temporal ma-
trix kf igjlT. On the other hand, Eq.(8) shows that it is pos-
sible to compute the entropy by decomposing the electric
field on any basis. The advantage of the biorthogonal decom-
position is to provide a straightforward interpretation of the
entropy, as the eigenvaluesln

2 measure the energy of the
independentmodeswnsxd.

The relation between topos and chronos and cavity modes

Ak and their amplitudesf̄ k is given by Eq.(17). Ak are topos
and fk are chronos if and only if the two matricesAi j
;sAi ,AjdX andTi j ;sf i , f jdT are both diagonal. As the matrix
Ai,j is not diagonal in cavities with nonorthogonal modes, in
these cavities topos and cavity modes are always different
regardless of the the laser dynamics, except for the trivial
case of single-mode dynamics. For cavities with orthogonal
modes we need to consider the conditionTi j =di jCj, where
the hCjj are normalization constants, on the average ampli-
tude products. This condition is rarely exactly satisfied, but,
from the practical point of view, what matters is how much
this condition is violated for averages over long times. From
Ref. [3], we expect cavity modes and their amplitudes to be
a very good approximation of topos and chronos in some
dynamical regimes of the laser, but not in others.

The most important aspect of these representations is that
they enable us to reduce considerably the amount of infor-
mation necessary to detect bifurcations in the systems. As a
matter of fact, a great amount of information is provided by
the matricesAi j andTi j even when the amplitudesfkstd are
not known precisely. This has important implications from
the viewpoint of experimental implementation of this tech-
nique.

1By taking cn;ln
−1Uw̃n with Uw̃n=ln

2w̃n, one has thatU* cn

=lnw̃n. Therefore Vsw̃n,cndT=lnsw̃n,cndT and the functionscn

found in this way are orthogonal in time for the properties ofV.
2The existence of the functionsbistd, which are linear combina-

tions of the f istd, depends on the linear independence of thef istd.
When the numberm of linearly independentf istd, i.e., the dimen-
sion of the largest invertible submatrix ofT, is less than the number

M of Ai, one can decompose the field asF=oi=1
M f̄ iAi =oi=1

m f̄ iAi8,
where theAi8 arem linear combinations of theAi and are themselves
linearly independent. One can obtain representations ofU ,U*, and
V with non-null submatrices of the lowest possible dimension, the
square of the dimension ofHFsXd and HFsTd, by usingm linearly
independentf i, the correspondingAi8 and their adjoint functions.
Equations(15)–(17) apply with these bases.
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D. The biorthogonal decomposition, entropy,
and synchronization

In Ref. [8] the biorthogonal decomposition is introduced
as a tool to study the changes in symmetry of a dynamical
system as a function of its control parameters, by looking at
the dimensions of the eigenspaces when two or more eigen-
values of the operatorsU and U* cross. While this is also
possible for a laser, here we are interested in a dynamical
regime, multimode dynamics driven by high pump powers,
where the symmetry of the laser is completely broken, i.e.,
the laser solutions do not display any spatial or temporal
symmetry. We want to determine what can produce signifi-
cant variations to the coupling of the topos with the pump, as
well as the spatial coherence and the entropy of the systems.
We show here that these changes are in general not caused
by eigenvalues crossing, but by the appearance at a value
x0+Dx of the pump of off-diagonal terms in the matrixT of
the amplitudes of the topos,wsx8 ;x0d, found at valuex0.
These terms, in turn, are caused by the appearance(or dis-
appearance) of synchronization; we also introduce in the fol-
lowing the tools to detect them.

1. Eigenvalues crossing with null off-diagonal matrix elements

This happens when the energies of twowisx ;x0d change,
but their dynamics are incoherent. As a consequence, the
structure of the topos are the same before and after the ei-
genvalue crossing. As the average coupling with the pump of
the topos is mainly due to its shape, the rate of variation of
their energy as a function of the control parameters is largely
unaffected by the crossing. It is not possible to predict the
effect of this type of transition on the entropy, but in our
simulations this effect is very small.

2. Complete synchronization
of two or more amplitudes

In this case the amplitudes of two or more elements of the
basiswisx ;x0d are proportional. The number of synchronized
elements is given by the difference between the dimension of
the largest invertible minor ofT at x0+Dx and atx0. This
type of synchronization reduces the maximum possible value
of H , log M. The actual value ofH can also be reduced,
depending on the relative position of the eigenvalues ofU.

3. Off-diagonal elements ofT and phase synchronization of
chaotic amplitudes

Consider first the case of two basis elements for which
two off-diagonal elements appear in the matrixT as the con-
trol parameters are changed. The size of the off-diagonal
elements and their effect is significant if the two amplitudes
are synchronized in phase for most of the time, otherwise it
is negligible. The off-diagonal terms increase the separation
of the eigenvalues ofU corresponding to the two coupled
modes.3 This will also result in a variation of the structure of

two basis elements and, therefore, in a change in the rate of
variation of energy versus the pump. This can be detected by
tracking the eigenvalues ofU. Depending on the positions of
these two eigenvalues, the gap between the eigenvalues can
reduce the value of the entropyH defined in Eq.(7).

This result can be generalized to the case ofN uncoupled
basis elements that become coupled to asN+1dth element
[[14], pp. 37–42]. As in the previous case, synchronization
between a basis function and a set of other basis functions
produces a sudden increase in the energy separation between
the lowest and the highest of the corresponding eigenvalues.4

Furthermore, the spatial structure of all the coupled topos
changes. Again, this will show as a variation of the rate of
change of the corresponding eigenvalues. Depending on the
position of the set, the gap in the distribution of eigenvalues
caused by synchronization may reduce the values of the en-
tropy H, as we have observed numerically.

4. Uncorrelated entropy

For the previous two cases we have used exact results
from the theory of Hermitian matrices. More general cou-
plings can be analyzed using Gershgorin’s theorem. This
states that the eigenvalues of an arbitraryn3n matrix aij lie
in the region of the complexz plane consisting ofn disks
having for centers the diagonal matrix elementsaii and for
radii the sum of the moduli of the off-diagonal elements of
the matrix rows,o j=1,jÞi

N uaij u. From Eq.(15), the centers and
the corresponding radii of the Gershgorin disks forU are
given, respectively, by

zk = Tk,lAl,k = sfk,gkdT, s18d

rk = o
jÞk

uTk,lAl,ju = o
jÞk

usfk,gjdTu. s19d

From these equations we can conclude that in the absence of
synchronization between the cavity modes, i.e., ifusfk, f jdTu
!1 when j Þk, the Gershgorin radii are very small: as a
consequence the eigenvalues of the biorthogonal decomposi-
tion are proportional to the intensity of the cavity modes and
the topos can be identified with the cavity modes. Therefore,
we can assess the importance of the average products by
comparingH with the uncorrelated entropy

H0 = − o
n

pn
s0dlogspn

s0dd, s20d

where

3The separation between the eigenvalues ofU is Dl=fsU11

+U22d2+4uU12u2g1/2, where we have ordered thewisx ;P0d so that the
first two are the coupled ones.

4In this case eigenvalues ofU are given byoi=1
N uUi,N+1u2/ sl−li

0d
=l−UN+1,N+1, whereli

0 are the eigenvalues of the submatrix ofU
over the firstN modes. If there aren li

0 belowUN+1,N+1, the order of
the eigenvalues of U is l1,l1

0,l2,l2
0, ¯ ,lm−1,lm

0

and lm+1
0 ,lm+2,lm+2

0 , ¯ ,lN
0 ,lN+1, with lm

0 ,lm+1

,UN+1,N+1 if oi=1
n uUi,N+1u2/ sl−li

0d,oi=n+1
N uUi,N+1u2/ sl−li

0d or
UN+1,N+1,lm+1,lm+1

0 if oi=1
n uUi,N+1u2/ sl−li

0d.oi=n+1
N uUi,N+1u2/ sl

−li
0d.
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pn
s0d =

sfn, fndTsAn,AndX

o
j

sf j, f jdTsAj,AjdX

is the normalized energy of thenth cavity mode.

E. Applications to experiments

The most interesting aspect of this techniques is that it is
not necessary to measure the amplitude and phase of the
electric field, it is enough to determine the matrixT of time
averages of amplitude products. This matrix can be deter-
mined just by average intensity measurements.

For a convenient basis of known functionssjsxd (not nec-
essarily the cavity modes), with amplitudesvistd, we need to
measure the matrixTi j =svi ,v jdT. This can be done by mea-
suring the average intensity of the laser

kuFsx,tdu2lT =
1

TE0

T
uFsx,tdu2dt = o

i,j

M

kviv̄ jlTsisxds̄jsxd.

s21d

Let xm, with m=1,… ,M2, be a set of points in the transverse
plane of the laser and letKij

smd;sisxds̄jsxd. We can rewrite
Eq. (21) as a linear system ofM2 equations for the unknown
average productskviv̄ jlT:

o
i,j

Kij
smdkviv̄ jlt0

= kuFsxm,tdu2lT, m= 1,2,…,M2. s22d

The solution of this system can then be used in Eqs.(14) and
(15) to determine the topos and their corresponding eigen-
values. The functionssi and the pointsxm should be chosen
so that the system(22) is well-conditioned[15]. The number
M of functionssi necessary should be determined through a
least squares procedure from the fitting of the average inten-
sity patterns. Moreover, it may be computationally advanta-
geous to measure the average intensity in more thanM2

points and use a least squares procedure to determine the
average amplitude products.

The information provided by the matricesT andA can be
complemented by the fast Fourier transform(FFT) of the
signal from a few fast detectors placed in points of the beam.
This is particularly useful in case of synchronization. Peaks
of the FFT are caused by the beating of modes with different
frequency. Reduction in the number of peaks indicates syn-
chronization. By measuring the FFT of the beating of the
multimode beam with a single-mode reference beam, one
could detect not only the synchronization of modes, but also
the position of the central frequency of the synchronized
modes.

III. ENTROPY OF MULTIMODE LASER DYNAMICS

We have used the tools described in the previous section
to analyze the multimode dynamics of the laser modeled by
Eqs.(9)–(11). The model and numerical procedure used are
described in[3]. For the purpose of this paper, we have cho-
sen a variety of slightly astigmatic cavities with intracavity
aperture. They were described by two sets ofABCD matri-

ces, one per coordinate axis in the transverse plane: the effect
of the astigmatism is to remove the frequency degeneracy of
the cavity modes belonging to the same family. The choice
of different cavities has allowed us to control the number of
modes that play a role in the dynamics of the laser. For each
cavity configuration we have run two batches of simulations
for two different values ofg ,g=h0.1,0.025j. Each batch
consisted of 100 simulations for 20 different values of the
pump parameterx=1.05, 1.15,…, 2.95, and for five sets of
different initial condition per pump value.

The analysis of some of the simulations is summarized in
Figs. 1–5. For each batch of simulations we have computed
the following.

(1) The average frequency of each cavity mode(top
plot). This has been computed as the ratio between the dif-
ference of the final from the initial phase of each mode and
the integration time. For each value of the pump the frequen-
cies obtained from the five simulations corresponding to dif-
ferent initial conditions are plotted as smooth histograms
[16]. The final result is a contour plot whose coordinates are
the pump and the average frequency: this plot clearly shows
whether synchronization, defined as two or modes evolving
with the same average frequency, takes place. The shading of
the plot is proportional to the energy in the given frequency

FIG. 1. See text. Cavity parameters:Ax=Dx=0.506;
Bx=−0.280;Ay=Dy=0.508; By=−0.280; radius of the intracavity
aperture, three beam waists. Laser parameters:g=0.1; cavity round-
trip time equal to the polarization decay time, 6% losses per round
trip; atom-cavity detuning, 0.05; flat pump; integration time, 16384
round-trips.
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band(inverted gray scale; bright, no energy; dark, most en-
ergy). A similar plot could be obtained from experimentally
measured temporal power spectra.

(2) The entropyH and the uncorrelated entropyH0 (sec-
ond plot). For each value of the pump we have plotted the
average entropy of the five simulations with different initial
conditions. The error bars indicate the rms variation of the
entropies. In each plot we have scaled the entropy with
logsMd, with M the number of modes included in the simu-
lation in order to ensure that the range of the entropy is
between 0 and 1.

(3) The scaled average Gershgorin radiusRG (third plot).
This has been computed by determining the average of the
radii rk given by Eq.(19) and scaling it with the average
distance between the center of the Gershgorin circles, Eq.
(18). This scaled radius indicates whether synchronization is
strong enough to move the eigenvalues of the biorthogonal
decomposition significantly away from the average intensity
of the cavity modes.

(4) The eigenvalues of the biorthogonal decomposition,l
(bottom plot). For each value of the pump we have plotted
the average eigenvalues of the five simulations with different
initial conditions. The error bars indicate the rms variation of
the eigenvalues.

When only few modes are active(Fig. 1) we observe
complete synchronization at high pump power: only one to-
pos has eigenvalue different from zero. The entropy drops to

zero, but not the uncorrelated entropy. When the two entro-
pies are significantly different, the scaled Gershgorin radius
is of the order of unity. This is exactly the same scenario as
the two-mode cavity analyzed in[1]. If the number of modes
is increased(Fig. 2) we observe only partial synchronization,
but the behavior of the entropy is still qualitatively similar to
the previous case: it first increases and then decreases as the
dynamics settles in a smaller number of coherent structures.
At the onset of synchronization there is an abrupt change of
the rate of variation of the eigenvalues with the pump and all
the energy is contained within four topos. From the plot of
the average frequency we see that modes that are frequency
locked have quite close natural frequencies. However, the
natural frequency alone does not explain why some modes
are locked and other not. Moreover, increasingg, i.e., in-
creasing the rate of evolution of the population inversion,
makes it harder for the modes to synchronize and reduces the
decrease in entropy(see Fig. 3). This is also confirmed by
the graphs of the eigenvalues(compare Fig. 2 with Fig. 3).

The situation in Figs. 2 and 3 is somewhat artificial: there
are neighboring families of modes that have not been in-
cluded in the numerical simulation. If we include them, as in
Fig. 4 we see that the situation becomes more complicated:
as the pump parameter is increased modes that are further
away from the center of the gain line become active and the
entropy never decreases, even though it remains smaller than
the uncorrelated entropy. Moreover, the appearance of active
high-energy modes at different frequencies seems to disrupt
the synchronization of the modes in the central family and
only the most energetic topos, i.e., the one with largest ei-

FIG. 2. See text. Cavity parameters:Ax=Dx=0.925;
Bx=0.025; Ay=Dy=0.921; By=0.026; radius of the intracavity ap-
erture, three and half beam waists. Laser parameters: as in Fig. 1
exceptg=0.025; atom-cavity detuning, 0.021; integration time 65
536 round-trips.

FIG. 3. See text. Cavity parameters: As in Fig. 2. Laser param-
eters: as in Fig. 2 exceptg=0.1.
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genvalue, shows any sudden change in slope.
The inclusion of a finite-width pump produces rather sig-

nificant changes in the behavior of the entropy. The case in
Fig. 5 illustrates this case: as in the previous figure there are
two neighboring families of modes that become active as the
pump is increased. However, they are wider than the central
family and have a smaller overlap with the finite width
pump. They therefore do not disrupt the synchronization of
the modes in the central family and the entropy decreases. In
this final case the variation in the rate of change of the largest
eigenvalue at the onset of synchronization is quite remark-
able.

IV. CONCLUSIONS

The biorthogonal decomposition, based on the spatial-
and time-average properties of the dynamics, is a powerful
tool to understand and characterize the seemingly featureless
turbulent dynamics of multimode lasers. In particular, the
study of the structure of the time-average product matrixT in
Sec. II D shows how the interaction between modes as the
pump power is increased can reduce the complexity of the
laser dynamics and enhance its spatial coherence. As we
have shown in Sec. III we expect this to happen under very
realistic assumptions, e.g., that the pump width is finite. This
is a surprising result that goes counter to the “natural expec-
tation” that the dynamics of the laser would become more
complex at higher power.

Even though in this paper we have analyzed the results of
numerical simulations, the biorthogonal decomposition is
also an experimental tool. As the matricesA andT are av-
erages over either space or time, it is possible to measure
them without the use of fast detectors: this is of paramount
importance in optics where the time scales are extremely
short and it opens the possibility to characterize experimen-
tally the spatiotemporal dynamics of, for example, fast semi-
conductor lasers. Moreover, the information contained in the
average matricesA andT can be complemented by the Fou-
rier transform of the signal intensity or of its heterodyne at a
few points, thus obtaining a fairly broad and detailed knowl-
edge of the laser dynamics.

Underlying the results of this paper is the open question
of why some modes synchronize and others do not. Our nu-
merical analysis suggests that the answer has many facets
and the synchronization depends on spatial characteristics of
the modes, e.g., the overlap between modes and pump and
other modes, and on their temporal properties, e.g., their
natural frequency. The answer to this question coupled to the
results of this paper would allow us not only to determine
a posteriorithe complexity of the laser dynamics, but also to
predict its behavior and, ultimately, control it.

FIG. 4. See text. Cavity parameters: as in Fig. 2. Laser param-
eters: as in Fig. 2, but the 72 most resonant modes with smallest
losses were included in these simulations.

FIG. 5. See text. Cavity parameters: as in Fig. 2, except radius
of the intracavity aperture, 5.1 beam waists. Laser parameters: as in
Fig. 1, except atom-cavity detuning −2.72; super-Gaussian pump of
width 7 beam waists; integration time, 30 000 round trips;x
=h1.1,1.2,… ,2.8j; the 56 most resonant modes with smallest
losses were included in this simulation.
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