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By using the time average of amplitude products we are able to identify changes in the dynamical complex-
ity and the spatial coherence of a multimode laser. We find that there are cases in which as the pump increases,
the dynamical complexity decreases and the spatial coherence improves. In some limiting cases the complexity
is reduced to zero and the beam is completely coherent spatially. We show that these phenomena are caused by
phase synchronization of the mode amplitudes and that they can be observed using slow detectors.

DOI: 10.1103/PhysRevA.70.063805 PACS nuniber42.60.Jf, 42.65.Sf, 42.55.Ah, 05.45.Xt

I. INTRODUCTION use it to define a statistical entropy that we use in Sec. Ill to
Multimode laser dynamics is the result of a complex in-study the dynamics of the multimode laser whose model was

terplay between the cavity modes, whose nature is fixedleveloped in Ref{3].
solely by the optical cavity and its symmetries, and the in-

teraction with the active medium. It is possible to study in Il. THE BIORTHOGONAL DECOMPOSITION
detail the case of few-mode dynamics or modes with some
degeneraciegsee, for example,1] for a review of the two- A. Introduction

mode case of2] for a study of the antiphase dynamicsNf
identical modes However, when the number of modes in-
creases analytical treatments become scarce and one
forced to revert to average methods.
In a recent papef3] we have discussed in detail the de-
ductions on the nature of multimode laser dynamics that ca L . .
gpaceand in time that underly a given signal.

be inferred by the observation of the symmetries of averag Here we summarize the main ideas of the biorthogonal
f

intensity patterns. Average intensity patterns are the aspect L composition using a notation suitable for complex fields
laser dynamics that can be most easily measured as by de%-et ch]R” andTCRgandH(X) andH(T) are Hilbertps aces '
nition they require only slow detectors. Here we focus on =" ‘ P

techniques to study the nature of multimode laser dynamicgn X andT, respectlyely, ea_ch endowed. with an inner prod-
that are based on an appropriate entropy introduceg]in ut, (- ’.')XvT’ respectively. Given a functiou(x,t) e H(XT),
and developed here in the context of multimode laser dynam'€ define the operatdy from H(X) to H(T) as
ics. These are more powerful and give a deeper insight than
average intensity patterns, but also require more experimen- [0 ¢ € H(X), (Ug)(t)=(u,@)x= f u(x,t) e(x)dx.
tal effort in order to be measured. The most startling result of X
the entropy analysis is that the complexity of the laser dy- (1)
namics is not necessarily a monotonic function of the pump o )
power: it is quite possible for the complexity first to increaseThe adjoint ofU is
and then to decrease as a function of the pump power. From
a practical point of view, the key point is that the spatial O ¢ e H(T), (U* ¢)(X) =(u_,z/;)TEf u(x,t)y(t)dt.
coherence of the laser beam improves when its complexity T
decreases. This is the situation corresponding to the regular 2)
patterns of[5,6,7, but also of irregular nonsymmetric pat- )
terns that do not fit in the classification scheme devised ibinceU acts from one Hilbert space to another one the equa-
[5]. Moreover, this behavior is very similar to what happenstion Ue=A4 is insufficient to determine the eigenvectors of
when only two cavity modes are actiy#]: the solution with ~ U. They are given by the simultaneous equations
lowest threshold is the single-mode solutidow complex- _ -
ity); this loses stability to a periodic solution that involves Ue=hyg U™ g=he, ®
both cavity modeghigh complexity, which is replaced, as or, equivalently, in terms of the Hermitian operatbicting
the pump is increased further, by a stationary mode-lockedn the spacéd(X) & H(T),
solution (low complexity). .

The structure of this paper is as follows: in the next sec- V(@) _ (0 U )(‘F’) — )\(9">_ ()
tion we introduce the biorthogonal decompositif8] and ] u 0 /\y v

Roughly, the biorthogonal decompositifh,8—1Q repre-
sgnts a given space-time functi¢in the case of this paper
the amplitude of the electric field in the laser cayity terms
of independent functions of space and time only. In other
Hvords, it identifies the linearly independent components in
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The eigenvectorg(x) and (t) are calledoposandchronos B. The biorthogonal decomposition and laser dynamics

respectively. They form sets of orthogonal functiapsin We consider the following model for a two-level ring la-
H(X), ¥, in H(T), and (¢, ¢,)" in H(X)®H(T), and thus ser[3]:
identify the linearly independent components of the space-

time functionu(x,t). If U is a compact operator then there JF —CE+P 9
are countably many topos and chronos and we can decom- it ' 9
pose the functionu(x,t) as
- P
Uu(X,t) = 2 Naen(X) (1), (5) CLETPHXFHEN, (10)
n
with Ay=N,=--->0. This expression is called the bior- N .
thogonal decompos.mon of th_e functiaux, t). IN_ y{N +=(FP+ FP)}, (11)
The orthonormality of the/,(t) means that the average at 2

intensity pattern is a linear superposition of the intensities O(Nhere[, is a linear spatial propagation operator that depends
the topos, on the cavity geometry through i&BCD matrices[12], F
2 2 2 andP are the slowly varying amplitudes of the electric field
{ul >70_§ Malen()[%, ) and polarization, respectively, whilg is the population in-
version.y is the ratio between the decay times of the polar-
where(-); =(-, )1/ 7 indicates the average in time over the jzation and of the population inversion andis the pump
length 7y of the intervalTCR. By suitably normalizing the parameter. This model has been analyzed in detail3in
topos so thate,, ¢m)x=d,m We can see from Eq6) that the  where it has been found in good agreement with experimen-
coefficientshﬁ are a measure of how much of the “energy” of tal results. Its main strengths are that it is possible to include
the functionu(x, t) is accounted for by the pafip,(x), #,(t)}.  hard apertures in the modeling of the cavity and that we can
We can therefore use the eigenvalues of the decompositisstudy both class C and class B lasers for high pump values

(5) to define the entropyA]: without approximations. We consider here regimes in which
there is a numbe of cavity modes above the lasing thresh-
H=~2 p,logp,, (7)  old. Therefore, for any given value bandx, F is contained
n

in a finite-dimensional subspadeg(X) CH(X) and Hg(T)
where pn:)\ﬁ/gi)\? is the normalized eigenvalue. The value C H(T), respectively. In these circumstances it becomes very
of the entropy is an indication of the spreading of the energyonvenient to use the modal decomposition
over the topos. Its maximum valuett=log(M), with M the M
number of topos with eigenvalue different from zero, and _N'1
corresponds to equipartition of energy ouer topos. Its F(X't)_glfk(t)Ak(x)’ (12
minimum value isH=0, when only one eigenvalue is differ-
ent from zero and all the energy is concentrated in a singl&here the cavity modeé,(x) are the eigenfunctions of the
topos. Equatior{7) can be written in operator form as linear operator and fy(t) are their amplitudes.
One of the key results @8] is that the time average of the
, (8) products of the amplitudes of the cavity modes is not always
negligible. In general one has

H=-Tr

ol 7
Tre) 9\ Tr)

wherel/=U* U is the two-point spatial correlation operator. M
This shows that the entropy defined by Ed) is formally a <||:|2>TO= > <fjf_k>TOKj(X)Ak(X)' (13)
von Neumann-type entrofiL1] where the operatdd/ Tr(L/) jk=1
plays the role of the density matrix. The spectruni/andH o ,
clearly indicate how many independent “coherent” structuredvhere the lengthr, of the averaging interval C |t is much
there are and how the energy is distributed over these struf@nger than the natural time scale of the laset3j§] it was
tures. For lasers, this is related to the spatial coherence of tf@und that some regular patterns can be very well approxi-
beam. For instance, fdd=0 the dynamics of the laser may Matéd by the superposition of the intensity of the cavity
be chaotic, but the beam is spatially coherent. In generalnodes, i.e., they are consistent with the hypothesis that in
whenH is higher, the spatial coherence of the beam is lowerkEd. (13) <fjfk>7—0:5jkck, where{C,} are normalization factors.
Moreover, note thaV, U/, andi/* =UU* have the sym- However, in Ref[3] it was shown that in general the average
metry of their kernels. Therefore, as the control parameteramplitude products are not zero and that they have macro-
are changed, the symmetry and the eigenvalue spectra etopic effects, in the sense that they may alter the symmetry
these operators are expected to change. This is the most us#-the average intensity patterns. Here we show that they
ful aspect of this technique, in that it allows us to detectgive rise to spatiotemporal coherent structures, the topos and
bifurcations of the dynamics and of the spatial and temporathronos of the laser dynamics, and that, ultimately, they may
correlations of the system through the changes of value ancbnsiderably reduce the complexity of the laser dynamics at
degeneracy of the eigenvalues of these operators. high pump powers.
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Using the notation of Sec. Il A we identify thesmooth — —
function u(x,t) with the electric field amplitudé&(x,t), the (B, UA)x = f Bi(x)l f F(x,1) f F(x’,t)A;(x’)dx’dt}dx
Hilbert spacesH(X) and H(T) with L,(R2) and L,([0, 7)), X T X
respectively. The topos and chronos of the laser dynamics are —
given by solving the eigenvalue probleg). It is also pos- =Ti) Ay :f fit)g;(H)dt= (fi,gj)r, (15
sible to compute the topos as the eigenfunctions of the two- i
point spatial correlation operatbf=U* U:

Up=U* U(pzf F(x,t)J F(x', D) e(x")dx'dt = A2¢.
T X

(14)

The chronos must then be obtained by projecting the electric

(b, U™ f)r= A7, (16)
0 B, U* f, 0 7
( ® J)X):( "'>, (17)
(bi1UAj)T 0 Ai,j 0
field F on the topoé.lf one uses this procedure with topos
obtained for a given set of control parameter values to an-

other set, the temporal functions obtained will not be, inwhere we have used the convention of summation over the

general, orthogonal in time. We will use this property later torepeateccji bmdti)d' Aii.t IS ths metr;: .tert1rs]or Oft Fhe fstp;‘ace
discuss the nature of the bifurcations of the system. spanned by the cavily modes, a d IS the matrnx ot the
average amplitude products and contains information on the

dynamics of the modes. The expressmt)=(A;,F(X,t))x
C. Relation between topos and the cavity modes for the amplitude of the adjoint mod®,. Neither the func-
_ tionsb;(t) nor theB;(x) need to be found explicitly. Note that
In order to apply the general theory of the previous secthe matrix in Eq.(15) is the paraxial version of the mutual
tions to a specific problem, we need to find the appropriaténtensity matrix defined in Ref13]. From Eq.(15), we see
basis to represent the operatdrsindi/. In laser physics the that the entropyH defined by Eq.(7) or Eq. (8) can be
cavity modes and their amplitudes form the most naturabomputed using either the eigenvalues of the mafttimes
bases. The cavity modes(x) are the eigenfunctions of the the metric tensor, or the eigenvalues of the temporal ma-
linear evolution operato€ of Eq.(9): LA(X) =wAX). The  trix (f,g,)r. On the other hand, Eq8) shows that it is pos-
CaVity modes are orthonormal with rESPECt to the inner prOdsib|e to Compute the entropy by decomposing the electric
uct in Ly(X) either when the round-trip propagation inside field on any basis. The advantage of the biorthogonal decom-
the cavity is the same in both directions of propagatit'e  position is to provide a straightforward interpretation of the
operatorL is then self-adjointor when the cavity is stable entropy, as the eigenvalue\ﬁ measure the energy of the
and does not contain apertur@s this case the modes df independentmodese,(X).
are Gauss-Laguerre or Gauss-Hermite functions even when The relation between topos and chronos and cavity modes

L is not self-adjoint In general, the modes of a cavity with : : S
a hard or soft aperture are not orthonormal. However, thé‘r‘];1 Tf: E:ri'r :hn:grl:éid?ka'rs] dg“c/)?“r;bi}/ Eﬁé(lt?vbAﬁniiiégg?s
ij

eigenfunctionsB, of £, the Hermitian conjugate of, are = (A,A)x andT;; = (f,.T,)1 are both diagonal. As the matrix

By using the basis of the cavity modagx) in He(X), the i, is not diagonal in cavities with nonorthogonal modes, in
y 9 y mo _F these cavities topos and cavity modes are always different
basis of f; in He(T), and the base8,(x) and bi(t), with  regardless of the the laser dynamics, except for the trivial
(i, f)7=6j, on their dual spaces, we find the matrix case of single-mode dynamics. For cavities with orthogonal
representatiorfs modes we need to consider the conditifjr &;C;, where
the {C;} are normalization constants, on the average ampli-
tude products. This condition is rarely exactly satisfied, but,
from the practical point of view, what matters is how much
found in this way are orthogonal in time for the propertiesvof this condition is violate(_j for averages over long t_imes. From
The existence of the functiorts(t), which are linear combina- Ref. [3], we expect c.aV|ty modes and their amplltudgs to be
tions of thef;(t), depends on the linear independence of tige. @ Very good approximation of topos and chronos in some
When the numbem of linearly independent;(t), i.e., the dimen-  dynamical regimes of the laser, but not in others.

sion of the largest invertible submatrix @fis less than the number ~ The most important aspect of these representations is that
M of A, one can decompose the field Eszi’\ilf_iAi:Ein:11f_iAi’: they enable us to reduce considerably the amount of infor-

where theA| arem linear combinations of th&; and are themselves mation necessary to detect bifurcations in the systems. As a

linearly independent. One can obtain representatiorig,af, and ~ Matter of fact, a great amount of information is provided by
V with non-null submatrices of the lowest possible dimension, thethe matrices4;; and 7;; even when the amplitudefg(t) are
square of the dimension ¢:(X) andHg(T), by usingm linearly ~ not known precisely. This has important implications from
independentf;, the corresponding\’ and their adjoint functions. the viewpoint of experimental implementation of this tech-
Equations(15)—17) apply with these bases. nique.

By taking ¢n=\,'U%, with Ug,=\2g,, one has thatu* y,
=\non. Therefore V(op, i) T=N\n(2n, ¥ " and the functionsy,
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D. The biorthogonal decomposition, entropy, two basis elements and, therefore, in a change in the rate of
and synchronization variation of energy versus the pump. This can be detected by

In Ref. [8] the biorthogonal decomposition is introduced tracking the eigenvalues &f. Depending on the positions of
as a tool to study the changes in symmetry of a dynamicaﬁhese two eigenvalues, the gap betlweerj the eigenvalues can
system as a function of its control parameters, by looking aféduce the value of the entropy defined in Eq(7).
the dimensions of the eigenspaces when two or more eigen- | NiS result can be generalized to the casélaincoupled
values of the operators and U* cross. While this is also PasiS elements that become coupled toN& 1)th element
possible for a laser, here we are interested in a dynamical14l, PP. 37-42 As in the previous case, synchronization
regime, multimode dynamics driven by high pump poWers’between a basis fur_mtlon anq a set of other baS|_s functions
where the symmetry of the laser is completely broken, i.e.produces a sudden increase in the energy separation between
the laser solutions do not display any spatial or tempora‘he lowest and the hlghest of the corresponding eigenvalues.
symmetry. We want to determine what can produce Signiﬁ_Furthermore, the spatial structure of all the coupled topos
cant variations to the coupling of the topos with the pump, aghanges. Again, this will show as a variation of the rate of
well as the spatial coherence and the entropy of the systemshange of the corresponding eigenvalues. Depending on the
We show here that these changes are in general not causBgsition of the set, the gap in the distribution of eigenvalues
by eigenvalues crossing, but by the appearance at a valf@used by synchronization may redu<_:e the values of the en-
Yo+Ay of the pump of off-diagonal terms in the matrixof ~ FOPY H, as we have observed numerically.
the amplitudes of the topos(X’;xo), found at valueyg.
These terms, in turn, are caused by the appearércdis- 4. Uncorrelated entropy
appearanc)eof synchronization; we also introduce in the fol- =4, he previous two cases we have used exact results
lowing the tools to detect them. from the theory of Hermitian matrices. More general cou-

) . ) ) ) plings can be analyzed using Gershgorin’s theorem. This

1. Eigenvalues crossing with null off-diagonal matrix elements  ctatas that the eigenvalues of an arbitraryn matrix a; lie

This happens when the energies of t@x: xo) change, in the region of the complex plane consisting oh disks
but their dynamics are incoherent. As a consequence, thaving for centers the diagonal matrix elemeatsand for
structure of the topos are the same before and after the eiadii the sum of the moduli of the off-diagonal elements of
genvalue crossing. As the average coupling with the pump oihe matrix rOWSE?‘:l,j¢i|au|- From Eq.(15), the centers and
the topos is mainly due to its shape, the rate of variation othe corresponding radii of the Gershgorin disks brare
their energy as a function of the control parameters is largelgiven, respectively, by
unaffected by the crossing. It is not possible to predict the
effect of this type of transition on the entropy, but in our 7= T Ak = (Fa 9T (18
simulations this effect is very small.

2. Complete synchronization o= 2 | T Al = 2 [(Fug)i.- (19
of two or more amplitudes j#k j#k

In this case the amplitudes of two or more elements of th
basisei(X; xo) are proportional. The number of synchronized
elements is given by the difference between the dimension of. 4 when j £k, the Gershgorin radii are very small: as a
the Iarfgest |2ver_t|ble_ mln%r orathX°+AX_ and ato. _:;Ih's ,gonseauence the eigenvalues of the biorthogonal decomposi-
tyfpe OI sync r(r)]nlzatmnlre lljces tHe maxmlwumbposs:j € Vg Uion are proportional to the intensity of the cavity modes and
of H, ogM. The actual value oH can also be reduced, ,q topos can be identified with the cavity modes. Therefore,
depending on the relative position of the eigenvalue#.of we can assess the importance of the average products by

comparingH with the uncorrelated entropy

&rom these equations we can conclude that in the absence of
synchronization between the cavity modes, i.el(fif, ;)|

3. Off-diagonal elements off and phase synchronization of
chaotic amplitudes

Consider first the case of two basis elements for which
two off-diagonal elements appear in the matfias the con-
trol parameters are changed. The size of the off-diagongyhere
elements and their effect is significant if the two amplitudes
are synchronized in phase for most of the time, otherwise it——— ) _ \ o
is negligible. The off-diagonal terms increase the separation 1n this case eigenvalues of are given DY [0 et (A=)
of the eigenvalues of/ corresponding to the two coupled =M~Un+in+1, Whereli are the eigenvalues of the submatrixtof

-1V . Y - 0
modes’ This will also result in a variation of the structure of 0Ver the firsN modes. If there ara A; belowl/y.1 1, the order of
the eigenvalues oflf is N <AJ<Np<Ay< - <Ap1<Ap,

- and  AQ, <Ao< x%+2<~--<>\§<xN+1, with A <Ay

*The separation between the eigenvaluesibfis AN=[(Uy;  <Unsiner Bf S;qUined VA <EN U nea2 -0 or
+Upp) 2+ 4UU1521H2, where we have ordered the(x; Pg) o that the  Unugne1 <Ams1<Aoq if SIqlth netl2/ A=AD) >R 1h e/ (N
first two are the coupled ones. -\9).

Ho=- 2> pPlog(p{), (20)
n
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(o)_ (fn,fn)T(An,An)X 5_I T T T T T 17T T 1T 17 17T T T T 17 T 17T I_
NS I ]
E (f5, F)+ (A, A)x i ]
j ?;-_
is the normalized energy of theh cavity mode. :3:_
E. Applications to experiments §-_
The most interesting aspect of this techniques is that it is <[
not necessary to measure the amplitude and phase of the °§_’
electric field, it is enough to determine the mattiof time -
averages of amplitude products. This matrix can be deter- R i
mined just by average intensity measurements. i ! ]
For a convenient basis of known functiogéx) (not nec- =5 ]
essarily the cavity modgswith amplitudes;(t), we need to 1.0E<m~r--=4-pt=m= "t 3

measure the matrig; =(v;,vj)y. This can be done by mea-
suring the average intensity of the laser

LT y Ok :

(Fx,0)H7= }f [F(x,D)[Pdt= 2 (0jv)78(X)S(X). IE

0 i 3 3

(21) ok

Let X, with m=1,...,M?, be a set of points in the transverse 35;_ _;
plane of the laser and |Q‘(i(jm)ES(X)§j(X). We can rewrite 3 E
Eq.(21) as a linear system d¥? equations for the unknown g 3
average product®u))y: 0 E E
1 2 pump 3

> KM o), = (Fombh P, m=1,2,.,M% (22)
ij

FIG. 1. See text. Cavity parametersA,=D,=0.506;

The solution of this system can then be used in Et4.and B.=-0.280;A,=D,=0.508;B,=-0.280; radius of the intracavity
(15) to determine the topos and their corresponding eigenaperture, three beam waists. Laser paramejer§.1; cavity round-
values. The functions and the pointx,, should be chosen trip time equal to the polarization decay time, 6% losses per round
so that the systert22) is well-conditioned 15]. The number  trip; atom-cavity detuning, 0.05; flat pump; integration time, 16384
M of functionss; necessary should be determined through eound-trips.
least squares procedure from the fitting of the average inten-
sity patterns. Moreover, it may be computationally advantaCes, one per coordinate axis in the transverse plane: the effect
geous to measure the average intensity in more t&n of the astigmatism is to remove the frequency degeneracy of
points and use a least squares procedure to determine tHee cavity modes belonging to the same family. The choice
average amplitude products. of different cavities has allowed us to control the number of

The information provided by the matricdsand.4 can be ~ modes that play a role in the dynamics of the laser. For each
complemented by the fast Fourier transfot®FT) of the  cavity configuration we have run two batches of simulations
signal from a few fast detectors placed in points of the beanfor two different values ofy, y={0.1,0.02%. Each batch
This is particularly useful in case of synchronization. Peaksonsisted of 100 simulations for 20 different values of the
of the FFT are caused by the beating of modes with differenpump parameteg=1.05, 1.15,.., 2.95, and for five sets of
frequency. Reduction in the number of peaks indicates syndifferent initial condition per pump value.
chronization. By measuring the FFT of the beating of the The analysis of some of the simulations is summarized in
multimode beam with a single-mode reference beam, onEigs. 1-5. For each batch of simulations we have computed
could detect not only the synchronization of modes, but alséhe following.
the position of the central frequency of the synchronized (1) The average frequency of each cavity modep

modes. plot). This has been computed as the ratio between the dif-
ference of the final from the initial phase of each mode and
IIl. ENTROPY OF MULTIMODE LASER DYNAMICS the integration time. For each value of the pump the frequen-

cies obtained from the five simulations corresponding to dif-

We have used the tools described in the previous sectioferent initial conditions are plotted as smooth histograms
to analyze the multimode dynamics of the laser modeled by16]. The final result is a contour plot whose coordinates are
Egs.(9—(11). The model and numerical procedure used areghe pump and the average frequency: this plot clearly shows
described if3]. For the purpose of this paper, we have cho-whether synchronization, defined as two or modes evolving
sen a variety of slightly astigmatic cavities with intracavity with the same average frequency, takes place. The shading of

aperture. They were described by two setsA&CD matri-  the plot is proportional to the energy in the given frequency
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FIG. 2. See text. Cavity parametersA,=D,=0.925: FIG. 3. See text. Cavity parameters: As in Fig. 2. Laser param-

B,=0.025;A,=D,=0.921; B,=0.026; radius of the intracavity ap- eters: as in Fig. 2 except=0.1.
erture, three and half beam waists. Laser parameters: as in Fig.
excepty=0.025; atom-cavity detuning, 0.021; integration time 65
536 round-trips.

z"mo, but not the uncorrelated entropy. When the two entro-
pies are significantly different, the scaled Gershgorin radius
is of the order of unity. This is exactly the same scenario as
band(inverted gray scale; bright, no energy; dark, most enthe two-mode cavity analyzed [d]. If the number of modes
ergy). A similar plot could be obtained from experimentally is increasedFig. 2) we observe only partial synchronization,
measured temporal power spectra. but the behavior of the entropy is still qualitatively similar to
(2) The entropyH and the uncorrelated entropy, (sec-  the previous case: it first increases and then decreases as the
ond plob. For each value of the pump we have plotted thedynamics settles in a smaller number of coherent structures.
average entropy of the five simulations with different initial At the onset of synchronization there is an abrupt change of
conditions. The error bars indicate the rms variation of thethe rate of variation of the eigenvalues with the pump and all
entropies. In each plot we have scaled the entropy withhe energy is contained within four topos. From the plot of
log(M), with M the number of modes included in the simu- the average frequency we see that modes that are frequency
lation in order to ensure that the range of the entropy idocked have quite close natural frequencies. However, the
between 0 and 1. natural frequency alone does not explain why some modes
(3) The scaled average Gershgorin radigs(third plot). are locked and other not. Moreover, increasipgi.e., in-
This has been computed by determining the average of thereasing the rate of evolution of the population inversion,
radii p, given by Eq.(19) and scaling it with the average makes it harder for the modes to synchronize and reduces the
distance between the center of the Gershgorin circles, Eglecrease in entropfsee Fig. 3. This is also confirmed by
(18). This scaled radius indicates whether synchronization ishe graphs of the eigenvalugsompare Fig. 2 with Fig. 3
strong enough to move the eigenvalues of the biorthogonal The situation in Figs. 2 and 3 is somewhat artificial: there
decomposition significantly away from the average intensityare neighboring families of modes that have not been in-
of the cavity modes. cluded in the numerical simulation. If we include them, as in
(4) The eigenvalues of the biorthogonal decomposition, Fig. 4 we see that the situation becomes more complicated:
(bottom ploy. For each value of the pump we have plottedas the pump parameter is increased modes that are further
the average eigenvalues of the five simulations with differenaway from the center of the gain line become active and the
initial conditions. The error bars indicate the rms variation ofentropy never decreases, even though it remains smaller than
the eigenvalues. the uncorrelated entropy. Moreover, the appearance of active
When only few modes are activig-ig. 1) we observe high-energy modes at different frequencies seems to disrupt
complete synchronization at high pump power: only one tothe synchronization of the modes in the central family and
pos has eigenvalue different from zero. The entropy drops tonly the most energetic topos, i.e., the one with largest ei-
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FIG. 4. See text. Cavity parameters: as in Fig. 2. Laser param- FIG. 5. See text. Cavity parameters: as in Fig. 2, except radius
eters: as in Fig. 2, but the 72 most resonant modes with smalles the intracavity aperture, 5.1 beam waists. Laser parameters: as in
losses were included in these simulations. Fig. 1, except atom-cavity detuning —2.72; super-Gaussian pump of
width 7 beam waists; integration time, 30 000 round trigs;
={1.1,1.2,..,2.8; the 56 most resonant modes with smallest

envalue, shows any sudden change in slope. i R -
9 y 9 P losses were included in this simulation.

The inclusion of a finite-width pump produces rather sig-
nificant changes in the behavior of the entropy. The case in
Fig. 5 illustrates this case: as in the previous figure there are N
two neighboring families of modes that become active as the Even though in this paper we have analyzed the results of

pump is increased. However, they are wider than the centraﬂu'ﬁneriCaI simulations, the biorthogoqal decomposition is
family and have a smaller overlap with the finite width also an experl!”nental tool. As -the rr?at_ncAsan.dTare av-
pump. They therefore do not disrupt the synchronization of2J€s Over either space or time, it is possible to measure
the modes in the central family and the entropy decreases. €M Wwithout the use of fast detectors: this is of paramount
this final case the variation in the rate of change of the largedfnPortance in optics where the time scales are extremely

eigenvalue at the onset of synchronization is quite remarkshort and it opens the possibility to characterize experimen-
able. tally the spatiotemporal dynamics of, for example, fast semi-

conductor lasers. Moreover, the information contained in the
IV. CONCLUSIONS average matricegl and7 can be complemented by the Fou-

The biorthogonal decomposition, based on the spatiaI['er transform of the signal intensity or of its heterodyne at a

and time-average properties of the dynamics, is a powerleew points, thus obtaining a fairly broad and detailed knowl-

tool to understand and characterize the seemingly featureleggge gf tlh(_a Iassr dynalmlcsf. hi i< th .
turbulent dynamics of multimode lasers. In particular, the _ JNderlying the results of this paper is the open question

study of the structure of the time-average product makix ~ °f Why some modes synchronize and others do not. Our nu-
Sec. |1 D shows how the interaction between modes as thB'€rical analysis suggests that the answer has many facets
pump power is increased can reduce the complexity of th&nd the synchronization depends on spatial characteristics of
laser dynamics and enhance its spatial coherence. As wBe modes, e.g., the overlap between modes and pump and
have shown in Sec. Ill we expect this to happen under ver@ther modes, and on their temporal properties, e.g., their
realistic assumptions, e.g., that the pump width is finite. Thigatural frequency. The answer to this question coupled to the
is a surprising result that goes counter to the “natural expedesults of this paper would allow us not only to determine
tation” that the dynamics of the laser would become morea posteriorithe complexity of the laser dynamics, but also to
complex at higher power. predict its behavior and, ultimately, control it.
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